dwarf2read.c (open_and_init_dwp_file): Fix typo in comment.
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2014 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
476
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
492 #
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
495
496 #
497 v:int:believe_pcc_promotion:::::::
498 #
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
507 #
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
511
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
515 #
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
517 #
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
521 # for instance).
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
523
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
534 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
535 # Return the adjusted address and kind to use for Z0/Z1 packets.
536 # KIND is usually the memory length of the breakpoint, but may have a
537 # different target-specific meaning.
538 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
539 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
540 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
541 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
542 v:CORE_ADDR:decr_pc_after_break:::0:::0
543
544 # A function can be addressed by either it's "pointer" (possibly a
545 # descriptor address) or "entry point" (first executable instruction).
546 # The method "convert_from_func_ptr_addr" converting the former to the
547 # latter. gdbarch_deprecated_function_start_offset is being used to implement
548 # a simplified subset of that functionality - the function's address
549 # corresponds to the "function pointer" and the function's start
550 # corresponds to the "function entry point" - and hence is redundant.
551
552 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
553
554 # Return the remote protocol register number associated with this
555 # register. Normally the identity mapping.
556 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
557
558 # Fetch the target specific address used to represent a load module.
559 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
560 #
561 v:CORE_ADDR:frame_args_skip:::0:::0
562 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
563 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
564 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
565 # frame-base. Enable frame-base before frame-unwind.
566 F:int:frame_num_args:struct frame_info *frame:frame
567 #
568 M:CORE_ADDR:frame_align:CORE_ADDR address:address
569 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
570 v:int:frame_red_zone_size
571 #
572 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
573 # On some machines there are bits in addresses which are not really
574 # part of the address, but are used by the kernel, the hardware, etc.
575 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
576 # we get a "real" address such as one would find in a symbol table.
577 # This is used only for addresses of instructions, and even then I'm
578 # not sure it's used in all contexts. It exists to deal with there
579 # being a few stray bits in the PC which would mislead us, not as some
580 # sort of generic thing to handle alignment or segmentation (it's
581 # possible it should be in TARGET_READ_PC instead).
582 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
583
584 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
585 # indicates if the target needs software single step. An ISA method to
586 # implement it.
587 #
588 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
589 # breakpoints using the breakpoint system instead of blatting memory directly
590 # (as with rs6000).
591 #
592 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
593 # target can single step. If not, then implement single step using breakpoints.
594 #
595 # A return value of 1 means that the software_single_step breakpoints
596 # were inserted; 0 means they were not.
597 F:int:software_single_step:struct frame_info *frame:frame
598
599 # Return non-zero if the processor is executing a delay slot and a
600 # further single-step is needed before the instruction finishes.
601 M:int:single_step_through_delay:struct frame_info *frame:frame
602 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
603 # disassembler. Perhaps objdump can handle it?
604 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
605 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
606
607
608 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
609 # evaluates non-zero, this is the address where the debugger will place
610 # a step-resume breakpoint to get us past the dynamic linker.
611 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
612 # Some systems also have trampoline code for returning from shared libs.
613 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
614
615 # A target might have problems with watchpoints as soon as the stack
616 # frame of the current function has been destroyed. This mostly happens
617 # as the first action in a funtion's epilogue. in_function_epilogue_p()
618 # is defined to return a non-zero value if either the given addr is one
619 # instruction after the stack destroying instruction up to the trailing
620 # return instruction or if we can figure out that the stack frame has
621 # already been invalidated regardless of the value of addr. Targets
622 # which don't suffer from that problem could just let this functionality
623 # untouched.
624 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
625 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
626 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
627 v:int:cannot_step_breakpoint:::0:0::0
628 v:int:have_nonsteppable_watchpoint:::0:0::0
629 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
630 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
631 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
632 # Is a register in a group
633 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
634 # Fetch the pointer to the ith function argument.
635 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
636
637 # Return the appropriate register set for a core file section with
638 # name SECT_NAME and size SECT_SIZE.
639 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
640
641 # Supported register notes in a core file.
642 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
643
644 # Create core file notes
645 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
646
647 # The elfcore writer hook to use to write Linux prpsinfo notes to core
648 # files. Most Linux architectures use the same prpsinfo32 or
649 # prpsinfo64 layouts, and so won't need to provide this hook, as we
650 # call the Linux generic routines in bfd to write prpsinfo notes by
651 # default.
652 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
653
654 # Find core file memory regions
655 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
656
657 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
658 # core file into buffer READBUF with length LEN.
659 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
660
661 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
662 # libraries list from core file into buffer READBUF with length LEN.
663 M:LONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
664
665 # How the core target converts a PTID from a core file to a string.
666 M:char *:core_pid_to_str:ptid_t ptid:ptid
667
668 # BFD target to use when generating a core file.
669 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
670
671 # If the elements of C++ vtables are in-place function descriptors rather
672 # than normal function pointers (which may point to code or a descriptor),
673 # set this to one.
674 v:int:vtable_function_descriptors:::0:0::0
675
676 # Set if the least significant bit of the delta is used instead of the least
677 # significant bit of the pfn for pointers to virtual member functions.
678 v:int:vbit_in_delta:::0:0::0
679
680 # Advance PC to next instruction in order to skip a permanent breakpoint.
681 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
682
683 # The maximum length of an instruction on this architecture in bytes.
684 V:ULONGEST:max_insn_length:::0:0
685
686 # Copy the instruction at FROM to TO, and make any adjustments
687 # necessary to single-step it at that address.
688 #
689 # REGS holds the state the thread's registers will have before
690 # executing the copied instruction; the PC in REGS will refer to FROM,
691 # not the copy at TO. The caller should update it to point at TO later.
692 #
693 # Return a pointer to data of the architecture's choice to be passed
694 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
695 # the instruction's effects have been completely simulated, with the
696 # resulting state written back to REGS.
697 #
698 # For a general explanation of displaced stepping and how GDB uses it,
699 # see the comments in infrun.c.
700 #
701 # The TO area is only guaranteed to have space for
702 # gdbarch_max_insn_length (arch) bytes, so this function must not
703 # write more bytes than that to that area.
704 #
705 # If you do not provide this function, GDB assumes that the
706 # architecture does not support displaced stepping.
707 #
708 # If your architecture doesn't need to adjust instructions before
709 # single-stepping them, consider using simple_displaced_step_copy_insn
710 # here.
711 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
712
713 # Return true if GDB should use hardware single-stepping to execute
714 # the displaced instruction identified by CLOSURE. If false,
715 # GDB will simply restart execution at the displaced instruction
716 # location, and it is up to the target to ensure GDB will receive
717 # control again (e.g. by placing a software breakpoint instruction
718 # into the displaced instruction buffer).
719 #
720 # The default implementation returns false on all targets that
721 # provide a gdbarch_software_single_step routine, and true otherwise.
722 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
723
724 # Fix up the state resulting from successfully single-stepping a
725 # displaced instruction, to give the result we would have gotten from
726 # stepping the instruction in its original location.
727 #
728 # REGS is the register state resulting from single-stepping the
729 # displaced instruction.
730 #
731 # CLOSURE is the result from the matching call to
732 # gdbarch_displaced_step_copy_insn.
733 #
734 # If you provide gdbarch_displaced_step_copy_insn.but not this
735 # function, then GDB assumes that no fixup is needed after
736 # single-stepping the instruction.
737 #
738 # For a general explanation of displaced stepping and how GDB uses it,
739 # see the comments in infrun.c.
740 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
741
742 # Free a closure returned by gdbarch_displaced_step_copy_insn.
743 #
744 # If you provide gdbarch_displaced_step_copy_insn, you must provide
745 # this function as well.
746 #
747 # If your architecture uses closures that don't need to be freed, then
748 # you can use simple_displaced_step_free_closure here.
749 #
750 # For a general explanation of displaced stepping and how GDB uses it,
751 # see the comments in infrun.c.
752 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
753
754 # Return the address of an appropriate place to put displaced
755 # instructions while we step over them. There need only be one such
756 # place, since we're only stepping one thread over a breakpoint at a
757 # time.
758 #
759 # For a general explanation of displaced stepping and how GDB uses it,
760 # see the comments in infrun.c.
761 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
762
763 # Relocate an instruction to execute at a different address. OLDLOC
764 # is the address in the inferior memory where the instruction to
765 # relocate is currently at. On input, TO points to the destination
766 # where we want the instruction to be copied (and possibly adjusted)
767 # to. On output, it points to one past the end of the resulting
768 # instruction(s). The effect of executing the instruction at TO shall
769 # be the same as if executing it at FROM. For example, call
770 # instructions that implicitly push the return address on the stack
771 # should be adjusted to return to the instruction after OLDLOC;
772 # relative branches, and other PC-relative instructions need the
773 # offset adjusted; etc.
774 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
775
776 # Refresh overlay mapped state for section OSECT.
777 F:void:overlay_update:struct obj_section *osect:osect
778
779 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
780
781 # Handle special encoding of static variables in stabs debug info.
782 F:const char *:static_transform_name:const char *name:name
783 # Set if the address in N_SO or N_FUN stabs may be zero.
784 v:int:sofun_address_maybe_missing:::0:0::0
785
786 # Parse the instruction at ADDR storing in the record execution log
787 # the registers REGCACHE and memory ranges that will be affected when
788 # the instruction executes, along with their current values.
789 # Return -1 if something goes wrong, 0 otherwise.
790 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
791
792 # Save process state after a signal.
793 # Return -1 if something goes wrong, 0 otherwise.
794 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
795
796 # Signal translation: translate inferior's signal (target's) number
797 # into GDB's representation. The implementation of this method must
798 # be host independent. IOW, don't rely on symbols of the NAT_FILE
799 # header (the nm-*.h files), the host <signal.h> header, or similar
800 # headers. This is mainly used when cross-debugging core files ---
801 # "Live" targets hide the translation behind the target interface
802 # (target_wait, target_resume, etc.).
803 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
804
805 # Signal translation: translate the GDB's internal signal number into
806 # the inferior's signal (target's) representation. The implementation
807 # of this method must be host independent. IOW, don't rely on symbols
808 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
809 # header, or similar headers.
810 # Return the target signal number if found, or -1 if the GDB internal
811 # signal number is invalid.
812 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
813
814 # Extra signal info inspection.
815 #
816 # Return a type suitable to inspect extra signal information.
817 M:struct type *:get_siginfo_type:void:
818
819 # Record architecture-specific information from the symbol table.
820 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
821
822 # Function for the 'catch syscall' feature.
823
824 # Get architecture-specific system calls information from registers.
825 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
826
827 # SystemTap related fields and functions.
828
829 # A NULL-terminated array of prefixes used to mark an integer constant
830 # on the architecture's assembly.
831 # For example, on x86 integer constants are written as:
832 #
833 # \$10 ;; integer constant 10
834 #
835 # in this case, this prefix would be the character \`\$\'.
836 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
837
838 # A NULL-terminated array of suffixes used to mark an integer constant
839 # on the architecture's assembly.
840 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
841
842 # A NULL-terminated array of prefixes used to mark a register name on
843 # the architecture's assembly.
844 # For example, on x86 the register name is written as:
845 #
846 # \%eax ;; register eax
847 #
848 # in this case, this prefix would be the character \`\%\'.
849 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
850
851 # A NULL-terminated array of suffixes used to mark a register name on
852 # the architecture's assembly.
853 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
854
855 # A NULL-terminated array of prefixes used to mark a register
856 # indirection on the architecture's assembly.
857 # For example, on x86 the register indirection is written as:
858 #
859 # \(\%eax\) ;; indirecting eax
860 #
861 # in this case, this prefix would be the charater \`\(\'.
862 #
863 # Please note that we use the indirection prefix also for register
864 # displacement, e.g., \`4\(\%eax\)\' on x86.
865 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
866
867 # A NULL-terminated array of suffixes used to mark a register
868 # indirection on the architecture's assembly.
869 # For example, on x86 the register indirection is written as:
870 #
871 # \(\%eax\) ;; indirecting eax
872 #
873 # in this case, this prefix would be the charater \`\)\'.
874 #
875 # Please note that we use the indirection suffix also for register
876 # displacement, e.g., \`4\(\%eax\)\' on x86.
877 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
878
879 # Prefix(es) used to name a register using GDB's nomenclature.
880 #
881 # For example, on PPC a register is represented by a number in the assembly
882 # language (e.g., \`10\' is the 10th general-purpose register). However,
883 # inside GDB this same register has an \`r\' appended to its name, so the 10th
884 # register would be represented as \`r10\' internally.
885 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
886
887 # Suffix used to name a register using GDB's nomenclature.
888 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
889
890 # Check if S is a single operand.
891 #
892 # Single operands can be:
893 # \- Literal integers, e.g. \`\$10\' on x86
894 # \- Register access, e.g. \`\%eax\' on x86
895 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
896 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
897 #
898 # This function should check for these patterns on the string
899 # and return 1 if some were found, or zero otherwise. Please try to match
900 # as much info as you can from the string, i.e., if you have to match
901 # something like \`\(\%\', do not match just the \`\(\'.
902 M:int:stap_is_single_operand:const char *s:s
903
904 # Function used to handle a "special case" in the parser.
905 #
906 # A "special case" is considered to be an unknown token, i.e., a token
907 # that the parser does not know how to parse. A good example of special
908 # case would be ARM's register displacement syntax:
909 #
910 # [R0, #4] ;; displacing R0 by 4
911 #
912 # Since the parser assumes that a register displacement is of the form:
913 #
914 # <number> <indirection_prefix> <register_name> <indirection_suffix>
915 #
916 # it means that it will not be able to recognize and parse this odd syntax.
917 # Therefore, we should add a special case function that will handle this token.
918 #
919 # This function should generate the proper expression form of the expression
920 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
921 # and so on). It should also return 1 if the parsing was successful, or zero
922 # if the token was not recognized as a special token (in this case, returning
923 # zero means that the special parser is deferring the parsing to the generic
924 # parser), and should advance the buffer pointer (p->arg).
925 M:int:stap_parse_special_token:struct stap_parse_info *p:p
926
927
928 # True if the list of shared libraries is one and only for all
929 # processes, as opposed to a list of shared libraries per inferior.
930 # This usually means that all processes, although may or may not share
931 # an address space, will see the same set of symbols at the same
932 # addresses.
933 v:int:has_global_solist:::0:0::0
934
935 # On some targets, even though each inferior has its own private
936 # address space, the debug interface takes care of making breakpoints
937 # visible to all address spaces automatically. For such cases,
938 # this property should be set to true.
939 v:int:has_global_breakpoints:::0:0::0
940
941 # True if inferiors share an address space (e.g., uClinux).
942 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
943
944 # True if a fast tracepoint can be set at an address.
945 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
946
947 # Return the "auto" target charset.
948 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
949 # Return the "auto" target wide charset.
950 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
951
952 # If non-empty, this is a file extension that will be opened in place
953 # of the file extension reported by the shared library list.
954 #
955 # This is most useful for toolchains that use a post-linker tool,
956 # where the names of the files run on the target differ in extension
957 # compared to the names of the files GDB should load for debug info.
958 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
959
960 # If true, the target OS has DOS-based file system semantics. That
961 # is, absolute paths include a drive name, and the backslash is
962 # considered a directory separator.
963 v:int:has_dos_based_file_system:::0:0::0
964
965 # Generate bytecodes to collect the return address in a frame.
966 # Since the bytecodes run on the target, possibly with GDB not even
967 # connected, the full unwinding machinery is not available, and
968 # typically this function will issue bytecodes for one or more likely
969 # places that the return address may be found.
970 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
971
972 # Implement the "info proc" command.
973 M:void:info_proc:char *args, enum info_proc_what what:args, what
974
975 # Implement the "info proc" command for core files. Noe that there
976 # are two "info_proc"-like methods on gdbarch -- one for core files,
977 # one for live targets.
978 M:void:core_info_proc:char *args, enum info_proc_what what:args, what
979
980 # Iterate over all objfiles in the order that makes the most sense
981 # for the architecture to make global symbol searches.
982 #
983 # CB is a callback function where OBJFILE is the objfile to be searched,
984 # and CB_DATA a pointer to user-defined data (the same data that is passed
985 # when calling this gdbarch method). The iteration stops if this function
986 # returns nonzero.
987 #
988 # CB_DATA is a pointer to some user-defined data to be passed to
989 # the callback.
990 #
991 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
992 # inspected when the symbol search was requested.
993 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
994
995 # Ravenscar arch-dependent ops.
996 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
997
998 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
999 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1000
1001 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1002 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1003
1004 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1005 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1006 EOF
1007 }
1008
1009 #
1010 # The .log file
1011 #
1012 exec > new-gdbarch.log
1013 function_list | while do_read
1014 do
1015 cat <<EOF
1016 ${class} ${returntype} ${function} ($formal)
1017 EOF
1018 for r in ${read}
1019 do
1020 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1021 done
1022 if class_is_predicate_p && fallback_default_p
1023 then
1024 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1025 kill $$
1026 exit 1
1027 fi
1028 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1029 then
1030 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1031 kill $$
1032 exit 1
1033 fi
1034 if class_is_multiarch_p
1035 then
1036 if class_is_predicate_p ; then :
1037 elif test "x${predefault}" = "x"
1038 then
1039 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1040 kill $$
1041 exit 1
1042 fi
1043 fi
1044 echo ""
1045 done
1046
1047 exec 1>&2
1048 compare_new gdbarch.log
1049
1050
1051 copyright ()
1052 {
1053 cat <<EOF
1054 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1055 /* vi:set ro: */
1056
1057 /* Dynamic architecture support for GDB, the GNU debugger.
1058
1059 Copyright (C) 1998-2014 Free Software Foundation, Inc.
1060
1061 This file is part of GDB.
1062
1063 This program is free software; you can redistribute it and/or modify
1064 it under the terms of the GNU General Public License as published by
1065 the Free Software Foundation; either version 3 of the License, or
1066 (at your option) any later version.
1067
1068 This program is distributed in the hope that it will be useful,
1069 but WITHOUT ANY WARRANTY; without even the implied warranty of
1070 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1071 GNU General Public License for more details.
1072
1073 You should have received a copy of the GNU General Public License
1074 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1075
1076 /* This file was created with the aid of \`\`gdbarch.sh''.
1077
1078 The Bourne shell script \`\`gdbarch.sh'' creates the files
1079 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1080 against the existing \`\`gdbarch.[hc]''. Any differences found
1081 being reported.
1082
1083 If editing this file, please also run gdbarch.sh and merge any
1084 changes into that script. Conversely, when making sweeping changes
1085 to this file, modifying gdbarch.sh and using its output may prove
1086 easier. */
1087
1088 EOF
1089 }
1090
1091 #
1092 # The .h file
1093 #
1094
1095 exec > new-gdbarch.h
1096 copyright
1097 cat <<EOF
1098 #ifndef GDBARCH_H
1099 #define GDBARCH_H
1100
1101 struct floatformat;
1102 struct ui_file;
1103 struct frame_info;
1104 struct value;
1105 struct objfile;
1106 struct obj_section;
1107 struct minimal_symbol;
1108 struct regcache;
1109 struct reggroup;
1110 struct regset;
1111 struct disassemble_info;
1112 struct target_ops;
1113 struct obstack;
1114 struct bp_target_info;
1115 struct target_desc;
1116 struct displaced_step_closure;
1117 struct core_regset_section;
1118 struct syscall;
1119 struct agent_expr;
1120 struct axs_value;
1121 struct stap_parse_info;
1122 struct ravenscar_arch_ops;
1123 struct elf_internal_linux_prpsinfo;
1124
1125 /* The architecture associated with the inferior through the
1126 connection to the target.
1127
1128 The architecture vector provides some information that is really a
1129 property of the inferior, accessed through a particular target:
1130 ptrace operations; the layout of certain RSP packets; the solib_ops
1131 vector; etc. To differentiate architecture accesses to
1132 per-inferior/target properties from
1133 per-thread/per-frame/per-objfile properties, accesses to
1134 per-inferior/target properties should be made through this
1135 gdbarch. */
1136
1137 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1138 extern struct gdbarch *target_gdbarch (void);
1139
1140 /* The initial, default architecture. It uses host values (for want of a better
1141 choice). */
1142 extern struct gdbarch startup_gdbarch;
1143
1144
1145 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1146 gdbarch method. */
1147
1148 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1149 (struct objfile *objfile, void *cb_data);
1150 EOF
1151
1152 # function typedef's
1153 printf "\n"
1154 printf "\n"
1155 printf "/* The following are pre-initialized by GDBARCH. */\n"
1156 function_list | while do_read
1157 do
1158 if class_is_info_p
1159 then
1160 printf "\n"
1161 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1162 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1163 fi
1164 done
1165
1166 # function typedef's
1167 printf "\n"
1168 printf "\n"
1169 printf "/* The following are initialized by the target dependent code. */\n"
1170 function_list | while do_read
1171 do
1172 if [ -n "${comment}" ]
1173 then
1174 echo "${comment}" | sed \
1175 -e '2 s,#,/*,' \
1176 -e '3,$ s,#, ,' \
1177 -e '$ s,$, */,'
1178 fi
1179
1180 if class_is_predicate_p
1181 then
1182 printf "\n"
1183 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1184 fi
1185 if class_is_variable_p
1186 then
1187 printf "\n"
1188 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1189 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1190 fi
1191 if class_is_function_p
1192 then
1193 printf "\n"
1194 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1195 then
1196 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1197 elif class_is_multiarch_p
1198 then
1199 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1200 else
1201 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1202 fi
1203 if [ "x${formal}" = "xvoid" ]
1204 then
1205 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1206 else
1207 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1208 fi
1209 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1210 fi
1211 done
1212
1213 # close it off
1214 cat <<EOF
1215
1216 /* Definition for an unknown syscall, used basically in error-cases. */
1217 #define UNKNOWN_SYSCALL (-1)
1218
1219 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1220
1221
1222 /* Mechanism for co-ordinating the selection of a specific
1223 architecture.
1224
1225 GDB targets (*-tdep.c) can register an interest in a specific
1226 architecture. Other GDB components can register a need to maintain
1227 per-architecture data.
1228
1229 The mechanisms below ensures that there is only a loose connection
1230 between the set-architecture command and the various GDB
1231 components. Each component can independently register their need
1232 to maintain architecture specific data with gdbarch.
1233
1234 Pragmatics:
1235
1236 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1237 didn't scale.
1238
1239 The more traditional mega-struct containing architecture specific
1240 data for all the various GDB components was also considered. Since
1241 GDB is built from a variable number of (fairly independent)
1242 components it was determined that the global aproach was not
1243 applicable. */
1244
1245
1246 /* Register a new architectural family with GDB.
1247
1248 Register support for the specified ARCHITECTURE with GDB. When
1249 gdbarch determines that the specified architecture has been
1250 selected, the corresponding INIT function is called.
1251
1252 --
1253
1254 The INIT function takes two parameters: INFO which contains the
1255 information available to gdbarch about the (possibly new)
1256 architecture; ARCHES which is a list of the previously created
1257 \`\`struct gdbarch'' for this architecture.
1258
1259 The INFO parameter is, as far as possible, be pre-initialized with
1260 information obtained from INFO.ABFD or the global defaults.
1261
1262 The ARCHES parameter is a linked list (sorted most recently used)
1263 of all the previously created architures for this architecture
1264 family. The (possibly NULL) ARCHES->gdbarch can used to access
1265 values from the previously selected architecture for this
1266 architecture family.
1267
1268 The INIT function shall return any of: NULL - indicating that it
1269 doesn't recognize the selected architecture; an existing \`\`struct
1270 gdbarch'' from the ARCHES list - indicating that the new
1271 architecture is just a synonym for an earlier architecture (see
1272 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1273 - that describes the selected architecture (see gdbarch_alloc()).
1274
1275 The DUMP_TDEP function shall print out all target specific values.
1276 Care should be taken to ensure that the function works in both the
1277 multi-arch and non- multi-arch cases. */
1278
1279 struct gdbarch_list
1280 {
1281 struct gdbarch *gdbarch;
1282 struct gdbarch_list *next;
1283 };
1284
1285 struct gdbarch_info
1286 {
1287 /* Use default: NULL (ZERO). */
1288 const struct bfd_arch_info *bfd_arch_info;
1289
1290 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1291 enum bfd_endian byte_order;
1292
1293 enum bfd_endian byte_order_for_code;
1294
1295 /* Use default: NULL (ZERO). */
1296 bfd *abfd;
1297
1298 /* Use default: NULL (ZERO). */
1299 struct gdbarch_tdep_info *tdep_info;
1300
1301 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1302 enum gdb_osabi osabi;
1303
1304 /* Use default: NULL (ZERO). */
1305 const struct target_desc *target_desc;
1306 };
1307
1308 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1309 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1310
1311 /* DEPRECATED - use gdbarch_register() */
1312 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1313
1314 extern void gdbarch_register (enum bfd_architecture architecture,
1315 gdbarch_init_ftype *,
1316 gdbarch_dump_tdep_ftype *);
1317
1318
1319 /* Return a freshly allocated, NULL terminated, array of the valid
1320 architecture names. Since architectures are registered during the
1321 _initialize phase this function only returns useful information
1322 once initialization has been completed. */
1323
1324 extern const char **gdbarch_printable_names (void);
1325
1326
1327 /* Helper function. Search the list of ARCHES for a GDBARCH that
1328 matches the information provided by INFO. */
1329
1330 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1331
1332
1333 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1334 basic initialization using values obtained from the INFO and TDEP
1335 parameters. set_gdbarch_*() functions are called to complete the
1336 initialization of the object. */
1337
1338 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1339
1340
1341 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1342 It is assumed that the caller freeds the \`\`struct
1343 gdbarch_tdep''. */
1344
1345 extern void gdbarch_free (struct gdbarch *);
1346
1347
1348 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1349 obstack. The memory is freed when the corresponding architecture
1350 is also freed. */
1351
1352 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1353 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1354 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1355
1356
1357 /* Helper function. Force an update of the current architecture.
1358
1359 The actual architecture selected is determined by INFO, \`\`(gdb) set
1360 architecture'' et.al., the existing architecture and BFD's default
1361 architecture. INFO should be initialized to zero and then selected
1362 fields should be updated.
1363
1364 Returns non-zero if the update succeeds. */
1365
1366 extern int gdbarch_update_p (struct gdbarch_info info);
1367
1368
1369 /* Helper function. Find an architecture matching info.
1370
1371 INFO should be initialized using gdbarch_info_init, relevant fields
1372 set, and then finished using gdbarch_info_fill.
1373
1374 Returns the corresponding architecture, or NULL if no matching
1375 architecture was found. */
1376
1377 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1378
1379
1380 /* Helper function. Set the target gdbarch to "gdbarch". */
1381
1382 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1383
1384
1385 /* Register per-architecture data-pointer.
1386
1387 Reserve space for a per-architecture data-pointer. An identifier
1388 for the reserved data-pointer is returned. That identifer should
1389 be saved in a local static variable.
1390
1391 Memory for the per-architecture data shall be allocated using
1392 gdbarch_obstack_zalloc. That memory will be deleted when the
1393 corresponding architecture object is deleted.
1394
1395 When a previously created architecture is re-selected, the
1396 per-architecture data-pointer for that previous architecture is
1397 restored. INIT() is not re-called.
1398
1399 Multiple registrarants for any architecture are allowed (and
1400 strongly encouraged). */
1401
1402 struct gdbarch_data;
1403
1404 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1405 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1406 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1407 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1408 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1409 struct gdbarch_data *data,
1410 void *pointer);
1411
1412 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1413
1414
1415 /* Set the dynamic target-system-dependent parameters (architecture,
1416 byte-order, ...) using information found in the BFD. */
1417
1418 extern void set_gdbarch_from_file (bfd *);
1419
1420
1421 /* Initialize the current architecture to the "first" one we find on
1422 our list. */
1423
1424 extern void initialize_current_architecture (void);
1425
1426 /* gdbarch trace variable */
1427 extern unsigned int gdbarch_debug;
1428
1429 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1430
1431 #endif
1432 EOF
1433 exec 1>&2
1434 #../move-if-change new-gdbarch.h gdbarch.h
1435 compare_new gdbarch.h
1436
1437
1438 #
1439 # C file
1440 #
1441
1442 exec > new-gdbarch.c
1443 copyright
1444 cat <<EOF
1445
1446 #include "defs.h"
1447 #include "arch-utils.h"
1448
1449 #include "gdbcmd.h"
1450 #include "inferior.h"
1451 #include "symcat.h"
1452
1453 #include "floatformat.h"
1454
1455 #include "gdb_assert.h"
1456 #include <string.h>
1457 #include "reggroups.h"
1458 #include "osabi.h"
1459 #include "gdb_obstack.h"
1460 #include "observer.h"
1461 #include "regcache.h"
1462 #include "objfiles.h"
1463
1464 /* Static function declarations */
1465
1466 static void alloc_gdbarch_data (struct gdbarch *);
1467
1468 /* Non-zero if we want to trace architecture code. */
1469
1470 #ifndef GDBARCH_DEBUG
1471 #define GDBARCH_DEBUG 0
1472 #endif
1473 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1474 static void
1475 show_gdbarch_debug (struct ui_file *file, int from_tty,
1476 struct cmd_list_element *c, const char *value)
1477 {
1478 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1479 }
1480
1481 static const char *
1482 pformat (const struct floatformat **format)
1483 {
1484 if (format == NULL)
1485 return "(null)";
1486 else
1487 /* Just print out one of them - this is only for diagnostics. */
1488 return format[0]->name;
1489 }
1490
1491 static const char *
1492 pstring (const char *string)
1493 {
1494 if (string == NULL)
1495 return "(null)";
1496 return string;
1497 }
1498
1499 /* Helper function to print a list of strings, represented as "const
1500 char *const *". The list is printed comma-separated. */
1501
1502 static char *
1503 pstring_list (const char *const *list)
1504 {
1505 static char ret[100];
1506 const char *const *p;
1507 size_t offset = 0;
1508
1509 if (list == NULL)
1510 return "(null)";
1511
1512 ret[0] = '\0';
1513 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1514 {
1515 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1516 offset += 2 + s;
1517 }
1518
1519 if (offset > 0)
1520 {
1521 gdb_assert (offset - 2 < sizeof (ret));
1522 ret[offset - 2] = '\0';
1523 }
1524
1525 return ret;
1526 }
1527
1528 EOF
1529
1530 # gdbarch open the gdbarch object
1531 printf "\n"
1532 printf "/* Maintain the struct gdbarch object. */\n"
1533 printf "\n"
1534 printf "struct gdbarch\n"
1535 printf "{\n"
1536 printf " /* Has this architecture been fully initialized? */\n"
1537 printf " int initialized_p;\n"
1538 printf "\n"
1539 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1540 printf " struct obstack *obstack;\n"
1541 printf "\n"
1542 printf " /* basic architectural information. */\n"
1543 function_list | while do_read
1544 do
1545 if class_is_info_p
1546 then
1547 printf " ${returntype} ${function};\n"
1548 fi
1549 done
1550 printf "\n"
1551 printf " /* target specific vector. */\n"
1552 printf " struct gdbarch_tdep *tdep;\n"
1553 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1554 printf "\n"
1555 printf " /* per-architecture data-pointers. */\n"
1556 printf " unsigned nr_data;\n"
1557 printf " void **data;\n"
1558 printf "\n"
1559 cat <<EOF
1560 /* Multi-arch values.
1561
1562 When extending this structure you must:
1563
1564 Add the field below.
1565
1566 Declare set/get functions and define the corresponding
1567 macro in gdbarch.h.
1568
1569 gdbarch_alloc(): If zero/NULL is not a suitable default,
1570 initialize the new field.
1571
1572 verify_gdbarch(): Confirm that the target updated the field
1573 correctly.
1574
1575 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1576 field is dumped out
1577
1578 \`\`startup_gdbarch()'': Append an initial value to the static
1579 variable (base values on the host's c-type system).
1580
1581 get_gdbarch(): Implement the set/get functions (probably using
1582 the macro's as shortcuts).
1583
1584 */
1585
1586 EOF
1587 function_list | while do_read
1588 do
1589 if class_is_variable_p
1590 then
1591 printf " ${returntype} ${function};\n"
1592 elif class_is_function_p
1593 then
1594 printf " gdbarch_${function}_ftype *${function};\n"
1595 fi
1596 done
1597 printf "};\n"
1598
1599 # A pre-initialized vector
1600 printf "\n"
1601 printf "\n"
1602 cat <<EOF
1603 /* The default architecture uses host values (for want of a better
1604 choice). */
1605 EOF
1606 printf "\n"
1607 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1608 printf "\n"
1609 printf "struct gdbarch startup_gdbarch =\n"
1610 printf "{\n"
1611 printf " 1, /* Always initialized. */\n"
1612 printf " NULL, /* The obstack. */\n"
1613 printf " /* basic architecture information. */\n"
1614 function_list | while do_read
1615 do
1616 if class_is_info_p
1617 then
1618 printf " ${staticdefault}, /* ${function} */\n"
1619 fi
1620 done
1621 cat <<EOF
1622 /* target specific vector and its dump routine. */
1623 NULL, NULL,
1624 /*per-architecture data-pointers. */
1625 0, NULL,
1626 /* Multi-arch values */
1627 EOF
1628 function_list | while do_read
1629 do
1630 if class_is_function_p || class_is_variable_p
1631 then
1632 printf " ${staticdefault}, /* ${function} */\n"
1633 fi
1634 done
1635 cat <<EOF
1636 /* startup_gdbarch() */
1637 };
1638
1639 EOF
1640
1641 # Create a new gdbarch struct
1642 cat <<EOF
1643
1644 /* Create a new \`\`struct gdbarch'' based on information provided by
1645 \`\`struct gdbarch_info''. */
1646 EOF
1647 printf "\n"
1648 cat <<EOF
1649 struct gdbarch *
1650 gdbarch_alloc (const struct gdbarch_info *info,
1651 struct gdbarch_tdep *tdep)
1652 {
1653 struct gdbarch *gdbarch;
1654
1655 /* Create an obstack for allocating all the per-architecture memory,
1656 then use that to allocate the architecture vector. */
1657 struct obstack *obstack = XNEW (struct obstack);
1658 obstack_init (obstack);
1659 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1660 memset (gdbarch, 0, sizeof (*gdbarch));
1661 gdbarch->obstack = obstack;
1662
1663 alloc_gdbarch_data (gdbarch);
1664
1665 gdbarch->tdep = tdep;
1666 EOF
1667 printf "\n"
1668 function_list | while do_read
1669 do
1670 if class_is_info_p
1671 then
1672 printf " gdbarch->${function} = info->${function};\n"
1673 fi
1674 done
1675 printf "\n"
1676 printf " /* Force the explicit initialization of these. */\n"
1677 function_list | while do_read
1678 do
1679 if class_is_function_p || class_is_variable_p
1680 then
1681 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1682 then
1683 printf " gdbarch->${function} = ${predefault};\n"
1684 fi
1685 fi
1686 done
1687 cat <<EOF
1688 /* gdbarch_alloc() */
1689
1690 return gdbarch;
1691 }
1692 EOF
1693
1694 # Free a gdbarch struct.
1695 printf "\n"
1696 printf "\n"
1697 cat <<EOF
1698 /* Allocate extra space using the per-architecture obstack. */
1699
1700 void *
1701 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1702 {
1703 void *data = obstack_alloc (arch->obstack, size);
1704
1705 memset (data, 0, size);
1706 return data;
1707 }
1708
1709
1710 /* Free a gdbarch struct. This should never happen in normal
1711 operation --- once you've created a gdbarch, you keep it around.
1712 However, if an architecture's init function encounters an error
1713 building the structure, it may need to clean up a partially
1714 constructed gdbarch. */
1715
1716 void
1717 gdbarch_free (struct gdbarch *arch)
1718 {
1719 struct obstack *obstack;
1720
1721 gdb_assert (arch != NULL);
1722 gdb_assert (!arch->initialized_p);
1723 obstack = arch->obstack;
1724 obstack_free (obstack, 0); /* Includes the ARCH. */
1725 xfree (obstack);
1726 }
1727 EOF
1728
1729 # verify a new architecture
1730 cat <<EOF
1731
1732
1733 /* Ensure that all values in a GDBARCH are reasonable. */
1734
1735 static void
1736 verify_gdbarch (struct gdbarch *gdbarch)
1737 {
1738 struct ui_file *log;
1739 struct cleanup *cleanups;
1740 long length;
1741 char *buf;
1742
1743 log = mem_fileopen ();
1744 cleanups = make_cleanup_ui_file_delete (log);
1745 /* fundamental */
1746 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1747 fprintf_unfiltered (log, "\n\tbyte-order");
1748 if (gdbarch->bfd_arch_info == NULL)
1749 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1750 /* Check those that need to be defined for the given multi-arch level. */
1751 EOF
1752 function_list | while do_read
1753 do
1754 if class_is_function_p || class_is_variable_p
1755 then
1756 if [ "x${invalid_p}" = "x0" ]
1757 then
1758 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1759 elif class_is_predicate_p
1760 then
1761 printf " /* Skip verify of ${function}, has predicate. */\n"
1762 # FIXME: See do_read for potential simplification
1763 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1764 then
1765 printf " if (${invalid_p})\n"
1766 printf " gdbarch->${function} = ${postdefault};\n"
1767 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1768 then
1769 printf " if (gdbarch->${function} == ${predefault})\n"
1770 printf " gdbarch->${function} = ${postdefault};\n"
1771 elif [ -n "${postdefault}" ]
1772 then
1773 printf " if (gdbarch->${function} == 0)\n"
1774 printf " gdbarch->${function} = ${postdefault};\n"
1775 elif [ -n "${invalid_p}" ]
1776 then
1777 printf " if (${invalid_p})\n"
1778 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1779 elif [ -n "${predefault}" ]
1780 then
1781 printf " if (gdbarch->${function} == ${predefault})\n"
1782 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1783 fi
1784 fi
1785 done
1786 cat <<EOF
1787 buf = ui_file_xstrdup (log, &length);
1788 make_cleanup (xfree, buf);
1789 if (length > 0)
1790 internal_error (__FILE__, __LINE__,
1791 _("verify_gdbarch: the following are invalid ...%s"),
1792 buf);
1793 do_cleanups (cleanups);
1794 }
1795 EOF
1796
1797 # dump the structure
1798 printf "\n"
1799 printf "\n"
1800 cat <<EOF
1801 /* Print out the details of the current architecture. */
1802
1803 void
1804 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1805 {
1806 const char *gdb_nm_file = "<not-defined>";
1807
1808 #if defined (GDB_NM_FILE)
1809 gdb_nm_file = GDB_NM_FILE;
1810 #endif
1811 fprintf_unfiltered (file,
1812 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1813 gdb_nm_file);
1814 EOF
1815 function_list | sort -t: -k 3 | while do_read
1816 do
1817 # First the predicate
1818 if class_is_predicate_p
1819 then
1820 printf " fprintf_unfiltered (file,\n"
1821 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1822 printf " gdbarch_${function}_p (gdbarch));\n"
1823 fi
1824 # Print the corresponding value.
1825 if class_is_function_p
1826 then
1827 printf " fprintf_unfiltered (file,\n"
1828 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1829 printf " host_address_to_string (gdbarch->${function}));\n"
1830 else
1831 # It is a variable
1832 case "${print}:${returntype}" in
1833 :CORE_ADDR )
1834 fmt="%s"
1835 print="core_addr_to_string_nz (gdbarch->${function})"
1836 ;;
1837 :* )
1838 fmt="%s"
1839 print="plongest (gdbarch->${function})"
1840 ;;
1841 * )
1842 fmt="%s"
1843 ;;
1844 esac
1845 printf " fprintf_unfiltered (file,\n"
1846 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1847 printf " ${print});\n"
1848 fi
1849 done
1850 cat <<EOF
1851 if (gdbarch->dump_tdep != NULL)
1852 gdbarch->dump_tdep (gdbarch, file);
1853 }
1854 EOF
1855
1856
1857 # GET/SET
1858 printf "\n"
1859 cat <<EOF
1860 struct gdbarch_tdep *
1861 gdbarch_tdep (struct gdbarch *gdbarch)
1862 {
1863 if (gdbarch_debug >= 2)
1864 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1865 return gdbarch->tdep;
1866 }
1867 EOF
1868 printf "\n"
1869 function_list | while do_read
1870 do
1871 if class_is_predicate_p
1872 then
1873 printf "\n"
1874 printf "int\n"
1875 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1876 printf "{\n"
1877 printf " gdb_assert (gdbarch != NULL);\n"
1878 printf " return ${predicate};\n"
1879 printf "}\n"
1880 fi
1881 if class_is_function_p
1882 then
1883 printf "\n"
1884 printf "${returntype}\n"
1885 if [ "x${formal}" = "xvoid" ]
1886 then
1887 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1888 else
1889 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1890 fi
1891 printf "{\n"
1892 printf " gdb_assert (gdbarch != NULL);\n"
1893 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1894 if class_is_predicate_p && test -n "${predefault}"
1895 then
1896 # Allow a call to a function with a predicate.
1897 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1898 fi
1899 printf " if (gdbarch_debug >= 2)\n"
1900 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1901 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1902 then
1903 if class_is_multiarch_p
1904 then
1905 params="gdbarch"
1906 else
1907 params=""
1908 fi
1909 else
1910 if class_is_multiarch_p
1911 then
1912 params="gdbarch, ${actual}"
1913 else
1914 params="${actual}"
1915 fi
1916 fi
1917 if [ "x${returntype}" = "xvoid" ]
1918 then
1919 printf " gdbarch->${function} (${params});\n"
1920 else
1921 printf " return gdbarch->${function} (${params});\n"
1922 fi
1923 printf "}\n"
1924 printf "\n"
1925 printf "void\n"
1926 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1927 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1928 printf "{\n"
1929 printf " gdbarch->${function} = ${function};\n"
1930 printf "}\n"
1931 elif class_is_variable_p
1932 then
1933 printf "\n"
1934 printf "${returntype}\n"
1935 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1936 printf "{\n"
1937 printf " gdb_assert (gdbarch != NULL);\n"
1938 if [ "x${invalid_p}" = "x0" ]
1939 then
1940 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1941 elif [ -n "${invalid_p}" ]
1942 then
1943 printf " /* Check variable is valid. */\n"
1944 printf " gdb_assert (!(${invalid_p}));\n"
1945 elif [ -n "${predefault}" ]
1946 then
1947 printf " /* Check variable changed from pre-default. */\n"
1948 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1949 fi
1950 printf " if (gdbarch_debug >= 2)\n"
1951 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1952 printf " return gdbarch->${function};\n"
1953 printf "}\n"
1954 printf "\n"
1955 printf "void\n"
1956 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1957 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1958 printf "{\n"
1959 printf " gdbarch->${function} = ${function};\n"
1960 printf "}\n"
1961 elif class_is_info_p
1962 then
1963 printf "\n"
1964 printf "${returntype}\n"
1965 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1966 printf "{\n"
1967 printf " gdb_assert (gdbarch != NULL);\n"
1968 printf " if (gdbarch_debug >= 2)\n"
1969 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1970 printf " return gdbarch->${function};\n"
1971 printf "}\n"
1972 fi
1973 done
1974
1975 # All the trailing guff
1976 cat <<EOF
1977
1978
1979 /* Keep a registry of per-architecture data-pointers required by GDB
1980 modules. */
1981
1982 struct gdbarch_data
1983 {
1984 unsigned index;
1985 int init_p;
1986 gdbarch_data_pre_init_ftype *pre_init;
1987 gdbarch_data_post_init_ftype *post_init;
1988 };
1989
1990 struct gdbarch_data_registration
1991 {
1992 struct gdbarch_data *data;
1993 struct gdbarch_data_registration *next;
1994 };
1995
1996 struct gdbarch_data_registry
1997 {
1998 unsigned nr;
1999 struct gdbarch_data_registration *registrations;
2000 };
2001
2002 struct gdbarch_data_registry gdbarch_data_registry =
2003 {
2004 0, NULL,
2005 };
2006
2007 static struct gdbarch_data *
2008 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2009 gdbarch_data_post_init_ftype *post_init)
2010 {
2011 struct gdbarch_data_registration **curr;
2012
2013 /* Append the new registration. */
2014 for (curr = &gdbarch_data_registry.registrations;
2015 (*curr) != NULL;
2016 curr = &(*curr)->next);
2017 (*curr) = XNEW (struct gdbarch_data_registration);
2018 (*curr)->next = NULL;
2019 (*curr)->data = XNEW (struct gdbarch_data);
2020 (*curr)->data->index = gdbarch_data_registry.nr++;
2021 (*curr)->data->pre_init = pre_init;
2022 (*curr)->data->post_init = post_init;
2023 (*curr)->data->init_p = 1;
2024 return (*curr)->data;
2025 }
2026
2027 struct gdbarch_data *
2028 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2029 {
2030 return gdbarch_data_register (pre_init, NULL);
2031 }
2032
2033 struct gdbarch_data *
2034 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2035 {
2036 return gdbarch_data_register (NULL, post_init);
2037 }
2038
2039 /* Create/delete the gdbarch data vector. */
2040
2041 static void
2042 alloc_gdbarch_data (struct gdbarch *gdbarch)
2043 {
2044 gdb_assert (gdbarch->data == NULL);
2045 gdbarch->nr_data = gdbarch_data_registry.nr;
2046 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2047 }
2048
2049 /* Initialize the current value of the specified per-architecture
2050 data-pointer. */
2051
2052 void
2053 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2054 struct gdbarch_data *data,
2055 void *pointer)
2056 {
2057 gdb_assert (data->index < gdbarch->nr_data);
2058 gdb_assert (gdbarch->data[data->index] == NULL);
2059 gdb_assert (data->pre_init == NULL);
2060 gdbarch->data[data->index] = pointer;
2061 }
2062
2063 /* Return the current value of the specified per-architecture
2064 data-pointer. */
2065
2066 void *
2067 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2068 {
2069 gdb_assert (data->index < gdbarch->nr_data);
2070 if (gdbarch->data[data->index] == NULL)
2071 {
2072 /* The data-pointer isn't initialized, call init() to get a
2073 value. */
2074 if (data->pre_init != NULL)
2075 /* Mid architecture creation: pass just the obstack, and not
2076 the entire architecture, as that way it isn't possible for
2077 pre-init code to refer to undefined architecture
2078 fields. */
2079 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2080 else if (gdbarch->initialized_p
2081 && data->post_init != NULL)
2082 /* Post architecture creation: pass the entire architecture
2083 (as all fields are valid), but be careful to also detect
2084 recursive references. */
2085 {
2086 gdb_assert (data->init_p);
2087 data->init_p = 0;
2088 gdbarch->data[data->index] = data->post_init (gdbarch);
2089 data->init_p = 1;
2090 }
2091 else
2092 /* The architecture initialization hasn't completed - punt -
2093 hope that the caller knows what they are doing. Once
2094 deprecated_set_gdbarch_data has been initialized, this can be
2095 changed to an internal error. */
2096 return NULL;
2097 gdb_assert (gdbarch->data[data->index] != NULL);
2098 }
2099 return gdbarch->data[data->index];
2100 }
2101
2102
2103 /* Keep a registry of the architectures known by GDB. */
2104
2105 struct gdbarch_registration
2106 {
2107 enum bfd_architecture bfd_architecture;
2108 gdbarch_init_ftype *init;
2109 gdbarch_dump_tdep_ftype *dump_tdep;
2110 struct gdbarch_list *arches;
2111 struct gdbarch_registration *next;
2112 };
2113
2114 static struct gdbarch_registration *gdbarch_registry = NULL;
2115
2116 static void
2117 append_name (const char ***buf, int *nr, const char *name)
2118 {
2119 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2120 (*buf)[*nr] = name;
2121 *nr += 1;
2122 }
2123
2124 const char **
2125 gdbarch_printable_names (void)
2126 {
2127 /* Accumulate a list of names based on the registed list of
2128 architectures. */
2129 int nr_arches = 0;
2130 const char **arches = NULL;
2131 struct gdbarch_registration *rego;
2132
2133 for (rego = gdbarch_registry;
2134 rego != NULL;
2135 rego = rego->next)
2136 {
2137 const struct bfd_arch_info *ap;
2138 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2139 if (ap == NULL)
2140 internal_error (__FILE__, __LINE__,
2141 _("gdbarch_architecture_names: multi-arch unknown"));
2142 do
2143 {
2144 append_name (&arches, &nr_arches, ap->printable_name);
2145 ap = ap->next;
2146 }
2147 while (ap != NULL);
2148 }
2149 append_name (&arches, &nr_arches, NULL);
2150 return arches;
2151 }
2152
2153
2154 void
2155 gdbarch_register (enum bfd_architecture bfd_architecture,
2156 gdbarch_init_ftype *init,
2157 gdbarch_dump_tdep_ftype *dump_tdep)
2158 {
2159 struct gdbarch_registration **curr;
2160 const struct bfd_arch_info *bfd_arch_info;
2161
2162 /* Check that BFD recognizes this architecture */
2163 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2164 if (bfd_arch_info == NULL)
2165 {
2166 internal_error (__FILE__, __LINE__,
2167 _("gdbarch: Attempt to register "
2168 "unknown architecture (%d)"),
2169 bfd_architecture);
2170 }
2171 /* Check that we haven't seen this architecture before. */
2172 for (curr = &gdbarch_registry;
2173 (*curr) != NULL;
2174 curr = &(*curr)->next)
2175 {
2176 if (bfd_architecture == (*curr)->bfd_architecture)
2177 internal_error (__FILE__, __LINE__,
2178 _("gdbarch: Duplicate registration "
2179 "of architecture (%s)"),
2180 bfd_arch_info->printable_name);
2181 }
2182 /* log it */
2183 if (gdbarch_debug)
2184 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2185 bfd_arch_info->printable_name,
2186 host_address_to_string (init));
2187 /* Append it */
2188 (*curr) = XNEW (struct gdbarch_registration);
2189 (*curr)->bfd_architecture = bfd_architecture;
2190 (*curr)->init = init;
2191 (*curr)->dump_tdep = dump_tdep;
2192 (*curr)->arches = NULL;
2193 (*curr)->next = NULL;
2194 }
2195
2196 void
2197 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2198 gdbarch_init_ftype *init)
2199 {
2200 gdbarch_register (bfd_architecture, init, NULL);
2201 }
2202
2203
2204 /* Look for an architecture using gdbarch_info. */
2205
2206 struct gdbarch_list *
2207 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2208 const struct gdbarch_info *info)
2209 {
2210 for (; arches != NULL; arches = arches->next)
2211 {
2212 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2213 continue;
2214 if (info->byte_order != arches->gdbarch->byte_order)
2215 continue;
2216 if (info->osabi != arches->gdbarch->osabi)
2217 continue;
2218 if (info->target_desc != arches->gdbarch->target_desc)
2219 continue;
2220 return arches;
2221 }
2222 return NULL;
2223 }
2224
2225
2226 /* Find an architecture that matches the specified INFO. Create a new
2227 architecture if needed. Return that new architecture. */
2228
2229 struct gdbarch *
2230 gdbarch_find_by_info (struct gdbarch_info info)
2231 {
2232 struct gdbarch *new_gdbarch;
2233 struct gdbarch_registration *rego;
2234
2235 /* Fill in missing parts of the INFO struct using a number of
2236 sources: "set ..."; INFOabfd supplied; and the global
2237 defaults. */
2238 gdbarch_info_fill (&info);
2239
2240 /* Must have found some sort of architecture. */
2241 gdb_assert (info.bfd_arch_info != NULL);
2242
2243 if (gdbarch_debug)
2244 {
2245 fprintf_unfiltered (gdb_stdlog,
2246 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2247 (info.bfd_arch_info != NULL
2248 ? info.bfd_arch_info->printable_name
2249 : "(null)"));
2250 fprintf_unfiltered (gdb_stdlog,
2251 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2252 info.byte_order,
2253 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2254 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2255 : "default"));
2256 fprintf_unfiltered (gdb_stdlog,
2257 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2258 info.osabi, gdbarch_osabi_name (info.osabi));
2259 fprintf_unfiltered (gdb_stdlog,
2260 "gdbarch_find_by_info: info.abfd %s\n",
2261 host_address_to_string (info.abfd));
2262 fprintf_unfiltered (gdb_stdlog,
2263 "gdbarch_find_by_info: info.tdep_info %s\n",
2264 host_address_to_string (info.tdep_info));
2265 }
2266
2267 /* Find the tdep code that knows about this architecture. */
2268 for (rego = gdbarch_registry;
2269 rego != NULL;
2270 rego = rego->next)
2271 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2272 break;
2273 if (rego == NULL)
2274 {
2275 if (gdbarch_debug)
2276 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2277 "No matching architecture\n");
2278 return 0;
2279 }
2280
2281 /* Ask the tdep code for an architecture that matches "info". */
2282 new_gdbarch = rego->init (info, rego->arches);
2283
2284 /* Did the tdep code like it? No. Reject the change and revert to
2285 the old architecture. */
2286 if (new_gdbarch == NULL)
2287 {
2288 if (gdbarch_debug)
2289 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2290 "Target rejected architecture\n");
2291 return NULL;
2292 }
2293
2294 /* Is this a pre-existing architecture (as determined by already
2295 being initialized)? Move it to the front of the architecture
2296 list (keeping the list sorted Most Recently Used). */
2297 if (new_gdbarch->initialized_p)
2298 {
2299 struct gdbarch_list **list;
2300 struct gdbarch_list *this;
2301 if (gdbarch_debug)
2302 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2303 "Previous architecture %s (%s) selected\n",
2304 host_address_to_string (new_gdbarch),
2305 new_gdbarch->bfd_arch_info->printable_name);
2306 /* Find the existing arch in the list. */
2307 for (list = &rego->arches;
2308 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2309 list = &(*list)->next);
2310 /* It had better be in the list of architectures. */
2311 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2312 /* Unlink THIS. */
2313 this = (*list);
2314 (*list) = this->next;
2315 /* Insert THIS at the front. */
2316 this->next = rego->arches;
2317 rego->arches = this;
2318 /* Return it. */
2319 return new_gdbarch;
2320 }
2321
2322 /* It's a new architecture. */
2323 if (gdbarch_debug)
2324 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2325 "New architecture %s (%s) selected\n",
2326 host_address_to_string (new_gdbarch),
2327 new_gdbarch->bfd_arch_info->printable_name);
2328
2329 /* Insert the new architecture into the front of the architecture
2330 list (keep the list sorted Most Recently Used). */
2331 {
2332 struct gdbarch_list *this = XNEW (struct gdbarch_list);
2333 this->next = rego->arches;
2334 this->gdbarch = new_gdbarch;
2335 rego->arches = this;
2336 }
2337
2338 /* Check that the newly installed architecture is valid. Plug in
2339 any post init values. */
2340 new_gdbarch->dump_tdep = rego->dump_tdep;
2341 verify_gdbarch (new_gdbarch);
2342 new_gdbarch->initialized_p = 1;
2343
2344 if (gdbarch_debug)
2345 gdbarch_dump (new_gdbarch, gdb_stdlog);
2346
2347 return new_gdbarch;
2348 }
2349
2350 /* Make the specified architecture current. */
2351
2352 void
2353 set_target_gdbarch (struct gdbarch *new_gdbarch)
2354 {
2355 gdb_assert (new_gdbarch != NULL);
2356 gdb_assert (new_gdbarch->initialized_p);
2357 current_inferior ()->gdbarch = new_gdbarch;
2358 observer_notify_architecture_changed (new_gdbarch);
2359 registers_changed ();
2360 }
2361
2362 /* Return the current inferior's arch. */
2363
2364 struct gdbarch *
2365 target_gdbarch (void)
2366 {
2367 return current_inferior ()->gdbarch;
2368 }
2369
2370 extern void _initialize_gdbarch (void);
2371
2372 void
2373 _initialize_gdbarch (void)
2374 {
2375 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2376 Set architecture debugging."), _("\\
2377 Show architecture debugging."), _("\\
2378 When non-zero, architecture debugging is enabled."),
2379 NULL,
2380 show_gdbarch_debug,
2381 &setdebuglist, &showdebuglist);
2382 }
2383 EOF
2384
2385 # close things off
2386 exec 1>&2
2387 #../move-if-change new-gdbarch.c gdbarch.c
2388 compare_new gdbarch.c