Add INTEGER_TO_ADDRESS to hadle nasty harvard architectures that do
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 test "${staticdefault}" || staticdefault=0
80 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
81 # multi-arch defaults.
82 # test "${predefault}" || predefault=0
83 test "${fmt}" || fmt="%ld"
84 test "${print}" || print="(long) ${macro}"
85 case "${invalid_p}" in
86 0 ) valid_p=1 ;;
87 "" )
88 if [ -n "${predefault}" ]
89 then
90 #invalid_p="gdbarch->${function} == ${predefault}"
91 valid_p="gdbarch->${function} != ${predefault}"
92 else
93 #invalid_p="gdbarch->${function} == 0"
94 valid_p="gdbarch->${function} != 0"
95 fi
96 ;;
97 * ) valid_p="!(${invalid_p})"
98 esac
99
100 # PREDEFAULT is a valid fallback definition of MEMBER when
101 # multi-arch is not enabled. This ensures that the
102 # default value, when multi-arch is the same as the
103 # default value when not multi-arch. POSTDEFAULT is
104 # always a valid definition of MEMBER as this again
105 # ensures consistency.
106
107 if [ -n "${postdefault}" ]
108 then
109 fallbackdefault="${postdefault}"
110 elif [ -n "${predefault}" ]
111 then
112 fallbackdefault="${predefault}"
113 else
114 fallbackdefault=""
115 fi
116
117 #NOT YET: See gdbarch.log for basic verification of
118 # database
119
120 break
121 fi
122 done
123 if [ -n "${class}" ]
124 then
125 true
126 else
127 false
128 fi
129 }
130
131
132 fallback_default_p ()
133 {
134 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
135 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
136 }
137
138 class_is_variable_p ()
139 {
140 case "${class}" in
141 *v* | *V* ) true ;;
142 * ) false ;;
143 esac
144 }
145
146 class_is_function_p ()
147 {
148 case "${class}" in
149 *f* | *F* | *m* | *M* ) true ;;
150 * ) false ;;
151 esac
152 }
153
154 class_is_multiarch_p ()
155 {
156 case "${class}" in
157 *m* | *M* ) true ;;
158 * ) false ;;
159 esac
160 }
161
162 class_is_predicate_p ()
163 {
164 case "${class}" in
165 *F* | *V* | *M* ) true ;;
166 * ) false ;;
167 esac
168 }
169
170 class_is_info_p ()
171 {
172 case "${class}" in
173 *i* ) true ;;
174 * ) false ;;
175 esac
176 }
177
178
179 # dump out/verify the doco
180 for field in ${read}
181 do
182 case ${field} in
183
184 class ) : ;;
185
186 # # -> line disable
187 # f -> function
188 # hiding a function
189 # F -> function + predicate
190 # hiding a function + predicate to test function validity
191 # v -> variable
192 # hiding a variable
193 # V -> variable + predicate
194 # hiding a variable + predicate to test variables validity
195 # i -> set from info
196 # hiding something from the ``struct info'' object
197 # m -> multi-arch function
198 # hiding a multi-arch function (parameterised with the architecture)
199 # M -> multi-arch function + predicate
200 # hiding a multi-arch function + predicate to test function validity
201
202 level ) : ;;
203
204 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
205 # LEVEL is a predicate on checking that a given method is
206 # initialized (using INVALID_P).
207
208 macro ) : ;;
209
210 # The name of the MACRO that this method is to be accessed by.
211
212 returntype ) : ;;
213
214 # For functions, the return type; for variables, the data type
215
216 function ) : ;;
217
218 # For functions, the member function name; for variables, the
219 # variable name. Member function names are always prefixed with
220 # ``gdbarch_'' for name-space purity.
221
222 formal ) : ;;
223
224 # The formal argument list. It is assumed that the formal
225 # argument list includes the actual name of each list element.
226 # A function with no arguments shall have ``void'' as the
227 # formal argument list.
228
229 actual ) : ;;
230
231 # The list of actual arguments. The arguments specified shall
232 # match the FORMAL list given above. Functions with out
233 # arguments leave this blank.
234
235 attrib ) : ;;
236
237 # Any GCC attributes that should be attached to the function
238 # declaration. At present this field is unused.
239
240 staticdefault ) : ;;
241
242 # To help with the GDB startup a static gdbarch object is
243 # created. STATICDEFAULT is the value to insert into that
244 # static gdbarch object. Since this a static object only
245 # simple expressions can be used.
246
247 # If STATICDEFAULT is empty, zero is used.
248
249 predefault ) : ;;
250
251 # An initial value to assign to MEMBER of the freshly
252 # malloc()ed gdbarch object. After initialization, the
253 # freshly malloc()ed object is passed to the target
254 # architecture code for further updates.
255
256 # If PREDEFAULT is empty, zero is used.
257
258 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
259 # INVALID_P are specified, PREDEFAULT will be used as the
260 # default for the non- multi-arch target.
261
262 # A zero PREDEFAULT function will force the fallback to call
263 # internal_error().
264
265 # Variable declarations can refer to ``gdbarch'' which will
266 # contain the current architecture. Care should be taken.
267
268 postdefault ) : ;;
269
270 # A value to assign to MEMBER of the new gdbarch object should
271 # the target architecture code fail to change the PREDEFAULT
272 # value.
273
274 # If POSTDEFAULT is empty, no post update is performed.
275
276 # If both INVALID_P and POSTDEFAULT are non-empty then
277 # INVALID_P will be used to determine if MEMBER should be
278 # changed to POSTDEFAULT.
279
280 # If a non-empty POSTDEFAULT and a zero INVALID_P are
281 # specified, POSTDEFAULT will be used as the default for the
282 # non- multi-arch target (regardless of the value of
283 # PREDEFAULT).
284
285 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
286
287 # Variable declarations can refer to ``gdbarch'' which will
288 # contain the current architecture. Care should be taken.
289
290 invalid_p ) : ;;
291
292 # A predicate equation that validates MEMBER. Non-zero is
293 # returned if the code creating the new architecture failed to
294 # initialize MEMBER or the initialized the member is invalid.
295 # If POSTDEFAULT is non-empty then MEMBER will be updated to
296 # that value. If POSTDEFAULT is empty then internal_error()
297 # is called.
298
299 # If INVALID_P is empty, a check that MEMBER is no longer
300 # equal to PREDEFAULT is used.
301
302 # The expression ``0'' disables the INVALID_P check making
303 # PREDEFAULT a legitimate value.
304
305 # See also PREDEFAULT and POSTDEFAULT.
306
307 fmt ) : ;;
308
309 # printf style format string that can be used to print out the
310 # MEMBER. Sometimes "%s" is useful. For functions, this is
311 # ignored and the function address is printed.
312
313 # If FMT is empty, ``%ld'' is used.
314
315 print ) : ;;
316
317 # An optional equation that casts MEMBER to a value suitable
318 # for formatting by FMT.
319
320 # If PRINT is empty, ``(long)'' is used.
321
322 print_p ) : ;;
323
324 # An optional indicator for any predicte to wrap around the
325 # print member code.
326
327 # () -> Call a custom function to do the dump.
328 # exp -> Wrap print up in ``if (${print_p}) ...
329 # ``'' -> No predicate
330
331 # If PRINT_P is empty, ``1'' is always used.
332
333 description ) : ;;
334
335 # Currently unused.
336
337 *) exit 1;;
338 esac
339 done
340
341
342 function_list ()
343 {
344 # See below (DOCO) for description of each field
345 cat <<EOF
346 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
347 #
348 i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
349 # Number of bits in a char or unsigned char for the target machine.
350 # Just like CHAR_BIT in <limits.h> but describes the target machine.
351 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
352 #
353 # Number of bits in a short or unsigned short for the target machine.
354 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
355 # Number of bits in an int or unsigned int for the target machine.
356 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
357 # Number of bits in a long or unsigned long for the target machine.
358 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long long or unsigned long long for the target
360 # machine.
361 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
362 # Number of bits in a float for the target machine.
363 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
364 # Number of bits in a double for the target machine.
365 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
366 # Number of bits in a long double for the target machine.
367 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
368 # For most targets, a pointer on the target and its representation as an
369 # address in GDB have the same size and "look the same". For such a
370 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
371 # / addr_bit will be set from it.
372 #
373 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
374 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
375 #
376 # ptr_bit is the size of a pointer on the target
377 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
378 # addr_bit is the size of a target address as represented in gdb
379 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
380 # Number of bits in a BFD_VMA for the target object file format.
381 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
382 #
383 v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
384 #
385 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
386 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
387 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
388 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
389 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
390 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
391 # Function for getting target's idea of a frame pointer. FIXME: GDB's
392 # whole scheme for dealing with "frames" and "frame pointers" needs a
393 # serious shakedown.
394 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
395 #
396 M:::void:register_read:int regnum, char *buf:regnum, buf:
397 M:::void:register_write:int regnum, char *buf:regnum, buf:
398 #
399 v:2:NUM_REGS:int:num_regs::::0:-1
400 # This macro gives the number of pseudo-registers that live in the
401 # register namespace but do not get fetched or stored on the target.
402 # These pseudo-registers may be aliases for other registers,
403 # combinations of other registers, or they may be computed by GDB.
404 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
405 v:2:SP_REGNUM:int:sp_regnum::::0:-1
406 v:2:FP_REGNUM:int:fp_regnum::::0:-1
407 v:2:PC_REGNUM:int:pc_regnum::::0:-1
408 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
409 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
410 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
411 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
412 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
413 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
414 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
415 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
416 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
417 # Convert from an sdb register number to an internal gdb register number.
418 # This should be defined in tm.h, if REGISTER_NAMES is not set up
419 # to map one to one onto the sdb register numbers.
420 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
421 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
422 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
423 v:2:REGISTER_SIZE:int:register_size::::0:-1
424 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
425 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
426 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
427 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
428 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
429 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
430 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
431 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
432 # MAP a GDB RAW register number onto a simulator register number. See
433 # also include/...-sim.h.
434 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
435 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
436 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
437 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
438 #
439 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
440 v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
441 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
442 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
443 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
444 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
445 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
446 f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
447 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
448 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
449 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
450 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
451 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
452 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
453 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
454 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
455 #
456 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
457 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
458 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
459 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
460 #
461 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
462 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
463 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
464 # This function is called when the value of a pseudo-register needs to
465 # be updated. Typically it will be defined on a per-architecture
466 # basis.
467 f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
468 # This function is called when the value of a pseudo-register needs to
469 # be set or stored. Typically it will be defined on a
470 # per-architecture basis.
471 f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
472 #
473 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
474 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
475 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
476 #
477 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
478 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
479 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
480 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
481 f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
482 f:2:POP_FRAME:void:pop_frame:void:-:::0
483 #
484 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
485 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
486 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
487 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0
488 #
489 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
490 f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
491 #
492 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
493 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
494 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
495 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
496 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
497 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
498 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
499 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
500 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
501 #
502 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
503 #
504 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
505 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
506 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
507 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
508 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
509 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
510 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
511 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
512 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
513 #
514 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
515 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
516 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
517 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
518 v:2:PARM_BOUNDARY:int:parm_boundary
519 #
520 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
521 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
522 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
523 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
524 # On some machines there are bits in addresses which are not really
525 # part of the address, but are used by the kernel, the hardware, etc.
526 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
527 # we get a "real" address such as one would find in a symbol table.
528 # This is used only for addresses of instructions, and even then I'm
529 # not sure it's used in all contexts. It exists to deal with there
530 # being a few stray bits in the PC which would mislead us, not as some
531 # sort of generic thing to handle alignment or segmentation (it's
532 # possible it should be in TARGET_READ_PC instead).
533 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
534 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
535 # the target needs software single step. An ISA method to implement it.
536 #
537 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
538 # using the breakpoint system instead of blatting memory directly (as with rs6000).
539 #
540 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
541 # single step. If not, then implement single step using breakpoints.
542 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
543 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
544 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
545 EOF
546 }
547
548 #
549 # The .log file
550 #
551 exec > new-gdbarch.log
552 function_list | while do_read
553 do
554 cat <<EOF
555 ${class} ${macro}(${actual})
556 ${returntype} ${function} ($formal)${attrib}
557 EOF
558 for r in ${read}
559 do
560 eval echo \"\ \ \ \ ${r}=\${${r}}\"
561 done
562 # #fallbackdefault=${fallbackdefault}
563 # #valid_p=${valid_p}
564 #EOF
565 if class_is_predicate_p && fallback_default_p
566 then
567 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
568 kill $$
569 exit 1
570 fi
571 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
572 then
573 echo "Error: postdefault is useless when invalid_p=0" 1>&2
574 kill $$
575 exit 1
576 fi
577 echo ""
578 done
579
580 exec 1>&2
581 compare_new gdbarch.log
582
583
584 copyright ()
585 {
586 cat <<EOF
587 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
588
589 /* Dynamic architecture support for GDB, the GNU debugger.
590 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
591
592 This file is part of GDB.
593
594 This program is free software; you can redistribute it and/or modify
595 it under the terms of the GNU General Public License as published by
596 the Free Software Foundation; either version 2 of the License, or
597 (at your option) any later version.
598
599 This program is distributed in the hope that it will be useful,
600 but WITHOUT ANY WARRANTY; without even the implied warranty of
601 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
602 GNU General Public License for more details.
603
604 You should have received a copy of the GNU General Public License
605 along with this program; if not, write to the Free Software
606 Foundation, Inc., 59 Temple Place - Suite 330,
607 Boston, MA 02111-1307, USA. */
608
609 /* This file was created with the aid of \`\`gdbarch.sh''.
610
611 The Bourne shell script \`\`gdbarch.sh'' creates the files
612 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
613 against the existing \`\`gdbarch.[hc]''. Any differences found
614 being reported.
615
616 If editing this file, please also run gdbarch.sh and merge any
617 changes into that script. Conversely, when making sweeping changes
618 to this file, modifying gdbarch.sh and using its output may prove
619 easier. */
620
621 EOF
622 }
623
624 #
625 # The .h file
626 #
627
628 exec > new-gdbarch.h
629 copyright
630 cat <<EOF
631 #ifndef GDBARCH_H
632 #define GDBARCH_H
633
634 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
635
636 struct frame_info;
637 struct value;
638
639
640 extern struct gdbarch *current_gdbarch;
641
642
643 /* If any of the following are defined, the target wasn't correctly
644 converted. */
645
646 #if GDB_MULTI_ARCH
647 #if defined (EXTRA_FRAME_INFO)
648 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
649 #endif
650 #endif
651
652 #if GDB_MULTI_ARCH
653 #if defined (FRAME_FIND_SAVED_REGS)
654 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
655 #endif
656 #endif
657
658 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
659 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
660 #endif
661 EOF
662
663 # function typedef's
664 printf "\n"
665 printf "\n"
666 printf "/* The following are pre-initialized by GDBARCH. */\n"
667 function_list | while do_read
668 do
669 if class_is_info_p
670 then
671 printf "\n"
672 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
673 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
674 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
675 printf "#error \"Non multi-arch definition of ${macro}\"\n"
676 printf "#endif\n"
677 printf "#if GDB_MULTI_ARCH\n"
678 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
679 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
680 printf "#endif\n"
681 printf "#endif\n"
682 fi
683 done
684
685 # function typedef's
686 printf "\n"
687 printf "\n"
688 printf "/* The following are initialized by the target dependent code. */\n"
689 function_list | while do_read
690 do
691 if [ -n "${comment}" ]
692 then
693 echo "${comment}" | sed \
694 -e '2 s,#,/*,' \
695 -e '3,$ s,#, ,' \
696 -e '$ s,$, */,'
697 fi
698 if class_is_multiarch_p
699 then
700 if class_is_predicate_p
701 then
702 printf "\n"
703 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
704 fi
705 else
706 if class_is_predicate_p
707 then
708 printf "\n"
709 printf "#if defined (${macro})\n"
710 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
711 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
712 printf "#if !defined (${macro}_P)\n"
713 printf "#define ${macro}_P() (1)\n"
714 printf "#endif\n"
715 printf "#endif\n"
716 printf "\n"
717 printf "/* Default predicate for non- multi-arch targets. */\n"
718 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
719 printf "#define ${macro}_P() (0)\n"
720 printf "#endif\n"
721 printf "\n"
722 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
723 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
724 printf "#error \"Non multi-arch definition of ${macro}\"\n"
725 printf "#endif\n"
726 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
727 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
728 printf "#endif\n"
729 fi
730 fi
731 if class_is_variable_p
732 then
733 if fallback_default_p || class_is_predicate_p
734 then
735 printf "\n"
736 printf "/* Default (value) for non- multi-arch platforms. */\n"
737 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
738 echo "#define ${macro} (${fallbackdefault})" \
739 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
740 printf "#endif\n"
741 fi
742 printf "\n"
743 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
744 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
745 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
746 printf "#error \"Non multi-arch definition of ${macro}\"\n"
747 printf "#endif\n"
748 printf "#if GDB_MULTI_ARCH\n"
749 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
750 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
751 printf "#endif\n"
752 printf "#endif\n"
753 fi
754 if class_is_function_p
755 then
756 if class_is_multiarch_p ; then :
757 elif fallback_default_p || class_is_predicate_p
758 then
759 printf "\n"
760 printf "/* Default (function) for non- multi-arch platforms. */\n"
761 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
762 if [ "x${fallbackdefault}" = "x0" ]
763 then
764 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
765 else
766 # FIXME: Should be passing current_gdbarch through!
767 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
768 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
769 fi
770 printf "#endif\n"
771 fi
772 printf "\n"
773 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
774 then
775 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
776 elif class_is_multiarch_p
777 then
778 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
779 else
780 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
781 fi
782 if [ "x${formal}" = "xvoid" ]
783 then
784 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
785 else
786 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
787 fi
788 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
789 if class_is_multiarch_p ; then :
790 else
791 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
792 printf "#error \"Non multi-arch definition of ${macro}\"\n"
793 printf "#endif\n"
794 printf "#if GDB_MULTI_ARCH\n"
795 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
796 if [ "x${actual}" = "x" ]
797 then
798 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
799 elif [ "x${actual}" = "x-" ]
800 then
801 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
802 else
803 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
804 fi
805 printf "#endif\n"
806 printf "#endif\n"
807 fi
808 fi
809 done
810
811 # close it off
812 cat <<EOF
813
814 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
815
816
817 /* Mechanism for co-ordinating the selection of a specific
818 architecture.
819
820 GDB targets (*-tdep.c) can register an interest in a specific
821 architecture. Other GDB components can register a need to maintain
822 per-architecture data.
823
824 The mechanisms below ensures that there is only a loose connection
825 between the set-architecture command and the various GDB
826 components. Each component can independently register their need
827 to maintain architecture specific data with gdbarch.
828
829 Pragmatics:
830
831 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
832 didn't scale.
833
834 The more traditional mega-struct containing architecture specific
835 data for all the various GDB components was also considered. Since
836 GDB is built from a variable number of (fairly independent)
837 components it was determined that the global aproach was not
838 applicable. */
839
840
841 /* Register a new architectural family with GDB.
842
843 Register support for the specified ARCHITECTURE with GDB. When
844 gdbarch determines that the specified architecture has been
845 selected, the corresponding INIT function is called.
846
847 --
848
849 The INIT function takes two parameters: INFO which contains the
850 information available to gdbarch about the (possibly new)
851 architecture; ARCHES which is a list of the previously created
852 \`\`struct gdbarch'' for this architecture.
853
854 The INIT function parameter INFO shall, as far as possible, be
855 pre-initialized with information obtained from INFO.ABFD or
856 previously selected architecture (if similar). INIT shall ensure
857 that the INFO.BYTE_ORDER is non-zero.
858
859 The INIT function shall return any of: NULL - indicating that it
860 doesn't recognize the selected architecture; an existing \`\`struct
861 gdbarch'' from the ARCHES list - indicating that the new
862 architecture is just a synonym for an earlier architecture (see
863 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
864 - that describes the selected architecture (see gdbarch_alloc()).
865
866 The DUMP_TDEP function shall print out all target specific values.
867 Care should be taken to ensure that the function works in both the
868 multi-arch and non- multi-arch cases. */
869
870 struct gdbarch_list
871 {
872 struct gdbarch *gdbarch;
873 struct gdbarch_list *next;
874 };
875
876 struct gdbarch_info
877 {
878 /* Use default: NULL (ZERO). */
879 const struct bfd_arch_info *bfd_arch_info;
880
881 /* Use default: 0 (ZERO). */
882 int byte_order;
883
884 /* Use default: NULL (ZERO). */
885 bfd *abfd;
886
887 /* Use default: NULL (ZERO). */
888 struct gdbarch_tdep_info *tdep_info;
889 };
890
891 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
892 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
893
894 /* DEPRECATED - use gdbarch_register() */
895 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
896
897 extern void gdbarch_register (enum bfd_architecture architecture,
898 gdbarch_init_ftype *,
899 gdbarch_dump_tdep_ftype *);
900
901
902 /* Return a freshly allocated, NULL terminated, array of the valid
903 architecture names. Since architectures are registered during the
904 _initialize phase this function only returns useful information
905 once initialization has been completed. */
906
907 extern const char **gdbarch_printable_names (void);
908
909
910 /* Helper function. Search the list of ARCHES for a GDBARCH that
911 matches the information provided by INFO. */
912
913 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
914
915
916 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
917 basic initialization using values obtained from the INFO andTDEP
918 parameters. set_gdbarch_*() functions are called to complete the
919 initialization of the object. */
920
921 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
922
923
924 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
925 It is assumed that the caller freeds the \`\`struct
926 gdbarch_tdep''. */
927
928 extern void gdbarch_free (struct gdbarch *);
929
930
931 /* Helper function. Force an update of the current architecture.
932
933 The actual architecture selected is determined by INFO, \`\`(gdb) set
934 architecture'' et.al., the existing architecture and BFD's default
935 architecture. INFO should be initialized to zero and then selected
936 fields should be updated.
937
938 Returns non-zero if the update succeeds */
939
940 extern int gdbarch_update_p (struct gdbarch_info info);
941
942
943
944 /* Register per-architecture data-pointer.
945
946 Reserve space for a per-architecture data-pointer. An identifier
947 for the reserved data-pointer is returned. That identifer should
948 be saved in a local static variable.
949
950 The per-architecture data-pointer can be initialized in one of two
951 ways: The value can be set explicitly using a call to
952 set_gdbarch_data(); the value can be set implicitly using the value
953 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
954 called after the basic architecture vector has been created.
955
956 When a previously created architecture is re-selected, the
957 per-architecture data-pointer for that previous architecture is
958 restored. INIT() is not called.
959
960 During initialization, multiple assignments of the data-pointer are
961 allowed, non-NULL values are deleted by calling FREE(). If the
962 architecture is deleted using gdbarch_free() all non-NULL data
963 pointers are also deleted using FREE().
964
965 Multiple registrarants for any architecture are allowed (and
966 strongly encouraged). */
967
968 struct gdbarch_data;
969
970 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
971 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
972 void *pointer);
973 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
974 gdbarch_data_free_ftype *free);
975 extern void set_gdbarch_data (struct gdbarch *gdbarch,
976 struct gdbarch_data *data,
977 void *pointer);
978
979 extern void *gdbarch_data (struct gdbarch_data*);
980
981
982 /* Register per-architecture memory region.
983
984 Provide a memory-region swap mechanism. Per-architecture memory
985 region are created. These memory regions are swapped whenever the
986 architecture is changed. For a new architecture, the memory region
987 is initialized with zero (0) and the INIT function is called.
988
989 Memory regions are swapped / initialized in the order that they are
990 registered. NULL DATA and/or INIT values can be specified.
991
992 New code should use register_gdbarch_data(). */
993
994 typedef void (gdbarch_swap_ftype) (void);
995 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
996 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
997
998
999
1000 /* The target-system-dependent byte order is dynamic */
1001
1002 /* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
1003 is selectable at runtime. The user can use the \`\`set endian''
1004 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
1005 target_byte_order should be auto-detected (from the program image
1006 say). */
1007
1008 #if GDB_MULTI_ARCH
1009 /* Multi-arch GDB is always bi-endian. */
1010 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1011 #endif
1012
1013 #ifndef TARGET_BYTE_ORDER_SELECTABLE_P
1014 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
1015 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
1016 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1017 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1018 #else
1019 #define TARGET_BYTE_ORDER_SELECTABLE_P 0
1020 #endif
1021 #endif
1022
1023 extern int target_byte_order;
1024 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1025 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
1026 and expect defs.h to re-define TARGET_BYTE_ORDER. */
1027 #undef TARGET_BYTE_ORDER
1028 #endif
1029 #ifndef TARGET_BYTE_ORDER
1030 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1031 #endif
1032
1033 extern int target_byte_order_auto;
1034 #ifndef TARGET_BYTE_ORDER_AUTO
1035 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1036 #endif
1037
1038
1039
1040 /* The target-system-dependent BFD architecture is dynamic */
1041
1042 extern int target_architecture_auto;
1043 #ifndef TARGET_ARCHITECTURE_AUTO
1044 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1045 #endif
1046
1047 extern const struct bfd_arch_info *target_architecture;
1048 #ifndef TARGET_ARCHITECTURE
1049 #define TARGET_ARCHITECTURE (target_architecture + 0)
1050 #endif
1051
1052
1053 /* The target-system-dependent disassembler is semi-dynamic */
1054
1055 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1056 unsigned int len, disassemble_info *info);
1057
1058 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1059 disassemble_info *info);
1060
1061 extern void dis_asm_print_address (bfd_vma addr,
1062 disassemble_info *info);
1063
1064 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1065 extern disassemble_info tm_print_insn_info;
1066 #ifndef TARGET_PRINT_INSN_INFO
1067 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1068 #endif
1069
1070
1071
1072 /* Set the dynamic target-system-dependent parameters (architecture,
1073 byte-order, ...) using information found in the BFD */
1074
1075 extern void set_gdbarch_from_file (bfd *);
1076
1077
1078 /* Initialize the current architecture to the "first" one we find on
1079 our list. */
1080
1081 extern void initialize_current_architecture (void);
1082
1083 /* For non-multiarched targets, do any initialization of the default
1084 gdbarch object necessary after the _initialize_MODULE functions
1085 have run. */
1086 extern void initialize_non_multiarch ();
1087
1088 /* gdbarch trace variable */
1089 extern int gdbarch_debug;
1090
1091 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1092
1093 #endif
1094 EOF
1095 exec 1>&2
1096 #../move-if-change new-gdbarch.h gdbarch.h
1097 compare_new gdbarch.h
1098
1099
1100 #
1101 # C file
1102 #
1103
1104 exec > new-gdbarch.c
1105 copyright
1106 cat <<EOF
1107
1108 #include "defs.h"
1109 #include "arch-utils.h"
1110
1111 #if GDB_MULTI_ARCH
1112 #include "gdbcmd.h"
1113 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1114 #else
1115 /* Just include everything in sight so that the every old definition
1116 of macro is visible. */
1117 #include "gdb_string.h"
1118 #include <ctype.h>
1119 #include "symtab.h"
1120 #include "frame.h"
1121 #include "inferior.h"
1122 #include "breakpoint.h"
1123 #include "gdb_wait.h"
1124 #include "gdbcore.h"
1125 #include "gdbcmd.h"
1126 #include "target.h"
1127 #include "gdbthread.h"
1128 #include "annotate.h"
1129 #include "symfile.h" /* for overlay functions */
1130 #endif
1131 #include "symcat.h"
1132
1133 #include "floatformat.h"
1134
1135 #include "gdb_assert.h"
1136 #include "gdb-events.h"
1137
1138 /* Static function declarations */
1139
1140 static void verify_gdbarch (struct gdbarch *gdbarch);
1141 static void alloc_gdbarch_data (struct gdbarch *);
1142 static void init_gdbarch_data (struct gdbarch *);
1143 static void free_gdbarch_data (struct gdbarch *);
1144 static void init_gdbarch_swap (struct gdbarch *);
1145 static void swapout_gdbarch_swap (struct gdbarch *);
1146 static void swapin_gdbarch_swap (struct gdbarch *);
1147
1148 /* Convenience macro for allocting typesafe memory. */
1149
1150 #ifndef XMALLOC
1151 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1152 #endif
1153
1154
1155 /* Non-zero if we want to trace architecture code. */
1156
1157 #ifndef GDBARCH_DEBUG
1158 #define GDBARCH_DEBUG 0
1159 #endif
1160 int gdbarch_debug = GDBARCH_DEBUG;
1161
1162 EOF
1163
1164 # gdbarch open the gdbarch object
1165 printf "\n"
1166 printf "/* Maintain the struct gdbarch object */\n"
1167 printf "\n"
1168 printf "struct gdbarch\n"
1169 printf "{\n"
1170 printf " /* basic architectural information */\n"
1171 function_list | while do_read
1172 do
1173 if class_is_info_p
1174 then
1175 printf " ${returntype} ${function};\n"
1176 fi
1177 done
1178 printf "\n"
1179 printf " /* target specific vector. */\n"
1180 printf " struct gdbarch_tdep *tdep;\n"
1181 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1182 printf "\n"
1183 printf " /* per-architecture data-pointers */\n"
1184 printf " unsigned nr_data;\n"
1185 printf " void **data;\n"
1186 printf "\n"
1187 printf " /* per-architecture swap-regions */\n"
1188 printf " struct gdbarch_swap *swap;\n"
1189 printf "\n"
1190 cat <<EOF
1191 /* Multi-arch values.
1192
1193 When extending this structure you must:
1194
1195 Add the field below.
1196
1197 Declare set/get functions and define the corresponding
1198 macro in gdbarch.h.
1199
1200 gdbarch_alloc(): If zero/NULL is not a suitable default,
1201 initialize the new field.
1202
1203 verify_gdbarch(): Confirm that the target updated the field
1204 correctly.
1205
1206 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1207 field is dumped out
1208
1209 \`\`startup_gdbarch()'': Append an initial value to the static
1210 variable (base values on the host's c-type system).
1211
1212 get_gdbarch(): Implement the set/get functions (probably using
1213 the macro's as shortcuts).
1214
1215 */
1216
1217 EOF
1218 function_list | while do_read
1219 do
1220 if class_is_variable_p
1221 then
1222 printf " ${returntype} ${function};\n"
1223 elif class_is_function_p
1224 then
1225 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1226 fi
1227 done
1228 printf "};\n"
1229
1230 # A pre-initialized vector
1231 printf "\n"
1232 printf "\n"
1233 cat <<EOF
1234 /* The default architecture uses host values (for want of a better
1235 choice). */
1236 EOF
1237 printf "\n"
1238 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1239 printf "\n"
1240 printf "struct gdbarch startup_gdbarch =\n"
1241 printf "{\n"
1242 printf " /* basic architecture information */\n"
1243 function_list | while do_read
1244 do
1245 if class_is_info_p
1246 then
1247 printf " ${staticdefault},\n"
1248 fi
1249 done
1250 cat <<EOF
1251 /* target specific vector and its dump routine */
1252 NULL, NULL,
1253 /*per-architecture data-pointers and swap regions */
1254 0, NULL, NULL,
1255 /* Multi-arch values */
1256 EOF
1257 function_list | while do_read
1258 do
1259 if class_is_function_p || class_is_variable_p
1260 then
1261 printf " ${staticdefault},\n"
1262 fi
1263 done
1264 cat <<EOF
1265 /* startup_gdbarch() */
1266 };
1267
1268 struct gdbarch *current_gdbarch = &startup_gdbarch;
1269
1270 /* Do any initialization needed for a non-multiarch configuration
1271 after the _initialize_MODULE functions have been run. */
1272 void
1273 initialize_non_multiarch ()
1274 {
1275 alloc_gdbarch_data (&startup_gdbarch);
1276 init_gdbarch_data (&startup_gdbarch);
1277 }
1278 EOF
1279
1280 # Create a new gdbarch struct
1281 printf "\n"
1282 printf "\n"
1283 cat <<EOF
1284 /* Create a new \`\`struct gdbarch'' based on information provided by
1285 \`\`struct gdbarch_info''. */
1286 EOF
1287 printf "\n"
1288 cat <<EOF
1289 struct gdbarch *
1290 gdbarch_alloc (const struct gdbarch_info *info,
1291 struct gdbarch_tdep *tdep)
1292 {
1293 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1294 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1295 the current local architecture and not the previous global
1296 architecture. This ensures that the new architectures initial
1297 values are not influenced by the previous architecture. Once
1298 everything is parameterised with gdbarch, this will go away. */
1299 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1300 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1301
1302 alloc_gdbarch_data (current_gdbarch);
1303
1304 current_gdbarch->tdep = tdep;
1305 EOF
1306 printf "\n"
1307 function_list | while do_read
1308 do
1309 if class_is_info_p
1310 then
1311 printf " current_gdbarch->${function} = info->${function};\n"
1312 fi
1313 done
1314 printf "\n"
1315 printf " /* Force the explicit initialization of these. */\n"
1316 function_list | while do_read
1317 do
1318 if class_is_function_p || class_is_variable_p
1319 then
1320 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1321 then
1322 printf " current_gdbarch->${function} = ${predefault};\n"
1323 fi
1324 fi
1325 done
1326 cat <<EOF
1327 /* gdbarch_alloc() */
1328
1329 return current_gdbarch;
1330 }
1331 EOF
1332
1333 # Free a gdbarch struct.
1334 printf "\n"
1335 printf "\n"
1336 cat <<EOF
1337 /* Free a gdbarch struct. This should never happen in normal
1338 operation --- once you've created a gdbarch, you keep it around.
1339 However, if an architecture's init function encounters an error
1340 building the structure, it may need to clean up a partially
1341 constructed gdbarch. */
1342
1343 void
1344 gdbarch_free (struct gdbarch *arch)
1345 {
1346 gdb_assert (arch != NULL);
1347 free_gdbarch_data (arch);
1348 xfree (arch);
1349 }
1350 EOF
1351
1352 # verify a new architecture
1353 printf "\n"
1354 printf "\n"
1355 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1356 printf "\n"
1357 cat <<EOF
1358 static void
1359 verify_gdbarch (struct gdbarch *gdbarch)
1360 {
1361 /* Only perform sanity checks on a multi-arch target. */
1362 if (!GDB_MULTI_ARCH)
1363 return;
1364 /* fundamental */
1365 if (gdbarch->byte_order == 0)
1366 internal_error (__FILE__, __LINE__,
1367 "verify_gdbarch: byte-order unset");
1368 if (gdbarch->bfd_arch_info == NULL)
1369 internal_error (__FILE__, __LINE__,
1370 "verify_gdbarch: bfd_arch_info unset");
1371 /* Check those that need to be defined for the given multi-arch level. */
1372 EOF
1373 function_list | while do_read
1374 do
1375 if class_is_function_p || class_is_variable_p
1376 then
1377 if [ "x${invalid_p}" = "x0" ]
1378 then
1379 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1380 elif class_is_predicate_p
1381 then
1382 printf " /* Skip verify of ${function}, has predicate */\n"
1383 # FIXME: See do_read for potential simplification
1384 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1385 then
1386 printf " if (${invalid_p})\n"
1387 printf " gdbarch->${function} = ${postdefault};\n"
1388 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1389 then
1390 printf " if (gdbarch->${function} == ${predefault})\n"
1391 printf " gdbarch->${function} = ${postdefault};\n"
1392 elif [ -n "${postdefault}" ]
1393 then
1394 printf " if (gdbarch->${function} == 0)\n"
1395 printf " gdbarch->${function} = ${postdefault};\n"
1396 elif [ -n "${invalid_p}" ]
1397 then
1398 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1399 printf " && (${invalid_p}))\n"
1400 printf " internal_error (__FILE__, __LINE__,\n"
1401 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1402 elif [ -n "${predefault}" ]
1403 then
1404 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1405 printf " && (gdbarch->${function} == ${predefault}))\n"
1406 printf " internal_error (__FILE__, __LINE__,\n"
1407 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1408 fi
1409 fi
1410 done
1411 cat <<EOF
1412 }
1413 EOF
1414
1415 # dump the structure
1416 printf "\n"
1417 printf "\n"
1418 cat <<EOF
1419 /* Print out the details of the current architecture. */
1420
1421 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1422 just happens to match the global variable \`\`current_gdbarch''. That
1423 way macros refering to that variable get the local and not the global
1424 version - ulgh. Once everything is parameterised with gdbarch, this
1425 will go away. */
1426
1427 void
1428 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1429 {
1430 fprintf_unfiltered (file,
1431 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1432 GDB_MULTI_ARCH);
1433 EOF
1434 function_list | sort -t: +2 | while do_read
1435 do
1436 # multiarch functions don't have macros.
1437 if class_is_multiarch_p
1438 then
1439 printf " if (GDB_MULTI_ARCH)\n"
1440 printf " fprintf_unfiltered (file,\n"
1441 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1442 printf " (long) current_gdbarch->${function});\n"
1443 continue
1444 fi
1445 printf "#ifdef ${macro}\n"
1446 if [ "x${returntype}" = "xvoid" ]
1447 then
1448 printf "#if GDB_MULTI_ARCH\n"
1449 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1450 fi
1451 if class_is_function_p
1452 then
1453 printf " fprintf_unfiltered (file,\n"
1454 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1455 printf " \"${macro}(${actual})\",\n"
1456 printf " XSTRING (${macro} (${actual})));\n"
1457 else
1458 printf " fprintf_unfiltered (file,\n"
1459 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1460 printf " XSTRING (${macro}));\n"
1461 fi
1462 if [ "x${returntype}" = "xvoid" ]
1463 then
1464 printf "#endif\n"
1465 fi
1466 if [ "x${print_p}" = "x()" ]
1467 then
1468 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1469 elif [ "x${print_p}" = "x0" ]
1470 then
1471 printf " /* skip print of ${macro}, print_p == 0. */\n"
1472 elif [ -n "${print_p}" ]
1473 then
1474 printf " if (${print_p})\n"
1475 printf " fprintf_unfiltered (file,\n"
1476 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1477 printf " ${print});\n"
1478 elif class_is_function_p
1479 then
1480 printf " if (GDB_MULTI_ARCH)\n"
1481 printf " fprintf_unfiltered (file,\n"
1482 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1483 printf " (long) current_gdbarch->${function}\n"
1484 printf " /*${macro} ()*/);\n"
1485 else
1486 printf " fprintf_unfiltered (file,\n"
1487 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1488 printf " ${print});\n"
1489 fi
1490 printf "#endif\n"
1491 done
1492 cat <<EOF
1493 if (current_gdbarch->dump_tdep != NULL)
1494 current_gdbarch->dump_tdep (current_gdbarch, file);
1495 }
1496 EOF
1497
1498
1499 # GET/SET
1500 printf "\n"
1501 cat <<EOF
1502 struct gdbarch_tdep *
1503 gdbarch_tdep (struct gdbarch *gdbarch)
1504 {
1505 if (gdbarch_debug >= 2)
1506 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1507 return gdbarch->tdep;
1508 }
1509 EOF
1510 printf "\n"
1511 function_list | while do_read
1512 do
1513 if class_is_predicate_p
1514 then
1515 printf "\n"
1516 printf "int\n"
1517 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1518 printf "{\n"
1519 if [ -n "${valid_p}" ]
1520 then
1521 printf " return ${valid_p};\n"
1522 else
1523 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1524 fi
1525 printf "}\n"
1526 fi
1527 if class_is_function_p
1528 then
1529 printf "\n"
1530 printf "${returntype}\n"
1531 if [ "x${formal}" = "xvoid" ]
1532 then
1533 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1534 else
1535 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1536 fi
1537 printf "{\n"
1538 printf " if (gdbarch->${function} == 0)\n"
1539 printf " internal_error (__FILE__, __LINE__,\n"
1540 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1541 printf " if (gdbarch_debug >= 2)\n"
1542 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1543 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1544 then
1545 if class_is_multiarch_p
1546 then
1547 params="gdbarch"
1548 else
1549 params=""
1550 fi
1551 else
1552 if class_is_multiarch_p
1553 then
1554 params="gdbarch, ${actual}"
1555 else
1556 params="${actual}"
1557 fi
1558 fi
1559 if [ "x${returntype}" = "xvoid" ]
1560 then
1561 printf " gdbarch->${function} (${params});\n"
1562 else
1563 printf " return gdbarch->${function} (${params});\n"
1564 fi
1565 printf "}\n"
1566 printf "\n"
1567 printf "void\n"
1568 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1569 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1570 printf "{\n"
1571 printf " gdbarch->${function} = ${function};\n"
1572 printf "}\n"
1573 elif class_is_variable_p
1574 then
1575 printf "\n"
1576 printf "${returntype}\n"
1577 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1578 printf "{\n"
1579 if [ "x${invalid_p}" = "x0" ]
1580 then
1581 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1582 elif [ -n "${invalid_p}" ]
1583 then
1584 printf " if (${invalid_p})\n"
1585 printf " internal_error (__FILE__, __LINE__,\n"
1586 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1587 elif [ -n "${predefault}" ]
1588 then
1589 printf " if (gdbarch->${function} == ${predefault})\n"
1590 printf " internal_error (__FILE__, __LINE__,\n"
1591 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1592 fi
1593 printf " if (gdbarch_debug >= 2)\n"
1594 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1595 printf " return gdbarch->${function};\n"
1596 printf "}\n"
1597 printf "\n"
1598 printf "void\n"
1599 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1600 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1601 printf "{\n"
1602 printf " gdbarch->${function} = ${function};\n"
1603 printf "}\n"
1604 elif class_is_info_p
1605 then
1606 printf "\n"
1607 printf "${returntype}\n"
1608 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1609 printf "{\n"
1610 printf " if (gdbarch_debug >= 2)\n"
1611 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1612 printf " return gdbarch->${function};\n"
1613 printf "}\n"
1614 fi
1615 done
1616
1617 # All the trailing guff
1618 cat <<EOF
1619
1620
1621 /* Keep a registry of per-architecture data-pointers required by GDB
1622 modules. */
1623
1624 struct gdbarch_data
1625 {
1626 unsigned index;
1627 gdbarch_data_init_ftype *init;
1628 gdbarch_data_free_ftype *free;
1629 };
1630
1631 struct gdbarch_data_registration
1632 {
1633 struct gdbarch_data *data;
1634 struct gdbarch_data_registration *next;
1635 };
1636
1637 struct gdbarch_data_registry
1638 {
1639 unsigned nr;
1640 struct gdbarch_data_registration *registrations;
1641 };
1642
1643 struct gdbarch_data_registry gdbarch_data_registry =
1644 {
1645 0, NULL,
1646 };
1647
1648 struct gdbarch_data *
1649 register_gdbarch_data (gdbarch_data_init_ftype *init,
1650 gdbarch_data_free_ftype *free)
1651 {
1652 struct gdbarch_data_registration **curr;
1653 for (curr = &gdbarch_data_registry.registrations;
1654 (*curr) != NULL;
1655 curr = &(*curr)->next);
1656 (*curr) = XMALLOC (struct gdbarch_data_registration);
1657 (*curr)->next = NULL;
1658 (*curr)->data = XMALLOC (struct gdbarch_data);
1659 (*curr)->data->index = gdbarch_data_registry.nr++;
1660 (*curr)->data->init = init;
1661 (*curr)->data->free = free;
1662 return (*curr)->data;
1663 }
1664
1665
1666 /* Walk through all the registered users initializing each in turn. */
1667
1668 static void
1669 init_gdbarch_data (struct gdbarch *gdbarch)
1670 {
1671 struct gdbarch_data_registration *rego;
1672 for (rego = gdbarch_data_registry.registrations;
1673 rego != NULL;
1674 rego = rego->next)
1675 {
1676 struct gdbarch_data *data = rego->data;
1677 gdb_assert (data->index < gdbarch->nr_data);
1678 if (data->init != NULL)
1679 {
1680 void *pointer = data->init (gdbarch);
1681 set_gdbarch_data (gdbarch, data, pointer);
1682 }
1683 }
1684 }
1685
1686 /* Create/delete the gdbarch data vector. */
1687
1688 static void
1689 alloc_gdbarch_data (struct gdbarch *gdbarch)
1690 {
1691 gdb_assert (gdbarch->data == NULL);
1692 gdbarch->nr_data = gdbarch_data_registry.nr;
1693 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1694 }
1695
1696 static void
1697 free_gdbarch_data (struct gdbarch *gdbarch)
1698 {
1699 struct gdbarch_data_registration *rego;
1700 gdb_assert (gdbarch->data != NULL);
1701 for (rego = gdbarch_data_registry.registrations;
1702 rego != NULL;
1703 rego = rego->next)
1704 {
1705 struct gdbarch_data *data = rego->data;
1706 gdb_assert (data->index < gdbarch->nr_data);
1707 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1708 {
1709 data->free (gdbarch, gdbarch->data[data->index]);
1710 gdbarch->data[data->index] = NULL;
1711 }
1712 }
1713 xfree (gdbarch->data);
1714 gdbarch->data = NULL;
1715 }
1716
1717
1718 /* Initialize the current value of thee specified per-architecture
1719 data-pointer. */
1720
1721 void
1722 set_gdbarch_data (struct gdbarch *gdbarch,
1723 struct gdbarch_data *data,
1724 void *pointer)
1725 {
1726 gdb_assert (data->index < gdbarch->nr_data);
1727 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1728 data->free (gdbarch, gdbarch->data[data->index]);
1729 gdbarch->data[data->index] = pointer;
1730 }
1731
1732 /* Return the current value of the specified per-architecture
1733 data-pointer. */
1734
1735 void *
1736 gdbarch_data (struct gdbarch_data *data)
1737 {
1738 gdb_assert (data->index < current_gdbarch->nr_data);
1739 return current_gdbarch->data[data->index];
1740 }
1741
1742
1743
1744 /* Keep a registry of swapped data required by GDB modules. */
1745
1746 struct gdbarch_swap
1747 {
1748 void *swap;
1749 struct gdbarch_swap_registration *source;
1750 struct gdbarch_swap *next;
1751 };
1752
1753 struct gdbarch_swap_registration
1754 {
1755 void *data;
1756 unsigned long sizeof_data;
1757 gdbarch_swap_ftype *init;
1758 struct gdbarch_swap_registration *next;
1759 };
1760
1761 struct gdbarch_swap_registry
1762 {
1763 int nr;
1764 struct gdbarch_swap_registration *registrations;
1765 };
1766
1767 struct gdbarch_swap_registry gdbarch_swap_registry =
1768 {
1769 0, NULL,
1770 };
1771
1772 void
1773 register_gdbarch_swap (void *data,
1774 unsigned long sizeof_data,
1775 gdbarch_swap_ftype *init)
1776 {
1777 struct gdbarch_swap_registration **rego;
1778 for (rego = &gdbarch_swap_registry.registrations;
1779 (*rego) != NULL;
1780 rego = &(*rego)->next);
1781 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1782 (*rego)->next = NULL;
1783 (*rego)->init = init;
1784 (*rego)->data = data;
1785 (*rego)->sizeof_data = sizeof_data;
1786 }
1787
1788
1789 static void
1790 init_gdbarch_swap (struct gdbarch *gdbarch)
1791 {
1792 struct gdbarch_swap_registration *rego;
1793 struct gdbarch_swap **curr = &gdbarch->swap;
1794 for (rego = gdbarch_swap_registry.registrations;
1795 rego != NULL;
1796 rego = rego->next)
1797 {
1798 if (rego->data != NULL)
1799 {
1800 (*curr) = XMALLOC (struct gdbarch_swap);
1801 (*curr)->source = rego;
1802 (*curr)->swap = xmalloc (rego->sizeof_data);
1803 (*curr)->next = NULL;
1804 memset (rego->data, 0, rego->sizeof_data);
1805 curr = &(*curr)->next;
1806 }
1807 if (rego->init != NULL)
1808 rego->init ();
1809 }
1810 }
1811
1812 static void
1813 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1814 {
1815 struct gdbarch_swap *curr;
1816 for (curr = gdbarch->swap;
1817 curr != NULL;
1818 curr = curr->next)
1819 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1820 }
1821
1822 static void
1823 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1824 {
1825 struct gdbarch_swap *curr;
1826 for (curr = gdbarch->swap;
1827 curr != NULL;
1828 curr = curr->next)
1829 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1830 }
1831
1832
1833 /* Keep a registry of the architectures known by GDB. */
1834
1835 struct gdbarch_registration
1836 {
1837 enum bfd_architecture bfd_architecture;
1838 gdbarch_init_ftype *init;
1839 gdbarch_dump_tdep_ftype *dump_tdep;
1840 struct gdbarch_list *arches;
1841 struct gdbarch_registration *next;
1842 };
1843
1844 static struct gdbarch_registration *gdbarch_registry = NULL;
1845
1846 static void
1847 append_name (const char ***buf, int *nr, const char *name)
1848 {
1849 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1850 (*buf)[*nr] = name;
1851 *nr += 1;
1852 }
1853
1854 const char **
1855 gdbarch_printable_names (void)
1856 {
1857 if (GDB_MULTI_ARCH)
1858 {
1859 /* Accumulate a list of names based on the registed list of
1860 architectures. */
1861 enum bfd_architecture a;
1862 int nr_arches = 0;
1863 const char **arches = NULL;
1864 struct gdbarch_registration *rego;
1865 for (rego = gdbarch_registry;
1866 rego != NULL;
1867 rego = rego->next)
1868 {
1869 const struct bfd_arch_info *ap;
1870 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1871 if (ap == NULL)
1872 internal_error (__FILE__, __LINE__,
1873 "gdbarch_architecture_names: multi-arch unknown");
1874 do
1875 {
1876 append_name (&arches, &nr_arches, ap->printable_name);
1877 ap = ap->next;
1878 }
1879 while (ap != NULL);
1880 }
1881 append_name (&arches, &nr_arches, NULL);
1882 return arches;
1883 }
1884 else
1885 /* Just return all the architectures that BFD knows. Assume that
1886 the legacy architecture framework supports them. */
1887 return bfd_arch_list ();
1888 }
1889
1890
1891 void
1892 gdbarch_register (enum bfd_architecture bfd_architecture,
1893 gdbarch_init_ftype *init,
1894 gdbarch_dump_tdep_ftype *dump_tdep)
1895 {
1896 struct gdbarch_registration **curr;
1897 const struct bfd_arch_info *bfd_arch_info;
1898 /* Check that BFD recognizes this architecture */
1899 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1900 if (bfd_arch_info == NULL)
1901 {
1902 internal_error (__FILE__, __LINE__,
1903 "gdbarch: Attempt to register unknown architecture (%d)",
1904 bfd_architecture);
1905 }
1906 /* Check that we haven't seen this architecture before */
1907 for (curr = &gdbarch_registry;
1908 (*curr) != NULL;
1909 curr = &(*curr)->next)
1910 {
1911 if (bfd_architecture == (*curr)->bfd_architecture)
1912 internal_error (__FILE__, __LINE__,
1913 "gdbarch: Duplicate registraration of architecture (%s)",
1914 bfd_arch_info->printable_name);
1915 }
1916 /* log it */
1917 if (gdbarch_debug)
1918 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1919 bfd_arch_info->printable_name,
1920 (long) init);
1921 /* Append it */
1922 (*curr) = XMALLOC (struct gdbarch_registration);
1923 (*curr)->bfd_architecture = bfd_architecture;
1924 (*curr)->init = init;
1925 (*curr)->dump_tdep = dump_tdep;
1926 (*curr)->arches = NULL;
1927 (*curr)->next = NULL;
1928 /* When non- multi-arch, install whatever target dump routine we've
1929 been provided - hopefully that routine has been written correctly
1930 and works regardless of multi-arch. */
1931 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1932 && startup_gdbarch.dump_tdep == NULL)
1933 startup_gdbarch.dump_tdep = dump_tdep;
1934 }
1935
1936 void
1937 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1938 gdbarch_init_ftype *init)
1939 {
1940 gdbarch_register (bfd_architecture, init, NULL);
1941 }
1942
1943
1944 /* Look for an architecture using gdbarch_info. Base search on only
1945 BFD_ARCH_INFO and BYTE_ORDER. */
1946
1947 struct gdbarch_list *
1948 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1949 const struct gdbarch_info *info)
1950 {
1951 for (; arches != NULL; arches = arches->next)
1952 {
1953 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1954 continue;
1955 if (info->byte_order != arches->gdbarch->byte_order)
1956 continue;
1957 return arches;
1958 }
1959 return NULL;
1960 }
1961
1962
1963 /* Update the current architecture. Return ZERO if the update request
1964 failed. */
1965
1966 int
1967 gdbarch_update_p (struct gdbarch_info info)
1968 {
1969 struct gdbarch *new_gdbarch;
1970 struct gdbarch_list **list;
1971 struct gdbarch_registration *rego;
1972
1973 /* Fill in missing parts of the INFO struct using a number of
1974 sources: \`\`set ...''; INFOabfd supplied; existing target. */
1975
1976 /* \`\`(gdb) set architecture ...'' */
1977 if (info.bfd_arch_info == NULL
1978 && !TARGET_ARCHITECTURE_AUTO)
1979 info.bfd_arch_info = TARGET_ARCHITECTURE;
1980 if (info.bfd_arch_info == NULL
1981 && info.abfd != NULL
1982 && bfd_get_arch (info.abfd) != bfd_arch_unknown
1983 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
1984 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
1985 if (info.bfd_arch_info == NULL)
1986 info.bfd_arch_info = TARGET_ARCHITECTURE;
1987
1988 /* \`\`(gdb) set byte-order ...'' */
1989 if (info.byte_order == 0
1990 && !TARGET_BYTE_ORDER_AUTO)
1991 info.byte_order = TARGET_BYTE_ORDER;
1992 /* From the INFO struct. */
1993 if (info.byte_order == 0
1994 && info.abfd != NULL)
1995 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
1996 : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
1997 : 0);
1998 /* From the current target. */
1999 if (info.byte_order == 0)
2000 info.byte_order = TARGET_BYTE_ORDER;
2001
2002 /* Must have found some sort of architecture. */
2003 gdb_assert (info.bfd_arch_info != NULL);
2004
2005 if (gdbarch_debug)
2006 {
2007 fprintf_unfiltered (gdb_stdlog,
2008 "gdbarch_update: info.bfd_arch_info %s\n",
2009 (info.bfd_arch_info != NULL
2010 ? info.bfd_arch_info->printable_name
2011 : "(null)"));
2012 fprintf_unfiltered (gdb_stdlog,
2013 "gdbarch_update: info.byte_order %d (%s)\n",
2014 info.byte_order,
2015 (info.byte_order == BIG_ENDIAN ? "big"
2016 : info.byte_order == LITTLE_ENDIAN ? "little"
2017 : "default"));
2018 fprintf_unfiltered (gdb_stdlog,
2019 "gdbarch_update: info.abfd 0x%lx\n",
2020 (long) info.abfd);
2021 fprintf_unfiltered (gdb_stdlog,
2022 "gdbarch_update: info.tdep_info 0x%lx\n",
2023 (long) info.tdep_info);
2024 }
2025
2026 /* Find the target that knows about this architecture. */
2027 for (rego = gdbarch_registry;
2028 rego != NULL;
2029 rego = rego->next)
2030 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2031 break;
2032 if (rego == NULL)
2033 {
2034 if (gdbarch_debug)
2035 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2036 return 0;
2037 }
2038
2039 /* Ask the target for a replacement architecture. */
2040 new_gdbarch = rego->init (info, rego->arches);
2041
2042 /* Did the target like it? No. Reject the change. */
2043 if (new_gdbarch == NULL)
2044 {
2045 if (gdbarch_debug)
2046 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2047 return 0;
2048 }
2049
2050 /* Did the architecture change? No. Do nothing. */
2051 if (current_gdbarch == new_gdbarch)
2052 {
2053 if (gdbarch_debug)
2054 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2055 (long) new_gdbarch,
2056 new_gdbarch->bfd_arch_info->printable_name);
2057 return 1;
2058 }
2059
2060 /* Swap all data belonging to the old target out */
2061 swapout_gdbarch_swap (current_gdbarch);
2062
2063 /* Is this a pre-existing architecture? Yes. Swap it in. */
2064 for (list = &rego->arches;
2065 (*list) != NULL;
2066 list = &(*list)->next)
2067 {
2068 if ((*list)->gdbarch == new_gdbarch)
2069 {
2070 if (gdbarch_debug)
2071 fprintf_unfiltered (gdb_stdlog,
2072 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2073 (long) new_gdbarch,
2074 new_gdbarch->bfd_arch_info->printable_name);
2075 current_gdbarch = new_gdbarch;
2076 swapin_gdbarch_swap (new_gdbarch);
2077 architecture_changed_event ();
2078 return 1;
2079 }
2080 }
2081
2082 /* Append this new architecture to this targets list. */
2083 (*list) = XMALLOC (struct gdbarch_list);
2084 (*list)->next = NULL;
2085 (*list)->gdbarch = new_gdbarch;
2086
2087 /* Switch to this new architecture. Dump it out. */
2088 current_gdbarch = new_gdbarch;
2089 if (gdbarch_debug)
2090 {
2091 fprintf_unfiltered (gdb_stdlog,
2092 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2093 (long) new_gdbarch,
2094 new_gdbarch->bfd_arch_info->printable_name);
2095 }
2096
2097 /* Check that the newly installed architecture is valid. Plug in
2098 any post init values. */
2099 new_gdbarch->dump_tdep = rego->dump_tdep;
2100 verify_gdbarch (new_gdbarch);
2101
2102 /* Initialize the per-architecture memory (swap) areas.
2103 CURRENT_GDBARCH must be update before these modules are
2104 called. */
2105 init_gdbarch_swap (new_gdbarch);
2106
2107 /* Initialize the per-architecture data-pointer of all parties that
2108 registered an interest in this architecture. CURRENT_GDBARCH
2109 must be updated before these modules are called. */
2110 init_gdbarch_data (new_gdbarch);
2111 architecture_changed_event ();
2112
2113 if (gdbarch_debug)
2114 gdbarch_dump (current_gdbarch, gdb_stdlog);
2115
2116 return 1;
2117 }
2118
2119
2120 /* Disassembler */
2121
2122 /* Pointer to the target-dependent disassembly function. */
2123 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2124 disassemble_info tm_print_insn_info;
2125
2126
2127 extern void _initialize_gdbarch (void);
2128
2129 void
2130 _initialize_gdbarch (void)
2131 {
2132 struct cmd_list_element *c;
2133
2134 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2135 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2136 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2137 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2138 tm_print_insn_info.print_address_func = dis_asm_print_address;
2139
2140 add_show_from_set (add_set_cmd ("arch",
2141 class_maintenance,
2142 var_zinteger,
2143 (char *)&gdbarch_debug,
2144 "Set architecture debugging.\\n\\
2145 When non-zero, architecture debugging is enabled.", &setdebuglist),
2146 &showdebuglist);
2147 c = add_set_cmd ("archdebug",
2148 class_maintenance,
2149 var_zinteger,
2150 (char *)&gdbarch_debug,
2151 "Set architecture debugging.\\n\\
2152 When non-zero, architecture debugging is enabled.", &setlist);
2153
2154 deprecate_cmd (c, "set debug arch");
2155 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2156 }
2157 EOF
2158
2159 # close things off
2160 exec 1>&2
2161 #../move-if-change new-gdbarch.c gdbarch.c
2162 compare_new gdbarch.c