c921426970779c8779e98365399b099a77ac3649
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6 # Foundation, Inc.
7 #
8 #
9 # This file is part of GDB.
10 #
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
15 #
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
20 #
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25 # Make certain that the script is running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 # .... and then going back through each field and strip out those
79 # that ended up with just that space character.
80 for r in ${read}
81 do
82 if eval test \"\${${r}}\" = \"\ \"
83 then
84 eval ${r}=""
85 fi
86 done
87
88 case "${level}" in
89 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
90 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
91 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
92 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
93 esac
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 elif class_is_variable_p
127 then
128 predicate="gdbarch->${function} != 0"
129 elif class_is_function_p
130 then
131 predicate="gdbarch->${function} != NULL"
132 fi
133 ;;
134 * )
135 echo "Predicate function ${function} with invalid_p." 1>&2
136 kill $$
137 exit 1
138 ;;
139 esac
140 esac
141
142 # PREDEFAULT is a valid fallback definition of MEMBER when
143 # multi-arch is not enabled. This ensures that the
144 # default value, when multi-arch is the same as the
145 # default value when not multi-arch. POSTDEFAULT is
146 # always a valid definition of MEMBER as this again
147 # ensures consistency.
148
149 if [ -n "${postdefault}" ]
150 then
151 fallbackdefault="${postdefault}"
152 elif [ -n "${predefault}" ]
153 then
154 fallbackdefault="${predefault}"
155 else
156 fallbackdefault="0"
157 fi
158
159 #NOT YET: See gdbarch.log for basic verification of
160 # database
161
162 break
163 fi
164 done
165 if [ -n "${class}" ]
166 then
167 true
168 else
169 false
170 fi
171 }
172
173
174 fallback_default_p ()
175 {
176 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
177 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
178 }
179
180 class_is_variable_p ()
181 {
182 case "${class}" in
183 *v* | *V* ) true ;;
184 * ) false ;;
185 esac
186 }
187
188 class_is_function_p ()
189 {
190 case "${class}" in
191 *f* | *F* | *m* | *M* ) true ;;
192 * ) false ;;
193 esac
194 }
195
196 class_is_multiarch_p ()
197 {
198 case "${class}" in
199 *m* | *M* ) true ;;
200 * ) false ;;
201 esac
202 }
203
204 class_is_predicate_p ()
205 {
206 case "${class}" in
207 *F* | *V* | *M* ) true ;;
208 * ) false ;;
209 esac
210 }
211
212 class_is_info_p ()
213 {
214 case "${class}" in
215 *i* ) true ;;
216 * ) false ;;
217 esac
218 }
219
220
221 # dump out/verify the doco
222 for field in ${read}
223 do
224 case ${field} in
225
226 class ) : ;;
227
228 # # -> line disable
229 # f -> function
230 # hiding a function
231 # F -> function + predicate
232 # hiding a function + predicate to test function validity
233 # v -> variable
234 # hiding a variable
235 # V -> variable + predicate
236 # hiding a variable + predicate to test variables validity
237 # i -> set from info
238 # hiding something from the ``struct info'' object
239 # m -> multi-arch function
240 # hiding a multi-arch function (parameterised with the architecture)
241 # M -> multi-arch function + predicate
242 # hiding a multi-arch function + predicate to test function validity
243
244 level ) : ;;
245
246 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
247 # LEVEL is a predicate on checking that a given method is
248 # initialized (using INVALID_P).
249
250 macro ) : ;;
251
252 # The name of the MACRO that this method is to be accessed by.
253
254 returntype ) : ;;
255
256 # For functions, the return type; for variables, the data type
257
258 function ) : ;;
259
260 # For functions, the member function name; for variables, the
261 # variable name. Member function names are always prefixed with
262 # ``gdbarch_'' for name-space purity.
263
264 formal ) : ;;
265
266 # The formal argument list. It is assumed that the formal
267 # argument list includes the actual name of each list element.
268 # A function with no arguments shall have ``void'' as the
269 # formal argument list.
270
271 actual ) : ;;
272
273 # The list of actual arguments. The arguments specified shall
274 # match the FORMAL list given above. Functions with out
275 # arguments leave this blank.
276
277 attrib ) : ;;
278
279 # Any GCC attributes that should be attached to the function
280 # declaration. At present this field is unused.
281
282 staticdefault ) : ;;
283
284 # To help with the GDB startup a static gdbarch object is
285 # created. STATICDEFAULT is the value to insert into that
286 # static gdbarch object. Since this a static object only
287 # simple expressions can be used.
288
289 # If STATICDEFAULT is empty, zero is used.
290
291 predefault ) : ;;
292
293 # An initial value to assign to MEMBER of the freshly
294 # malloc()ed gdbarch object. After initialization, the
295 # freshly malloc()ed object is passed to the target
296 # architecture code for further updates.
297
298 # If PREDEFAULT is empty, zero is used.
299
300 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
301 # INVALID_P are specified, PREDEFAULT will be used as the
302 # default for the non- multi-arch target.
303
304 # A zero PREDEFAULT function will force the fallback to call
305 # internal_error().
306
307 # Variable declarations can refer to ``gdbarch'' which will
308 # contain the current architecture. Care should be taken.
309
310 postdefault ) : ;;
311
312 # A value to assign to MEMBER of the new gdbarch object should
313 # the target architecture code fail to change the PREDEFAULT
314 # value.
315
316 # If POSTDEFAULT is empty, no post update is performed.
317
318 # If both INVALID_P and POSTDEFAULT are non-empty then
319 # INVALID_P will be used to determine if MEMBER should be
320 # changed to POSTDEFAULT.
321
322 # If a non-empty POSTDEFAULT and a zero INVALID_P are
323 # specified, POSTDEFAULT will be used as the default for the
324 # non- multi-arch target (regardless of the value of
325 # PREDEFAULT).
326
327 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
328
329 # Variable declarations can refer to ``current_gdbarch'' which
330 # will contain the current architecture. Care should be
331 # taken.
332
333 invalid_p ) : ;;
334
335 # A predicate equation that validates MEMBER. Non-zero is
336 # returned if the code creating the new architecture failed to
337 # initialize MEMBER or the initialized the member is invalid.
338 # If POSTDEFAULT is non-empty then MEMBER will be updated to
339 # that value. If POSTDEFAULT is empty then internal_error()
340 # is called.
341
342 # If INVALID_P is empty, a check that MEMBER is no longer
343 # equal to PREDEFAULT is used.
344
345 # The expression ``0'' disables the INVALID_P check making
346 # PREDEFAULT a legitimate value.
347
348 # See also PREDEFAULT and POSTDEFAULT.
349
350 fmt ) : ;;
351
352 # printf style format string that can be used to print out the
353 # MEMBER. Sometimes "%s" is useful. For functions, this is
354 # ignored and the function address is printed.
355
356 # If FMT is empty, ``%ld'' is used.
357
358 print ) : ;;
359
360 # An optional equation that casts MEMBER to a value suitable
361 # for formatting by FMT.
362
363 # If PRINT is empty, ``(long)'' is used.
364
365 print_p ) : ;;
366
367 # An optional indicator for any predicte to wrap around the
368 # print member code.
369
370 # () -> Call a custom function to do the dump.
371 # exp -> Wrap print up in ``if (${print_p}) ...
372 # ``'' -> No predicate
373
374 # If PRINT_P is empty, ``1'' is always used.
375
376 description ) : ;;
377
378 # Currently unused.
379
380 *)
381 echo "Bad field ${field}"
382 exit 1;;
383 esac
384 done
385
386
387 function_list ()
388 {
389 # See below (DOCO) for description of each field
390 cat <<EOF
391 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
392 #
393 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
394 #
395 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
396 # Number of bits in a char or unsigned char for the target machine.
397 # Just like CHAR_BIT in <limits.h> but describes the target machine.
398 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
399 #
400 # Number of bits in a short or unsigned short for the target machine.
401 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
402 # Number of bits in an int or unsigned int for the target machine.
403 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
404 # Number of bits in a long or unsigned long for the target machine.
405 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
406 # Number of bits in a long long or unsigned long long for the target
407 # machine.
408 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
409 # Number of bits in a float for the target machine.
410 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
411 # Number of bits in a double for the target machine.
412 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
413 # Number of bits in a long double for the target machine.
414 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
415 # For most targets, a pointer on the target and its representation as an
416 # address in GDB have the same size and "look the same". For such a
417 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
418 # / addr_bit will be set from it.
419 #
420 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
421 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
422 #
423 # ptr_bit is the size of a pointer on the target
424 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
425 # addr_bit is the size of a target address as represented in gdb
426 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
427 # Number of bits in a BFD_VMA for the target object file format.
428 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
429 #
430 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
431 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
432 #
433 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
434 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
435 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
436 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
437 # Function for getting target's idea of a frame pointer. FIXME: GDB's
438 # whole scheme for dealing with "frames" and "frame pointers" needs a
439 # serious shakedown.
440 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
441 #
442 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
443 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
444 #
445 v:2:NUM_REGS:int:num_regs::::0:-1
446 # This macro gives the number of pseudo-registers that live in the
447 # register namespace but do not get fetched or stored on the target.
448 # These pseudo-registers may be aliases for other registers,
449 # combinations of other registers, or they may be computed by GDB.
450 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
451
452 # GDB's standard (or well known) register numbers. These can map onto
453 # a real register or a pseudo (computed) register or not be defined at
454 # all (-1).
455 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
456 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
457 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
458 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
459 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
460 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
461 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
463 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
464 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
465 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
466 # Convert from an sdb register number to an internal gdb register number.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
470
471 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
472 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
473 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
474 F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
475 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
476 # from REGISTER_TYPE.
477 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
478 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
479 # register offsets computed using just REGISTER_TYPE, this can be
480 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
481 # function with predicate has a valid (callable) initial value. As a
482 # consequence, even when the predicate is false, the corresponding
483 # function works. This simplifies the migration process - old code,
484 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
485 F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
486 # If all registers have identical raw and virtual sizes and those
487 # sizes agree with the value computed from REGISTER_TYPE,
488 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
489 # registers.
490 F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
491 # If all registers have identical raw and virtual sizes and those
492 # sizes agree with the value computed from REGISTER_TYPE,
493 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
494 # registers.
495 F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
496 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
497 # replaced by the constant MAX_REGISTER_SIZE.
498 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
499 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
500 # replaced by the constant MAX_REGISTER_SIZE.
501 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
502
503 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
504 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
505 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
506 # SAVE_DUMMY_FRAME_TOS.
507 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
508 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
509 # DEPRECATED_FP_REGNUM.
510 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
511 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
512 # DEPRECATED_TARGET_READ_FP.
513 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
514
515 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
516 # replacement for DEPRECATED_PUSH_ARGUMENTS.
517 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
518 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
519 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
520 # Implement PUSH_RETURN_ADDRESS, and then merge in
521 # DEPRECATED_PUSH_RETURN_ADDRESS.
522 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
523 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
524 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
525 # DEPRECATED_REGISTER_SIZE can be deleted.
526 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
527 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
528 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
529 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
530 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
531 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
532 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
533 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
534 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
535 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
536 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
537
538 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
539 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
540 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
541 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
542 # MAP a GDB RAW register number onto a simulator register number. See
543 # also include/...-sim.h.
544 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
545 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
546 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
547 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
548 # setjmp/longjmp support.
549 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
550 # NOTE: cagney/2002-11-24: This function with predicate has a valid
551 # (callable) initial value. As a consequence, even when the predicate
552 # is false, the corresponding function works. This simplifies the
553 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
554 # doesn't need to be modified.
555 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::deprecated_pc_in_call_dummy:deprecated_pc_in_call_dummy
556 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
557 #
558 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
559 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
560 #
561 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
562 # For raw <-> cooked register conversions, replaced by pseudo registers.
563 F::DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr
564 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
565 # For raw <-> cooked register conversions, replaced by pseudo registers.
566 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
567 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
568 # For raw <-> cooked register conversions, replaced by pseudo registers.
569 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
570 #
571 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
572 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
573 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
574 #
575 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
576 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
577 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
578 #
579 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
580 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
581 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
582
583 # It has been suggested that this, well actually its predecessor,
584 # should take the type/value of the function to be called and not the
585 # return type. This is left as an exercise for the reader.
586
587 M:::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf
588
589 # The deprecated methods RETURN_VALUE_ON_STACK, EXTRACT_RETURN_VALUE,
590 # STORE_RETURN_VALUE and USE_STRUCT_CONVENTION have all been folded
591 # into RETURN_VALUE.
592
593 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
594 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
595 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
596 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
597 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
598 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
599
600 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
601 # ABI suitable for the implementation of a robust extract
602 # struct-convention return-value address method (the sparc saves the
603 # address in the callers frame). All the other cases so far examined,
604 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
605 # erreneous - the code was incorrectly assuming that the return-value
606 # address, stored in a register, was preserved across the entire
607 # function call.
608
609 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
610 # the ABIs that are still to be analyzed - perhaps this should simply
611 # be deleted. The commented out extract_returned_value_address method
612 # is provided as a starting point for the 32-bit SPARC. It, or
613 # something like it, along with changes to both infcmd.c and stack.c
614 # will be needed for that case to work. NB: It is passed the callers
615 # frame since it is only after the callee has returned that this
616 # function is used.
617
618 #M:::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
619 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
620
621 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
622 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
623 #
624 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
625 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
626 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
627 M:2:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
628 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
629 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
630 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:::0
631 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:::0
632 #
633 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
634 #
635 v::FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:::0
636 # DEPRECATED_FRAMELESS_FUNCTION_INVOCATION is not needed. The new
637 # frame code works regardless of the type of frame - frameless,
638 # stackless, or normal.
639 F::DEPRECATED_FRAMELESS_FUNCTION_INVOCATION:int:deprecated_frameless_function_invocation:struct frame_info *fi:fi
640 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
641 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
642 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
643 # note, per UNWIND_PC's doco, that while the two have similar
644 # interfaces they have very different underlying implementations.
645 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
646 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
647 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
648 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
649 # frame-base. Enable frame-base before frame-unwind.
650 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
651 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
652 # frame-base. Enable frame-base before frame-unwind.
653 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
654 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
655 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
656 #
657 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
658 # to frame_align and the requirement that methods such as
659 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
660 # alignment.
661 F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
662 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
663 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
664 # stabs_argument_has_addr.
665 F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
666 m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
667 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
668 #
669 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
670 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
671 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
672 m:::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
673 # On some machines there are bits in addresses which are not really
674 # part of the address, but are used by the kernel, the hardware, etc.
675 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
676 # we get a "real" address such as one would find in a symbol table.
677 # This is used only for addresses of instructions, and even then I'm
678 # not sure it's used in all contexts. It exists to deal with there
679 # being a few stray bits in the PC which would mislead us, not as some
680 # sort of generic thing to handle alignment or segmentation (it's
681 # possible it should be in TARGET_READ_PC instead).
682 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
683 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
684 # ADDR_BITS_REMOVE.
685 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
686 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
687 # the target needs software single step. An ISA method to implement it.
688 #
689 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
690 # using the breakpoint system instead of blatting memory directly (as with rs6000).
691 #
692 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
693 # single step. If not, then implement single step using breakpoints.
694 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
695 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
696 # disassembler. Perhaphs objdump can handle it?
697 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
698 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
699
700
701 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
702 # evaluates non-zero, this is the address where the debugger will place
703 # a step-resume breakpoint to get us past the dynamic linker.
704 m:2:SKIP_SOLIB_RESOLVER:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
705 # For SVR4 shared libraries, each call goes through a small piece of
706 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
707 # to nonzero if we are currently stopped in one of these.
708 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
709
710 # Some systems also have trampoline code for returning from shared libs.
711 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
712
713 # A target might have problems with watchpoints as soon as the stack
714 # frame of the current function has been destroyed. This mostly happens
715 # as the first action in a funtion's epilogue. in_function_epilogue_p()
716 # is defined to return a non-zero value if either the given addr is one
717 # instruction after the stack destroying instruction up to the trailing
718 # return instruction or if we can figure out that the stack frame has
719 # already been invalidated regardless of the value of addr. Targets
720 # which don't suffer from that problem could just let this functionality
721 # untouched.
722 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
723 # Given a vector of command-line arguments, return a newly allocated
724 # string which, when passed to the create_inferior function, will be
725 # parsed (on Unix systems, by the shell) to yield the same vector.
726 # This function should call error() if the argument vector is not
727 # representable for this target or if this target does not support
728 # command-line arguments.
729 # ARGC is the number of elements in the vector.
730 # ARGV is an array of strings, one per argument.
731 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
732 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
733 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
734 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
735 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
736 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
737 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
738 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
739 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
740 # Is a register in a group
741 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
742 # Fetch the pointer to the ith function argument.
743 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
744
745 # Return the appropriate register set for a core file section with
746 # name SECT_NAME and size SECT_SIZE.
747 M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
748 EOF
749 }
750
751 #
752 # The .log file
753 #
754 exec > new-gdbarch.log
755 function_list | while do_read
756 do
757 cat <<EOF
758 ${class} ${macro}(${actual})
759 ${returntype} ${function} ($formal)${attrib}
760 EOF
761 for r in ${read}
762 do
763 eval echo \"\ \ \ \ ${r}=\${${r}}\"
764 done
765 if class_is_predicate_p && fallback_default_p
766 then
767 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
768 kill $$
769 exit 1
770 fi
771 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
772 then
773 echo "Error: postdefault is useless when invalid_p=0" 1>&2
774 kill $$
775 exit 1
776 fi
777 if class_is_multiarch_p
778 then
779 if class_is_predicate_p ; then :
780 elif test "x${predefault}" = "x"
781 then
782 echo "Error: pure multi-arch function must have a predefault" 1>&2
783 kill $$
784 exit 1
785 fi
786 fi
787 echo ""
788 done
789
790 exec 1>&2
791 compare_new gdbarch.log
792
793
794 copyright ()
795 {
796 cat <<EOF
797 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
798
799 /* Dynamic architecture support for GDB, the GNU debugger.
800
801 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
802 Software Foundation, Inc.
803
804 This file is part of GDB.
805
806 This program is free software; you can redistribute it and/or modify
807 it under the terms of the GNU General Public License as published by
808 the Free Software Foundation; either version 2 of the License, or
809 (at your option) any later version.
810
811 This program is distributed in the hope that it will be useful,
812 but WITHOUT ANY WARRANTY; without even the implied warranty of
813 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
814 GNU General Public License for more details.
815
816 You should have received a copy of the GNU General Public License
817 along with this program; if not, write to the Free Software
818 Foundation, Inc., 59 Temple Place - Suite 330,
819 Boston, MA 02111-1307, USA. */
820
821 /* This file was created with the aid of \`\`gdbarch.sh''.
822
823 The Bourne shell script \`\`gdbarch.sh'' creates the files
824 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
825 against the existing \`\`gdbarch.[hc]''. Any differences found
826 being reported.
827
828 If editing this file, please also run gdbarch.sh and merge any
829 changes into that script. Conversely, when making sweeping changes
830 to this file, modifying gdbarch.sh and using its output may prove
831 easier. */
832
833 EOF
834 }
835
836 #
837 # The .h file
838 #
839
840 exec > new-gdbarch.h
841 copyright
842 cat <<EOF
843 #ifndef GDBARCH_H
844 #define GDBARCH_H
845
846 struct floatformat;
847 struct ui_file;
848 struct frame_info;
849 struct value;
850 struct objfile;
851 struct minimal_symbol;
852 struct regcache;
853 struct reggroup;
854 struct regset;
855 struct disassemble_info;
856 struct target_ops;
857 struct obstack;
858
859 extern struct gdbarch *current_gdbarch;
860
861 /* If any of the following are defined, the target wasn't correctly
862 converted. */
863
864 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
865 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
866 #endif
867 EOF
868
869 # function typedef's
870 printf "\n"
871 printf "\n"
872 printf "/* The following are pre-initialized by GDBARCH. */\n"
873 function_list | while do_read
874 do
875 if class_is_info_p
876 then
877 printf "\n"
878 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
879 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
880 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
881 printf "#error \"Non multi-arch definition of ${macro}\"\n"
882 printf "#endif\n"
883 printf "#if !defined (${macro})\n"
884 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
885 printf "#endif\n"
886 fi
887 done
888
889 # function typedef's
890 printf "\n"
891 printf "\n"
892 printf "/* The following are initialized by the target dependent code. */\n"
893 function_list | while do_read
894 do
895 if [ -n "${comment}" ]
896 then
897 echo "${comment}" | sed \
898 -e '2 s,#,/*,' \
899 -e '3,$ s,#, ,' \
900 -e '$ s,$, */,'
901 fi
902 if class_is_multiarch_p
903 then
904 if class_is_predicate_p
905 then
906 printf "\n"
907 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
908 fi
909 else
910 if class_is_predicate_p
911 then
912 printf "\n"
913 printf "#if defined (${macro})\n"
914 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
915 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
916 printf "#if !defined (${macro}_P)\n"
917 printf "#define ${macro}_P() (1)\n"
918 printf "#endif\n"
919 printf "#endif\n"
920 printf "\n"
921 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
922 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
923 printf "#error \"Non multi-arch definition of ${macro}\"\n"
924 printf "#endif\n"
925 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
926 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
927 printf "#endif\n"
928 fi
929 fi
930 if class_is_variable_p
931 then
932 printf "\n"
933 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
934 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
935 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
936 printf "#error \"Non multi-arch definition of ${macro}\"\n"
937 printf "#endif\n"
938 printf "#if !defined (${macro})\n"
939 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
940 printf "#endif\n"
941 fi
942 if class_is_function_p
943 then
944 printf "\n"
945 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
946 then
947 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
948 elif class_is_multiarch_p
949 then
950 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
951 else
952 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
953 fi
954 if [ "x${formal}" = "xvoid" ]
955 then
956 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
957 else
958 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
959 fi
960 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
961 if class_is_multiarch_p ; then :
962 else
963 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
964 printf "#error \"Non multi-arch definition of ${macro}\"\n"
965 printf "#endif\n"
966 if [ "x${actual}" = "x" ]
967 then
968 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
969 elif [ "x${actual}" = "x-" ]
970 then
971 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
972 else
973 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
974 fi
975 printf "#if !defined (${macro})\n"
976 if [ "x${actual}" = "x" ]
977 then
978 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
979 elif [ "x${actual}" = "x-" ]
980 then
981 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
982 else
983 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
984 fi
985 printf "#endif\n"
986 fi
987 fi
988 done
989
990 # close it off
991 cat <<EOF
992
993 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
994
995
996 /* Mechanism for co-ordinating the selection of a specific
997 architecture.
998
999 GDB targets (*-tdep.c) can register an interest in a specific
1000 architecture. Other GDB components can register a need to maintain
1001 per-architecture data.
1002
1003 The mechanisms below ensures that there is only a loose connection
1004 between the set-architecture command and the various GDB
1005 components. Each component can independently register their need
1006 to maintain architecture specific data with gdbarch.
1007
1008 Pragmatics:
1009
1010 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1011 didn't scale.
1012
1013 The more traditional mega-struct containing architecture specific
1014 data for all the various GDB components was also considered. Since
1015 GDB is built from a variable number of (fairly independent)
1016 components it was determined that the global aproach was not
1017 applicable. */
1018
1019
1020 /* Register a new architectural family with GDB.
1021
1022 Register support for the specified ARCHITECTURE with GDB. When
1023 gdbarch determines that the specified architecture has been
1024 selected, the corresponding INIT function is called.
1025
1026 --
1027
1028 The INIT function takes two parameters: INFO which contains the
1029 information available to gdbarch about the (possibly new)
1030 architecture; ARCHES which is a list of the previously created
1031 \`\`struct gdbarch'' for this architecture.
1032
1033 The INFO parameter is, as far as possible, be pre-initialized with
1034 information obtained from INFO.ABFD or the previously selected
1035 architecture.
1036
1037 The ARCHES parameter is a linked list (sorted most recently used)
1038 of all the previously created architures for this architecture
1039 family. The (possibly NULL) ARCHES->gdbarch can used to access
1040 values from the previously selected architecture for this
1041 architecture family. The global \`\`current_gdbarch'' shall not be
1042 used.
1043
1044 The INIT function shall return any of: NULL - indicating that it
1045 doesn't recognize the selected architecture; an existing \`\`struct
1046 gdbarch'' from the ARCHES list - indicating that the new
1047 architecture is just a synonym for an earlier architecture (see
1048 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1049 - that describes the selected architecture (see gdbarch_alloc()).
1050
1051 The DUMP_TDEP function shall print out all target specific values.
1052 Care should be taken to ensure that the function works in both the
1053 multi-arch and non- multi-arch cases. */
1054
1055 struct gdbarch_list
1056 {
1057 struct gdbarch *gdbarch;
1058 struct gdbarch_list *next;
1059 };
1060
1061 struct gdbarch_info
1062 {
1063 /* Use default: NULL (ZERO). */
1064 const struct bfd_arch_info *bfd_arch_info;
1065
1066 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1067 int byte_order;
1068
1069 /* Use default: NULL (ZERO). */
1070 bfd *abfd;
1071
1072 /* Use default: NULL (ZERO). */
1073 struct gdbarch_tdep_info *tdep_info;
1074
1075 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1076 enum gdb_osabi osabi;
1077 };
1078
1079 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1080 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1081
1082 /* DEPRECATED - use gdbarch_register() */
1083 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1084
1085 extern void gdbarch_register (enum bfd_architecture architecture,
1086 gdbarch_init_ftype *,
1087 gdbarch_dump_tdep_ftype *);
1088
1089
1090 /* Return a freshly allocated, NULL terminated, array of the valid
1091 architecture names. Since architectures are registered during the
1092 _initialize phase this function only returns useful information
1093 once initialization has been completed. */
1094
1095 extern const char **gdbarch_printable_names (void);
1096
1097
1098 /* Helper function. Search the list of ARCHES for a GDBARCH that
1099 matches the information provided by INFO. */
1100
1101 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1102
1103
1104 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1105 basic initialization using values obtained from the INFO andTDEP
1106 parameters. set_gdbarch_*() functions are called to complete the
1107 initialization of the object. */
1108
1109 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1110
1111
1112 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1113 It is assumed that the caller freeds the \`\`struct
1114 gdbarch_tdep''. */
1115
1116 extern void gdbarch_free (struct gdbarch *);
1117
1118
1119 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1120 obstack. The memory is freed when the corresponding architecture
1121 is also freed. */
1122
1123 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1124 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1125 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1126
1127
1128 /* Helper function. Force an update of the current architecture.
1129
1130 The actual architecture selected is determined by INFO, \`\`(gdb) set
1131 architecture'' et.al., the existing architecture and BFD's default
1132 architecture. INFO should be initialized to zero and then selected
1133 fields should be updated.
1134
1135 Returns non-zero if the update succeeds */
1136
1137 extern int gdbarch_update_p (struct gdbarch_info info);
1138
1139
1140 /* Helper function. Find an architecture matching info.
1141
1142 INFO should be initialized using gdbarch_info_init, relevant fields
1143 set, and then finished using gdbarch_info_fill.
1144
1145 Returns the corresponding architecture, or NULL if no matching
1146 architecture was found. "current_gdbarch" is not updated. */
1147
1148 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1149
1150
1151 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1152
1153 FIXME: kettenis/20031124: Of the functions that follow, only
1154 gdbarch_from_bfd is supposed to survive. The others will
1155 dissappear since in the future GDB will (hopefully) be truly
1156 multi-arch. However, for now we're still stuck with the concept of
1157 a single active architecture. */
1158
1159 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1160
1161
1162 /* Register per-architecture data-pointer.
1163
1164 Reserve space for a per-architecture data-pointer. An identifier
1165 for the reserved data-pointer is returned. That identifer should
1166 be saved in a local static variable.
1167
1168 Memory for the per-architecture data shall be allocated using
1169 gdbarch_obstack_zalloc. That memory will be deleted when the
1170 corresponding architecture object is deleted.
1171
1172 When a previously created architecture is re-selected, the
1173 per-architecture data-pointer for that previous architecture is
1174 restored. INIT() is not re-called.
1175
1176 Multiple registrarants for any architecture are allowed (and
1177 strongly encouraged). */
1178
1179 struct gdbarch_data;
1180
1181 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1182 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1183 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1184 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1185 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1186 struct gdbarch_data *data,
1187 void *pointer);
1188
1189 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1190
1191
1192
1193 /* Register per-architecture memory region.
1194
1195 Provide a memory-region swap mechanism. Per-architecture memory
1196 region are created. These memory regions are swapped whenever the
1197 architecture is changed. For a new architecture, the memory region
1198 is initialized with zero (0) and the INIT function is called.
1199
1200 Memory regions are swapped / initialized in the order that they are
1201 registered. NULL DATA and/or INIT values can be specified.
1202
1203 New code should use gdbarch_data_register_*(). */
1204
1205 typedef void (gdbarch_swap_ftype) (void);
1206 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1207 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1208
1209
1210
1211 /* Set the dynamic target-system-dependent parameters (architecture,
1212 byte-order, ...) using information found in the BFD */
1213
1214 extern void set_gdbarch_from_file (bfd *);
1215
1216
1217 /* Initialize the current architecture to the "first" one we find on
1218 our list. */
1219
1220 extern void initialize_current_architecture (void);
1221
1222 /* gdbarch trace variable */
1223 extern int gdbarch_debug;
1224
1225 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1226
1227 #endif
1228 EOF
1229 exec 1>&2
1230 #../move-if-change new-gdbarch.h gdbarch.h
1231 compare_new gdbarch.h
1232
1233
1234 #
1235 # C file
1236 #
1237
1238 exec > new-gdbarch.c
1239 copyright
1240 cat <<EOF
1241
1242 #include "defs.h"
1243 #include "arch-utils.h"
1244
1245 #include "gdbcmd.h"
1246 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1247 #include "symcat.h"
1248
1249 #include "floatformat.h"
1250
1251 #include "gdb_assert.h"
1252 #include "gdb_string.h"
1253 #include "gdb-events.h"
1254 #include "reggroups.h"
1255 #include "osabi.h"
1256 #include "gdb_obstack.h"
1257
1258 /* Static function declarations */
1259
1260 static void alloc_gdbarch_data (struct gdbarch *);
1261
1262 /* Non-zero if we want to trace architecture code. */
1263
1264 #ifndef GDBARCH_DEBUG
1265 #define GDBARCH_DEBUG 0
1266 #endif
1267 int gdbarch_debug = GDBARCH_DEBUG;
1268
1269 EOF
1270
1271 # gdbarch open the gdbarch object
1272 printf "\n"
1273 printf "/* Maintain the struct gdbarch object */\n"
1274 printf "\n"
1275 printf "struct gdbarch\n"
1276 printf "{\n"
1277 printf " /* Has this architecture been fully initialized? */\n"
1278 printf " int initialized_p;\n"
1279 printf "\n"
1280 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1281 printf " struct obstack *obstack;\n"
1282 printf "\n"
1283 printf " /* basic architectural information */\n"
1284 function_list | while do_read
1285 do
1286 if class_is_info_p
1287 then
1288 printf " ${returntype} ${function};\n"
1289 fi
1290 done
1291 printf "\n"
1292 printf " /* target specific vector. */\n"
1293 printf " struct gdbarch_tdep *tdep;\n"
1294 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1295 printf "\n"
1296 printf " /* per-architecture data-pointers */\n"
1297 printf " unsigned nr_data;\n"
1298 printf " void **data;\n"
1299 printf "\n"
1300 printf " /* per-architecture swap-regions */\n"
1301 printf " struct gdbarch_swap *swap;\n"
1302 printf "\n"
1303 cat <<EOF
1304 /* Multi-arch values.
1305
1306 When extending this structure you must:
1307
1308 Add the field below.
1309
1310 Declare set/get functions and define the corresponding
1311 macro in gdbarch.h.
1312
1313 gdbarch_alloc(): If zero/NULL is not a suitable default,
1314 initialize the new field.
1315
1316 verify_gdbarch(): Confirm that the target updated the field
1317 correctly.
1318
1319 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1320 field is dumped out
1321
1322 \`\`startup_gdbarch()'': Append an initial value to the static
1323 variable (base values on the host's c-type system).
1324
1325 get_gdbarch(): Implement the set/get functions (probably using
1326 the macro's as shortcuts).
1327
1328 */
1329
1330 EOF
1331 function_list | while do_read
1332 do
1333 if class_is_variable_p
1334 then
1335 printf " ${returntype} ${function};\n"
1336 elif class_is_function_p
1337 then
1338 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1339 fi
1340 done
1341 printf "};\n"
1342
1343 # A pre-initialized vector
1344 printf "\n"
1345 printf "\n"
1346 cat <<EOF
1347 /* The default architecture uses host values (for want of a better
1348 choice). */
1349 EOF
1350 printf "\n"
1351 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1352 printf "\n"
1353 printf "struct gdbarch startup_gdbarch =\n"
1354 printf "{\n"
1355 printf " 1, /* Always initialized. */\n"
1356 printf " NULL, /* The obstack. */\n"
1357 printf " /* basic architecture information */\n"
1358 function_list | while do_read
1359 do
1360 if class_is_info_p
1361 then
1362 printf " ${staticdefault}, /* ${function} */\n"
1363 fi
1364 done
1365 cat <<EOF
1366 /* target specific vector and its dump routine */
1367 NULL, NULL,
1368 /*per-architecture data-pointers and swap regions */
1369 0, NULL, NULL,
1370 /* Multi-arch values */
1371 EOF
1372 function_list | while do_read
1373 do
1374 if class_is_function_p || class_is_variable_p
1375 then
1376 printf " ${staticdefault}, /* ${function} */\n"
1377 fi
1378 done
1379 cat <<EOF
1380 /* startup_gdbarch() */
1381 };
1382
1383 struct gdbarch *current_gdbarch = &startup_gdbarch;
1384 EOF
1385
1386 # Create a new gdbarch struct
1387 cat <<EOF
1388
1389 /* Create a new \`\`struct gdbarch'' based on information provided by
1390 \`\`struct gdbarch_info''. */
1391 EOF
1392 printf "\n"
1393 cat <<EOF
1394 struct gdbarch *
1395 gdbarch_alloc (const struct gdbarch_info *info,
1396 struct gdbarch_tdep *tdep)
1397 {
1398 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1399 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1400 the current local architecture and not the previous global
1401 architecture. This ensures that the new architectures initial
1402 values are not influenced by the previous architecture. Once
1403 everything is parameterised with gdbarch, this will go away. */
1404 struct gdbarch *current_gdbarch;
1405
1406 /* Create an obstack for allocating all the per-architecture memory,
1407 then use that to allocate the architecture vector. */
1408 struct obstack *obstack = XMALLOC (struct obstack);
1409 obstack_init (obstack);
1410 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1411 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1412 current_gdbarch->obstack = obstack;
1413
1414 alloc_gdbarch_data (current_gdbarch);
1415
1416 current_gdbarch->tdep = tdep;
1417 EOF
1418 printf "\n"
1419 function_list | while do_read
1420 do
1421 if class_is_info_p
1422 then
1423 printf " current_gdbarch->${function} = info->${function};\n"
1424 fi
1425 done
1426 printf "\n"
1427 printf " /* Force the explicit initialization of these. */\n"
1428 function_list | while do_read
1429 do
1430 if class_is_function_p || class_is_variable_p
1431 then
1432 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1433 then
1434 printf " current_gdbarch->${function} = ${predefault};\n"
1435 fi
1436 fi
1437 done
1438 cat <<EOF
1439 /* gdbarch_alloc() */
1440
1441 return current_gdbarch;
1442 }
1443 EOF
1444
1445 # Free a gdbarch struct.
1446 printf "\n"
1447 printf "\n"
1448 cat <<EOF
1449 /* Allocate extra space using the per-architecture obstack. */
1450
1451 void *
1452 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1453 {
1454 void *data = obstack_alloc (arch->obstack, size);
1455 memset (data, 0, size);
1456 return data;
1457 }
1458
1459
1460 /* Free a gdbarch struct. This should never happen in normal
1461 operation --- once you've created a gdbarch, you keep it around.
1462 However, if an architecture's init function encounters an error
1463 building the structure, it may need to clean up a partially
1464 constructed gdbarch. */
1465
1466 void
1467 gdbarch_free (struct gdbarch *arch)
1468 {
1469 struct obstack *obstack;
1470 gdb_assert (arch != NULL);
1471 gdb_assert (!arch->initialized_p);
1472 obstack = arch->obstack;
1473 obstack_free (obstack, 0); /* Includes the ARCH. */
1474 xfree (obstack);
1475 }
1476 EOF
1477
1478 # verify a new architecture
1479 cat <<EOF
1480
1481
1482 /* Ensure that all values in a GDBARCH are reasonable. */
1483
1484 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1485 just happens to match the global variable \`\`current_gdbarch''. That
1486 way macros refering to that variable get the local and not the global
1487 version - ulgh. Once everything is parameterised with gdbarch, this
1488 will go away. */
1489
1490 static void
1491 verify_gdbarch (struct gdbarch *current_gdbarch)
1492 {
1493 struct ui_file *log;
1494 struct cleanup *cleanups;
1495 long dummy;
1496 char *buf;
1497 log = mem_fileopen ();
1498 cleanups = make_cleanup_ui_file_delete (log);
1499 /* fundamental */
1500 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1501 fprintf_unfiltered (log, "\n\tbyte-order");
1502 if (current_gdbarch->bfd_arch_info == NULL)
1503 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1504 /* Check those that need to be defined for the given multi-arch level. */
1505 EOF
1506 function_list | while do_read
1507 do
1508 if class_is_function_p || class_is_variable_p
1509 then
1510 if [ "x${invalid_p}" = "x0" ]
1511 then
1512 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1513 elif class_is_predicate_p
1514 then
1515 printf " /* Skip verify of ${function}, has predicate */\n"
1516 # FIXME: See do_read for potential simplification
1517 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1518 then
1519 printf " if (${invalid_p})\n"
1520 printf " current_gdbarch->${function} = ${postdefault};\n"
1521 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1522 then
1523 printf " if (current_gdbarch->${function} == ${predefault})\n"
1524 printf " current_gdbarch->${function} = ${postdefault};\n"
1525 elif [ -n "${postdefault}" ]
1526 then
1527 printf " if (current_gdbarch->${function} == 0)\n"
1528 printf " current_gdbarch->${function} = ${postdefault};\n"
1529 elif [ -n "${invalid_p}" ]
1530 then
1531 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1532 printf " && (${invalid_p}))\n"
1533 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1534 elif [ -n "${predefault}" ]
1535 then
1536 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1537 printf " && (current_gdbarch->${function} == ${predefault}))\n"
1538 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1539 fi
1540 fi
1541 done
1542 cat <<EOF
1543 buf = ui_file_xstrdup (log, &dummy);
1544 make_cleanup (xfree, buf);
1545 if (strlen (buf) > 0)
1546 internal_error (__FILE__, __LINE__,
1547 "verify_gdbarch: the following are invalid ...%s",
1548 buf);
1549 do_cleanups (cleanups);
1550 }
1551 EOF
1552
1553 # dump the structure
1554 printf "\n"
1555 printf "\n"
1556 cat <<EOF
1557 /* Print out the details of the current architecture. */
1558
1559 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1560 just happens to match the global variable \`\`current_gdbarch''. That
1561 way macros refering to that variable get the local and not the global
1562 version - ulgh. Once everything is parameterised with gdbarch, this
1563 will go away. */
1564
1565 void
1566 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1567 {
1568 fprintf_unfiltered (file,
1569 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1570 GDB_MULTI_ARCH);
1571 EOF
1572 function_list | sort -t: -k 3 | while do_read
1573 do
1574 # First the predicate
1575 if class_is_predicate_p
1576 then
1577 if class_is_multiarch_p
1578 then
1579 printf " fprintf_unfiltered (file,\n"
1580 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1581 printf " gdbarch_${function}_p (current_gdbarch));\n"
1582 else
1583 printf "#ifdef ${macro}_P\n"
1584 printf " fprintf_unfiltered (file,\n"
1585 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1586 printf " \"${macro}_P()\",\n"
1587 printf " XSTRING (${macro}_P ()));\n"
1588 printf " fprintf_unfiltered (file,\n"
1589 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1590 printf " ${macro}_P ());\n"
1591 printf "#endif\n"
1592 fi
1593 fi
1594 # multiarch functions don't have macros.
1595 if class_is_multiarch_p
1596 then
1597 printf " fprintf_unfiltered (file,\n"
1598 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1599 printf " (long) current_gdbarch->${function});\n"
1600 continue
1601 fi
1602 # Print the macro definition.
1603 printf "#ifdef ${macro}\n"
1604 if class_is_function_p
1605 then
1606 printf " fprintf_unfiltered (file,\n"
1607 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1608 printf " \"${macro}(${actual})\",\n"
1609 printf " XSTRING (${macro} (${actual})));\n"
1610 else
1611 printf " fprintf_unfiltered (file,\n"
1612 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1613 printf " XSTRING (${macro}));\n"
1614 fi
1615 if [ "x${print_p}" = "x()" ]
1616 then
1617 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1618 elif [ "x${print_p}" = "x0" ]
1619 then
1620 printf " /* skip print of ${macro}, print_p == 0. */\n"
1621 elif [ -n "${print_p}" ]
1622 then
1623 printf " if (${print_p})\n"
1624 printf " fprintf_unfiltered (file,\n"
1625 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1626 printf " ${print});\n"
1627 elif class_is_function_p
1628 then
1629 printf " fprintf_unfiltered (file,\n"
1630 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1631 printf " (long) current_gdbarch->${function}\n"
1632 printf " /*${macro} ()*/);\n"
1633 else
1634 printf " fprintf_unfiltered (file,\n"
1635 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1636 printf " ${print});\n"
1637 fi
1638 printf "#endif\n"
1639 done
1640 cat <<EOF
1641 if (current_gdbarch->dump_tdep != NULL)
1642 current_gdbarch->dump_tdep (current_gdbarch, file);
1643 }
1644 EOF
1645
1646
1647 # GET/SET
1648 printf "\n"
1649 cat <<EOF
1650 struct gdbarch_tdep *
1651 gdbarch_tdep (struct gdbarch *gdbarch)
1652 {
1653 if (gdbarch_debug >= 2)
1654 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1655 return gdbarch->tdep;
1656 }
1657 EOF
1658 printf "\n"
1659 function_list | while do_read
1660 do
1661 if class_is_predicate_p
1662 then
1663 printf "\n"
1664 printf "int\n"
1665 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1666 printf "{\n"
1667 printf " gdb_assert (gdbarch != NULL);\n"
1668 printf " return ${predicate};\n"
1669 printf "}\n"
1670 fi
1671 if class_is_function_p
1672 then
1673 printf "\n"
1674 printf "${returntype}\n"
1675 if [ "x${formal}" = "xvoid" ]
1676 then
1677 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1678 else
1679 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1680 fi
1681 printf "{\n"
1682 printf " gdb_assert (gdbarch != NULL);\n"
1683 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1684 if class_is_predicate_p && test -n "${predefault}"
1685 then
1686 # Allow a call to a function with a predicate.
1687 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1688 fi
1689 printf " if (gdbarch_debug >= 2)\n"
1690 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1691 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1692 then
1693 if class_is_multiarch_p
1694 then
1695 params="gdbarch"
1696 else
1697 params=""
1698 fi
1699 else
1700 if class_is_multiarch_p
1701 then
1702 params="gdbarch, ${actual}"
1703 else
1704 params="${actual}"
1705 fi
1706 fi
1707 if [ "x${returntype}" = "xvoid" ]
1708 then
1709 printf " gdbarch->${function} (${params});\n"
1710 else
1711 printf " return gdbarch->${function} (${params});\n"
1712 fi
1713 printf "}\n"
1714 printf "\n"
1715 printf "void\n"
1716 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1717 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1718 printf "{\n"
1719 printf " gdbarch->${function} = ${function};\n"
1720 printf "}\n"
1721 elif class_is_variable_p
1722 then
1723 printf "\n"
1724 printf "${returntype}\n"
1725 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1726 printf "{\n"
1727 printf " gdb_assert (gdbarch != NULL);\n"
1728 if [ "x${invalid_p}" = "x0" ]
1729 then
1730 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1731 elif [ -n "${invalid_p}" ]
1732 then
1733 printf " /* Check variable is valid. */\n"
1734 printf " gdb_assert (!(${invalid_p}));\n"
1735 elif [ -n "${predefault}" ]
1736 then
1737 printf " /* Check variable changed from pre-default. */\n"
1738 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1739 fi
1740 printf " if (gdbarch_debug >= 2)\n"
1741 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1742 printf " return gdbarch->${function};\n"
1743 printf "}\n"
1744 printf "\n"
1745 printf "void\n"
1746 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1747 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1748 printf "{\n"
1749 printf " gdbarch->${function} = ${function};\n"
1750 printf "}\n"
1751 elif class_is_info_p
1752 then
1753 printf "\n"
1754 printf "${returntype}\n"
1755 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1756 printf "{\n"
1757 printf " gdb_assert (gdbarch != NULL);\n"
1758 printf " if (gdbarch_debug >= 2)\n"
1759 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1760 printf " return gdbarch->${function};\n"
1761 printf "}\n"
1762 fi
1763 done
1764
1765 # All the trailing guff
1766 cat <<EOF
1767
1768
1769 /* Keep a registry of per-architecture data-pointers required by GDB
1770 modules. */
1771
1772 struct gdbarch_data
1773 {
1774 unsigned index;
1775 int init_p;
1776 gdbarch_data_pre_init_ftype *pre_init;
1777 gdbarch_data_post_init_ftype *post_init;
1778 };
1779
1780 struct gdbarch_data_registration
1781 {
1782 struct gdbarch_data *data;
1783 struct gdbarch_data_registration *next;
1784 };
1785
1786 struct gdbarch_data_registry
1787 {
1788 unsigned nr;
1789 struct gdbarch_data_registration *registrations;
1790 };
1791
1792 struct gdbarch_data_registry gdbarch_data_registry =
1793 {
1794 0, NULL,
1795 };
1796
1797 static struct gdbarch_data *
1798 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1799 gdbarch_data_post_init_ftype *post_init)
1800 {
1801 struct gdbarch_data_registration **curr;
1802 /* Append the new registraration. */
1803 for (curr = &gdbarch_data_registry.registrations;
1804 (*curr) != NULL;
1805 curr = &(*curr)->next);
1806 (*curr) = XMALLOC (struct gdbarch_data_registration);
1807 (*curr)->next = NULL;
1808 (*curr)->data = XMALLOC (struct gdbarch_data);
1809 (*curr)->data->index = gdbarch_data_registry.nr++;
1810 (*curr)->data->pre_init = pre_init;
1811 (*curr)->data->post_init = post_init;
1812 (*curr)->data->init_p = 1;
1813 return (*curr)->data;
1814 }
1815
1816 struct gdbarch_data *
1817 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1818 {
1819 return gdbarch_data_register (pre_init, NULL);
1820 }
1821
1822 struct gdbarch_data *
1823 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1824 {
1825 return gdbarch_data_register (NULL, post_init);
1826 }
1827
1828 /* Create/delete the gdbarch data vector. */
1829
1830 static void
1831 alloc_gdbarch_data (struct gdbarch *gdbarch)
1832 {
1833 gdb_assert (gdbarch->data == NULL);
1834 gdbarch->nr_data = gdbarch_data_registry.nr;
1835 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1836 }
1837
1838 /* Initialize the current value of the specified per-architecture
1839 data-pointer. */
1840
1841 void
1842 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1843 struct gdbarch_data *data,
1844 void *pointer)
1845 {
1846 gdb_assert (data->index < gdbarch->nr_data);
1847 gdb_assert (gdbarch->data[data->index] == NULL);
1848 gdb_assert (data->pre_init == NULL);
1849 gdbarch->data[data->index] = pointer;
1850 }
1851
1852 /* Return the current value of the specified per-architecture
1853 data-pointer. */
1854
1855 void *
1856 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1857 {
1858 gdb_assert (data->index < gdbarch->nr_data);
1859 if (gdbarch->data[data->index] == NULL)
1860 {
1861 /* The data-pointer isn't initialized, call init() to get a
1862 value. */
1863 if (data->pre_init != NULL)
1864 /* Mid architecture creation: pass just the obstack, and not
1865 the entire architecture, as that way it isn't possible for
1866 pre-init code to refer to undefined architecture
1867 fields. */
1868 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1869 else if (gdbarch->initialized_p
1870 && data->post_init != NULL)
1871 /* Post architecture creation: pass the entire architecture
1872 (as all fields are valid), but be careful to also detect
1873 recursive references. */
1874 {
1875 gdb_assert (data->init_p);
1876 data->init_p = 0;
1877 gdbarch->data[data->index] = data->post_init (gdbarch);
1878 data->init_p = 1;
1879 }
1880 else
1881 /* The architecture initialization hasn't completed - punt -
1882 hope that the caller knows what they are doing. Once
1883 deprecated_set_gdbarch_data has been initialized, this can be
1884 changed to an internal error. */
1885 return NULL;
1886 gdb_assert (gdbarch->data[data->index] != NULL);
1887 }
1888 return gdbarch->data[data->index];
1889 }
1890
1891
1892
1893 /* Keep a registry of swapped data required by GDB modules. */
1894
1895 struct gdbarch_swap
1896 {
1897 void *swap;
1898 struct gdbarch_swap_registration *source;
1899 struct gdbarch_swap *next;
1900 };
1901
1902 struct gdbarch_swap_registration
1903 {
1904 void *data;
1905 unsigned long sizeof_data;
1906 gdbarch_swap_ftype *init;
1907 struct gdbarch_swap_registration *next;
1908 };
1909
1910 struct gdbarch_swap_registry
1911 {
1912 int nr;
1913 struct gdbarch_swap_registration *registrations;
1914 };
1915
1916 struct gdbarch_swap_registry gdbarch_swap_registry =
1917 {
1918 0, NULL,
1919 };
1920
1921 void
1922 deprecated_register_gdbarch_swap (void *data,
1923 unsigned long sizeof_data,
1924 gdbarch_swap_ftype *init)
1925 {
1926 struct gdbarch_swap_registration **rego;
1927 for (rego = &gdbarch_swap_registry.registrations;
1928 (*rego) != NULL;
1929 rego = &(*rego)->next);
1930 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1931 (*rego)->next = NULL;
1932 (*rego)->init = init;
1933 (*rego)->data = data;
1934 (*rego)->sizeof_data = sizeof_data;
1935 }
1936
1937 static void
1938 current_gdbarch_swap_init_hack (void)
1939 {
1940 struct gdbarch_swap_registration *rego;
1941 struct gdbarch_swap **curr = &current_gdbarch->swap;
1942 for (rego = gdbarch_swap_registry.registrations;
1943 rego != NULL;
1944 rego = rego->next)
1945 {
1946 if (rego->data != NULL)
1947 {
1948 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1949 struct gdbarch_swap);
1950 (*curr)->source = rego;
1951 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1952 rego->sizeof_data);
1953 (*curr)->next = NULL;
1954 curr = &(*curr)->next;
1955 }
1956 if (rego->init != NULL)
1957 rego->init ();
1958 }
1959 }
1960
1961 static struct gdbarch *
1962 current_gdbarch_swap_out_hack (void)
1963 {
1964 struct gdbarch *old_gdbarch = current_gdbarch;
1965 struct gdbarch_swap *curr;
1966
1967 gdb_assert (old_gdbarch != NULL);
1968 for (curr = old_gdbarch->swap;
1969 curr != NULL;
1970 curr = curr->next)
1971 {
1972 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1973 memset (curr->source->data, 0, curr->source->sizeof_data);
1974 }
1975 current_gdbarch = NULL;
1976 return old_gdbarch;
1977 }
1978
1979 static void
1980 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1981 {
1982 struct gdbarch_swap *curr;
1983
1984 gdb_assert (current_gdbarch == NULL);
1985 for (curr = new_gdbarch->swap;
1986 curr != NULL;
1987 curr = curr->next)
1988 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1989 current_gdbarch = new_gdbarch;
1990 }
1991
1992
1993 /* Keep a registry of the architectures known by GDB. */
1994
1995 struct gdbarch_registration
1996 {
1997 enum bfd_architecture bfd_architecture;
1998 gdbarch_init_ftype *init;
1999 gdbarch_dump_tdep_ftype *dump_tdep;
2000 struct gdbarch_list *arches;
2001 struct gdbarch_registration *next;
2002 };
2003
2004 static struct gdbarch_registration *gdbarch_registry = NULL;
2005
2006 static void
2007 append_name (const char ***buf, int *nr, const char *name)
2008 {
2009 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2010 (*buf)[*nr] = name;
2011 *nr += 1;
2012 }
2013
2014 const char **
2015 gdbarch_printable_names (void)
2016 {
2017 /* Accumulate a list of names based on the registed list of
2018 architectures. */
2019 enum bfd_architecture a;
2020 int nr_arches = 0;
2021 const char **arches = NULL;
2022 struct gdbarch_registration *rego;
2023 for (rego = gdbarch_registry;
2024 rego != NULL;
2025 rego = rego->next)
2026 {
2027 const struct bfd_arch_info *ap;
2028 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2029 if (ap == NULL)
2030 internal_error (__FILE__, __LINE__,
2031 "gdbarch_architecture_names: multi-arch unknown");
2032 do
2033 {
2034 append_name (&arches, &nr_arches, ap->printable_name);
2035 ap = ap->next;
2036 }
2037 while (ap != NULL);
2038 }
2039 append_name (&arches, &nr_arches, NULL);
2040 return arches;
2041 }
2042
2043
2044 void
2045 gdbarch_register (enum bfd_architecture bfd_architecture,
2046 gdbarch_init_ftype *init,
2047 gdbarch_dump_tdep_ftype *dump_tdep)
2048 {
2049 struct gdbarch_registration **curr;
2050 const struct bfd_arch_info *bfd_arch_info;
2051 /* Check that BFD recognizes this architecture */
2052 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2053 if (bfd_arch_info == NULL)
2054 {
2055 internal_error (__FILE__, __LINE__,
2056 "gdbarch: Attempt to register unknown architecture (%d)",
2057 bfd_architecture);
2058 }
2059 /* Check that we haven't seen this architecture before */
2060 for (curr = &gdbarch_registry;
2061 (*curr) != NULL;
2062 curr = &(*curr)->next)
2063 {
2064 if (bfd_architecture == (*curr)->bfd_architecture)
2065 internal_error (__FILE__, __LINE__,
2066 "gdbarch: Duplicate registraration of architecture (%s)",
2067 bfd_arch_info->printable_name);
2068 }
2069 /* log it */
2070 if (gdbarch_debug)
2071 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2072 bfd_arch_info->printable_name,
2073 (long) init);
2074 /* Append it */
2075 (*curr) = XMALLOC (struct gdbarch_registration);
2076 (*curr)->bfd_architecture = bfd_architecture;
2077 (*curr)->init = init;
2078 (*curr)->dump_tdep = dump_tdep;
2079 (*curr)->arches = NULL;
2080 (*curr)->next = NULL;
2081 }
2082
2083 void
2084 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2085 gdbarch_init_ftype *init)
2086 {
2087 gdbarch_register (bfd_architecture, init, NULL);
2088 }
2089
2090
2091 /* Look for an architecture using gdbarch_info. Base search on only
2092 BFD_ARCH_INFO and BYTE_ORDER. */
2093
2094 struct gdbarch_list *
2095 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2096 const struct gdbarch_info *info)
2097 {
2098 for (; arches != NULL; arches = arches->next)
2099 {
2100 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2101 continue;
2102 if (info->byte_order != arches->gdbarch->byte_order)
2103 continue;
2104 if (info->osabi != arches->gdbarch->osabi)
2105 continue;
2106 return arches;
2107 }
2108 return NULL;
2109 }
2110
2111
2112 /* Find an architecture that matches the specified INFO. Create a new
2113 architecture if needed. Return that new architecture. Assumes
2114 that there is no current architecture. */
2115
2116 static struct gdbarch *
2117 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2118 {
2119 struct gdbarch *new_gdbarch;
2120 struct gdbarch_registration *rego;
2121
2122 /* The existing architecture has been swapped out - all this code
2123 works from a clean slate. */
2124 gdb_assert (current_gdbarch == NULL);
2125
2126 /* Fill in missing parts of the INFO struct using a number of
2127 sources: "set ..."; INFOabfd supplied; and the existing
2128 architecture. */
2129 gdbarch_info_fill (old_gdbarch, &info);
2130
2131 /* Must have found some sort of architecture. */
2132 gdb_assert (info.bfd_arch_info != NULL);
2133
2134 if (gdbarch_debug)
2135 {
2136 fprintf_unfiltered (gdb_stdlog,
2137 "find_arch_by_info: info.bfd_arch_info %s\n",
2138 (info.bfd_arch_info != NULL
2139 ? info.bfd_arch_info->printable_name
2140 : "(null)"));
2141 fprintf_unfiltered (gdb_stdlog,
2142 "find_arch_by_info: info.byte_order %d (%s)\n",
2143 info.byte_order,
2144 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2145 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2146 : "default"));
2147 fprintf_unfiltered (gdb_stdlog,
2148 "find_arch_by_info: info.osabi %d (%s)\n",
2149 info.osabi, gdbarch_osabi_name (info.osabi));
2150 fprintf_unfiltered (gdb_stdlog,
2151 "find_arch_by_info: info.abfd 0x%lx\n",
2152 (long) info.abfd);
2153 fprintf_unfiltered (gdb_stdlog,
2154 "find_arch_by_info: info.tdep_info 0x%lx\n",
2155 (long) info.tdep_info);
2156 }
2157
2158 /* Find the tdep code that knows about this architecture. */
2159 for (rego = gdbarch_registry;
2160 rego != NULL;
2161 rego = rego->next)
2162 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2163 break;
2164 if (rego == NULL)
2165 {
2166 if (gdbarch_debug)
2167 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2168 "No matching architecture\n");
2169 return 0;
2170 }
2171
2172 /* Ask the tdep code for an architecture that matches "info". */
2173 new_gdbarch = rego->init (info, rego->arches);
2174
2175 /* Did the tdep code like it? No. Reject the change and revert to
2176 the old architecture. */
2177 if (new_gdbarch == NULL)
2178 {
2179 if (gdbarch_debug)
2180 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2181 "Target rejected architecture\n");
2182 return NULL;
2183 }
2184
2185 /* Is this a pre-existing architecture (as determined by already
2186 being initialized)? Move it to the front of the architecture
2187 list (keeping the list sorted Most Recently Used). */
2188 if (new_gdbarch->initialized_p)
2189 {
2190 struct gdbarch_list **list;
2191 struct gdbarch_list *this;
2192 if (gdbarch_debug)
2193 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2194 "Previous architecture 0x%08lx (%s) selected\n",
2195 (long) new_gdbarch,
2196 new_gdbarch->bfd_arch_info->printable_name);
2197 /* Find the existing arch in the list. */
2198 for (list = &rego->arches;
2199 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2200 list = &(*list)->next);
2201 /* It had better be in the list of architectures. */
2202 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2203 /* Unlink THIS. */
2204 this = (*list);
2205 (*list) = this->next;
2206 /* Insert THIS at the front. */
2207 this->next = rego->arches;
2208 rego->arches = this;
2209 /* Return it. */
2210 return new_gdbarch;
2211 }
2212
2213 /* It's a new architecture. */
2214 if (gdbarch_debug)
2215 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2216 "New architecture 0x%08lx (%s) selected\n",
2217 (long) new_gdbarch,
2218 new_gdbarch->bfd_arch_info->printable_name);
2219
2220 /* Insert the new architecture into the front of the architecture
2221 list (keep the list sorted Most Recently Used). */
2222 {
2223 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2224 this->next = rego->arches;
2225 this->gdbarch = new_gdbarch;
2226 rego->arches = this;
2227 }
2228
2229 /* Check that the newly installed architecture is valid. Plug in
2230 any post init values. */
2231 new_gdbarch->dump_tdep = rego->dump_tdep;
2232 verify_gdbarch (new_gdbarch);
2233 new_gdbarch->initialized_p = 1;
2234
2235 /* Initialize any per-architecture swap areas. This phase requires
2236 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2237 swap the entire architecture out. */
2238 current_gdbarch = new_gdbarch;
2239 current_gdbarch_swap_init_hack ();
2240 current_gdbarch_swap_out_hack ();
2241
2242 if (gdbarch_debug)
2243 gdbarch_dump (new_gdbarch, gdb_stdlog);
2244
2245 return new_gdbarch;
2246 }
2247
2248 struct gdbarch *
2249 gdbarch_find_by_info (struct gdbarch_info info)
2250 {
2251 /* Save the previously selected architecture, setting the global to
2252 NULL. This stops things like gdbarch->init() trying to use the
2253 previous architecture's configuration. The previous architecture
2254 may not even be of the same architecture family. The most recent
2255 architecture of the same family is found at the head of the
2256 rego->arches list. */
2257 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2258
2259 /* Find the specified architecture. */
2260 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2261
2262 /* Restore the existing architecture. */
2263 gdb_assert (current_gdbarch == NULL);
2264 current_gdbarch_swap_in_hack (old_gdbarch);
2265
2266 return new_gdbarch;
2267 }
2268
2269 /* Make the specified architecture current, swapping the existing one
2270 out. */
2271
2272 void
2273 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2274 {
2275 gdb_assert (new_gdbarch != NULL);
2276 gdb_assert (current_gdbarch != NULL);
2277 gdb_assert (new_gdbarch->initialized_p);
2278 current_gdbarch_swap_out_hack ();
2279 current_gdbarch_swap_in_hack (new_gdbarch);
2280 architecture_changed_event ();
2281 }
2282
2283 extern void _initialize_gdbarch (void);
2284
2285 void
2286 _initialize_gdbarch (void)
2287 {
2288 struct cmd_list_element *c;
2289
2290 add_show_from_set (add_set_cmd ("arch",
2291 class_maintenance,
2292 var_zinteger,
2293 (char *)&gdbarch_debug,
2294 "Set architecture debugging.\\n\\
2295 When non-zero, architecture debugging is enabled.", &setdebuglist),
2296 &showdebuglist);
2297 c = add_set_cmd ("archdebug",
2298 class_maintenance,
2299 var_zinteger,
2300 (char *)&gdbarch_debug,
2301 "Set architecture debugging.\\n\\
2302 When non-zero, architecture debugging is enabled.", &setlist);
2303
2304 deprecate_cmd (c, "set debug arch");
2305 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2306 }
2307 EOF
2308
2309 # close things off
2310 exec 1>&2
2311 #../move-if-change new-gdbarch.c gdbarch.c
2312 compare_new gdbarch.c