d6046ec4b88fc781b1fc936aa050a4b8dc779762
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 case "${class}" in
80 m ) staticdefault="${predefault}" ;;
81 M ) staticdefault="0" ;;
82 * ) test "${staticdefault}" || staticdefault=0 ;;
83 esac
84 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
85 # multi-arch defaults.
86 # test "${predefault}" || predefault=0
87
88 # come up with a format, use a few guesses for variables
89 case ":${class}:${fmt}:${print}:" in
90 :[vV]::: )
91 if [ "${returntype}" = int ]
92 then
93 fmt="%d"
94 print="${macro}"
95 elif [ "${returntype}" = long ]
96 then
97 fmt="%ld"
98 print="${macro}"
99 fi
100 ;;
101 esac
102 test "${fmt}" || fmt="%ld"
103 test "${print}" || print="(long) ${macro}"
104
105 case "${invalid_p}" in
106 0 ) valid_p=1 ;;
107 "" )
108 if [ -n "${predefault}" ]
109 then
110 #invalid_p="gdbarch->${function} == ${predefault}"
111 valid_p="gdbarch->${function} != ${predefault}"
112 else
113 #invalid_p="gdbarch->${function} == 0"
114 valid_p="gdbarch->${function} != 0"
115 fi
116 ;;
117 * ) valid_p="!(${invalid_p})"
118 esac
119
120 # PREDEFAULT is a valid fallback definition of MEMBER when
121 # multi-arch is not enabled. This ensures that the
122 # default value, when multi-arch is the same as the
123 # default value when not multi-arch. POSTDEFAULT is
124 # always a valid definition of MEMBER as this again
125 # ensures consistency.
126
127 if [ -n "${postdefault}" ]
128 then
129 fallbackdefault="${postdefault}"
130 elif [ -n "${predefault}" ]
131 then
132 fallbackdefault="${predefault}"
133 else
134 fallbackdefault="0"
135 fi
136
137 #NOT YET: See gdbarch.log for basic verification of
138 # database
139
140 break
141 fi
142 done
143 if [ -n "${class}" ]
144 then
145 true
146 else
147 false
148 fi
149 }
150
151
152 fallback_default_p ()
153 {
154 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
155 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
156 }
157
158 class_is_variable_p ()
159 {
160 case "${class}" in
161 *v* | *V* ) true ;;
162 * ) false ;;
163 esac
164 }
165
166 class_is_function_p ()
167 {
168 case "${class}" in
169 *f* | *F* | *m* | *M* ) true ;;
170 * ) false ;;
171 esac
172 }
173
174 class_is_multiarch_p ()
175 {
176 case "${class}" in
177 *m* | *M* ) true ;;
178 * ) false ;;
179 esac
180 }
181
182 class_is_predicate_p ()
183 {
184 case "${class}" in
185 *F* | *V* | *M* ) true ;;
186 * ) false ;;
187 esac
188 }
189
190 class_is_info_p ()
191 {
192 case "${class}" in
193 *i* ) true ;;
194 * ) false ;;
195 esac
196 }
197
198
199 # dump out/verify the doco
200 for field in ${read}
201 do
202 case ${field} in
203
204 class ) : ;;
205
206 # # -> line disable
207 # f -> function
208 # hiding a function
209 # F -> function + predicate
210 # hiding a function + predicate to test function validity
211 # v -> variable
212 # hiding a variable
213 # V -> variable + predicate
214 # hiding a variable + predicate to test variables validity
215 # i -> set from info
216 # hiding something from the ``struct info'' object
217 # m -> multi-arch function
218 # hiding a multi-arch function (parameterised with the architecture)
219 # M -> multi-arch function + predicate
220 # hiding a multi-arch function + predicate to test function validity
221
222 level ) : ;;
223
224 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
225 # LEVEL is a predicate on checking that a given method is
226 # initialized (using INVALID_P).
227
228 macro ) : ;;
229
230 # The name of the MACRO that this method is to be accessed by.
231
232 returntype ) : ;;
233
234 # For functions, the return type; for variables, the data type
235
236 function ) : ;;
237
238 # For functions, the member function name; for variables, the
239 # variable name. Member function names are always prefixed with
240 # ``gdbarch_'' for name-space purity.
241
242 formal ) : ;;
243
244 # The formal argument list. It is assumed that the formal
245 # argument list includes the actual name of each list element.
246 # A function with no arguments shall have ``void'' as the
247 # formal argument list.
248
249 actual ) : ;;
250
251 # The list of actual arguments. The arguments specified shall
252 # match the FORMAL list given above. Functions with out
253 # arguments leave this blank.
254
255 attrib ) : ;;
256
257 # Any GCC attributes that should be attached to the function
258 # declaration. At present this field is unused.
259
260 staticdefault ) : ;;
261
262 # To help with the GDB startup a static gdbarch object is
263 # created. STATICDEFAULT is the value to insert into that
264 # static gdbarch object. Since this a static object only
265 # simple expressions can be used.
266
267 # If STATICDEFAULT is empty, zero is used.
268
269 predefault ) : ;;
270
271 # An initial value to assign to MEMBER of the freshly
272 # malloc()ed gdbarch object. After initialization, the
273 # freshly malloc()ed object is passed to the target
274 # architecture code for further updates.
275
276 # If PREDEFAULT is empty, zero is used.
277
278 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
279 # INVALID_P are specified, PREDEFAULT will be used as the
280 # default for the non- multi-arch target.
281
282 # A zero PREDEFAULT function will force the fallback to call
283 # internal_error().
284
285 # Variable declarations can refer to ``gdbarch'' which will
286 # contain the current architecture. Care should be taken.
287
288 postdefault ) : ;;
289
290 # A value to assign to MEMBER of the new gdbarch object should
291 # the target architecture code fail to change the PREDEFAULT
292 # value.
293
294 # If POSTDEFAULT is empty, no post update is performed.
295
296 # If both INVALID_P and POSTDEFAULT are non-empty then
297 # INVALID_P will be used to determine if MEMBER should be
298 # changed to POSTDEFAULT.
299
300 # If a non-empty POSTDEFAULT and a zero INVALID_P are
301 # specified, POSTDEFAULT will be used as the default for the
302 # non- multi-arch target (regardless of the value of
303 # PREDEFAULT).
304
305 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
306
307 # Variable declarations can refer to ``gdbarch'' which will
308 # contain the current architecture. Care should be taken.
309
310 invalid_p ) : ;;
311
312 # A predicate equation that validates MEMBER. Non-zero is
313 # returned if the code creating the new architecture failed to
314 # initialize MEMBER or the initialized the member is invalid.
315 # If POSTDEFAULT is non-empty then MEMBER will be updated to
316 # that value. If POSTDEFAULT is empty then internal_error()
317 # is called.
318
319 # If INVALID_P is empty, a check that MEMBER is no longer
320 # equal to PREDEFAULT is used.
321
322 # The expression ``0'' disables the INVALID_P check making
323 # PREDEFAULT a legitimate value.
324
325 # See also PREDEFAULT and POSTDEFAULT.
326
327 fmt ) : ;;
328
329 # printf style format string that can be used to print out the
330 # MEMBER. Sometimes "%s" is useful. For functions, this is
331 # ignored and the function address is printed.
332
333 # If FMT is empty, ``%ld'' is used.
334
335 print ) : ;;
336
337 # An optional equation that casts MEMBER to a value suitable
338 # for formatting by FMT.
339
340 # If PRINT is empty, ``(long)'' is used.
341
342 print_p ) : ;;
343
344 # An optional indicator for any predicte to wrap around the
345 # print member code.
346
347 # () -> Call a custom function to do the dump.
348 # exp -> Wrap print up in ``if (${print_p}) ...
349 # ``'' -> No predicate
350
351 # If PRINT_P is empty, ``1'' is always used.
352
353 description ) : ;;
354
355 # Currently unused.
356
357 *) exit 1;;
358 esac
359 done
360
361
362 function_list ()
363 {
364 # See below (DOCO) for description of each field
365 cat <<EOF
366 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
367 #
368 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
369 # Number of bits in a char or unsigned char for the target machine.
370 # Just like CHAR_BIT in <limits.h> but describes the target machine.
371 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
372 #
373 # Number of bits in a short or unsigned short for the target machine.
374 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
375 # Number of bits in an int or unsigned int for the target machine.
376 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
377 # Number of bits in a long or unsigned long for the target machine.
378 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
379 # Number of bits in a long long or unsigned long long for the target
380 # machine.
381 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
382 # Number of bits in a float for the target machine.
383 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
384 # Number of bits in a double for the target machine.
385 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
386 # Number of bits in a long double for the target machine.
387 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
388 # For most targets, a pointer on the target and its representation as an
389 # address in GDB have the same size and "look the same". For such a
390 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
391 # / addr_bit will be set from it.
392 #
393 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
394 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
395 #
396 # ptr_bit is the size of a pointer on the target
397 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
398 # addr_bit is the size of a target address as represented in gdb
399 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
400 # Number of bits in a BFD_VMA for the target object file format.
401 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
402 #
403 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
404 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
405 #
406 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
407 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
408 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
409 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
410 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
411 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
412 # Function for getting target's idea of a frame pointer. FIXME: GDB's
413 # whole scheme for dealing with "frames" and "frame pointers" needs a
414 # serious shakedown.
415 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
416 #
417 M:::void:register_read:int regnum, char *buf:regnum, buf:
418 M:::void:register_write:int regnum, char *buf:regnum, buf:
419 #
420 v:2:NUM_REGS:int:num_regs::::0:-1
421 # This macro gives the number of pseudo-registers that live in the
422 # register namespace but do not get fetched or stored on the target.
423 # These pseudo-registers may be aliases for other registers,
424 # combinations of other registers, or they may be computed by GDB.
425 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
426 v:2:SP_REGNUM:int:sp_regnum::::0:-1
427 v:2:FP_REGNUM:int:fp_regnum::::0:-1
428 v:2:PC_REGNUM:int:pc_regnum::::0:-1
429 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
430 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
431 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
432 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
433 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
434 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
435 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
436 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
437 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
438 # Convert from an sdb register number to an internal gdb register number.
439 # This should be defined in tm.h, if REGISTER_NAMES is not set up
440 # to map one to one onto the sdb register numbers.
441 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
442 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
443 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
444 v:2:REGISTER_SIZE:int:register_size::::0:-1
445 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
446 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
447 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_raw_size:0
448 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
449 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_virtual_size:0
450 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
451 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
452 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
453 # MAP a GDB RAW register number onto a simulator register number. See
454 # also include/...-sim.h.
455 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
456 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
457 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
458 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
459 #
460 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
461 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
462 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
463 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
464 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
465 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
466 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
467 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
468 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
469 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
470 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
471 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
472 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
473 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
474 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
475 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
476 #
477 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
478 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
479 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
480 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
481 #
482 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
483 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
484 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
485 # This function is called when the value of a pseudo-register needs to
486 # be updated. Typically it will be defined on a per-architecture
487 # basis.
488 F:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:
489 # This function is called when the value of a pseudo-register needs to
490 # be set or stored. Typically it will be defined on a
491 # per-architecture basis.
492 F:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:
493 #
494 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
495 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
496 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
497 #
498 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
499 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
500 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
501 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
502 F:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
503 f:2:POP_FRAME:void:pop_frame:void:-:::0
504 #
505 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
506 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
507 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
508 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
509 #
510 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
511 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
512 #
513 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
514 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
515 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
516 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
517 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
518 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
519 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
520 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
521 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
522 #
523 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
524 #
525 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
526 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
527 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
528 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
529 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
530 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
531 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
532 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
533 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
534 #
535 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
536 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
537 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
538 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
539 v:2:PARM_BOUNDARY:int:parm_boundary
540 #
541 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
542 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
543 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
544 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
545 # On some machines there are bits in addresses which are not really
546 # part of the address, but are used by the kernel, the hardware, etc.
547 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
548 # we get a "real" address such as one would find in a symbol table.
549 # This is used only for addresses of instructions, and even then I'm
550 # not sure it's used in all contexts. It exists to deal with there
551 # being a few stray bits in the PC which would mislead us, not as some
552 # sort of generic thing to handle alignment or segmentation (it's
553 # possible it should be in TARGET_READ_PC instead).
554 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
555 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
556 # the target needs software single step. An ISA method to implement it.
557 #
558 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
559 # using the breakpoint system instead of blatting memory directly (as with rs6000).
560 #
561 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
562 # single step. If not, then implement single step using breakpoints.
563 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
564 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
565 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
566 # For SVR4 shared libraries, each call goes through a small piece of
567 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
568 # to nonzero if we are current stopped in one of these.
569 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
570 # A target might have problems with watchpoints as soon as the stack
571 # frame of the current function has been destroyed. This mostly happens
572 # as the first action in a funtion's epilogue. in_function_epilogue_p()
573 # is defined to return a non-zero value if either the given addr is one
574 # instruction after the stack destroying instruction up to the trailing
575 # return instruction or if we can figure out that the stack frame has
576 # already been invalidated regardless of the value of addr. Targets
577 # which don't suffer from that problem could just let this functionality
578 # untouched.
579 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
580 # Given a vector of command-line arguments, return a newly allocated
581 # string which, when passed to the create_inferior function, will be
582 # parsed (on Unix systems, by the shell) to yield the same vector.
583 # This function should call error() if the argument vector is not
584 # representable for this target or if this target does not support
585 # command-line arguments.
586 # ARGC is the number of elements in the vector.
587 # ARGV is an array of strings, one per argument.
588 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
589 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
590 EOF
591 }
592
593 #
594 # The .log file
595 #
596 exec > new-gdbarch.log
597 function_list | while do_read
598 do
599 cat <<EOF
600 ${class} ${macro}(${actual})
601 ${returntype} ${function} ($formal)${attrib}
602 EOF
603 for r in ${read}
604 do
605 eval echo \"\ \ \ \ ${r}=\${${r}}\"
606 done
607 # #fallbackdefault=${fallbackdefault}
608 # #valid_p=${valid_p}
609 #EOF
610 if class_is_predicate_p && fallback_default_p
611 then
612 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
613 kill $$
614 exit 1
615 fi
616 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
617 then
618 echo "Error: postdefault is useless when invalid_p=0" 1>&2
619 kill $$
620 exit 1
621 fi
622 if class_is_multiarch_p
623 then
624 if class_is_predicate_p ; then :
625 elif test "x${predefault}" = "x"
626 then
627 echo "Error: pure multi-arch function must have a predefault" 1>&2
628 kill $$
629 exit 1
630 fi
631 fi
632 echo ""
633 done
634
635 exec 1>&2
636 compare_new gdbarch.log
637
638
639 copyright ()
640 {
641 cat <<EOF
642 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
643
644 /* Dynamic architecture support for GDB, the GNU debugger.
645 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
646
647 This file is part of GDB.
648
649 This program is free software; you can redistribute it and/or modify
650 it under the terms of the GNU General Public License as published by
651 the Free Software Foundation; either version 2 of the License, or
652 (at your option) any later version.
653
654 This program is distributed in the hope that it will be useful,
655 but WITHOUT ANY WARRANTY; without even the implied warranty of
656 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
657 GNU General Public License for more details.
658
659 You should have received a copy of the GNU General Public License
660 along with this program; if not, write to the Free Software
661 Foundation, Inc., 59 Temple Place - Suite 330,
662 Boston, MA 02111-1307, USA. */
663
664 /* This file was created with the aid of \`\`gdbarch.sh''.
665
666 The Bourne shell script \`\`gdbarch.sh'' creates the files
667 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
668 against the existing \`\`gdbarch.[hc]''. Any differences found
669 being reported.
670
671 If editing this file, please also run gdbarch.sh and merge any
672 changes into that script. Conversely, when making sweeping changes
673 to this file, modifying gdbarch.sh and using its output may prove
674 easier. */
675
676 EOF
677 }
678
679 #
680 # The .h file
681 #
682
683 exec > new-gdbarch.h
684 copyright
685 cat <<EOF
686 #ifndef GDBARCH_H
687 #define GDBARCH_H
688
689 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
690 #if !GDB_MULTI_ARCH
691 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
692 #endif
693
694 struct frame_info;
695 struct value;
696 struct objfile;
697
698 extern struct gdbarch *current_gdbarch;
699
700
701 /* If any of the following are defined, the target wasn't correctly
702 converted. */
703
704 #if GDB_MULTI_ARCH
705 #if defined (EXTRA_FRAME_INFO)
706 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
707 #endif
708 #endif
709
710 #if GDB_MULTI_ARCH
711 #if defined (FRAME_FIND_SAVED_REGS)
712 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
713 #endif
714 #endif
715
716 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
717 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
718 #endif
719 EOF
720
721 # function typedef's
722 printf "\n"
723 printf "\n"
724 printf "/* The following are pre-initialized by GDBARCH. */\n"
725 function_list | while do_read
726 do
727 if class_is_info_p
728 then
729 printf "\n"
730 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
731 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
732 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
733 printf "#error \"Non multi-arch definition of ${macro}\"\n"
734 printf "#endif\n"
735 printf "#if GDB_MULTI_ARCH\n"
736 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
737 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
738 printf "#endif\n"
739 printf "#endif\n"
740 fi
741 done
742
743 # function typedef's
744 printf "\n"
745 printf "\n"
746 printf "/* The following are initialized by the target dependent code. */\n"
747 function_list | while do_read
748 do
749 if [ -n "${comment}" ]
750 then
751 echo "${comment}" | sed \
752 -e '2 s,#,/*,' \
753 -e '3,$ s,#, ,' \
754 -e '$ s,$, */,'
755 fi
756 if class_is_multiarch_p
757 then
758 if class_is_predicate_p
759 then
760 printf "\n"
761 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
762 fi
763 else
764 if class_is_predicate_p
765 then
766 printf "\n"
767 printf "#if defined (${macro})\n"
768 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
769 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
770 printf "#if !defined (${macro}_P)\n"
771 printf "#define ${macro}_P() (1)\n"
772 printf "#endif\n"
773 printf "#endif\n"
774 printf "\n"
775 printf "/* Default predicate for non- multi-arch targets. */\n"
776 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
777 printf "#define ${macro}_P() (0)\n"
778 printf "#endif\n"
779 printf "\n"
780 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
781 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
782 printf "#error \"Non multi-arch definition of ${macro}\"\n"
783 printf "#endif\n"
784 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
785 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
786 printf "#endif\n"
787 fi
788 fi
789 if class_is_variable_p
790 then
791 if fallback_default_p || class_is_predicate_p
792 then
793 printf "\n"
794 printf "/* Default (value) for non- multi-arch platforms. */\n"
795 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
796 echo "#define ${macro} (${fallbackdefault})" \
797 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
798 printf "#endif\n"
799 fi
800 printf "\n"
801 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
802 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
803 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
804 printf "#error \"Non multi-arch definition of ${macro}\"\n"
805 printf "#endif\n"
806 printf "#if GDB_MULTI_ARCH\n"
807 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
808 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
809 printf "#endif\n"
810 printf "#endif\n"
811 fi
812 if class_is_function_p
813 then
814 if class_is_multiarch_p ; then :
815 elif fallback_default_p || class_is_predicate_p
816 then
817 printf "\n"
818 printf "/* Default (function) for non- multi-arch platforms. */\n"
819 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
820 if [ "x${fallbackdefault}" = "x0" ]
821 then
822 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
823 else
824 # FIXME: Should be passing current_gdbarch through!
825 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
826 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
827 fi
828 printf "#endif\n"
829 fi
830 printf "\n"
831 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
832 then
833 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
834 elif class_is_multiarch_p
835 then
836 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
837 else
838 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
839 fi
840 if [ "x${formal}" = "xvoid" ]
841 then
842 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
843 else
844 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
845 fi
846 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
847 if class_is_multiarch_p ; then :
848 else
849 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
850 printf "#error \"Non multi-arch definition of ${macro}\"\n"
851 printf "#endif\n"
852 printf "#if GDB_MULTI_ARCH\n"
853 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
854 if [ "x${actual}" = "x" ]
855 then
856 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
857 elif [ "x${actual}" = "x-" ]
858 then
859 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
860 else
861 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
862 fi
863 printf "#endif\n"
864 printf "#endif\n"
865 fi
866 fi
867 done
868
869 # close it off
870 cat <<EOF
871
872 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
873
874
875 /* Mechanism for co-ordinating the selection of a specific
876 architecture.
877
878 GDB targets (*-tdep.c) can register an interest in a specific
879 architecture. Other GDB components can register a need to maintain
880 per-architecture data.
881
882 The mechanisms below ensures that there is only a loose connection
883 between the set-architecture command and the various GDB
884 components. Each component can independently register their need
885 to maintain architecture specific data with gdbarch.
886
887 Pragmatics:
888
889 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
890 didn't scale.
891
892 The more traditional mega-struct containing architecture specific
893 data for all the various GDB components was also considered. Since
894 GDB is built from a variable number of (fairly independent)
895 components it was determined that the global aproach was not
896 applicable. */
897
898
899 /* Register a new architectural family with GDB.
900
901 Register support for the specified ARCHITECTURE with GDB. When
902 gdbarch determines that the specified architecture has been
903 selected, the corresponding INIT function is called.
904
905 --
906
907 The INIT function takes two parameters: INFO which contains the
908 information available to gdbarch about the (possibly new)
909 architecture; ARCHES which is a list of the previously created
910 \`\`struct gdbarch'' for this architecture.
911
912 The INIT function parameter INFO shall, as far as possible, be
913 pre-initialized with information obtained from INFO.ABFD or
914 previously selected architecture (if similar).
915
916 The INIT function shall return any of: NULL - indicating that it
917 doesn't recognize the selected architecture; an existing \`\`struct
918 gdbarch'' from the ARCHES list - indicating that the new
919 architecture is just a synonym for an earlier architecture (see
920 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
921 - that describes the selected architecture (see gdbarch_alloc()).
922
923 The DUMP_TDEP function shall print out all target specific values.
924 Care should be taken to ensure that the function works in both the
925 multi-arch and non- multi-arch cases. */
926
927 struct gdbarch_list
928 {
929 struct gdbarch *gdbarch;
930 struct gdbarch_list *next;
931 };
932
933 struct gdbarch_info
934 {
935 /* Use default: NULL (ZERO). */
936 const struct bfd_arch_info *bfd_arch_info;
937
938 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
939 int byte_order;
940
941 /* Use default: NULL (ZERO). */
942 bfd *abfd;
943
944 /* Use default: NULL (ZERO). */
945 struct gdbarch_tdep_info *tdep_info;
946 };
947
948 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
949 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
950
951 /* DEPRECATED - use gdbarch_register() */
952 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
953
954 extern void gdbarch_register (enum bfd_architecture architecture,
955 gdbarch_init_ftype *,
956 gdbarch_dump_tdep_ftype *);
957
958
959 /* Return a freshly allocated, NULL terminated, array of the valid
960 architecture names. Since architectures are registered during the
961 _initialize phase this function only returns useful information
962 once initialization has been completed. */
963
964 extern const char **gdbarch_printable_names (void);
965
966
967 /* Helper function. Search the list of ARCHES for a GDBARCH that
968 matches the information provided by INFO. */
969
970 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
971
972
973 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
974 basic initialization using values obtained from the INFO andTDEP
975 parameters. set_gdbarch_*() functions are called to complete the
976 initialization of the object. */
977
978 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
979
980
981 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
982 It is assumed that the caller freeds the \`\`struct
983 gdbarch_tdep''. */
984
985 extern void gdbarch_free (struct gdbarch *);
986
987
988 /* Helper function. Force an update of the current architecture.
989
990 The actual architecture selected is determined by INFO, \`\`(gdb) set
991 architecture'' et.al., the existing architecture and BFD's default
992 architecture. INFO should be initialized to zero and then selected
993 fields should be updated.
994
995 Returns non-zero if the update succeeds */
996
997 extern int gdbarch_update_p (struct gdbarch_info info);
998
999
1000
1001 /* Register per-architecture data-pointer.
1002
1003 Reserve space for a per-architecture data-pointer. An identifier
1004 for the reserved data-pointer is returned. That identifer should
1005 be saved in a local static variable.
1006
1007 The per-architecture data-pointer can be initialized in one of two
1008 ways: The value can be set explicitly using a call to
1009 set_gdbarch_data(); the value can be set implicitly using the value
1010 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
1011 called after the basic architecture vector has been created.
1012
1013 When a previously created architecture is re-selected, the
1014 per-architecture data-pointer for that previous architecture is
1015 restored. INIT() is not called.
1016
1017 During initialization, multiple assignments of the data-pointer are
1018 allowed, non-NULL values are deleted by calling FREE(). If the
1019 architecture is deleted using gdbarch_free() all non-NULL data
1020 pointers are also deleted using FREE().
1021
1022 Multiple registrarants for any architecture are allowed (and
1023 strongly encouraged). */
1024
1025 struct gdbarch_data;
1026
1027 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1028 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1029 void *pointer);
1030 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1031 gdbarch_data_free_ftype *free);
1032 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1033 struct gdbarch_data *data,
1034 void *pointer);
1035
1036 extern void *gdbarch_data (struct gdbarch_data*);
1037
1038
1039 /* Register per-architecture memory region.
1040
1041 Provide a memory-region swap mechanism. Per-architecture memory
1042 region are created. These memory regions are swapped whenever the
1043 architecture is changed. For a new architecture, the memory region
1044 is initialized with zero (0) and the INIT function is called.
1045
1046 Memory regions are swapped / initialized in the order that they are
1047 registered. NULL DATA and/or INIT values can be specified.
1048
1049 New code should use register_gdbarch_data(). */
1050
1051 typedef void (gdbarch_swap_ftype) (void);
1052 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1053 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1054
1055
1056
1057 /* The target-system-dependent byte order is dynamic */
1058
1059 /* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
1060 is selectable at runtime. The user can use the \`\`set endian''
1061 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
1062 target_byte_order should be auto-detected (from the program image
1063 say). */
1064
1065 #if GDB_MULTI_ARCH
1066 /* Multi-arch GDB is always bi-endian. */
1067 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1068 #endif
1069
1070 #ifndef TARGET_BYTE_ORDER_SELECTABLE_P
1071 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
1072 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
1073 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1074 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1075 #else
1076 #define TARGET_BYTE_ORDER_SELECTABLE_P 0
1077 #endif
1078 #endif
1079
1080 extern int target_byte_order;
1081 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1082 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
1083 and expect defs.h to re-define TARGET_BYTE_ORDER. */
1084 #undef TARGET_BYTE_ORDER
1085 #endif
1086 #ifndef TARGET_BYTE_ORDER
1087 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1088 #endif
1089
1090 extern int target_byte_order_auto;
1091 #ifndef TARGET_BYTE_ORDER_AUTO
1092 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1093 #endif
1094
1095
1096
1097 /* The target-system-dependent BFD architecture is dynamic */
1098
1099 extern int target_architecture_auto;
1100 #ifndef TARGET_ARCHITECTURE_AUTO
1101 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1102 #endif
1103
1104 extern const struct bfd_arch_info *target_architecture;
1105 #ifndef TARGET_ARCHITECTURE
1106 #define TARGET_ARCHITECTURE (target_architecture + 0)
1107 #endif
1108
1109
1110 /* The target-system-dependent disassembler is semi-dynamic */
1111
1112 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1113 unsigned int len, disassemble_info *info);
1114
1115 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1116 disassemble_info *info);
1117
1118 extern void dis_asm_print_address (bfd_vma addr,
1119 disassemble_info *info);
1120
1121 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1122 extern disassemble_info tm_print_insn_info;
1123 #ifndef TARGET_PRINT_INSN_INFO
1124 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1125 #endif
1126
1127
1128
1129 /* Set the dynamic target-system-dependent parameters (architecture,
1130 byte-order, ...) using information found in the BFD */
1131
1132 extern void set_gdbarch_from_file (bfd *);
1133
1134
1135 /* Initialize the current architecture to the "first" one we find on
1136 our list. */
1137
1138 extern void initialize_current_architecture (void);
1139
1140 /* For non-multiarched targets, do any initialization of the default
1141 gdbarch object necessary after the _initialize_MODULE functions
1142 have run. */
1143 extern void initialize_non_multiarch ();
1144
1145 /* gdbarch trace variable */
1146 extern int gdbarch_debug;
1147
1148 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1149
1150 #endif
1151 EOF
1152 exec 1>&2
1153 #../move-if-change new-gdbarch.h gdbarch.h
1154 compare_new gdbarch.h
1155
1156
1157 #
1158 # C file
1159 #
1160
1161 exec > new-gdbarch.c
1162 copyright
1163 cat <<EOF
1164
1165 #include "defs.h"
1166 #include "arch-utils.h"
1167
1168 #if GDB_MULTI_ARCH
1169 #include "gdbcmd.h"
1170 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1171 #else
1172 /* Just include everything in sight so that the every old definition
1173 of macro is visible. */
1174 #include "gdb_string.h"
1175 #include <ctype.h>
1176 #include "symtab.h"
1177 #include "frame.h"
1178 #include "inferior.h"
1179 #include "breakpoint.h"
1180 #include "gdb_wait.h"
1181 #include "gdbcore.h"
1182 #include "gdbcmd.h"
1183 #include "target.h"
1184 #include "gdbthread.h"
1185 #include "annotate.h"
1186 #include "symfile.h" /* for overlay functions */
1187 #include "value.h" /* For old tm.h/nm.h macros. */
1188 #endif
1189 #include "symcat.h"
1190
1191 #include "floatformat.h"
1192
1193 #include "gdb_assert.h"
1194 #include "gdb-events.h"
1195
1196 /* Static function declarations */
1197
1198 static void verify_gdbarch (struct gdbarch *gdbarch);
1199 static void alloc_gdbarch_data (struct gdbarch *);
1200 static void init_gdbarch_data (struct gdbarch *);
1201 static void free_gdbarch_data (struct gdbarch *);
1202 static void init_gdbarch_swap (struct gdbarch *);
1203 static void swapout_gdbarch_swap (struct gdbarch *);
1204 static void swapin_gdbarch_swap (struct gdbarch *);
1205
1206 /* Convenience macro for allocting typesafe memory. */
1207
1208 #ifndef XMALLOC
1209 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1210 #endif
1211
1212
1213 /* Non-zero if we want to trace architecture code. */
1214
1215 #ifndef GDBARCH_DEBUG
1216 #define GDBARCH_DEBUG 0
1217 #endif
1218 int gdbarch_debug = GDBARCH_DEBUG;
1219
1220 EOF
1221
1222 # gdbarch open the gdbarch object
1223 printf "\n"
1224 printf "/* Maintain the struct gdbarch object */\n"
1225 printf "\n"
1226 printf "struct gdbarch\n"
1227 printf "{\n"
1228 printf " /* basic architectural information */\n"
1229 function_list | while do_read
1230 do
1231 if class_is_info_p
1232 then
1233 printf " ${returntype} ${function};\n"
1234 fi
1235 done
1236 printf "\n"
1237 printf " /* target specific vector. */\n"
1238 printf " struct gdbarch_tdep *tdep;\n"
1239 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1240 printf "\n"
1241 printf " /* per-architecture data-pointers */\n"
1242 printf " unsigned nr_data;\n"
1243 printf " void **data;\n"
1244 printf "\n"
1245 printf " /* per-architecture swap-regions */\n"
1246 printf " struct gdbarch_swap *swap;\n"
1247 printf "\n"
1248 cat <<EOF
1249 /* Multi-arch values.
1250
1251 When extending this structure you must:
1252
1253 Add the field below.
1254
1255 Declare set/get functions and define the corresponding
1256 macro in gdbarch.h.
1257
1258 gdbarch_alloc(): If zero/NULL is not a suitable default,
1259 initialize the new field.
1260
1261 verify_gdbarch(): Confirm that the target updated the field
1262 correctly.
1263
1264 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1265 field is dumped out
1266
1267 \`\`startup_gdbarch()'': Append an initial value to the static
1268 variable (base values on the host's c-type system).
1269
1270 get_gdbarch(): Implement the set/get functions (probably using
1271 the macro's as shortcuts).
1272
1273 */
1274
1275 EOF
1276 function_list | while do_read
1277 do
1278 if class_is_variable_p
1279 then
1280 printf " ${returntype} ${function};\n"
1281 elif class_is_function_p
1282 then
1283 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1284 fi
1285 done
1286 printf "};\n"
1287
1288 # A pre-initialized vector
1289 printf "\n"
1290 printf "\n"
1291 cat <<EOF
1292 /* The default architecture uses host values (for want of a better
1293 choice). */
1294 EOF
1295 printf "\n"
1296 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1297 printf "\n"
1298 printf "struct gdbarch startup_gdbarch =\n"
1299 printf "{\n"
1300 printf " /* basic architecture information */\n"
1301 function_list | while do_read
1302 do
1303 if class_is_info_p
1304 then
1305 printf " ${staticdefault},\n"
1306 fi
1307 done
1308 cat <<EOF
1309 /* target specific vector and its dump routine */
1310 NULL, NULL,
1311 /*per-architecture data-pointers and swap regions */
1312 0, NULL, NULL,
1313 /* Multi-arch values */
1314 EOF
1315 function_list | while do_read
1316 do
1317 if class_is_function_p || class_is_variable_p
1318 then
1319 printf " ${staticdefault},\n"
1320 fi
1321 done
1322 cat <<EOF
1323 /* startup_gdbarch() */
1324 };
1325
1326 struct gdbarch *current_gdbarch = &startup_gdbarch;
1327
1328 /* Do any initialization needed for a non-multiarch configuration
1329 after the _initialize_MODULE functions have been run. */
1330 void
1331 initialize_non_multiarch ()
1332 {
1333 alloc_gdbarch_data (&startup_gdbarch);
1334 init_gdbarch_data (&startup_gdbarch);
1335 }
1336 EOF
1337
1338 # Create a new gdbarch struct
1339 printf "\n"
1340 printf "\n"
1341 cat <<EOF
1342 /* Create a new \`\`struct gdbarch'' based on information provided by
1343 \`\`struct gdbarch_info''. */
1344 EOF
1345 printf "\n"
1346 cat <<EOF
1347 struct gdbarch *
1348 gdbarch_alloc (const struct gdbarch_info *info,
1349 struct gdbarch_tdep *tdep)
1350 {
1351 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1352 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1353 the current local architecture and not the previous global
1354 architecture. This ensures that the new architectures initial
1355 values are not influenced by the previous architecture. Once
1356 everything is parameterised with gdbarch, this will go away. */
1357 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1358 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1359
1360 alloc_gdbarch_data (current_gdbarch);
1361
1362 current_gdbarch->tdep = tdep;
1363 EOF
1364 printf "\n"
1365 function_list | while do_read
1366 do
1367 if class_is_info_p
1368 then
1369 printf " current_gdbarch->${function} = info->${function};\n"
1370 fi
1371 done
1372 printf "\n"
1373 printf " /* Force the explicit initialization of these. */\n"
1374 function_list | while do_read
1375 do
1376 if class_is_function_p || class_is_variable_p
1377 then
1378 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1379 then
1380 printf " current_gdbarch->${function} = ${predefault};\n"
1381 fi
1382 fi
1383 done
1384 cat <<EOF
1385 /* gdbarch_alloc() */
1386
1387 return current_gdbarch;
1388 }
1389 EOF
1390
1391 # Free a gdbarch struct.
1392 printf "\n"
1393 printf "\n"
1394 cat <<EOF
1395 /* Free a gdbarch struct. This should never happen in normal
1396 operation --- once you've created a gdbarch, you keep it around.
1397 However, if an architecture's init function encounters an error
1398 building the structure, it may need to clean up a partially
1399 constructed gdbarch. */
1400
1401 void
1402 gdbarch_free (struct gdbarch *arch)
1403 {
1404 gdb_assert (arch != NULL);
1405 free_gdbarch_data (arch);
1406 xfree (arch);
1407 }
1408 EOF
1409
1410 # verify a new architecture
1411 printf "\n"
1412 printf "\n"
1413 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1414 printf "\n"
1415 cat <<EOF
1416 static void
1417 verify_gdbarch (struct gdbarch *gdbarch)
1418 {
1419 struct ui_file *log;
1420 struct cleanup *cleanups;
1421 long dummy;
1422 char *buf;
1423 /* Only perform sanity checks on a multi-arch target. */
1424 if (!GDB_MULTI_ARCH)
1425 return;
1426 log = mem_fileopen ();
1427 cleanups = make_cleanup_ui_file_delete (log);
1428 /* fundamental */
1429 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1430 fprintf_unfiltered (log, "\n\tbyte-order");
1431 if (gdbarch->bfd_arch_info == NULL)
1432 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1433 /* Check those that need to be defined for the given multi-arch level. */
1434 EOF
1435 function_list | while do_read
1436 do
1437 if class_is_function_p || class_is_variable_p
1438 then
1439 if [ "x${invalid_p}" = "x0" ]
1440 then
1441 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1442 elif class_is_predicate_p
1443 then
1444 printf " /* Skip verify of ${function}, has predicate */\n"
1445 # FIXME: See do_read for potential simplification
1446 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1447 then
1448 printf " if (${invalid_p})\n"
1449 printf " gdbarch->${function} = ${postdefault};\n"
1450 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1451 then
1452 printf " if (gdbarch->${function} == ${predefault})\n"
1453 printf " gdbarch->${function} = ${postdefault};\n"
1454 elif [ -n "${postdefault}" ]
1455 then
1456 printf " if (gdbarch->${function} == 0)\n"
1457 printf " gdbarch->${function} = ${postdefault};\n"
1458 elif [ -n "${invalid_p}" ]
1459 then
1460 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1461 printf " && (${invalid_p}))\n"
1462 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1463 elif [ -n "${predefault}" ]
1464 then
1465 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1466 printf " && (gdbarch->${function} == ${predefault}))\n"
1467 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1468 fi
1469 fi
1470 done
1471 cat <<EOF
1472 buf = ui_file_xstrdup (log, &dummy);
1473 make_cleanup (xfree, buf);
1474 if (strlen (buf) > 0)
1475 internal_error (__FILE__, __LINE__,
1476 "verify_gdbarch: the following are invalid ...%s",
1477 buf);
1478 do_cleanups (cleanups);
1479 }
1480 EOF
1481
1482 # dump the structure
1483 printf "\n"
1484 printf "\n"
1485 cat <<EOF
1486 /* Print out the details of the current architecture. */
1487
1488 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1489 just happens to match the global variable \`\`current_gdbarch''. That
1490 way macros refering to that variable get the local and not the global
1491 version - ulgh. Once everything is parameterised with gdbarch, this
1492 will go away. */
1493
1494 void
1495 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1496 {
1497 fprintf_unfiltered (file,
1498 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1499 GDB_MULTI_ARCH);
1500 EOF
1501 function_list | sort -t: +2 | while do_read
1502 do
1503 # multiarch functions don't have macros.
1504 if class_is_multiarch_p
1505 then
1506 printf " if (GDB_MULTI_ARCH)\n"
1507 printf " fprintf_unfiltered (file,\n"
1508 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1509 printf " (long) current_gdbarch->${function});\n"
1510 continue
1511 fi
1512 # Print the macro definition.
1513 printf "#ifdef ${macro}\n"
1514 if [ "x${returntype}" = "xvoid" ]
1515 then
1516 printf "#if GDB_MULTI_ARCH\n"
1517 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1518 fi
1519 if class_is_function_p
1520 then
1521 printf " fprintf_unfiltered (file,\n"
1522 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1523 printf " \"${macro}(${actual})\",\n"
1524 printf " XSTRING (${macro} (${actual})));\n"
1525 else
1526 printf " fprintf_unfiltered (file,\n"
1527 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1528 printf " XSTRING (${macro}));\n"
1529 fi
1530 # Print the architecture vector value
1531 if [ "x${returntype}" = "xvoid" ]
1532 then
1533 printf "#endif\n"
1534 fi
1535 if [ "x${print_p}" = "x()" ]
1536 then
1537 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1538 elif [ "x${print_p}" = "x0" ]
1539 then
1540 printf " /* skip print of ${macro}, print_p == 0. */\n"
1541 elif [ -n "${print_p}" ]
1542 then
1543 printf " if (${print_p})\n"
1544 printf " fprintf_unfiltered (file,\n"
1545 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1546 printf " ${print});\n"
1547 elif class_is_function_p
1548 then
1549 printf " if (GDB_MULTI_ARCH)\n"
1550 printf " fprintf_unfiltered (file,\n"
1551 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1552 printf " (long) current_gdbarch->${function}\n"
1553 printf " /*${macro} ()*/);\n"
1554 else
1555 printf " fprintf_unfiltered (file,\n"
1556 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1557 printf " ${print});\n"
1558 fi
1559 printf "#endif\n"
1560 done
1561 cat <<EOF
1562 if (current_gdbarch->dump_tdep != NULL)
1563 current_gdbarch->dump_tdep (current_gdbarch, file);
1564 }
1565 EOF
1566
1567
1568 # GET/SET
1569 printf "\n"
1570 cat <<EOF
1571 struct gdbarch_tdep *
1572 gdbarch_tdep (struct gdbarch *gdbarch)
1573 {
1574 if (gdbarch_debug >= 2)
1575 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1576 return gdbarch->tdep;
1577 }
1578 EOF
1579 printf "\n"
1580 function_list | while do_read
1581 do
1582 if class_is_predicate_p
1583 then
1584 printf "\n"
1585 printf "int\n"
1586 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1587 printf "{\n"
1588 if [ -n "${valid_p}" ]
1589 then
1590 printf " return ${valid_p};\n"
1591 else
1592 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1593 fi
1594 printf "}\n"
1595 fi
1596 if class_is_function_p
1597 then
1598 printf "\n"
1599 printf "${returntype}\n"
1600 if [ "x${formal}" = "xvoid" ]
1601 then
1602 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1603 else
1604 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1605 fi
1606 printf "{\n"
1607 printf " if (gdbarch->${function} == 0)\n"
1608 printf " internal_error (__FILE__, __LINE__,\n"
1609 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1610 printf " if (gdbarch_debug >= 2)\n"
1611 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1612 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1613 then
1614 if class_is_multiarch_p
1615 then
1616 params="gdbarch"
1617 else
1618 params=""
1619 fi
1620 else
1621 if class_is_multiarch_p
1622 then
1623 params="gdbarch, ${actual}"
1624 else
1625 params="${actual}"
1626 fi
1627 fi
1628 if [ "x${returntype}" = "xvoid" ]
1629 then
1630 printf " gdbarch->${function} (${params});\n"
1631 else
1632 printf " return gdbarch->${function} (${params});\n"
1633 fi
1634 printf "}\n"
1635 printf "\n"
1636 printf "void\n"
1637 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1638 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1639 printf "{\n"
1640 printf " gdbarch->${function} = ${function};\n"
1641 printf "}\n"
1642 elif class_is_variable_p
1643 then
1644 printf "\n"
1645 printf "${returntype}\n"
1646 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1647 printf "{\n"
1648 if [ "x${invalid_p}" = "x0" ]
1649 then
1650 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1651 elif [ -n "${invalid_p}" ]
1652 then
1653 printf " if (${invalid_p})\n"
1654 printf " internal_error (__FILE__, __LINE__,\n"
1655 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1656 elif [ -n "${predefault}" ]
1657 then
1658 printf " if (gdbarch->${function} == ${predefault})\n"
1659 printf " internal_error (__FILE__, __LINE__,\n"
1660 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1661 fi
1662 printf " if (gdbarch_debug >= 2)\n"
1663 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1664 printf " return gdbarch->${function};\n"
1665 printf "}\n"
1666 printf "\n"
1667 printf "void\n"
1668 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1669 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1670 printf "{\n"
1671 printf " gdbarch->${function} = ${function};\n"
1672 printf "}\n"
1673 elif class_is_info_p
1674 then
1675 printf "\n"
1676 printf "${returntype}\n"
1677 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1678 printf "{\n"
1679 printf " if (gdbarch_debug >= 2)\n"
1680 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1681 printf " return gdbarch->${function};\n"
1682 printf "}\n"
1683 fi
1684 done
1685
1686 # All the trailing guff
1687 cat <<EOF
1688
1689
1690 /* Keep a registry of per-architecture data-pointers required by GDB
1691 modules. */
1692
1693 struct gdbarch_data
1694 {
1695 unsigned index;
1696 gdbarch_data_init_ftype *init;
1697 gdbarch_data_free_ftype *free;
1698 };
1699
1700 struct gdbarch_data_registration
1701 {
1702 struct gdbarch_data *data;
1703 struct gdbarch_data_registration *next;
1704 };
1705
1706 struct gdbarch_data_registry
1707 {
1708 unsigned nr;
1709 struct gdbarch_data_registration *registrations;
1710 };
1711
1712 struct gdbarch_data_registry gdbarch_data_registry =
1713 {
1714 0, NULL,
1715 };
1716
1717 struct gdbarch_data *
1718 register_gdbarch_data (gdbarch_data_init_ftype *init,
1719 gdbarch_data_free_ftype *free)
1720 {
1721 struct gdbarch_data_registration **curr;
1722 for (curr = &gdbarch_data_registry.registrations;
1723 (*curr) != NULL;
1724 curr = &(*curr)->next);
1725 (*curr) = XMALLOC (struct gdbarch_data_registration);
1726 (*curr)->next = NULL;
1727 (*curr)->data = XMALLOC (struct gdbarch_data);
1728 (*curr)->data->index = gdbarch_data_registry.nr++;
1729 (*curr)->data->init = init;
1730 (*curr)->data->free = free;
1731 return (*curr)->data;
1732 }
1733
1734
1735 /* Walk through all the registered users initializing each in turn. */
1736
1737 static void
1738 init_gdbarch_data (struct gdbarch *gdbarch)
1739 {
1740 struct gdbarch_data_registration *rego;
1741 for (rego = gdbarch_data_registry.registrations;
1742 rego != NULL;
1743 rego = rego->next)
1744 {
1745 struct gdbarch_data *data = rego->data;
1746 gdb_assert (data->index < gdbarch->nr_data);
1747 if (data->init != NULL)
1748 {
1749 void *pointer = data->init (gdbarch);
1750 set_gdbarch_data (gdbarch, data, pointer);
1751 }
1752 }
1753 }
1754
1755 /* Create/delete the gdbarch data vector. */
1756
1757 static void
1758 alloc_gdbarch_data (struct gdbarch *gdbarch)
1759 {
1760 gdb_assert (gdbarch->data == NULL);
1761 gdbarch->nr_data = gdbarch_data_registry.nr;
1762 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1763 }
1764
1765 static void
1766 free_gdbarch_data (struct gdbarch *gdbarch)
1767 {
1768 struct gdbarch_data_registration *rego;
1769 gdb_assert (gdbarch->data != NULL);
1770 for (rego = gdbarch_data_registry.registrations;
1771 rego != NULL;
1772 rego = rego->next)
1773 {
1774 struct gdbarch_data *data = rego->data;
1775 gdb_assert (data->index < gdbarch->nr_data);
1776 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1777 {
1778 data->free (gdbarch, gdbarch->data[data->index]);
1779 gdbarch->data[data->index] = NULL;
1780 }
1781 }
1782 xfree (gdbarch->data);
1783 gdbarch->data = NULL;
1784 }
1785
1786
1787 /* Initialize the current value of thee specified per-architecture
1788 data-pointer. */
1789
1790 void
1791 set_gdbarch_data (struct gdbarch *gdbarch,
1792 struct gdbarch_data *data,
1793 void *pointer)
1794 {
1795 gdb_assert (data->index < gdbarch->nr_data);
1796 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1797 data->free (gdbarch, gdbarch->data[data->index]);
1798 gdbarch->data[data->index] = pointer;
1799 }
1800
1801 /* Return the current value of the specified per-architecture
1802 data-pointer. */
1803
1804 void *
1805 gdbarch_data (struct gdbarch_data *data)
1806 {
1807 gdb_assert (data->index < current_gdbarch->nr_data);
1808 return current_gdbarch->data[data->index];
1809 }
1810
1811
1812
1813 /* Keep a registry of swapped data required by GDB modules. */
1814
1815 struct gdbarch_swap
1816 {
1817 void *swap;
1818 struct gdbarch_swap_registration *source;
1819 struct gdbarch_swap *next;
1820 };
1821
1822 struct gdbarch_swap_registration
1823 {
1824 void *data;
1825 unsigned long sizeof_data;
1826 gdbarch_swap_ftype *init;
1827 struct gdbarch_swap_registration *next;
1828 };
1829
1830 struct gdbarch_swap_registry
1831 {
1832 int nr;
1833 struct gdbarch_swap_registration *registrations;
1834 };
1835
1836 struct gdbarch_swap_registry gdbarch_swap_registry =
1837 {
1838 0, NULL,
1839 };
1840
1841 void
1842 register_gdbarch_swap (void *data,
1843 unsigned long sizeof_data,
1844 gdbarch_swap_ftype *init)
1845 {
1846 struct gdbarch_swap_registration **rego;
1847 for (rego = &gdbarch_swap_registry.registrations;
1848 (*rego) != NULL;
1849 rego = &(*rego)->next);
1850 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1851 (*rego)->next = NULL;
1852 (*rego)->init = init;
1853 (*rego)->data = data;
1854 (*rego)->sizeof_data = sizeof_data;
1855 }
1856
1857
1858 static void
1859 init_gdbarch_swap (struct gdbarch *gdbarch)
1860 {
1861 struct gdbarch_swap_registration *rego;
1862 struct gdbarch_swap **curr = &gdbarch->swap;
1863 for (rego = gdbarch_swap_registry.registrations;
1864 rego != NULL;
1865 rego = rego->next)
1866 {
1867 if (rego->data != NULL)
1868 {
1869 (*curr) = XMALLOC (struct gdbarch_swap);
1870 (*curr)->source = rego;
1871 (*curr)->swap = xmalloc (rego->sizeof_data);
1872 (*curr)->next = NULL;
1873 memset (rego->data, 0, rego->sizeof_data);
1874 curr = &(*curr)->next;
1875 }
1876 if (rego->init != NULL)
1877 rego->init ();
1878 }
1879 }
1880
1881 static void
1882 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1883 {
1884 struct gdbarch_swap *curr;
1885 for (curr = gdbarch->swap;
1886 curr != NULL;
1887 curr = curr->next)
1888 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1889 }
1890
1891 static void
1892 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1893 {
1894 struct gdbarch_swap *curr;
1895 for (curr = gdbarch->swap;
1896 curr != NULL;
1897 curr = curr->next)
1898 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1899 }
1900
1901
1902 /* Keep a registry of the architectures known by GDB. */
1903
1904 struct gdbarch_registration
1905 {
1906 enum bfd_architecture bfd_architecture;
1907 gdbarch_init_ftype *init;
1908 gdbarch_dump_tdep_ftype *dump_tdep;
1909 struct gdbarch_list *arches;
1910 struct gdbarch_registration *next;
1911 };
1912
1913 static struct gdbarch_registration *gdbarch_registry = NULL;
1914
1915 static void
1916 append_name (const char ***buf, int *nr, const char *name)
1917 {
1918 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1919 (*buf)[*nr] = name;
1920 *nr += 1;
1921 }
1922
1923 const char **
1924 gdbarch_printable_names (void)
1925 {
1926 if (GDB_MULTI_ARCH)
1927 {
1928 /* Accumulate a list of names based on the registed list of
1929 architectures. */
1930 enum bfd_architecture a;
1931 int nr_arches = 0;
1932 const char **arches = NULL;
1933 struct gdbarch_registration *rego;
1934 for (rego = gdbarch_registry;
1935 rego != NULL;
1936 rego = rego->next)
1937 {
1938 const struct bfd_arch_info *ap;
1939 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1940 if (ap == NULL)
1941 internal_error (__FILE__, __LINE__,
1942 "gdbarch_architecture_names: multi-arch unknown");
1943 do
1944 {
1945 append_name (&arches, &nr_arches, ap->printable_name);
1946 ap = ap->next;
1947 }
1948 while (ap != NULL);
1949 }
1950 append_name (&arches, &nr_arches, NULL);
1951 return arches;
1952 }
1953 else
1954 /* Just return all the architectures that BFD knows. Assume that
1955 the legacy architecture framework supports them. */
1956 return bfd_arch_list ();
1957 }
1958
1959
1960 void
1961 gdbarch_register (enum bfd_architecture bfd_architecture,
1962 gdbarch_init_ftype *init,
1963 gdbarch_dump_tdep_ftype *dump_tdep)
1964 {
1965 struct gdbarch_registration **curr;
1966 const struct bfd_arch_info *bfd_arch_info;
1967 /* Check that BFD recognizes this architecture */
1968 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1969 if (bfd_arch_info == NULL)
1970 {
1971 internal_error (__FILE__, __LINE__,
1972 "gdbarch: Attempt to register unknown architecture (%d)",
1973 bfd_architecture);
1974 }
1975 /* Check that we haven't seen this architecture before */
1976 for (curr = &gdbarch_registry;
1977 (*curr) != NULL;
1978 curr = &(*curr)->next)
1979 {
1980 if (bfd_architecture == (*curr)->bfd_architecture)
1981 internal_error (__FILE__, __LINE__,
1982 "gdbarch: Duplicate registraration of architecture (%s)",
1983 bfd_arch_info->printable_name);
1984 }
1985 /* log it */
1986 if (gdbarch_debug)
1987 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1988 bfd_arch_info->printable_name,
1989 (long) init);
1990 /* Append it */
1991 (*curr) = XMALLOC (struct gdbarch_registration);
1992 (*curr)->bfd_architecture = bfd_architecture;
1993 (*curr)->init = init;
1994 (*curr)->dump_tdep = dump_tdep;
1995 (*curr)->arches = NULL;
1996 (*curr)->next = NULL;
1997 /* When non- multi-arch, install whatever target dump routine we've
1998 been provided - hopefully that routine has been written correctly
1999 and works regardless of multi-arch. */
2000 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2001 && startup_gdbarch.dump_tdep == NULL)
2002 startup_gdbarch.dump_tdep = dump_tdep;
2003 }
2004
2005 void
2006 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2007 gdbarch_init_ftype *init)
2008 {
2009 gdbarch_register (bfd_architecture, init, NULL);
2010 }
2011
2012
2013 /* Look for an architecture using gdbarch_info. Base search on only
2014 BFD_ARCH_INFO and BYTE_ORDER. */
2015
2016 struct gdbarch_list *
2017 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2018 const struct gdbarch_info *info)
2019 {
2020 for (; arches != NULL; arches = arches->next)
2021 {
2022 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2023 continue;
2024 if (info->byte_order != arches->gdbarch->byte_order)
2025 continue;
2026 return arches;
2027 }
2028 return NULL;
2029 }
2030
2031
2032 /* Update the current architecture. Return ZERO if the update request
2033 failed. */
2034
2035 int
2036 gdbarch_update_p (struct gdbarch_info info)
2037 {
2038 struct gdbarch *new_gdbarch;
2039 struct gdbarch_list **list;
2040 struct gdbarch_registration *rego;
2041
2042 /* Fill in missing parts of the INFO struct using a number of
2043 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2044
2045 /* \`\`(gdb) set architecture ...'' */
2046 if (info.bfd_arch_info == NULL
2047 && !TARGET_ARCHITECTURE_AUTO)
2048 info.bfd_arch_info = TARGET_ARCHITECTURE;
2049 if (info.bfd_arch_info == NULL
2050 && info.abfd != NULL
2051 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2052 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2053 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2054 if (info.bfd_arch_info == NULL)
2055 info.bfd_arch_info = TARGET_ARCHITECTURE;
2056
2057 /* \`\`(gdb) set byte-order ...'' */
2058 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2059 && !TARGET_BYTE_ORDER_AUTO)
2060 info.byte_order = TARGET_BYTE_ORDER;
2061 /* From the INFO struct. */
2062 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2063 && info.abfd != NULL)
2064 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2065 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2066 : BFD_ENDIAN_UNKNOWN);
2067 /* From the current target. */
2068 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2069 info.byte_order = TARGET_BYTE_ORDER;
2070
2071 /* Must have found some sort of architecture. */
2072 gdb_assert (info.bfd_arch_info != NULL);
2073
2074 if (gdbarch_debug)
2075 {
2076 fprintf_unfiltered (gdb_stdlog,
2077 "gdbarch_update: info.bfd_arch_info %s\n",
2078 (info.bfd_arch_info != NULL
2079 ? info.bfd_arch_info->printable_name
2080 : "(null)"));
2081 fprintf_unfiltered (gdb_stdlog,
2082 "gdbarch_update: info.byte_order %d (%s)\n",
2083 info.byte_order,
2084 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2085 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2086 : "default"));
2087 fprintf_unfiltered (gdb_stdlog,
2088 "gdbarch_update: info.abfd 0x%lx\n",
2089 (long) info.abfd);
2090 fprintf_unfiltered (gdb_stdlog,
2091 "gdbarch_update: info.tdep_info 0x%lx\n",
2092 (long) info.tdep_info);
2093 }
2094
2095 /* Find the target that knows about this architecture. */
2096 for (rego = gdbarch_registry;
2097 rego != NULL;
2098 rego = rego->next)
2099 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2100 break;
2101 if (rego == NULL)
2102 {
2103 if (gdbarch_debug)
2104 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2105 return 0;
2106 }
2107
2108 /* Ask the target for a replacement architecture. */
2109 new_gdbarch = rego->init (info, rego->arches);
2110
2111 /* Did the target like it? No. Reject the change. */
2112 if (new_gdbarch == NULL)
2113 {
2114 if (gdbarch_debug)
2115 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2116 return 0;
2117 }
2118
2119 /* Did the architecture change? No. Do nothing. */
2120 if (current_gdbarch == new_gdbarch)
2121 {
2122 if (gdbarch_debug)
2123 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2124 (long) new_gdbarch,
2125 new_gdbarch->bfd_arch_info->printable_name);
2126 return 1;
2127 }
2128
2129 /* Swap all data belonging to the old target out */
2130 swapout_gdbarch_swap (current_gdbarch);
2131
2132 /* Is this a pre-existing architecture? Yes. Swap it in. */
2133 for (list = &rego->arches;
2134 (*list) != NULL;
2135 list = &(*list)->next)
2136 {
2137 if ((*list)->gdbarch == new_gdbarch)
2138 {
2139 if (gdbarch_debug)
2140 fprintf_unfiltered (gdb_stdlog,
2141 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2142 (long) new_gdbarch,
2143 new_gdbarch->bfd_arch_info->printable_name);
2144 current_gdbarch = new_gdbarch;
2145 swapin_gdbarch_swap (new_gdbarch);
2146 architecture_changed_event ();
2147 return 1;
2148 }
2149 }
2150
2151 /* Append this new architecture to this targets list. */
2152 (*list) = XMALLOC (struct gdbarch_list);
2153 (*list)->next = NULL;
2154 (*list)->gdbarch = new_gdbarch;
2155
2156 /* Switch to this new architecture. Dump it out. */
2157 current_gdbarch = new_gdbarch;
2158 if (gdbarch_debug)
2159 {
2160 fprintf_unfiltered (gdb_stdlog,
2161 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2162 (long) new_gdbarch,
2163 new_gdbarch->bfd_arch_info->printable_name);
2164 }
2165
2166 /* Check that the newly installed architecture is valid. Plug in
2167 any post init values. */
2168 new_gdbarch->dump_tdep = rego->dump_tdep;
2169 verify_gdbarch (new_gdbarch);
2170
2171 /* Initialize the per-architecture memory (swap) areas.
2172 CURRENT_GDBARCH must be update before these modules are
2173 called. */
2174 init_gdbarch_swap (new_gdbarch);
2175
2176 /* Initialize the per-architecture data-pointer of all parties that
2177 registered an interest in this architecture. CURRENT_GDBARCH
2178 must be updated before these modules are called. */
2179 init_gdbarch_data (new_gdbarch);
2180 architecture_changed_event ();
2181
2182 if (gdbarch_debug)
2183 gdbarch_dump (current_gdbarch, gdb_stdlog);
2184
2185 return 1;
2186 }
2187
2188
2189 /* Disassembler */
2190
2191 /* Pointer to the target-dependent disassembly function. */
2192 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2193 disassemble_info tm_print_insn_info;
2194
2195
2196 extern void _initialize_gdbarch (void);
2197
2198 void
2199 _initialize_gdbarch (void)
2200 {
2201 struct cmd_list_element *c;
2202
2203 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2204 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2205 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2206 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2207 tm_print_insn_info.print_address_func = dis_asm_print_address;
2208
2209 add_show_from_set (add_set_cmd ("arch",
2210 class_maintenance,
2211 var_zinteger,
2212 (char *)&gdbarch_debug,
2213 "Set architecture debugging.\\n\\
2214 When non-zero, architecture debugging is enabled.", &setdebuglist),
2215 &showdebuglist);
2216 c = add_set_cmd ("archdebug",
2217 class_maintenance,
2218 var_zinteger,
2219 (char *)&gdbarch_debug,
2220 "Set architecture debugging.\\n\\
2221 When non-zero, architecture debugging is enabled.", &setlist);
2222
2223 deprecate_cmd (c, "set debug arch");
2224 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2225 }
2226 EOF
2227
2228 # close things off
2229 exec 1>&2
2230 #../move-if-change new-gdbarch.c gdbarch.c
2231 compare_new gdbarch.c