gdb/riscv: add ability to decode dwarf CSR numbers
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2020 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27 # Format of the input table
28 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
29
30 do_read ()
31 {
32 comment=""
33 class=""
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
37 # shellcheck disable=SC2162
38 while IFS='' read line
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
44 then
45 continue
46 elif expr "${line}" : "#" > /dev/null
47 then
48 comment="${comment}
49 ${line}"
50 else
51
52 # The semantics of IFS varies between different SH's. Some
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
56
57 OFS="${IFS}" ; IFS="[;]"
58 eval read "${read}" <<EOF
59 ${line}
60 EOF
61 IFS="${OFS}"
62
63 if test -n "${garbage_at_eol:-}"
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
74 if eval test "\"\${${r}}\" = ' '"
75 then
76 eval "${r}="
77 fi
78 done
79
80 case "${class}" in
81 m ) staticdefault="${predefault:-}" ;;
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
85
86 case "${class}" in
87 F | V | M )
88 case "${invalid_p:-}" in
89 "" )
90 if test -n "${predefault}"
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
93 predicate="gdbarch->${function:-} != ${predefault}"
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
100 fi
101 ;;
102 * )
103 echo "Predicate function ${function} with invalid_p." 1>&2
104 kill $$
105 exit 1
106 ;;
107 esac
108 esac
109
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
114 fi
115 done
116 if [ -n "${class}" ]
117 then
118 true
119 else
120 false
121 fi
122 }
123
124
125 fallback_default_p ()
126 {
127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
129 }
130
131 class_is_variable_p ()
132 {
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
137 }
138
139 class_is_function_p ()
140 {
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145 }
146
147 class_is_multiarch_p ()
148 {
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
153 }
154
155 class_is_predicate_p ()
156 {
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
161 }
162
163 class_is_info_p ()
164 {
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171
172 # dump out/verify the doco
173 for field in ${read}
174 do
175 case ${field} in
176
177 class ) : ;;
178
179 # # -> line disable
180 # f -> function
181 # hiding a function
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
184 # v -> variable
185 # hiding a variable
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
188 # i -> set from info
189 # hiding something from the ``struct info'' object
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
192 # M -> multi-arch function + predicate
193 # hiding a multi-arch function + predicate to test function validity
194
195 returntype ) : ;;
196
197 # For functions, the return type; for variables, the data type
198
199 function ) : ;;
200
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
204
205 formal ) : ;;
206
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
211
212 actual ) : ;;
213
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
217
218 staticdefault ) : ;;
219
220 # To help with the GDB startup a static gdbarch object is
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
224
225 # If STATICDEFAULT is empty, zero is used.
226
227 predefault ) : ;;
228
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
233
234 # If PREDEFAULT is empty, zero is used.
235
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
265 # Variable declarations can refer to ``gdbarch'' which
266 # will contain the current architecture. Care should be
267 # taken.
268
269 invalid_p ) : ;;
270
271 # A predicate equation that validates MEMBER. Non-zero is
272 # returned if the code creating the new architecture failed to
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
283
284 # See also PREDEFAULT and POSTDEFAULT.
285
286 print ) : ;;
287
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
290
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
293
294 garbage_at_eol ) : ;;
295
296 # Catches stray fields.
297
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
301 esac
302 done
303
304
305 function_list ()
306 {
307 # See below (DOCO) for description of each field
308 cat <<EOF
309 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
310 #
311 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
313 #
314 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
315 #
316 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
317
318 # Number of bits in a short or unsigned short for the target machine.
319 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
320 # Number of bits in an int or unsigned int for the target machine.
321 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
322 # Number of bits in a long or unsigned long for the target machine.
323 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
324 # Number of bits in a long long or unsigned long long for the target
325 # machine.
326 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
327
328 # The ABI default bit-size and format for "bfloat16", "half", "float", "double", and
329 # "long double". These bit/format pairs should eventually be combined
330 # into a single object. For the moment, just initialize them as a pair.
331 # Each format describes both the big and little endian layouts (if
332 # useful).
333
334 v;int;bfloat16_bit;;;16;2*TARGET_CHAR_BIT;;0
335 v;const struct floatformat **;bfloat16_format;;;;;floatformats_bfloat16;;pformat (gdbarch->bfloat16_format)
336 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
337 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
338 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
339 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
340 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
341 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
342 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
343 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
344
345 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
346 # starting with C++11.
347 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
348 # One if \`wchar_t' is signed, zero if unsigned.
349 v;int;wchar_signed;;;1;-1;1
350
351 # Returns the floating-point format to be used for values of length LENGTH.
352 # NAME, if non-NULL, is the type name, which may be used to distinguish
353 # different target formats of the same length.
354 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
355
356 # For most targets, a pointer on the target and its representation as an
357 # address in GDB have the same size and "look the same". For such a
358 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
359 # / addr_bit will be set from it.
360 #
361 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
362 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
363 # gdbarch_address_to_pointer as well.
364 #
365 # ptr_bit is the size of a pointer on the target
366 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
367 # addr_bit is the size of a target address as represented in gdb
368 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
369 #
370 # dwarf2_addr_size is the target address size as used in the Dwarf debug
371 # info. For .debug_frame FDEs, this is supposed to be the target address
372 # size from the associated CU header, and which is equivalent to the
373 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
374 # Unfortunately there is no good way to determine this value. Therefore
375 # dwarf2_addr_size simply defaults to the target pointer size.
376 #
377 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
378 # defined using the target's pointer size so far.
379 #
380 # Note that dwarf2_addr_size only needs to be redefined by a target if the
381 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
382 # and if Dwarf versions < 4 need to be supported.
383 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
384 #
385 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
386 v;int;char_signed;;;1;-1;1
387 #
388 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
389 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
390 # Function for getting target's idea of a frame pointer. FIXME: GDB's
391 # whole scheme for dealing with "frames" and "frame pointers" needs a
392 # serious shakedown.
393 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
394 #
395 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
396 # Read a register into a new struct value. If the register is wholly
397 # or partly unavailable, this should call mark_value_bytes_unavailable
398 # as appropriate. If this is defined, then pseudo_register_read will
399 # never be called.
400 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
401 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
402 #
403 v;int;num_regs;;;0;-1
404 # This macro gives the number of pseudo-registers that live in the
405 # register namespace but do not get fetched or stored on the target.
406 # These pseudo-registers may be aliases for other registers,
407 # combinations of other registers, or they may be computed by GDB.
408 v;int;num_pseudo_regs;;;0;0;;0
409
410 # Assemble agent expression bytecode to collect pseudo-register REG.
411 # Return -1 if something goes wrong, 0 otherwise.
412 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
413
414 # Assemble agent expression bytecode to push the value of pseudo-register
415 # REG on the interpreter stack.
416 # Return -1 if something goes wrong, 0 otherwise.
417 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
418
419 # Some architectures can display additional information for specific
420 # signals.
421 # UIOUT is the output stream where the handler will place information.
422 M;void;report_signal_info;struct ui_out *uiout, enum gdb_signal siggnal;uiout, siggnal
423
424 # GDB's standard (or well known) register numbers. These can map onto
425 # a real register or a pseudo (computed) register or not be defined at
426 # all (-1).
427 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
428 v;int;sp_regnum;;;-1;-1;;0
429 v;int;pc_regnum;;;-1;-1;;0
430 v;int;ps_regnum;;;-1;-1;;0
431 v;int;fp0_regnum;;;0;-1;;0
432 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
433 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
434 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
435 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
436 # Convert from an sdb register number to an internal gdb register number.
437 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
438 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
439 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
440 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
441 m;const char *;register_name;int regnr;regnr;;0
442
443 # Return the type of a register specified by the architecture. Only
444 # the register cache should call this function directly; others should
445 # use "register_type".
446 M;struct type *;register_type;int reg_nr;reg_nr
447
448 # Generate a dummy frame_id for THIS_FRAME assuming that the frame is
449 # a dummy frame. A dummy frame is created before an inferior call,
450 # the frame_id returned here must match the frame_id that was built
451 # for the inferior call. Usually this means the returned frame_id's
452 # stack address should match the address returned by
453 # gdbarch_push_dummy_call, and the returned frame_id's code address
454 # should match the address at which the breakpoint was set in the dummy
455 # frame.
456 m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
457 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
458 # deprecated_fp_regnum.
459 v;int;deprecated_fp_regnum;;;-1;-1;;0
460
461 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
462 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
463 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
464
465 # Return true if the code of FRAME is writable.
466 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
467
468 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
469 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
470 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
471 # MAP a GDB RAW register number onto a simulator register number. See
472 # also include/...-sim.h.
473 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
474 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
475 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
476
477 # Determine the address where a longjmp will land and save this address
478 # in PC. Return nonzero on success.
479 #
480 # FRAME corresponds to the longjmp frame.
481 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
482
483 #
484 v;int;believe_pcc_promotion;;;;;;;
485 #
486 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
487 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
488 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
489 # Construct a value representing the contents of register REGNUM in
490 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
491 # allocate and return a struct value with all value attributes
492 # (but not the value contents) filled in.
493 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
494 #
495 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
496 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
497 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
498
499 # Return the return-value convention that will be used by FUNCTION
500 # to return a value of type VALTYPE. FUNCTION may be NULL in which
501 # case the return convention is computed based only on VALTYPE.
502 #
503 # If READBUF is not NULL, extract the return value and save it in this buffer.
504 #
505 # If WRITEBUF is not NULL, it contains a return value which will be
506 # stored into the appropriate register. This can be used when we want
507 # to force the value returned by a function (see the "return" command
508 # for instance).
509 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
510
511 # Return true if the return value of function is stored in the first hidden
512 # parameter. In theory, this feature should be language-dependent, specified
513 # by language and its ABI, such as C++. Unfortunately, compiler may
514 # implement it to a target-dependent feature. So that we need such hook here
515 # to be aware of this in GDB.
516 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
517
518 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
519 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
520 # On some platforms, a single function may provide multiple entry points,
521 # e.g. one that is used for function-pointer calls and a different one
522 # that is used for direct function calls.
523 # In order to ensure that breakpoints set on the function will trigger
524 # no matter via which entry point the function is entered, a platform
525 # may provide the skip_entrypoint callback. It is called with IP set
526 # to the main entry point of a function (as determined by the symbol table),
527 # and should return the address of the innermost entry point, where the
528 # actual breakpoint needs to be set. Note that skip_entrypoint is used
529 # by GDB common code even when debugging optimized code, where skip_prologue
530 # is not used.
531 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
532
533 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
534 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
535
536 # Return the breakpoint kind for this target based on *PCPTR.
537 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
538
539 # Return the software breakpoint from KIND. KIND can have target
540 # specific meaning like the Z0 kind parameter.
541 # SIZE is set to the software breakpoint's length in memory.
542 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
543
544 # Return the breakpoint kind for this target based on the current
545 # processor state (e.g. the current instruction mode on ARM) and the
546 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
547 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
548
549 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
550 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
551 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
552 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
553
554 # A function can be addressed by either it's "pointer" (possibly a
555 # descriptor address) or "entry point" (first executable instruction).
556 # The method "convert_from_func_ptr_addr" converting the former to the
557 # latter. gdbarch_deprecated_function_start_offset is being used to implement
558 # a simplified subset of that functionality - the function's address
559 # corresponds to the "function pointer" and the function's start
560 # corresponds to the "function entry point" - and hence is redundant.
561
562 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
563
564 # Return the remote protocol register number associated with this
565 # register. Normally the identity mapping.
566 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
567
568 # Fetch the target specific address used to represent a load module.
569 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
570
571 # Return the thread-local address at OFFSET in the thread-local
572 # storage for the thread PTID and the shared library or executable
573 # file given by LM_ADDR. If that block of thread-local storage hasn't
574 # been allocated yet, this function may throw an error. LM_ADDR may
575 # be zero for statically linked multithreaded inferiors.
576
577 M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
578 #
579 v;CORE_ADDR;frame_args_skip;;;0;;;0
580 m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
581 m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
582 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
583 # frame-base. Enable frame-base before frame-unwind.
584 F;int;frame_num_args;struct frame_info *frame;frame
585 #
586 M;CORE_ADDR;frame_align;CORE_ADDR address;address
587 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
588 v;int;frame_red_zone_size
589 #
590 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
591 # On some machines there are bits in addresses which are not really
592 # part of the address, but are used by the kernel, the hardware, etc.
593 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
594 # we get a "real" address such as one would find in a symbol table.
595 # This is used only for addresses of instructions, and even then I'm
596 # not sure it's used in all contexts. It exists to deal with there
597 # being a few stray bits in the PC which would mislead us, not as some
598 # sort of generic thing to handle alignment or segmentation (it's
599 # possible it should be in TARGET_READ_PC instead).
600 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
601
602 # On some machines, not all bits of an address word are significant.
603 # For example, on AArch64, the top bits of an address known as the "tag"
604 # are ignored by the kernel, the hardware, etc. and can be regarded as
605 # additional data associated with the address.
606 v;int;significant_addr_bit;;;;;;0
607
608 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
609 # indicates if the target needs software single step. An ISA method to
610 # implement it.
611 #
612 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
613 # target can single step. If not, then implement single step using breakpoints.
614 #
615 # Return a vector of addresses on which the software single step
616 # breakpoints should be inserted. NULL means software single step is
617 # not used.
618 # Multiple breakpoints may be inserted for some instructions such as
619 # conditional branch. However, each implementation must always evaluate
620 # the condition and only put the breakpoint at the branch destination if
621 # the condition is true, so that we ensure forward progress when stepping
622 # past a conditional branch to self.
623 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
624
625 # Return non-zero if the processor is executing a delay slot and a
626 # further single-step is needed before the instruction finishes.
627 M;int;single_step_through_delay;struct frame_info *frame;frame
628 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
629 # disassembler. Perhaps objdump can handle it?
630 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
631 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
632
633
634 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
635 # evaluates non-zero, this is the address where the debugger will place
636 # a step-resume breakpoint to get us past the dynamic linker.
637 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
638 # Some systems also have trampoline code for returning from shared libs.
639 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
640
641 # Return true if PC lies inside an indirect branch thunk.
642 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
643
644 # A target might have problems with watchpoints as soon as the stack
645 # frame of the current function has been destroyed. This mostly happens
646 # as the first action in a function's epilogue. stack_frame_destroyed_p()
647 # is defined to return a non-zero value if either the given addr is one
648 # instruction after the stack destroying instruction up to the trailing
649 # return instruction or if we can figure out that the stack frame has
650 # already been invalidated regardless of the value of addr. Targets
651 # which don't suffer from that problem could just let this functionality
652 # untouched.
653 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
654 # Process an ELF symbol in the minimal symbol table in a backend-specific
655 # way. Normally this hook is supposed to do nothing, however if required,
656 # then this hook can be used to apply tranformations to symbols that are
657 # considered special in some way. For example the MIPS backend uses it
658 # to interpret \`st_other' information to mark compressed code symbols so
659 # that they can be treated in the appropriate manner in the processing of
660 # the main symbol table and DWARF-2 records.
661 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
662 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
663 # Process a symbol in the main symbol table in a backend-specific way.
664 # Normally this hook is supposed to do nothing, however if required,
665 # then this hook can be used to apply tranformations to symbols that
666 # are considered special in some way. This is currently used by the
667 # MIPS backend to make sure compressed code symbols have the ISA bit
668 # set. This in turn is needed for symbol values seen in GDB to match
669 # the values used at the runtime by the program itself, for function
670 # and label references.
671 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
672 # Adjust the address retrieved from a DWARF-2 record other than a line
673 # entry in a backend-specific way. Normally this hook is supposed to
674 # return the address passed unchanged, however if that is incorrect for
675 # any reason, then this hook can be used to fix the address up in the
676 # required manner. This is currently used by the MIPS backend to make
677 # sure addresses in FDE, range records, etc. referring to compressed
678 # code have the ISA bit set, matching line information and the symbol
679 # table.
680 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
681 # Adjust the address updated by a line entry in a backend-specific way.
682 # Normally this hook is supposed to return the address passed unchanged,
683 # however in the case of inconsistencies in these records, this hook can
684 # be used to fix them up in the required manner. This is currently used
685 # by the MIPS backend to make sure all line addresses in compressed code
686 # are presented with the ISA bit set, which is not always the case. This
687 # in turn ensures breakpoint addresses are correctly matched against the
688 # stop PC.
689 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
690 v;int;cannot_step_breakpoint;;;0;0;;0
691 # See comment in target.h about continuable, steppable and
692 # non-steppable watchpoints.
693 v;int;have_nonsteppable_watchpoint;;;0;0;;0
694 F;type_instance_flags;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
695 M;const char *;address_class_type_flags_to_name;type_instance_flags type_flags;type_flags
696 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
697 # FS are passed from the generic execute_cfa_program function.
698 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
699
700 # Return the appropriate type_flags for the supplied address class.
701 # This function should return true if the address class was recognized and
702 # type_flags was set, false otherwise.
703 M;bool;address_class_name_to_type_flags;const char *name, type_instance_flags *type_flags_ptr;name, type_flags_ptr
704 # Is a register in a group
705 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
706 # Fetch the pointer to the ith function argument.
707 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
708
709 # Iterate over all supported register notes in a core file. For each
710 # supported register note section, the iterator must call CB and pass
711 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
712 # the supported register note sections based on the current register
713 # values. Otherwise it should enumerate all supported register note
714 # sections.
715 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
716
717 # Create core file notes
718 M;gdb::unique_xmalloc_ptr<char>;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
719
720 # Find core file memory regions
721 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
722
723 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
724 # core file into buffer READBUF with length LEN. Return the number of bytes read
725 # (zero indicates failure).
726 # failed, otherwise, return the red length of READBUF.
727 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
728
729 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
730 # libraries list from core file into buffer READBUF with length LEN.
731 # Return the number of bytes read (zero indicates failure).
732 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
733
734 # How the core target converts a PTID from a core file to a string.
735 M;std::string;core_pid_to_str;ptid_t ptid;ptid
736
737 # How the core target extracts the name of a thread from a core file.
738 M;const char *;core_thread_name;struct thread_info *thr;thr
739
740 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
741 # from core file into buffer READBUF with length LEN. Return the number
742 # of bytes read (zero indicates EOF, a negative value indicates failure).
743 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
744
745 # BFD target to use when generating a core file.
746 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
747
748 # If the elements of C++ vtables are in-place function descriptors rather
749 # than normal function pointers (which may point to code or a descriptor),
750 # set this to one.
751 v;int;vtable_function_descriptors;;;0;0;;0
752
753 # Set if the least significant bit of the delta is used instead of the least
754 # significant bit of the pfn for pointers to virtual member functions.
755 v;int;vbit_in_delta;;;0;0;;0
756
757 # Advance PC to next instruction in order to skip a permanent breakpoint.
758 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
759
760 # The maximum length of an instruction on this architecture in bytes.
761 V;ULONGEST;max_insn_length;;;0;0
762
763 # Copy the instruction at FROM to TO, and make any adjustments
764 # necessary to single-step it at that address.
765 #
766 # REGS holds the state the thread's registers will have before
767 # executing the copied instruction; the PC in REGS will refer to FROM,
768 # not the copy at TO. The caller should update it to point at TO later.
769 #
770 # Return a pointer to data of the architecture's choice to be passed
771 # to gdbarch_displaced_step_fixup.
772 #
773 # For a general explanation of displaced stepping and how GDB uses it,
774 # see the comments in infrun.c.
775 #
776 # The TO area is only guaranteed to have space for
777 # gdbarch_max_insn_length (arch) bytes, so this function must not
778 # write more bytes than that to that area.
779 #
780 # If you do not provide this function, GDB assumes that the
781 # architecture does not support displaced stepping.
782 #
783 # If the instruction cannot execute out of line, return NULL. The
784 # core falls back to stepping past the instruction in-line instead in
785 # that case.
786 M;displaced_step_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
787
788 # Return true if GDB should use hardware single-stepping to execute a displaced
789 # step instruction. If false, GDB will simply restart execution at the
790 # displaced instruction location, and it is up to the target to ensure GDB will
791 # receive control again (e.g. by placing a software breakpoint instruction into
792 # the displaced instruction buffer).
793 #
794 # The default implementation returns false on all targets that provide a
795 # gdbarch_software_single_step routine, and true otherwise.
796 m;bool;displaced_step_hw_singlestep;void;;;default_displaced_step_hw_singlestep;;0
797
798 # Fix up the state resulting from successfully single-stepping a
799 # displaced instruction, to give the result we would have gotten from
800 # stepping the instruction in its original location.
801 #
802 # REGS is the register state resulting from single-stepping the
803 # displaced instruction.
804 #
805 # CLOSURE is the result from the matching call to
806 # gdbarch_displaced_step_copy_insn.
807 #
808 # If you provide gdbarch_displaced_step_copy_insn.but not this
809 # function, then GDB assumes that no fixup is needed after
810 # single-stepping the instruction.
811 #
812 # For a general explanation of displaced stepping and how GDB uses it,
813 # see the comments in infrun.c.
814 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
815
816 # Return the address of an appropriate place to put displaced
817 # instructions while we step over them. There need only be one such
818 # place, since we're only stepping one thread over a breakpoint at a
819 # time.
820 #
821 # For a general explanation of displaced stepping and how GDB uses it,
822 # see the comments in infrun.c.
823 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
824
825 # Relocate an instruction to execute at a different address. OLDLOC
826 # is the address in the inferior memory where the instruction to
827 # relocate is currently at. On input, TO points to the destination
828 # where we want the instruction to be copied (and possibly adjusted)
829 # to. On output, it points to one past the end of the resulting
830 # instruction(s). The effect of executing the instruction at TO shall
831 # be the same as if executing it at FROM. For example, call
832 # instructions that implicitly push the return address on the stack
833 # should be adjusted to return to the instruction after OLDLOC;
834 # relative branches, and other PC-relative instructions need the
835 # offset adjusted; etc.
836 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
837
838 # Refresh overlay mapped state for section OSECT.
839 F;void;overlay_update;struct obj_section *osect;osect
840
841 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
842
843 # Set if the address in N_SO or N_FUN stabs may be zero.
844 v;int;sofun_address_maybe_missing;;;0;0;;0
845
846 # Parse the instruction at ADDR storing in the record execution log
847 # the registers REGCACHE and memory ranges that will be affected when
848 # the instruction executes, along with their current values.
849 # Return -1 if something goes wrong, 0 otherwise.
850 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
851
852 # Save process state after a signal.
853 # Return -1 if something goes wrong, 0 otherwise.
854 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
855
856 # Signal translation: translate inferior's signal (target's) number
857 # into GDB's representation. The implementation of this method must
858 # be host independent. IOW, don't rely on symbols of the NAT_FILE
859 # header (the nm-*.h files), the host <signal.h> header, or similar
860 # headers. This is mainly used when cross-debugging core files ---
861 # "Live" targets hide the translation behind the target interface
862 # (target_wait, target_resume, etc.).
863 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
864
865 # Signal translation: translate the GDB's internal signal number into
866 # the inferior's signal (target's) representation. The implementation
867 # of this method must be host independent. IOW, don't rely on symbols
868 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
869 # header, or similar headers.
870 # Return the target signal number if found, or -1 if the GDB internal
871 # signal number is invalid.
872 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
873
874 # Extra signal info inspection.
875 #
876 # Return a type suitable to inspect extra signal information.
877 M;struct type *;get_siginfo_type;void;
878
879 # Record architecture-specific information from the symbol table.
880 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
881
882 # Function for the 'catch syscall' feature.
883
884 # Get architecture-specific system calls information from registers.
885 M;LONGEST;get_syscall_number;thread_info *thread;thread
886
887 # The filename of the XML syscall for this architecture.
888 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
889
890 # Information about system calls from this architecture
891 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
892
893 # SystemTap related fields and functions.
894
895 # A NULL-terminated array of prefixes used to mark an integer constant
896 # on the architecture's assembly.
897 # For example, on x86 integer constants are written as:
898 #
899 # \$10 ;; integer constant 10
900 #
901 # in this case, this prefix would be the character \`\$\'.
902 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
903
904 # A NULL-terminated array of suffixes used to mark an integer constant
905 # on the architecture's assembly.
906 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
907
908 # A NULL-terminated array of prefixes used to mark a register name on
909 # the architecture's assembly.
910 # For example, on x86 the register name is written as:
911 #
912 # \%eax ;; register eax
913 #
914 # in this case, this prefix would be the character \`\%\'.
915 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
916
917 # A NULL-terminated array of suffixes used to mark a register name on
918 # the architecture's assembly.
919 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
920
921 # A NULL-terminated array of prefixes used to mark a register
922 # indirection on the architecture's assembly.
923 # For example, on x86 the register indirection is written as:
924 #
925 # \(\%eax\) ;; indirecting eax
926 #
927 # in this case, this prefix would be the charater \`\(\'.
928 #
929 # Please note that we use the indirection prefix also for register
930 # displacement, e.g., \`4\(\%eax\)\' on x86.
931 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
932
933 # A NULL-terminated array of suffixes used to mark a register
934 # indirection on the architecture's assembly.
935 # For example, on x86 the register indirection is written as:
936 #
937 # \(\%eax\) ;; indirecting eax
938 #
939 # in this case, this prefix would be the charater \`\)\'.
940 #
941 # Please note that we use the indirection suffix also for register
942 # displacement, e.g., \`4\(\%eax\)\' on x86.
943 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
944
945 # Prefix(es) used to name a register using GDB's nomenclature.
946 #
947 # For example, on PPC a register is represented by a number in the assembly
948 # language (e.g., \`10\' is the 10th general-purpose register). However,
949 # inside GDB this same register has an \`r\' appended to its name, so the 10th
950 # register would be represented as \`r10\' internally.
951 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
952
953 # Suffix used to name a register using GDB's nomenclature.
954 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
955
956 # Check if S is a single operand.
957 #
958 # Single operands can be:
959 # \- Literal integers, e.g. \`\$10\' on x86
960 # \- Register access, e.g. \`\%eax\' on x86
961 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
962 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
963 #
964 # This function should check for these patterns on the string
965 # and return 1 if some were found, or zero otherwise. Please try to match
966 # as much info as you can from the string, i.e., if you have to match
967 # something like \`\(\%\', do not match just the \`\(\'.
968 M;int;stap_is_single_operand;const char *s;s
969
970 # Function used to handle a "special case" in the parser.
971 #
972 # A "special case" is considered to be an unknown token, i.e., a token
973 # that the parser does not know how to parse. A good example of special
974 # case would be ARM's register displacement syntax:
975 #
976 # [R0, #4] ;; displacing R0 by 4
977 #
978 # Since the parser assumes that a register displacement is of the form:
979 #
980 # <number> <indirection_prefix> <register_name> <indirection_suffix>
981 #
982 # it means that it will not be able to recognize and parse this odd syntax.
983 # Therefore, we should add a special case function that will handle this token.
984 #
985 # This function should generate the proper expression form of the expression
986 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
987 # and so on). It should also return 1 if the parsing was successful, or zero
988 # if the token was not recognized as a special token (in this case, returning
989 # zero means that the special parser is deferring the parsing to the generic
990 # parser), and should advance the buffer pointer (p->arg).
991 M;int;stap_parse_special_token;struct stap_parse_info *p;p
992
993 # Perform arch-dependent adjustments to a register name.
994 #
995 # In very specific situations, it may be necessary for the register
996 # name present in a SystemTap probe's argument to be handled in a
997 # special way. For example, on i386, GCC may over-optimize the
998 # register allocation and use smaller registers than necessary. In
999 # such cases, the client that is reading and evaluating the SystemTap
1000 # probe (ourselves) will need to actually fetch values from the wider
1001 # version of the register in question.
1002 #
1003 # To illustrate the example, consider the following probe argument
1004 # (i386):
1005 #
1006 # 4@%ax
1007 #
1008 # This argument says that its value can be found at the %ax register,
1009 # which is a 16-bit register. However, the argument's prefix says
1010 # that its type is "uint32_t", which is 32-bit in size. Therefore, in
1011 # this case, GDB should actually fetch the probe's value from register
1012 # %eax, not %ax. In this scenario, this function would actually
1013 # replace the register name from %ax to %eax.
1014 #
1015 # The rationale for this can be found at PR breakpoints/24541.
1016 M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
1017
1018 # DTrace related functions.
1019
1020 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1021 # NARG must be >= 0.
1022 M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
1023
1024 # True if the given ADDR does not contain the instruction sequence
1025 # corresponding to a disabled DTrace is-enabled probe.
1026 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1027
1028 # Enable a DTrace is-enabled probe at ADDR.
1029 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1030
1031 # Disable a DTrace is-enabled probe at ADDR.
1032 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1033
1034 # True if the list of shared libraries is one and only for all
1035 # processes, as opposed to a list of shared libraries per inferior.
1036 # This usually means that all processes, although may or may not share
1037 # an address space, will see the same set of symbols at the same
1038 # addresses.
1039 v;int;has_global_solist;;;0;0;;0
1040
1041 # On some targets, even though each inferior has its own private
1042 # address space, the debug interface takes care of making breakpoints
1043 # visible to all address spaces automatically. For such cases,
1044 # this property should be set to true.
1045 v;int;has_global_breakpoints;;;0;0;;0
1046
1047 # True if inferiors share an address space (e.g., uClinux).
1048 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1049
1050 # True if a fast tracepoint can be set at an address.
1051 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1052
1053 # Guess register state based on tracepoint location. Used for tracepoints
1054 # where no registers have been collected, but there's only one location,
1055 # allowing us to guess the PC value, and perhaps some other registers.
1056 # On entry, regcache has all registers marked as unavailable.
1057 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1058
1059 # Return the "auto" target charset.
1060 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1061 # Return the "auto" target wide charset.
1062 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1063
1064 # If non-empty, this is a file extension that will be opened in place
1065 # of the file extension reported by the shared library list.
1066 #
1067 # This is most useful for toolchains that use a post-linker tool,
1068 # where the names of the files run on the target differ in extension
1069 # compared to the names of the files GDB should load for debug info.
1070 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1071
1072 # If true, the target OS has DOS-based file system semantics. That
1073 # is, absolute paths include a drive name, and the backslash is
1074 # considered a directory separator.
1075 v;int;has_dos_based_file_system;;;0;0;;0
1076
1077 # Generate bytecodes to collect the return address in a frame.
1078 # Since the bytecodes run on the target, possibly with GDB not even
1079 # connected, the full unwinding machinery is not available, and
1080 # typically this function will issue bytecodes for one or more likely
1081 # places that the return address may be found.
1082 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1083
1084 # Implement the "info proc" command.
1085 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1086
1087 # Implement the "info proc" command for core files. Noe that there
1088 # are two "info_proc"-like methods on gdbarch -- one for core files,
1089 # one for live targets.
1090 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1091
1092 # Iterate over all objfiles in the order that makes the most sense
1093 # for the architecture to make global symbol searches.
1094 #
1095 # CB is a callback function where OBJFILE is the objfile to be searched,
1096 # and CB_DATA a pointer to user-defined data (the same data that is passed
1097 # when calling this gdbarch method). The iteration stops if this function
1098 # returns nonzero.
1099 #
1100 # CB_DATA is a pointer to some user-defined data to be passed to
1101 # the callback.
1102 #
1103 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1104 # inspected when the symbol search was requested.
1105 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1106
1107 # Ravenscar arch-dependent ops.
1108 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1109
1110 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1111 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1112
1113 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1114 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1115
1116 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1117 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1118
1119 # Return true if there's a program/permanent breakpoint planted in
1120 # memory at ADDRESS, return false otherwise.
1121 m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1122
1123 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1124 # Return 0 if *READPTR is already at the end of the buffer.
1125 # Return -1 if there is insufficient buffer for a whole entry.
1126 # Return 1 if an entry was read into *TYPEP and *VALP.
1127 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1128
1129 # Print the description of a single auxv entry described by TYPE and VAL
1130 # to FILE.
1131 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1132
1133 # Find the address range of the current inferior's vsyscall/vDSO, and
1134 # write it to *RANGE. If the vsyscall's length can't be determined, a
1135 # range with zero length is returned. Returns true if the vsyscall is
1136 # found, false otherwise.
1137 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1138
1139 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1140 # PROT has GDB_MMAP_PROT_* bitmask format.
1141 # Throw an error if it is not possible. Returned address is always valid.
1142 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1143
1144 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1145 # Print a warning if it is not possible.
1146 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1147
1148 # Return string (caller has to use xfree for it) with options for GCC
1149 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1150 # These options are put before CU's DW_AT_producer compilation options so that
1151 # they can override it.
1152 m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
1153
1154 # Return a regular expression that matches names used by this
1155 # architecture in GNU configury triplets. The result is statically
1156 # allocated and must not be freed. The default implementation simply
1157 # returns the BFD architecture name, which is correct in nearly every
1158 # case.
1159 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1160
1161 # Return the size in 8-bit bytes of an addressable memory unit on this
1162 # architecture. This corresponds to the number of 8-bit bytes associated to
1163 # each address in memory.
1164 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1165
1166 # Functions for allowing a target to modify its disassembler options.
1167 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1168 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1169 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1170
1171 # Type alignment override method. Return the architecture specific
1172 # alignment required for TYPE. If there is no special handling
1173 # required for TYPE then return the value 0, GDB will then apply the
1174 # default rules as laid out in gdbtypes.c:type_align.
1175 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1176
1177 # Return a string containing any flags for the given PC in the given FRAME.
1178 f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1179
1180 # Read core file mappings
1181 m;void;read_core_file_mappings;struct bfd *cbfd,gdb::function_view<void (ULONGEST count)> pre_loop_cb,gdb::function_view<void (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs, const char *filename, const void *other)> loop_cb;cbfd, pre_loop_cb, loop_cb;;default_read_core_file_mappings;;0
1182
1183 EOF
1184 }
1185
1186 #
1187 # The .log file
1188 #
1189 exec > gdbarch.log
1190 function_list | while do_read
1191 do
1192 cat <<EOF
1193 ${class} ${returntype:-} ${function} (${formal:-})
1194 EOF
1195 for r in ${read}
1196 do
1197 eval echo "\" ${r}=\${${r}}\""
1198 done
1199 if class_is_predicate_p && fallback_default_p
1200 then
1201 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1202 kill $$
1203 exit 1
1204 fi
1205 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
1206 then
1207 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1208 kill $$
1209 exit 1
1210 fi
1211 if class_is_multiarch_p
1212 then
1213 if class_is_predicate_p ; then :
1214 elif test "x${predefault}" = "x"
1215 then
1216 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1217 kill $$
1218 exit 1
1219 fi
1220 fi
1221 echo ""
1222 done
1223
1224 exec 1>&2
1225
1226
1227 copyright ()
1228 {
1229 cat <<EOF
1230 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1231 /* vi:set ro: */
1232
1233 /* Dynamic architecture support for GDB, the GNU debugger.
1234
1235 Copyright (C) 1998-2020 Free Software Foundation, Inc.
1236
1237 This file is part of GDB.
1238
1239 This program is free software; you can redistribute it and/or modify
1240 it under the terms of the GNU General Public License as published by
1241 the Free Software Foundation; either version 3 of the License, or
1242 (at your option) any later version.
1243
1244 This program is distributed in the hope that it will be useful,
1245 but WITHOUT ANY WARRANTY; without even the implied warranty of
1246 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1247 GNU General Public License for more details.
1248
1249 You should have received a copy of the GNU General Public License
1250 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1251
1252 /* This file was created with the aid of \`\`gdbarch.sh''. */
1253
1254 EOF
1255 }
1256
1257 #
1258 # The .h file
1259 #
1260
1261 exec > new-gdbarch.h
1262 copyright
1263 cat <<EOF
1264 #ifndef GDBARCH_H
1265 #define GDBARCH_H
1266
1267 #include <vector>
1268 #include "frame.h"
1269 #include "dis-asm.h"
1270 #include "gdb_obstack.h"
1271 #include "infrun.h"
1272 #include "osabi.h"
1273
1274 struct floatformat;
1275 struct ui_file;
1276 struct value;
1277 struct objfile;
1278 struct obj_section;
1279 struct minimal_symbol;
1280 struct regcache;
1281 struct reggroup;
1282 struct regset;
1283 struct disassemble_info;
1284 struct target_ops;
1285 struct obstack;
1286 struct bp_target_info;
1287 struct target_desc;
1288 struct symbol;
1289 struct syscall;
1290 struct agent_expr;
1291 struct axs_value;
1292 struct stap_parse_info;
1293 struct expr_builder;
1294 struct ravenscar_arch_ops;
1295 struct mem_range;
1296 struct syscalls_info;
1297 struct thread_info;
1298 struct ui_out;
1299
1300 #include "regcache.h"
1301
1302 /* The architecture associated with the inferior through the
1303 connection to the target.
1304
1305 The architecture vector provides some information that is really a
1306 property of the inferior, accessed through a particular target:
1307 ptrace operations; the layout of certain RSP packets; the solib_ops
1308 vector; etc. To differentiate architecture accesses to
1309 per-inferior/target properties from
1310 per-thread/per-frame/per-objfile properties, accesses to
1311 per-inferior/target properties should be made through this
1312 gdbarch. */
1313
1314 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1315 extern struct gdbarch *target_gdbarch (void);
1316
1317 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1318 gdbarch method. */
1319
1320 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1321 (struct objfile *objfile, void *cb_data);
1322
1323 /* Callback type for regset section iterators. The callback usually
1324 invokes the REGSET's supply or collect method, to which it must
1325 pass a buffer - for collects this buffer will need to be created using
1326 COLLECT_SIZE, for supply the existing buffer being read from should
1327 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1328 is used for diagnostic messages. CB_DATA should have been passed
1329 unchanged through the iterator. */
1330
1331 typedef void (iterate_over_regset_sections_cb)
1332 (const char *sect_name, int supply_size, int collect_size,
1333 const struct regset *regset, const char *human_name, void *cb_data);
1334
1335 /* For a function call, does the function return a value using a
1336 normal value return or a structure return - passing a hidden
1337 argument pointing to storage. For the latter, there are two
1338 cases: language-mandated structure return and target ABI
1339 structure return. */
1340
1341 enum function_call_return_method
1342 {
1343 /* Standard value return. */
1344 return_method_normal = 0,
1345
1346 /* Language ABI structure return. This is handled
1347 by passing the return location as the first parameter to
1348 the function, even preceding "this". */
1349 return_method_hidden_param,
1350
1351 /* Target ABI struct return. This is target-specific; for instance,
1352 on ia64 the first argument is passed in out0 but the hidden
1353 structure return pointer would normally be passed in r8. */
1354 return_method_struct,
1355 };
1356
1357 EOF
1358
1359 # function typedef's
1360 printf "\n"
1361 printf "\n"
1362 printf "/* The following are pre-initialized by GDBARCH. */\n"
1363 function_list | while do_read
1364 do
1365 if class_is_info_p
1366 then
1367 printf "\n"
1368 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1369 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
1370 fi
1371 done
1372
1373 # function typedef's
1374 printf "\n"
1375 printf "\n"
1376 printf "/* The following are initialized by the target dependent code. */\n"
1377 function_list | while do_read
1378 do
1379 if [ -n "${comment}" ]
1380 then
1381 echo "${comment}" | sed \
1382 -e '2 s,#,/*,' \
1383 -e '3,$ s,#, ,' \
1384 -e '$ s,$, */,'
1385 fi
1386
1387 if class_is_predicate_p
1388 then
1389 printf "\n"
1390 printf "extern bool gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
1391 fi
1392 if class_is_variable_p
1393 then
1394 printf "\n"
1395 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1396 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
1397 fi
1398 if class_is_function_p
1399 then
1400 printf "\n"
1401 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1402 then
1403 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1404 elif class_is_multiarch_p
1405 then
1406 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1407 else
1408 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
1409 fi
1410 if [ "x${formal}" = "xvoid" ]
1411 then
1412 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1413 else
1414 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1415 fi
1416 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
1417 fi
1418 done
1419
1420 # close it off
1421 cat <<EOF
1422
1423 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1424
1425
1426 /* Mechanism for co-ordinating the selection of a specific
1427 architecture.
1428
1429 GDB targets (*-tdep.c) can register an interest in a specific
1430 architecture. Other GDB components can register a need to maintain
1431 per-architecture data.
1432
1433 The mechanisms below ensures that there is only a loose connection
1434 between the set-architecture command and the various GDB
1435 components. Each component can independently register their need
1436 to maintain architecture specific data with gdbarch.
1437
1438 Pragmatics:
1439
1440 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1441 didn't scale.
1442
1443 The more traditional mega-struct containing architecture specific
1444 data for all the various GDB components was also considered. Since
1445 GDB is built from a variable number of (fairly independent)
1446 components it was determined that the global aproach was not
1447 applicable. */
1448
1449
1450 /* Register a new architectural family with GDB.
1451
1452 Register support for the specified ARCHITECTURE with GDB. When
1453 gdbarch determines that the specified architecture has been
1454 selected, the corresponding INIT function is called.
1455
1456 --
1457
1458 The INIT function takes two parameters: INFO which contains the
1459 information available to gdbarch about the (possibly new)
1460 architecture; ARCHES which is a list of the previously created
1461 \`\`struct gdbarch'' for this architecture.
1462
1463 The INFO parameter is, as far as possible, be pre-initialized with
1464 information obtained from INFO.ABFD or the global defaults.
1465
1466 The ARCHES parameter is a linked list (sorted most recently used)
1467 of all the previously created architures for this architecture
1468 family. The (possibly NULL) ARCHES->gdbarch can used to access
1469 values from the previously selected architecture for this
1470 architecture family.
1471
1472 The INIT function shall return any of: NULL - indicating that it
1473 doesn't recognize the selected architecture; an existing \`\`struct
1474 gdbarch'' from the ARCHES list - indicating that the new
1475 architecture is just a synonym for an earlier architecture (see
1476 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1477 - that describes the selected architecture (see gdbarch_alloc()).
1478
1479 The DUMP_TDEP function shall print out all target specific values.
1480 Care should be taken to ensure that the function works in both the
1481 multi-arch and non- multi-arch cases. */
1482
1483 struct gdbarch_list
1484 {
1485 struct gdbarch *gdbarch;
1486 struct gdbarch_list *next;
1487 };
1488
1489 struct gdbarch_info
1490 {
1491 /* Use default: NULL (ZERO). */
1492 const struct bfd_arch_info *bfd_arch_info;
1493
1494 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1495 enum bfd_endian byte_order;
1496
1497 enum bfd_endian byte_order_for_code;
1498
1499 /* Use default: NULL (ZERO). */
1500 bfd *abfd;
1501
1502 /* Use default: NULL (ZERO). */
1503 union
1504 {
1505 /* Architecture-specific information. The generic form for targets
1506 that have extra requirements. */
1507 struct gdbarch_tdep_info *tdep_info;
1508
1509 /* Architecture-specific target description data. Numerous targets
1510 need only this, so give them an easy way to hold it. */
1511 struct tdesc_arch_data *tdesc_data;
1512
1513 /* SPU file system ID. This is a single integer, so using the
1514 generic form would only complicate code. Other targets may
1515 reuse this member if suitable. */
1516 int *id;
1517 };
1518
1519 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1520 enum gdb_osabi osabi;
1521
1522 /* Use default: NULL (ZERO). */
1523 const struct target_desc *target_desc;
1524 };
1525
1526 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1527 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1528
1529 /* DEPRECATED - use gdbarch_register() */
1530 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1531
1532 extern void gdbarch_register (enum bfd_architecture architecture,
1533 gdbarch_init_ftype *,
1534 gdbarch_dump_tdep_ftype *);
1535
1536
1537 /* Return a freshly allocated, NULL terminated, array of the valid
1538 architecture names. Since architectures are registered during the
1539 _initialize phase this function only returns useful information
1540 once initialization has been completed. */
1541
1542 extern const char **gdbarch_printable_names (void);
1543
1544
1545 /* Helper function. Search the list of ARCHES for a GDBARCH that
1546 matches the information provided by INFO. */
1547
1548 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1549
1550
1551 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1552 basic initialization using values obtained from the INFO and TDEP
1553 parameters. set_gdbarch_*() functions are called to complete the
1554 initialization of the object. */
1555
1556 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1557
1558
1559 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1560 It is assumed that the caller freeds the \`\`struct
1561 gdbarch_tdep''. */
1562
1563 extern void gdbarch_free (struct gdbarch *);
1564
1565 /* Get the obstack owned by ARCH. */
1566
1567 extern obstack *gdbarch_obstack (gdbarch *arch);
1568
1569 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1570 obstack. The memory is freed when the corresponding architecture
1571 is also freed. */
1572
1573 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1574 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1575
1576 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1577 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1578
1579 /* Duplicate STRING, returning an equivalent string that's allocated on the
1580 obstack associated with GDBARCH. The string is freed when the corresponding
1581 architecture is also freed. */
1582
1583 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1584
1585 /* Helper function. Force an update of the current architecture.
1586
1587 The actual architecture selected is determined by INFO, \`\`(gdb) set
1588 architecture'' et.al., the existing architecture and BFD's default
1589 architecture. INFO should be initialized to zero and then selected
1590 fields should be updated.
1591
1592 Returns non-zero if the update succeeds. */
1593
1594 extern int gdbarch_update_p (struct gdbarch_info info);
1595
1596
1597 /* Helper function. Find an architecture matching info.
1598
1599 INFO should be initialized using gdbarch_info_init, relevant fields
1600 set, and then finished using gdbarch_info_fill.
1601
1602 Returns the corresponding architecture, or NULL if no matching
1603 architecture was found. */
1604
1605 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1606
1607
1608 /* Helper function. Set the target gdbarch to "gdbarch". */
1609
1610 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1611
1612
1613 /* Register per-architecture data-pointer.
1614
1615 Reserve space for a per-architecture data-pointer. An identifier
1616 for the reserved data-pointer is returned. That identifer should
1617 be saved in a local static variable.
1618
1619 Memory for the per-architecture data shall be allocated using
1620 gdbarch_obstack_zalloc. That memory will be deleted when the
1621 corresponding architecture object is deleted.
1622
1623 When a previously created architecture is re-selected, the
1624 per-architecture data-pointer for that previous architecture is
1625 restored. INIT() is not re-called.
1626
1627 Multiple registrarants for any architecture are allowed (and
1628 strongly encouraged). */
1629
1630 struct gdbarch_data;
1631
1632 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1633 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1634 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1635 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1636
1637 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1638
1639
1640 /* Set the dynamic target-system-dependent parameters (architecture,
1641 byte-order, ...) using information found in the BFD. */
1642
1643 extern void set_gdbarch_from_file (bfd *);
1644
1645
1646 /* Initialize the current architecture to the "first" one we find on
1647 our list. */
1648
1649 extern void initialize_current_architecture (void);
1650
1651 /* gdbarch trace variable */
1652 extern unsigned int gdbarch_debug;
1653
1654 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1655
1656 /* Return the number of cooked registers (raw + pseudo) for ARCH. */
1657
1658 static inline int
1659 gdbarch_num_cooked_regs (gdbarch *arch)
1660 {
1661 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1662 }
1663
1664 #endif
1665 EOF
1666 exec 1>&2
1667 ../move-if-change new-gdbarch.h gdbarch.h
1668 rm -f new-gdbarch.h
1669
1670
1671 #
1672 # C file
1673 #
1674
1675 exec > new-gdbarch.c
1676 copyright
1677 cat <<EOF
1678
1679 #include "defs.h"
1680 #include "arch-utils.h"
1681
1682 #include "gdbcmd.h"
1683 #include "inferior.h"
1684 #include "symcat.h"
1685
1686 #include "floatformat.h"
1687 #include "reggroups.h"
1688 #include "osabi.h"
1689 #include "gdb_obstack.h"
1690 #include "observable.h"
1691 #include "regcache.h"
1692 #include "objfiles.h"
1693 #include "auxv.h"
1694 #include "frame-unwind.h"
1695 #include "dummy-frame.h"
1696
1697 /* Static function declarations */
1698
1699 static void alloc_gdbarch_data (struct gdbarch *);
1700
1701 /* Non-zero if we want to trace architecture code. */
1702
1703 #ifndef GDBARCH_DEBUG
1704 #define GDBARCH_DEBUG 0
1705 #endif
1706 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1707 static void
1708 show_gdbarch_debug (struct ui_file *file, int from_tty,
1709 struct cmd_list_element *c, const char *value)
1710 {
1711 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1712 }
1713
1714 static const char *
1715 pformat (const struct floatformat **format)
1716 {
1717 if (format == NULL)
1718 return "(null)";
1719 else
1720 /* Just print out one of them - this is only for diagnostics. */
1721 return format[0]->name;
1722 }
1723
1724 static const char *
1725 pstring (const char *string)
1726 {
1727 if (string == NULL)
1728 return "(null)";
1729 return string;
1730 }
1731
1732 static const char *
1733 pstring_ptr (char **string)
1734 {
1735 if (string == NULL || *string == NULL)
1736 return "(null)";
1737 return *string;
1738 }
1739
1740 /* Helper function to print a list of strings, represented as "const
1741 char *const *". The list is printed comma-separated. */
1742
1743 static const char *
1744 pstring_list (const char *const *list)
1745 {
1746 static char ret[100];
1747 const char *const *p;
1748 size_t offset = 0;
1749
1750 if (list == NULL)
1751 return "(null)";
1752
1753 ret[0] = '\0';
1754 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1755 {
1756 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1757 offset += 2 + s;
1758 }
1759
1760 if (offset > 0)
1761 {
1762 gdb_assert (offset - 2 < sizeof (ret));
1763 ret[offset - 2] = '\0';
1764 }
1765
1766 return ret;
1767 }
1768
1769 EOF
1770
1771 # gdbarch open the gdbarch object
1772 printf "\n"
1773 printf "/* Maintain the struct gdbarch object. */\n"
1774 printf "\n"
1775 printf "struct gdbarch\n"
1776 printf "{\n"
1777 printf " /* Has this architecture been fully initialized? */\n"
1778 printf " int initialized_p;\n"
1779 printf "\n"
1780 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1781 printf " struct obstack *obstack;\n"
1782 printf "\n"
1783 printf " /* basic architectural information. */\n"
1784 function_list | while do_read
1785 do
1786 if class_is_info_p
1787 then
1788 printf " %s %s;\n" "$returntype" "$function"
1789 fi
1790 done
1791 printf "\n"
1792 printf " /* target specific vector. */\n"
1793 printf " struct gdbarch_tdep *tdep;\n"
1794 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1795 printf "\n"
1796 printf " /* per-architecture data-pointers. */\n"
1797 printf " unsigned nr_data;\n"
1798 printf " void **data;\n"
1799 printf "\n"
1800 cat <<EOF
1801 /* Multi-arch values.
1802
1803 When extending this structure you must:
1804
1805 Add the field below.
1806
1807 Declare set/get functions and define the corresponding
1808 macro in gdbarch.h.
1809
1810 gdbarch_alloc(): If zero/NULL is not a suitable default,
1811 initialize the new field.
1812
1813 verify_gdbarch(): Confirm that the target updated the field
1814 correctly.
1815
1816 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1817 field is dumped out
1818
1819 get_gdbarch(): Implement the set/get functions (probably using
1820 the macro's as shortcuts).
1821
1822 */
1823
1824 EOF
1825 function_list | while do_read
1826 do
1827 if class_is_variable_p
1828 then
1829 printf " %s %s;\n" "$returntype" "$function"
1830 elif class_is_function_p
1831 then
1832 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
1833 fi
1834 done
1835 printf "};\n"
1836
1837 # Create a new gdbarch struct
1838 cat <<EOF
1839
1840 /* Create a new \`\`struct gdbarch'' based on information provided by
1841 \`\`struct gdbarch_info''. */
1842 EOF
1843 printf "\n"
1844 cat <<EOF
1845 struct gdbarch *
1846 gdbarch_alloc (const struct gdbarch_info *info,
1847 struct gdbarch_tdep *tdep)
1848 {
1849 struct gdbarch *gdbarch;
1850
1851 /* Create an obstack for allocating all the per-architecture memory,
1852 then use that to allocate the architecture vector. */
1853 struct obstack *obstack = XNEW (struct obstack);
1854 obstack_init (obstack);
1855 gdbarch = XOBNEW (obstack, struct gdbarch);
1856 memset (gdbarch, 0, sizeof (*gdbarch));
1857 gdbarch->obstack = obstack;
1858
1859 alloc_gdbarch_data (gdbarch);
1860
1861 gdbarch->tdep = tdep;
1862 EOF
1863 printf "\n"
1864 function_list | while do_read
1865 do
1866 if class_is_info_p
1867 then
1868 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
1869 fi
1870 done
1871 printf "\n"
1872 printf " /* Force the explicit initialization of these. */\n"
1873 function_list | while do_read
1874 do
1875 if class_is_function_p || class_is_variable_p
1876 then
1877 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
1878 then
1879 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
1880 fi
1881 fi
1882 done
1883 cat <<EOF
1884 /* gdbarch_alloc() */
1885
1886 return gdbarch;
1887 }
1888 EOF
1889
1890 # Free a gdbarch struct.
1891 printf "\n"
1892 printf "\n"
1893 cat <<EOF
1894
1895 obstack *gdbarch_obstack (gdbarch *arch)
1896 {
1897 return arch->obstack;
1898 }
1899
1900 /* See gdbarch.h. */
1901
1902 char *
1903 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1904 {
1905 return obstack_strdup (arch->obstack, string);
1906 }
1907
1908
1909 /* Free a gdbarch struct. This should never happen in normal
1910 operation --- once you've created a gdbarch, you keep it around.
1911 However, if an architecture's init function encounters an error
1912 building the structure, it may need to clean up a partially
1913 constructed gdbarch. */
1914
1915 void
1916 gdbarch_free (struct gdbarch *arch)
1917 {
1918 struct obstack *obstack;
1919
1920 gdb_assert (arch != NULL);
1921 gdb_assert (!arch->initialized_p);
1922 obstack = arch->obstack;
1923 obstack_free (obstack, 0); /* Includes the ARCH. */
1924 xfree (obstack);
1925 }
1926 EOF
1927
1928 # verify a new architecture
1929 cat <<EOF
1930
1931
1932 /* Ensure that all values in a GDBARCH are reasonable. */
1933
1934 static void
1935 verify_gdbarch (struct gdbarch *gdbarch)
1936 {
1937 string_file log;
1938
1939 /* fundamental */
1940 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1941 log.puts ("\n\tbyte-order");
1942 if (gdbarch->bfd_arch_info == NULL)
1943 log.puts ("\n\tbfd_arch_info");
1944 /* Check those that need to be defined for the given multi-arch level. */
1945 EOF
1946 function_list | while do_read
1947 do
1948 if class_is_function_p || class_is_variable_p
1949 then
1950 if [ "x${invalid_p}" = "x0" ]
1951 then
1952 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
1953 elif class_is_predicate_p
1954 then
1955 printf " /* Skip verify of %s, has predicate. */\n" "$function"
1956 # FIXME: See do_read for potential simplification
1957 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
1958 then
1959 printf " if (%s)\n" "$invalid_p"
1960 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1961 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
1962 then
1963 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1964 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1965 elif [ -n "${postdefault}" ]
1966 then
1967 printf " if (gdbarch->%s == 0)\n" "$function"
1968 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1969 elif [ -n "${invalid_p}" ]
1970 then
1971 printf " if (%s)\n" "$invalid_p"
1972 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
1973 elif [ -n "${predefault}" ]
1974 then
1975 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1976 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
1977 fi
1978 fi
1979 done
1980 cat <<EOF
1981 if (!log.empty ())
1982 internal_error (__FILE__, __LINE__,
1983 _("verify_gdbarch: the following are invalid ...%s"),
1984 log.c_str ());
1985 }
1986 EOF
1987
1988 # dump the structure
1989 printf "\n"
1990 printf "\n"
1991 cat <<EOF
1992 /* Print out the details of the current architecture. */
1993
1994 void
1995 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1996 {
1997 const char *gdb_nm_file = "<not-defined>";
1998
1999 #if defined (GDB_NM_FILE)
2000 gdb_nm_file = GDB_NM_FILE;
2001 #endif
2002 fprintf_unfiltered (file,
2003 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2004 gdb_nm_file);
2005 EOF
2006 function_list | sort '-t;' -k 3 | while do_read
2007 do
2008 # First the predicate
2009 if class_is_predicate_p
2010 then
2011 printf " fprintf_unfiltered (file,\n"
2012 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2013 printf " gdbarch_%s_p (gdbarch));\n" "$function"
2014 fi
2015 # Print the corresponding value.
2016 if class_is_function_p
2017 then
2018 printf " fprintf_unfiltered (file,\n"
2019 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2020 printf " host_address_to_string (gdbarch->%s));\n" "$function"
2021 else
2022 # It is a variable
2023 case "${print}:${returntype}" in
2024 :CORE_ADDR )
2025 fmt="%s"
2026 print="core_addr_to_string_nz (gdbarch->${function})"
2027 ;;
2028 :* )
2029 fmt="%s"
2030 print="plongest (gdbarch->${function})"
2031 ;;
2032 * )
2033 fmt="%s"
2034 ;;
2035 esac
2036 printf " fprintf_unfiltered (file,\n"
2037 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2038 printf " %s);\n" "$print"
2039 fi
2040 done
2041 cat <<EOF
2042 if (gdbarch->dump_tdep != NULL)
2043 gdbarch->dump_tdep (gdbarch, file);
2044 }
2045 EOF
2046
2047
2048 # GET/SET
2049 printf "\n"
2050 cat <<EOF
2051 struct gdbarch_tdep *
2052 gdbarch_tdep (struct gdbarch *gdbarch)
2053 {
2054 if (gdbarch_debug >= 2)
2055 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2056 return gdbarch->tdep;
2057 }
2058 EOF
2059 printf "\n"
2060 function_list | while do_read
2061 do
2062 if class_is_predicate_p
2063 then
2064 printf "\n"
2065 printf "bool\n"
2066 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
2067 printf "{\n"
2068 printf " gdb_assert (gdbarch != NULL);\n"
2069 printf " return %s;\n" "$predicate"
2070 printf "}\n"
2071 fi
2072 if class_is_function_p
2073 then
2074 printf "\n"
2075 printf "%s\n" "$returntype"
2076 if [ "x${formal}" = "xvoid" ]
2077 then
2078 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2079 else
2080 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
2081 fi
2082 printf "{\n"
2083 printf " gdb_assert (gdbarch != NULL);\n"
2084 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
2085 if class_is_predicate_p && test -n "${predefault}"
2086 then
2087 # Allow a call to a function with a predicate.
2088 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
2089 fi
2090 printf " if (gdbarch_debug >= 2)\n"
2091 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2092 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
2093 then
2094 if class_is_multiarch_p
2095 then
2096 params="gdbarch"
2097 else
2098 params=""
2099 fi
2100 else
2101 if class_is_multiarch_p
2102 then
2103 params="gdbarch, ${actual}"
2104 else
2105 params="${actual}"
2106 fi
2107 fi
2108 if [ "x${returntype}" = "xvoid" ]
2109 then
2110 printf " gdbarch->%s (%s);\n" "$function" "$params"
2111 else
2112 printf " return gdbarch->%s (%s);\n" "$function" "$params"
2113 fi
2114 printf "}\n"
2115 printf "\n"
2116 printf "void\n"
2117 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2118 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
2119 printf "{\n"
2120 printf " gdbarch->%s = %s;\n" "$function" "$function"
2121 printf "}\n"
2122 elif class_is_variable_p
2123 then
2124 printf "\n"
2125 printf "%s\n" "$returntype"
2126 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2127 printf "{\n"
2128 printf " gdb_assert (gdbarch != NULL);\n"
2129 if [ "x${invalid_p}" = "x0" ]
2130 then
2131 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2132 elif [ -n "${invalid_p}" ]
2133 then
2134 printf " /* Check variable is valid. */\n"
2135 printf " gdb_assert (!(%s));\n" "$invalid_p"
2136 elif [ -n "${predefault}" ]
2137 then
2138 printf " /* Check variable changed from pre-default. */\n"
2139 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
2140 fi
2141 printf " if (gdbarch_debug >= 2)\n"
2142 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2143 printf " return gdbarch->%s;\n" "$function"
2144 printf "}\n"
2145 printf "\n"
2146 printf "void\n"
2147 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2148 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
2149 printf "{\n"
2150 printf " gdbarch->%s = %s;\n" "$function" "$function"
2151 printf "}\n"
2152 elif class_is_info_p
2153 then
2154 printf "\n"
2155 printf "%s\n" "$returntype"
2156 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2157 printf "{\n"
2158 printf " gdb_assert (gdbarch != NULL);\n"
2159 printf " if (gdbarch_debug >= 2)\n"
2160 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2161 printf " return gdbarch->%s;\n" "$function"
2162 printf "}\n"
2163 fi
2164 done
2165
2166 # All the trailing guff
2167 cat <<EOF
2168
2169
2170 /* Keep a registry of per-architecture data-pointers required by GDB
2171 modules. */
2172
2173 struct gdbarch_data
2174 {
2175 unsigned index;
2176 int init_p;
2177 gdbarch_data_pre_init_ftype *pre_init;
2178 gdbarch_data_post_init_ftype *post_init;
2179 };
2180
2181 struct gdbarch_data_registration
2182 {
2183 struct gdbarch_data *data;
2184 struct gdbarch_data_registration *next;
2185 };
2186
2187 struct gdbarch_data_registry
2188 {
2189 unsigned nr;
2190 struct gdbarch_data_registration *registrations;
2191 };
2192
2193 struct gdbarch_data_registry gdbarch_data_registry =
2194 {
2195 0, NULL,
2196 };
2197
2198 static struct gdbarch_data *
2199 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2200 gdbarch_data_post_init_ftype *post_init)
2201 {
2202 struct gdbarch_data_registration **curr;
2203
2204 /* Append the new registration. */
2205 for (curr = &gdbarch_data_registry.registrations;
2206 (*curr) != NULL;
2207 curr = &(*curr)->next);
2208 (*curr) = XNEW (struct gdbarch_data_registration);
2209 (*curr)->next = NULL;
2210 (*curr)->data = XNEW (struct gdbarch_data);
2211 (*curr)->data->index = gdbarch_data_registry.nr++;
2212 (*curr)->data->pre_init = pre_init;
2213 (*curr)->data->post_init = post_init;
2214 (*curr)->data->init_p = 1;
2215 return (*curr)->data;
2216 }
2217
2218 struct gdbarch_data *
2219 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2220 {
2221 return gdbarch_data_register (pre_init, NULL);
2222 }
2223
2224 struct gdbarch_data *
2225 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2226 {
2227 return gdbarch_data_register (NULL, post_init);
2228 }
2229
2230 /* Create/delete the gdbarch data vector. */
2231
2232 static void
2233 alloc_gdbarch_data (struct gdbarch *gdbarch)
2234 {
2235 gdb_assert (gdbarch->data == NULL);
2236 gdbarch->nr_data = gdbarch_data_registry.nr;
2237 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2238 }
2239
2240 /* Return the current value of the specified per-architecture
2241 data-pointer. */
2242
2243 void *
2244 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2245 {
2246 gdb_assert (data->index < gdbarch->nr_data);
2247 if (gdbarch->data[data->index] == NULL)
2248 {
2249 /* The data-pointer isn't initialized, call init() to get a
2250 value. */
2251 if (data->pre_init != NULL)
2252 /* Mid architecture creation: pass just the obstack, and not
2253 the entire architecture, as that way it isn't possible for
2254 pre-init code to refer to undefined architecture
2255 fields. */
2256 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2257 else if (gdbarch->initialized_p
2258 && data->post_init != NULL)
2259 /* Post architecture creation: pass the entire architecture
2260 (as all fields are valid), but be careful to also detect
2261 recursive references. */
2262 {
2263 gdb_assert (data->init_p);
2264 data->init_p = 0;
2265 gdbarch->data[data->index] = data->post_init (gdbarch);
2266 data->init_p = 1;
2267 }
2268 else
2269 internal_error (__FILE__, __LINE__,
2270 _("gdbarch post-init data field can only be used "
2271 "after gdbarch is fully initialised"));
2272 gdb_assert (gdbarch->data[data->index] != NULL);
2273 }
2274 return gdbarch->data[data->index];
2275 }
2276
2277
2278 /* Keep a registry of the architectures known by GDB. */
2279
2280 struct gdbarch_registration
2281 {
2282 enum bfd_architecture bfd_architecture;
2283 gdbarch_init_ftype *init;
2284 gdbarch_dump_tdep_ftype *dump_tdep;
2285 struct gdbarch_list *arches;
2286 struct gdbarch_registration *next;
2287 };
2288
2289 static struct gdbarch_registration *gdbarch_registry = NULL;
2290
2291 static void
2292 append_name (const char ***buf, int *nr, const char *name)
2293 {
2294 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2295 (*buf)[*nr] = name;
2296 *nr += 1;
2297 }
2298
2299 const char **
2300 gdbarch_printable_names (void)
2301 {
2302 /* Accumulate a list of names based on the registed list of
2303 architectures. */
2304 int nr_arches = 0;
2305 const char **arches = NULL;
2306 struct gdbarch_registration *rego;
2307
2308 for (rego = gdbarch_registry;
2309 rego != NULL;
2310 rego = rego->next)
2311 {
2312 const struct bfd_arch_info *ap;
2313 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2314 if (ap == NULL)
2315 internal_error (__FILE__, __LINE__,
2316 _("gdbarch_architecture_names: multi-arch unknown"));
2317 do
2318 {
2319 append_name (&arches, &nr_arches, ap->printable_name);
2320 ap = ap->next;
2321 }
2322 while (ap != NULL);
2323 }
2324 append_name (&arches, &nr_arches, NULL);
2325 return arches;
2326 }
2327
2328
2329 void
2330 gdbarch_register (enum bfd_architecture bfd_architecture,
2331 gdbarch_init_ftype *init,
2332 gdbarch_dump_tdep_ftype *dump_tdep)
2333 {
2334 struct gdbarch_registration **curr;
2335 const struct bfd_arch_info *bfd_arch_info;
2336
2337 /* Check that BFD recognizes this architecture */
2338 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2339 if (bfd_arch_info == NULL)
2340 {
2341 internal_error (__FILE__, __LINE__,
2342 _("gdbarch: Attempt to register "
2343 "unknown architecture (%d)"),
2344 bfd_architecture);
2345 }
2346 /* Check that we haven't seen this architecture before. */
2347 for (curr = &gdbarch_registry;
2348 (*curr) != NULL;
2349 curr = &(*curr)->next)
2350 {
2351 if (bfd_architecture == (*curr)->bfd_architecture)
2352 internal_error (__FILE__, __LINE__,
2353 _("gdbarch: Duplicate registration "
2354 "of architecture (%s)"),
2355 bfd_arch_info->printable_name);
2356 }
2357 /* log it */
2358 if (gdbarch_debug)
2359 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2360 bfd_arch_info->printable_name,
2361 host_address_to_string (init));
2362 /* Append it */
2363 (*curr) = XNEW (struct gdbarch_registration);
2364 (*curr)->bfd_architecture = bfd_architecture;
2365 (*curr)->init = init;
2366 (*curr)->dump_tdep = dump_tdep;
2367 (*curr)->arches = NULL;
2368 (*curr)->next = NULL;
2369 }
2370
2371 void
2372 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2373 gdbarch_init_ftype *init)
2374 {
2375 gdbarch_register (bfd_architecture, init, NULL);
2376 }
2377
2378
2379 /* Look for an architecture using gdbarch_info. */
2380
2381 struct gdbarch_list *
2382 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2383 const struct gdbarch_info *info)
2384 {
2385 for (; arches != NULL; arches = arches->next)
2386 {
2387 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2388 continue;
2389 if (info->byte_order != arches->gdbarch->byte_order)
2390 continue;
2391 if (info->osabi != arches->gdbarch->osabi)
2392 continue;
2393 if (info->target_desc != arches->gdbarch->target_desc)
2394 continue;
2395 return arches;
2396 }
2397 return NULL;
2398 }
2399
2400
2401 /* Find an architecture that matches the specified INFO. Create a new
2402 architecture if needed. Return that new architecture. */
2403
2404 struct gdbarch *
2405 gdbarch_find_by_info (struct gdbarch_info info)
2406 {
2407 struct gdbarch *new_gdbarch;
2408 struct gdbarch_registration *rego;
2409
2410 /* Fill in missing parts of the INFO struct using a number of
2411 sources: "set ..."; INFOabfd supplied; and the global
2412 defaults. */
2413 gdbarch_info_fill (&info);
2414
2415 /* Must have found some sort of architecture. */
2416 gdb_assert (info.bfd_arch_info != NULL);
2417
2418 if (gdbarch_debug)
2419 {
2420 fprintf_unfiltered (gdb_stdlog,
2421 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2422 (info.bfd_arch_info != NULL
2423 ? info.bfd_arch_info->printable_name
2424 : "(null)"));
2425 fprintf_unfiltered (gdb_stdlog,
2426 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2427 info.byte_order,
2428 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2429 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2430 : "default"));
2431 fprintf_unfiltered (gdb_stdlog,
2432 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2433 info.osabi, gdbarch_osabi_name (info.osabi));
2434 fprintf_unfiltered (gdb_stdlog,
2435 "gdbarch_find_by_info: info.abfd %s\n",
2436 host_address_to_string (info.abfd));
2437 fprintf_unfiltered (gdb_stdlog,
2438 "gdbarch_find_by_info: info.tdep_info %s\n",
2439 host_address_to_string (info.tdep_info));
2440 }
2441
2442 /* Find the tdep code that knows about this architecture. */
2443 for (rego = gdbarch_registry;
2444 rego != NULL;
2445 rego = rego->next)
2446 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2447 break;
2448 if (rego == NULL)
2449 {
2450 if (gdbarch_debug)
2451 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2452 "No matching architecture\n");
2453 return 0;
2454 }
2455
2456 /* Ask the tdep code for an architecture that matches "info". */
2457 new_gdbarch = rego->init (info, rego->arches);
2458
2459 /* Did the tdep code like it? No. Reject the change and revert to
2460 the old architecture. */
2461 if (new_gdbarch == NULL)
2462 {
2463 if (gdbarch_debug)
2464 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2465 "Target rejected architecture\n");
2466 return NULL;
2467 }
2468
2469 /* Is this a pre-existing architecture (as determined by already
2470 being initialized)? Move it to the front of the architecture
2471 list (keeping the list sorted Most Recently Used). */
2472 if (new_gdbarch->initialized_p)
2473 {
2474 struct gdbarch_list **list;
2475 struct gdbarch_list *self;
2476 if (gdbarch_debug)
2477 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2478 "Previous architecture %s (%s) selected\n",
2479 host_address_to_string (new_gdbarch),
2480 new_gdbarch->bfd_arch_info->printable_name);
2481 /* Find the existing arch in the list. */
2482 for (list = &rego->arches;
2483 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2484 list = &(*list)->next);
2485 /* It had better be in the list of architectures. */
2486 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2487 /* Unlink SELF. */
2488 self = (*list);
2489 (*list) = self->next;
2490 /* Insert SELF at the front. */
2491 self->next = rego->arches;
2492 rego->arches = self;
2493 /* Return it. */
2494 return new_gdbarch;
2495 }
2496
2497 /* It's a new architecture. */
2498 if (gdbarch_debug)
2499 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2500 "New architecture %s (%s) selected\n",
2501 host_address_to_string (new_gdbarch),
2502 new_gdbarch->bfd_arch_info->printable_name);
2503
2504 /* Insert the new architecture into the front of the architecture
2505 list (keep the list sorted Most Recently Used). */
2506 {
2507 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2508 self->next = rego->arches;
2509 self->gdbarch = new_gdbarch;
2510 rego->arches = self;
2511 }
2512
2513 /* Check that the newly installed architecture is valid. Plug in
2514 any post init values. */
2515 new_gdbarch->dump_tdep = rego->dump_tdep;
2516 verify_gdbarch (new_gdbarch);
2517 new_gdbarch->initialized_p = 1;
2518
2519 if (gdbarch_debug)
2520 gdbarch_dump (new_gdbarch, gdb_stdlog);
2521
2522 return new_gdbarch;
2523 }
2524
2525 /* Make the specified architecture current. */
2526
2527 void
2528 set_target_gdbarch (struct gdbarch *new_gdbarch)
2529 {
2530 gdb_assert (new_gdbarch != NULL);
2531 gdb_assert (new_gdbarch->initialized_p);
2532 current_inferior ()->gdbarch = new_gdbarch;
2533 gdb::observers::architecture_changed.notify (new_gdbarch);
2534 registers_changed ();
2535 }
2536
2537 /* Return the current inferior's arch. */
2538
2539 struct gdbarch *
2540 target_gdbarch (void)
2541 {
2542 return current_inferior ()->gdbarch;
2543 }
2544
2545 void _initialize_gdbarch ();
2546 void
2547 _initialize_gdbarch ()
2548 {
2549 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2550 Set architecture debugging."), _("\\
2551 Show architecture debugging."), _("\\
2552 When non-zero, architecture debugging is enabled."),
2553 NULL,
2554 show_gdbarch_debug,
2555 &setdebuglist, &showdebuglist);
2556 }
2557 EOF
2558
2559 # close things off
2560 exec 1>&2
2561 ../move-if-change new-gdbarch.c gdbarch.c
2562 rm -f new-gdbarch.c