indentation fixlet in gdbserver/Makefile.in.
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2014 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
476
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
492 #
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
495
496 #
497 v:int:believe_pcc_promotion:::::::
498 #
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
507 #
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
511
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
515 #
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
517 #
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
521 # for instance).
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
523
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 # On some platforms, a single function may provide multiple entry points,
534 # e.g. one that is used for function-pointer calls and a different one
535 # that is used for direct function calls.
536 # In order to ensure that breakpoints set on the function will trigger
537 # no matter via which entry point the function is entered, a platform
538 # may provide the skip_entrypoint callback. It is called with IP set
539 # to the main entry point of a function (as determined by the symbol table),
540 # and should return the address of the innermost entry point, where the
541 # actual breakpoint needs to be set. Note that skip_entrypoint is used
542 # by GDB common code even when debugging optimized code, where skip_prologue
543 # is not used.
544 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
546 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
547 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
548 # Return the adjusted address and kind to use for Z0/Z1 packets.
549 # KIND is usually the memory length of the breakpoint, but may have a
550 # different target-specific meaning.
551 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
552 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
553 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
555 v:CORE_ADDR:decr_pc_after_break:::0:::0
556
557 # A function can be addressed by either it's "pointer" (possibly a
558 # descriptor address) or "entry point" (first executable instruction).
559 # The method "convert_from_func_ptr_addr" converting the former to the
560 # latter. gdbarch_deprecated_function_start_offset is being used to implement
561 # a simplified subset of that functionality - the function's address
562 # corresponds to the "function pointer" and the function's start
563 # corresponds to the "function entry point" - and hence is redundant.
564
565 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
566
567 # Return the remote protocol register number associated with this
568 # register. Normally the identity mapping.
569 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
570
571 # Fetch the target specific address used to represent a load module.
572 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
573 #
574 v:CORE_ADDR:frame_args_skip:::0:::0
575 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
577 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578 # frame-base. Enable frame-base before frame-unwind.
579 F:int:frame_num_args:struct frame_info *frame:frame
580 #
581 M:CORE_ADDR:frame_align:CORE_ADDR address:address
582 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583 v:int:frame_red_zone_size
584 #
585 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
586 # On some machines there are bits in addresses which are not really
587 # part of the address, but are used by the kernel, the hardware, etc.
588 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
589 # we get a "real" address such as one would find in a symbol table.
590 # This is used only for addresses of instructions, and even then I'm
591 # not sure it's used in all contexts. It exists to deal with there
592 # being a few stray bits in the PC which would mislead us, not as some
593 # sort of generic thing to handle alignment or segmentation (it's
594 # possible it should be in TARGET_READ_PC instead).
595 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
596
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
598 # indicates if the target needs software single step. An ISA method to
599 # implement it.
600 #
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602 # breakpoints using the breakpoint system instead of blatting memory directly
603 # (as with rs6000).
604 #
605 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606 # target can single step. If not, then implement single step using breakpoints.
607 #
608 # A return value of 1 means that the software_single_step breakpoints
609 # were inserted; 0 means they were not.
610 F:int:software_single_step:struct frame_info *frame:frame
611
612 # Return non-zero if the processor is executing a delay slot and a
613 # further single-step is needed before the instruction finishes.
614 M:int:single_step_through_delay:struct frame_info *frame:frame
615 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
616 # disassembler. Perhaps objdump can handle it?
617 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
619
620
621 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
622 # evaluates non-zero, this is the address where the debugger will place
623 # a step-resume breakpoint to get us past the dynamic linker.
624 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
625 # Some systems also have trampoline code for returning from shared libs.
626 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
627
628 # A target might have problems with watchpoints as soon as the stack
629 # frame of the current function has been destroyed. This mostly happens
630 # as the first action in a funtion's epilogue. in_function_epilogue_p()
631 # is defined to return a non-zero value if either the given addr is one
632 # instruction after the stack destroying instruction up to the trailing
633 # return instruction or if we can figure out that the stack frame has
634 # already been invalidated regardless of the value of addr. Targets
635 # which don't suffer from that problem could just let this functionality
636 # untouched.
637 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
638 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
639 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
640 v:int:cannot_step_breakpoint:::0:0::0
641 v:int:have_nonsteppable_watchpoint:::0:0::0
642 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
643 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
644
645 # Return the appropriate type_flags for the supplied address class.
646 # This function should return 1 if the address class was recognized and
647 # type_flags was set, zero otherwise.
648 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
649 # Is a register in a group
650 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
651 # Fetch the pointer to the ith function argument.
652 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
653
654 # Return the appropriate register set for a core file section with
655 # name SECT_NAME and size SECT_SIZE.
656 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
657
658 # Supported register notes in a core file.
659 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
660
661 # Create core file notes
662 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
663
664 # The elfcore writer hook to use to write Linux prpsinfo notes to core
665 # files. Most Linux architectures use the same prpsinfo32 or
666 # prpsinfo64 layouts, and so won't need to provide this hook, as we
667 # call the Linux generic routines in bfd to write prpsinfo notes by
668 # default.
669 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
670
671 # Find core file memory regions
672 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
673
674 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
675 # core file into buffer READBUF with length LEN.
676 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
677
678 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
679 # libraries list from core file into buffer READBUF with length LEN.
680 M:LONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
681
682 # How the core target converts a PTID from a core file to a string.
683 M:char *:core_pid_to_str:ptid_t ptid:ptid
684
685 # BFD target to use when generating a core file.
686 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
687
688 # If the elements of C++ vtables are in-place function descriptors rather
689 # than normal function pointers (which may point to code or a descriptor),
690 # set this to one.
691 v:int:vtable_function_descriptors:::0:0::0
692
693 # Set if the least significant bit of the delta is used instead of the least
694 # significant bit of the pfn for pointers to virtual member functions.
695 v:int:vbit_in_delta:::0:0::0
696
697 # Advance PC to next instruction in order to skip a permanent breakpoint.
698 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
699
700 # The maximum length of an instruction on this architecture in bytes.
701 V:ULONGEST:max_insn_length:::0:0
702
703 # Copy the instruction at FROM to TO, and make any adjustments
704 # necessary to single-step it at that address.
705 #
706 # REGS holds the state the thread's registers will have before
707 # executing the copied instruction; the PC in REGS will refer to FROM,
708 # not the copy at TO. The caller should update it to point at TO later.
709 #
710 # Return a pointer to data of the architecture's choice to be passed
711 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
712 # the instruction's effects have been completely simulated, with the
713 # resulting state written back to REGS.
714 #
715 # For a general explanation of displaced stepping and how GDB uses it,
716 # see the comments in infrun.c.
717 #
718 # The TO area is only guaranteed to have space for
719 # gdbarch_max_insn_length (arch) bytes, so this function must not
720 # write more bytes than that to that area.
721 #
722 # If you do not provide this function, GDB assumes that the
723 # architecture does not support displaced stepping.
724 #
725 # If your architecture doesn't need to adjust instructions before
726 # single-stepping them, consider using simple_displaced_step_copy_insn
727 # here.
728 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
729
730 # Return true if GDB should use hardware single-stepping to execute
731 # the displaced instruction identified by CLOSURE. If false,
732 # GDB will simply restart execution at the displaced instruction
733 # location, and it is up to the target to ensure GDB will receive
734 # control again (e.g. by placing a software breakpoint instruction
735 # into the displaced instruction buffer).
736 #
737 # The default implementation returns false on all targets that
738 # provide a gdbarch_software_single_step routine, and true otherwise.
739 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
740
741 # Fix up the state resulting from successfully single-stepping a
742 # displaced instruction, to give the result we would have gotten from
743 # stepping the instruction in its original location.
744 #
745 # REGS is the register state resulting from single-stepping the
746 # displaced instruction.
747 #
748 # CLOSURE is the result from the matching call to
749 # gdbarch_displaced_step_copy_insn.
750 #
751 # If you provide gdbarch_displaced_step_copy_insn.but not this
752 # function, then GDB assumes that no fixup is needed after
753 # single-stepping the instruction.
754 #
755 # For a general explanation of displaced stepping and how GDB uses it,
756 # see the comments in infrun.c.
757 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
758
759 # Free a closure returned by gdbarch_displaced_step_copy_insn.
760 #
761 # If you provide gdbarch_displaced_step_copy_insn, you must provide
762 # this function as well.
763 #
764 # If your architecture uses closures that don't need to be freed, then
765 # you can use simple_displaced_step_free_closure here.
766 #
767 # For a general explanation of displaced stepping and how GDB uses it,
768 # see the comments in infrun.c.
769 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
770
771 # Return the address of an appropriate place to put displaced
772 # instructions while we step over them. There need only be one such
773 # place, since we're only stepping one thread over a breakpoint at a
774 # time.
775 #
776 # For a general explanation of displaced stepping and how GDB uses it,
777 # see the comments in infrun.c.
778 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
779
780 # Relocate an instruction to execute at a different address. OLDLOC
781 # is the address in the inferior memory where the instruction to
782 # relocate is currently at. On input, TO points to the destination
783 # where we want the instruction to be copied (and possibly adjusted)
784 # to. On output, it points to one past the end of the resulting
785 # instruction(s). The effect of executing the instruction at TO shall
786 # be the same as if executing it at FROM. For example, call
787 # instructions that implicitly push the return address on the stack
788 # should be adjusted to return to the instruction after OLDLOC;
789 # relative branches, and other PC-relative instructions need the
790 # offset adjusted; etc.
791 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
792
793 # Refresh overlay mapped state for section OSECT.
794 F:void:overlay_update:struct obj_section *osect:osect
795
796 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
797
798 # Handle special encoding of static variables in stabs debug info.
799 F:const char *:static_transform_name:const char *name:name
800 # Set if the address in N_SO or N_FUN stabs may be zero.
801 v:int:sofun_address_maybe_missing:::0:0::0
802
803 # Parse the instruction at ADDR storing in the record execution log
804 # the registers REGCACHE and memory ranges that will be affected when
805 # the instruction executes, along with their current values.
806 # Return -1 if something goes wrong, 0 otherwise.
807 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
808
809 # Save process state after a signal.
810 # Return -1 if something goes wrong, 0 otherwise.
811 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
812
813 # Signal translation: translate inferior's signal (target's) number
814 # into GDB's representation. The implementation of this method must
815 # be host independent. IOW, don't rely on symbols of the NAT_FILE
816 # header (the nm-*.h files), the host <signal.h> header, or similar
817 # headers. This is mainly used when cross-debugging core files ---
818 # "Live" targets hide the translation behind the target interface
819 # (target_wait, target_resume, etc.).
820 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
821
822 # Signal translation: translate the GDB's internal signal number into
823 # the inferior's signal (target's) representation. The implementation
824 # of this method must be host independent. IOW, don't rely on symbols
825 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
826 # header, or similar headers.
827 # Return the target signal number if found, or -1 if the GDB internal
828 # signal number is invalid.
829 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
830
831 # Extra signal info inspection.
832 #
833 # Return a type suitable to inspect extra signal information.
834 M:struct type *:get_siginfo_type:void:
835
836 # Record architecture-specific information from the symbol table.
837 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
838
839 # Function for the 'catch syscall' feature.
840
841 # Get architecture-specific system calls information from registers.
842 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
843
844 # SystemTap related fields and functions.
845
846 # A NULL-terminated array of prefixes used to mark an integer constant
847 # on the architecture's assembly.
848 # For example, on x86 integer constants are written as:
849 #
850 # \$10 ;; integer constant 10
851 #
852 # in this case, this prefix would be the character \`\$\'.
853 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
854
855 # A NULL-terminated array of suffixes used to mark an integer constant
856 # on the architecture's assembly.
857 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
858
859 # A NULL-terminated array of prefixes used to mark a register name on
860 # the architecture's assembly.
861 # For example, on x86 the register name is written as:
862 #
863 # \%eax ;; register eax
864 #
865 # in this case, this prefix would be the character \`\%\'.
866 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
867
868 # A NULL-terminated array of suffixes used to mark a register name on
869 # the architecture's assembly.
870 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
871
872 # A NULL-terminated array of prefixes used to mark a register
873 # indirection on the architecture's assembly.
874 # For example, on x86 the register indirection is written as:
875 #
876 # \(\%eax\) ;; indirecting eax
877 #
878 # in this case, this prefix would be the charater \`\(\'.
879 #
880 # Please note that we use the indirection prefix also for register
881 # displacement, e.g., \`4\(\%eax\)\' on x86.
882 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
883
884 # A NULL-terminated array of suffixes used to mark a register
885 # indirection on the architecture's assembly.
886 # For example, on x86 the register indirection is written as:
887 #
888 # \(\%eax\) ;; indirecting eax
889 #
890 # in this case, this prefix would be the charater \`\)\'.
891 #
892 # Please note that we use the indirection suffix also for register
893 # displacement, e.g., \`4\(\%eax\)\' on x86.
894 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
895
896 # Prefix(es) used to name a register using GDB's nomenclature.
897 #
898 # For example, on PPC a register is represented by a number in the assembly
899 # language (e.g., \`10\' is the 10th general-purpose register). However,
900 # inside GDB this same register has an \`r\' appended to its name, so the 10th
901 # register would be represented as \`r10\' internally.
902 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
903
904 # Suffix used to name a register using GDB's nomenclature.
905 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
906
907 # Check if S is a single operand.
908 #
909 # Single operands can be:
910 # \- Literal integers, e.g. \`\$10\' on x86
911 # \- Register access, e.g. \`\%eax\' on x86
912 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
913 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
914 #
915 # This function should check for these patterns on the string
916 # and return 1 if some were found, or zero otherwise. Please try to match
917 # as much info as you can from the string, i.e., if you have to match
918 # something like \`\(\%\', do not match just the \`\(\'.
919 M:int:stap_is_single_operand:const char *s:s
920
921 # Function used to handle a "special case" in the parser.
922 #
923 # A "special case" is considered to be an unknown token, i.e., a token
924 # that the parser does not know how to parse. A good example of special
925 # case would be ARM's register displacement syntax:
926 #
927 # [R0, #4] ;; displacing R0 by 4
928 #
929 # Since the parser assumes that a register displacement is of the form:
930 #
931 # <number> <indirection_prefix> <register_name> <indirection_suffix>
932 #
933 # it means that it will not be able to recognize and parse this odd syntax.
934 # Therefore, we should add a special case function that will handle this token.
935 #
936 # This function should generate the proper expression form of the expression
937 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
938 # and so on). It should also return 1 if the parsing was successful, or zero
939 # if the token was not recognized as a special token (in this case, returning
940 # zero means that the special parser is deferring the parsing to the generic
941 # parser), and should advance the buffer pointer (p->arg).
942 M:int:stap_parse_special_token:struct stap_parse_info *p:p
943
944
945 # True if the list of shared libraries is one and only for all
946 # processes, as opposed to a list of shared libraries per inferior.
947 # This usually means that all processes, although may or may not share
948 # an address space, will see the same set of symbols at the same
949 # addresses.
950 v:int:has_global_solist:::0:0::0
951
952 # On some targets, even though each inferior has its own private
953 # address space, the debug interface takes care of making breakpoints
954 # visible to all address spaces automatically. For such cases,
955 # this property should be set to true.
956 v:int:has_global_breakpoints:::0:0::0
957
958 # True if inferiors share an address space (e.g., uClinux).
959 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
960
961 # True if a fast tracepoint can be set at an address.
962 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
963
964 # Return the "auto" target charset.
965 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
966 # Return the "auto" target wide charset.
967 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
968
969 # If non-empty, this is a file extension that will be opened in place
970 # of the file extension reported by the shared library list.
971 #
972 # This is most useful for toolchains that use a post-linker tool,
973 # where the names of the files run on the target differ in extension
974 # compared to the names of the files GDB should load for debug info.
975 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
976
977 # If true, the target OS has DOS-based file system semantics. That
978 # is, absolute paths include a drive name, and the backslash is
979 # considered a directory separator.
980 v:int:has_dos_based_file_system:::0:0::0
981
982 # Generate bytecodes to collect the return address in a frame.
983 # Since the bytecodes run on the target, possibly with GDB not even
984 # connected, the full unwinding machinery is not available, and
985 # typically this function will issue bytecodes for one or more likely
986 # places that the return address may be found.
987 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
988
989 # Implement the "info proc" command.
990 M:void:info_proc:char *args, enum info_proc_what what:args, what
991
992 # Implement the "info proc" command for core files. Noe that there
993 # are two "info_proc"-like methods on gdbarch -- one for core files,
994 # one for live targets.
995 M:void:core_info_proc:char *args, enum info_proc_what what:args, what
996
997 # Iterate over all objfiles in the order that makes the most sense
998 # for the architecture to make global symbol searches.
999 #
1000 # CB is a callback function where OBJFILE is the objfile to be searched,
1001 # and CB_DATA a pointer to user-defined data (the same data that is passed
1002 # when calling this gdbarch method). The iteration stops if this function
1003 # returns nonzero.
1004 #
1005 # CB_DATA is a pointer to some user-defined data to be passed to
1006 # the callback.
1007 #
1008 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1009 # inspected when the symbol search was requested.
1010 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1011
1012 # Ravenscar arch-dependent ops.
1013 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1014
1015 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1016 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1017
1018 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1019 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1020
1021 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1022 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1023 EOF
1024 }
1025
1026 #
1027 # The .log file
1028 #
1029 exec > new-gdbarch.log
1030 function_list | while do_read
1031 do
1032 cat <<EOF
1033 ${class} ${returntype} ${function} ($formal)
1034 EOF
1035 for r in ${read}
1036 do
1037 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1038 done
1039 if class_is_predicate_p && fallback_default_p
1040 then
1041 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1042 kill $$
1043 exit 1
1044 fi
1045 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1046 then
1047 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1048 kill $$
1049 exit 1
1050 fi
1051 if class_is_multiarch_p
1052 then
1053 if class_is_predicate_p ; then :
1054 elif test "x${predefault}" = "x"
1055 then
1056 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1057 kill $$
1058 exit 1
1059 fi
1060 fi
1061 echo ""
1062 done
1063
1064 exec 1>&2
1065 compare_new gdbarch.log
1066
1067
1068 copyright ()
1069 {
1070 cat <<EOF
1071 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1072 /* vi:set ro: */
1073
1074 /* Dynamic architecture support for GDB, the GNU debugger.
1075
1076 Copyright (C) 1998-2014 Free Software Foundation, Inc.
1077
1078 This file is part of GDB.
1079
1080 This program is free software; you can redistribute it and/or modify
1081 it under the terms of the GNU General Public License as published by
1082 the Free Software Foundation; either version 3 of the License, or
1083 (at your option) any later version.
1084
1085 This program is distributed in the hope that it will be useful,
1086 but WITHOUT ANY WARRANTY; without even the implied warranty of
1087 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1088 GNU General Public License for more details.
1089
1090 You should have received a copy of the GNU General Public License
1091 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1092
1093 /* This file was created with the aid of \`\`gdbarch.sh''.
1094
1095 The Bourne shell script \`\`gdbarch.sh'' creates the files
1096 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1097 against the existing \`\`gdbarch.[hc]''. Any differences found
1098 being reported.
1099
1100 If editing this file, please also run gdbarch.sh and merge any
1101 changes into that script. Conversely, when making sweeping changes
1102 to this file, modifying gdbarch.sh and using its output may prove
1103 easier. */
1104
1105 EOF
1106 }
1107
1108 #
1109 # The .h file
1110 #
1111
1112 exec > new-gdbarch.h
1113 copyright
1114 cat <<EOF
1115 #ifndef GDBARCH_H
1116 #define GDBARCH_H
1117
1118 struct floatformat;
1119 struct ui_file;
1120 struct frame_info;
1121 struct value;
1122 struct objfile;
1123 struct obj_section;
1124 struct minimal_symbol;
1125 struct regcache;
1126 struct reggroup;
1127 struct regset;
1128 struct disassemble_info;
1129 struct target_ops;
1130 struct obstack;
1131 struct bp_target_info;
1132 struct target_desc;
1133 struct displaced_step_closure;
1134 struct core_regset_section;
1135 struct syscall;
1136 struct agent_expr;
1137 struct axs_value;
1138 struct stap_parse_info;
1139 struct ravenscar_arch_ops;
1140 struct elf_internal_linux_prpsinfo;
1141
1142 /* The architecture associated with the inferior through the
1143 connection to the target.
1144
1145 The architecture vector provides some information that is really a
1146 property of the inferior, accessed through a particular target:
1147 ptrace operations; the layout of certain RSP packets; the solib_ops
1148 vector; etc. To differentiate architecture accesses to
1149 per-inferior/target properties from
1150 per-thread/per-frame/per-objfile properties, accesses to
1151 per-inferior/target properties should be made through this
1152 gdbarch. */
1153
1154 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1155 extern struct gdbarch *target_gdbarch (void);
1156
1157 /* The initial, default architecture. It uses host values (for want of a better
1158 choice). */
1159 extern struct gdbarch startup_gdbarch;
1160
1161
1162 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1163 gdbarch method. */
1164
1165 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1166 (struct objfile *objfile, void *cb_data);
1167 EOF
1168
1169 # function typedef's
1170 printf "\n"
1171 printf "\n"
1172 printf "/* The following are pre-initialized by GDBARCH. */\n"
1173 function_list | while do_read
1174 do
1175 if class_is_info_p
1176 then
1177 printf "\n"
1178 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1179 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1180 fi
1181 done
1182
1183 # function typedef's
1184 printf "\n"
1185 printf "\n"
1186 printf "/* The following are initialized by the target dependent code. */\n"
1187 function_list | while do_read
1188 do
1189 if [ -n "${comment}" ]
1190 then
1191 echo "${comment}" | sed \
1192 -e '2 s,#,/*,' \
1193 -e '3,$ s,#, ,' \
1194 -e '$ s,$, */,'
1195 fi
1196
1197 if class_is_predicate_p
1198 then
1199 printf "\n"
1200 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1201 fi
1202 if class_is_variable_p
1203 then
1204 printf "\n"
1205 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1206 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1207 fi
1208 if class_is_function_p
1209 then
1210 printf "\n"
1211 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1212 then
1213 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1214 elif class_is_multiarch_p
1215 then
1216 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1217 else
1218 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1219 fi
1220 if [ "x${formal}" = "xvoid" ]
1221 then
1222 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1223 else
1224 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1225 fi
1226 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1227 fi
1228 done
1229
1230 # close it off
1231 cat <<EOF
1232
1233 /* Definition for an unknown syscall, used basically in error-cases. */
1234 #define UNKNOWN_SYSCALL (-1)
1235
1236 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1237
1238
1239 /* Mechanism for co-ordinating the selection of a specific
1240 architecture.
1241
1242 GDB targets (*-tdep.c) can register an interest in a specific
1243 architecture. Other GDB components can register a need to maintain
1244 per-architecture data.
1245
1246 The mechanisms below ensures that there is only a loose connection
1247 between the set-architecture command and the various GDB
1248 components. Each component can independently register their need
1249 to maintain architecture specific data with gdbarch.
1250
1251 Pragmatics:
1252
1253 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1254 didn't scale.
1255
1256 The more traditional mega-struct containing architecture specific
1257 data for all the various GDB components was also considered. Since
1258 GDB is built from a variable number of (fairly independent)
1259 components it was determined that the global aproach was not
1260 applicable. */
1261
1262
1263 /* Register a new architectural family with GDB.
1264
1265 Register support for the specified ARCHITECTURE with GDB. When
1266 gdbarch determines that the specified architecture has been
1267 selected, the corresponding INIT function is called.
1268
1269 --
1270
1271 The INIT function takes two parameters: INFO which contains the
1272 information available to gdbarch about the (possibly new)
1273 architecture; ARCHES which is a list of the previously created
1274 \`\`struct gdbarch'' for this architecture.
1275
1276 The INFO parameter is, as far as possible, be pre-initialized with
1277 information obtained from INFO.ABFD or the global defaults.
1278
1279 The ARCHES parameter is a linked list (sorted most recently used)
1280 of all the previously created architures for this architecture
1281 family. The (possibly NULL) ARCHES->gdbarch can used to access
1282 values from the previously selected architecture for this
1283 architecture family.
1284
1285 The INIT function shall return any of: NULL - indicating that it
1286 doesn't recognize the selected architecture; an existing \`\`struct
1287 gdbarch'' from the ARCHES list - indicating that the new
1288 architecture is just a synonym for an earlier architecture (see
1289 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1290 - that describes the selected architecture (see gdbarch_alloc()).
1291
1292 The DUMP_TDEP function shall print out all target specific values.
1293 Care should be taken to ensure that the function works in both the
1294 multi-arch and non- multi-arch cases. */
1295
1296 struct gdbarch_list
1297 {
1298 struct gdbarch *gdbarch;
1299 struct gdbarch_list *next;
1300 };
1301
1302 struct gdbarch_info
1303 {
1304 /* Use default: NULL (ZERO). */
1305 const struct bfd_arch_info *bfd_arch_info;
1306
1307 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1308 enum bfd_endian byte_order;
1309
1310 enum bfd_endian byte_order_for_code;
1311
1312 /* Use default: NULL (ZERO). */
1313 bfd *abfd;
1314
1315 /* Use default: NULL (ZERO). */
1316 struct gdbarch_tdep_info *tdep_info;
1317
1318 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1319 enum gdb_osabi osabi;
1320
1321 /* Use default: NULL (ZERO). */
1322 const struct target_desc *target_desc;
1323 };
1324
1325 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1326 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1327
1328 /* DEPRECATED - use gdbarch_register() */
1329 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1330
1331 extern void gdbarch_register (enum bfd_architecture architecture,
1332 gdbarch_init_ftype *,
1333 gdbarch_dump_tdep_ftype *);
1334
1335
1336 /* Return a freshly allocated, NULL terminated, array of the valid
1337 architecture names. Since architectures are registered during the
1338 _initialize phase this function only returns useful information
1339 once initialization has been completed. */
1340
1341 extern const char **gdbarch_printable_names (void);
1342
1343
1344 /* Helper function. Search the list of ARCHES for a GDBARCH that
1345 matches the information provided by INFO. */
1346
1347 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1348
1349
1350 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1351 basic initialization using values obtained from the INFO and TDEP
1352 parameters. set_gdbarch_*() functions are called to complete the
1353 initialization of the object. */
1354
1355 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1356
1357
1358 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1359 It is assumed that the caller freeds the \`\`struct
1360 gdbarch_tdep''. */
1361
1362 extern void gdbarch_free (struct gdbarch *);
1363
1364
1365 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1366 obstack. The memory is freed when the corresponding architecture
1367 is also freed. */
1368
1369 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1370 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1371 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1372
1373
1374 /* Helper function. Force an update of the current architecture.
1375
1376 The actual architecture selected is determined by INFO, \`\`(gdb) set
1377 architecture'' et.al., the existing architecture and BFD's default
1378 architecture. INFO should be initialized to zero and then selected
1379 fields should be updated.
1380
1381 Returns non-zero if the update succeeds. */
1382
1383 extern int gdbarch_update_p (struct gdbarch_info info);
1384
1385
1386 /* Helper function. Find an architecture matching info.
1387
1388 INFO should be initialized using gdbarch_info_init, relevant fields
1389 set, and then finished using gdbarch_info_fill.
1390
1391 Returns the corresponding architecture, or NULL if no matching
1392 architecture was found. */
1393
1394 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1395
1396
1397 /* Helper function. Set the target gdbarch to "gdbarch". */
1398
1399 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1400
1401
1402 /* Register per-architecture data-pointer.
1403
1404 Reserve space for a per-architecture data-pointer. An identifier
1405 for the reserved data-pointer is returned. That identifer should
1406 be saved in a local static variable.
1407
1408 Memory for the per-architecture data shall be allocated using
1409 gdbarch_obstack_zalloc. That memory will be deleted when the
1410 corresponding architecture object is deleted.
1411
1412 When a previously created architecture is re-selected, the
1413 per-architecture data-pointer for that previous architecture is
1414 restored. INIT() is not re-called.
1415
1416 Multiple registrarants for any architecture are allowed (and
1417 strongly encouraged). */
1418
1419 struct gdbarch_data;
1420
1421 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1422 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1423 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1424 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1425 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1426 struct gdbarch_data *data,
1427 void *pointer);
1428
1429 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1430
1431
1432 /* Set the dynamic target-system-dependent parameters (architecture,
1433 byte-order, ...) using information found in the BFD. */
1434
1435 extern void set_gdbarch_from_file (bfd *);
1436
1437
1438 /* Initialize the current architecture to the "first" one we find on
1439 our list. */
1440
1441 extern void initialize_current_architecture (void);
1442
1443 /* gdbarch trace variable */
1444 extern unsigned int gdbarch_debug;
1445
1446 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1447
1448 #endif
1449 EOF
1450 exec 1>&2
1451 #../move-if-change new-gdbarch.h gdbarch.h
1452 compare_new gdbarch.h
1453
1454
1455 #
1456 # C file
1457 #
1458
1459 exec > new-gdbarch.c
1460 copyright
1461 cat <<EOF
1462
1463 #include "defs.h"
1464 #include "arch-utils.h"
1465
1466 #include "gdbcmd.h"
1467 #include "inferior.h"
1468 #include "symcat.h"
1469
1470 #include "floatformat.h"
1471
1472 #include "gdb_assert.h"
1473 #include <string.h>
1474 #include "reggroups.h"
1475 #include "osabi.h"
1476 #include "gdb_obstack.h"
1477 #include "observer.h"
1478 #include "regcache.h"
1479 #include "objfiles.h"
1480
1481 /* Static function declarations */
1482
1483 static void alloc_gdbarch_data (struct gdbarch *);
1484
1485 /* Non-zero if we want to trace architecture code. */
1486
1487 #ifndef GDBARCH_DEBUG
1488 #define GDBARCH_DEBUG 0
1489 #endif
1490 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1491 static void
1492 show_gdbarch_debug (struct ui_file *file, int from_tty,
1493 struct cmd_list_element *c, const char *value)
1494 {
1495 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1496 }
1497
1498 static const char *
1499 pformat (const struct floatformat **format)
1500 {
1501 if (format == NULL)
1502 return "(null)";
1503 else
1504 /* Just print out one of them - this is only for diagnostics. */
1505 return format[0]->name;
1506 }
1507
1508 static const char *
1509 pstring (const char *string)
1510 {
1511 if (string == NULL)
1512 return "(null)";
1513 return string;
1514 }
1515
1516 /* Helper function to print a list of strings, represented as "const
1517 char *const *". The list is printed comma-separated. */
1518
1519 static char *
1520 pstring_list (const char *const *list)
1521 {
1522 static char ret[100];
1523 const char *const *p;
1524 size_t offset = 0;
1525
1526 if (list == NULL)
1527 return "(null)";
1528
1529 ret[0] = '\0';
1530 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1531 {
1532 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1533 offset += 2 + s;
1534 }
1535
1536 if (offset > 0)
1537 {
1538 gdb_assert (offset - 2 < sizeof (ret));
1539 ret[offset - 2] = '\0';
1540 }
1541
1542 return ret;
1543 }
1544
1545 EOF
1546
1547 # gdbarch open the gdbarch object
1548 printf "\n"
1549 printf "/* Maintain the struct gdbarch object. */\n"
1550 printf "\n"
1551 printf "struct gdbarch\n"
1552 printf "{\n"
1553 printf " /* Has this architecture been fully initialized? */\n"
1554 printf " int initialized_p;\n"
1555 printf "\n"
1556 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1557 printf " struct obstack *obstack;\n"
1558 printf "\n"
1559 printf " /* basic architectural information. */\n"
1560 function_list | while do_read
1561 do
1562 if class_is_info_p
1563 then
1564 printf " ${returntype} ${function};\n"
1565 fi
1566 done
1567 printf "\n"
1568 printf " /* target specific vector. */\n"
1569 printf " struct gdbarch_tdep *tdep;\n"
1570 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1571 printf "\n"
1572 printf " /* per-architecture data-pointers. */\n"
1573 printf " unsigned nr_data;\n"
1574 printf " void **data;\n"
1575 printf "\n"
1576 cat <<EOF
1577 /* Multi-arch values.
1578
1579 When extending this structure you must:
1580
1581 Add the field below.
1582
1583 Declare set/get functions and define the corresponding
1584 macro in gdbarch.h.
1585
1586 gdbarch_alloc(): If zero/NULL is not a suitable default,
1587 initialize the new field.
1588
1589 verify_gdbarch(): Confirm that the target updated the field
1590 correctly.
1591
1592 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1593 field is dumped out
1594
1595 \`\`startup_gdbarch()'': Append an initial value to the static
1596 variable (base values on the host's c-type system).
1597
1598 get_gdbarch(): Implement the set/get functions (probably using
1599 the macro's as shortcuts).
1600
1601 */
1602
1603 EOF
1604 function_list | while do_read
1605 do
1606 if class_is_variable_p
1607 then
1608 printf " ${returntype} ${function};\n"
1609 elif class_is_function_p
1610 then
1611 printf " gdbarch_${function}_ftype *${function};\n"
1612 fi
1613 done
1614 printf "};\n"
1615
1616 # A pre-initialized vector
1617 printf "\n"
1618 printf "\n"
1619 cat <<EOF
1620 /* The default architecture uses host values (for want of a better
1621 choice). */
1622 EOF
1623 printf "\n"
1624 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1625 printf "\n"
1626 printf "struct gdbarch startup_gdbarch =\n"
1627 printf "{\n"
1628 printf " 1, /* Always initialized. */\n"
1629 printf " NULL, /* The obstack. */\n"
1630 printf " /* basic architecture information. */\n"
1631 function_list | while do_read
1632 do
1633 if class_is_info_p
1634 then
1635 printf " ${staticdefault}, /* ${function} */\n"
1636 fi
1637 done
1638 cat <<EOF
1639 /* target specific vector and its dump routine. */
1640 NULL, NULL,
1641 /*per-architecture data-pointers. */
1642 0, NULL,
1643 /* Multi-arch values */
1644 EOF
1645 function_list | while do_read
1646 do
1647 if class_is_function_p || class_is_variable_p
1648 then
1649 printf " ${staticdefault}, /* ${function} */\n"
1650 fi
1651 done
1652 cat <<EOF
1653 /* startup_gdbarch() */
1654 };
1655
1656 EOF
1657
1658 # Create a new gdbarch struct
1659 cat <<EOF
1660
1661 /* Create a new \`\`struct gdbarch'' based on information provided by
1662 \`\`struct gdbarch_info''. */
1663 EOF
1664 printf "\n"
1665 cat <<EOF
1666 struct gdbarch *
1667 gdbarch_alloc (const struct gdbarch_info *info,
1668 struct gdbarch_tdep *tdep)
1669 {
1670 struct gdbarch *gdbarch;
1671
1672 /* Create an obstack for allocating all the per-architecture memory,
1673 then use that to allocate the architecture vector. */
1674 struct obstack *obstack = XNEW (struct obstack);
1675 obstack_init (obstack);
1676 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1677 memset (gdbarch, 0, sizeof (*gdbarch));
1678 gdbarch->obstack = obstack;
1679
1680 alloc_gdbarch_data (gdbarch);
1681
1682 gdbarch->tdep = tdep;
1683 EOF
1684 printf "\n"
1685 function_list | while do_read
1686 do
1687 if class_is_info_p
1688 then
1689 printf " gdbarch->${function} = info->${function};\n"
1690 fi
1691 done
1692 printf "\n"
1693 printf " /* Force the explicit initialization of these. */\n"
1694 function_list | while do_read
1695 do
1696 if class_is_function_p || class_is_variable_p
1697 then
1698 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1699 then
1700 printf " gdbarch->${function} = ${predefault};\n"
1701 fi
1702 fi
1703 done
1704 cat <<EOF
1705 /* gdbarch_alloc() */
1706
1707 return gdbarch;
1708 }
1709 EOF
1710
1711 # Free a gdbarch struct.
1712 printf "\n"
1713 printf "\n"
1714 cat <<EOF
1715 /* Allocate extra space using the per-architecture obstack. */
1716
1717 void *
1718 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1719 {
1720 void *data = obstack_alloc (arch->obstack, size);
1721
1722 memset (data, 0, size);
1723 return data;
1724 }
1725
1726
1727 /* Free a gdbarch struct. This should never happen in normal
1728 operation --- once you've created a gdbarch, you keep it around.
1729 However, if an architecture's init function encounters an error
1730 building the structure, it may need to clean up a partially
1731 constructed gdbarch. */
1732
1733 void
1734 gdbarch_free (struct gdbarch *arch)
1735 {
1736 struct obstack *obstack;
1737
1738 gdb_assert (arch != NULL);
1739 gdb_assert (!arch->initialized_p);
1740 obstack = arch->obstack;
1741 obstack_free (obstack, 0); /* Includes the ARCH. */
1742 xfree (obstack);
1743 }
1744 EOF
1745
1746 # verify a new architecture
1747 cat <<EOF
1748
1749
1750 /* Ensure that all values in a GDBARCH are reasonable. */
1751
1752 static void
1753 verify_gdbarch (struct gdbarch *gdbarch)
1754 {
1755 struct ui_file *log;
1756 struct cleanup *cleanups;
1757 long length;
1758 char *buf;
1759
1760 log = mem_fileopen ();
1761 cleanups = make_cleanup_ui_file_delete (log);
1762 /* fundamental */
1763 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1764 fprintf_unfiltered (log, "\n\tbyte-order");
1765 if (gdbarch->bfd_arch_info == NULL)
1766 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1767 /* Check those that need to be defined for the given multi-arch level. */
1768 EOF
1769 function_list | while do_read
1770 do
1771 if class_is_function_p || class_is_variable_p
1772 then
1773 if [ "x${invalid_p}" = "x0" ]
1774 then
1775 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1776 elif class_is_predicate_p
1777 then
1778 printf " /* Skip verify of ${function}, has predicate. */\n"
1779 # FIXME: See do_read for potential simplification
1780 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1781 then
1782 printf " if (${invalid_p})\n"
1783 printf " gdbarch->${function} = ${postdefault};\n"
1784 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1785 then
1786 printf " if (gdbarch->${function} == ${predefault})\n"
1787 printf " gdbarch->${function} = ${postdefault};\n"
1788 elif [ -n "${postdefault}" ]
1789 then
1790 printf " if (gdbarch->${function} == 0)\n"
1791 printf " gdbarch->${function} = ${postdefault};\n"
1792 elif [ -n "${invalid_p}" ]
1793 then
1794 printf " if (${invalid_p})\n"
1795 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1796 elif [ -n "${predefault}" ]
1797 then
1798 printf " if (gdbarch->${function} == ${predefault})\n"
1799 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1800 fi
1801 fi
1802 done
1803 cat <<EOF
1804 buf = ui_file_xstrdup (log, &length);
1805 make_cleanup (xfree, buf);
1806 if (length > 0)
1807 internal_error (__FILE__, __LINE__,
1808 _("verify_gdbarch: the following are invalid ...%s"),
1809 buf);
1810 do_cleanups (cleanups);
1811 }
1812 EOF
1813
1814 # dump the structure
1815 printf "\n"
1816 printf "\n"
1817 cat <<EOF
1818 /* Print out the details of the current architecture. */
1819
1820 void
1821 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1822 {
1823 const char *gdb_nm_file = "<not-defined>";
1824
1825 #if defined (GDB_NM_FILE)
1826 gdb_nm_file = GDB_NM_FILE;
1827 #endif
1828 fprintf_unfiltered (file,
1829 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1830 gdb_nm_file);
1831 EOF
1832 function_list | sort -t: -k 3 | while do_read
1833 do
1834 # First the predicate
1835 if class_is_predicate_p
1836 then
1837 printf " fprintf_unfiltered (file,\n"
1838 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1839 printf " gdbarch_${function}_p (gdbarch));\n"
1840 fi
1841 # Print the corresponding value.
1842 if class_is_function_p
1843 then
1844 printf " fprintf_unfiltered (file,\n"
1845 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1846 printf " host_address_to_string (gdbarch->${function}));\n"
1847 else
1848 # It is a variable
1849 case "${print}:${returntype}" in
1850 :CORE_ADDR )
1851 fmt="%s"
1852 print="core_addr_to_string_nz (gdbarch->${function})"
1853 ;;
1854 :* )
1855 fmt="%s"
1856 print="plongest (gdbarch->${function})"
1857 ;;
1858 * )
1859 fmt="%s"
1860 ;;
1861 esac
1862 printf " fprintf_unfiltered (file,\n"
1863 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1864 printf " ${print});\n"
1865 fi
1866 done
1867 cat <<EOF
1868 if (gdbarch->dump_tdep != NULL)
1869 gdbarch->dump_tdep (gdbarch, file);
1870 }
1871 EOF
1872
1873
1874 # GET/SET
1875 printf "\n"
1876 cat <<EOF
1877 struct gdbarch_tdep *
1878 gdbarch_tdep (struct gdbarch *gdbarch)
1879 {
1880 if (gdbarch_debug >= 2)
1881 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1882 return gdbarch->tdep;
1883 }
1884 EOF
1885 printf "\n"
1886 function_list | while do_read
1887 do
1888 if class_is_predicate_p
1889 then
1890 printf "\n"
1891 printf "int\n"
1892 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1893 printf "{\n"
1894 printf " gdb_assert (gdbarch != NULL);\n"
1895 printf " return ${predicate};\n"
1896 printf "}\n"
1897 fi
1898 if class_is_function_p
1899 then
1900 printf "\n"
1901 printf "${returntype}\n"
1902 if [ "x${formal}" = "xvoid" ]
1903 then
1904 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1905 else
1906 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1907 fi
1908 printf "{\n"
1909 printf " gdb_assert (gdbarch != NULL);\n"
1910 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1911 if class_is_predicate_p && test -n "${predefault}"
1912 then
1913 # Allow a call to a function with a predicate.
1914 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1915 fi
1916 printf " if (gdbarch_debug >= 2)\n"
1917 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1918 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1919 then
1920 if class_is_multiarch_p
1921 then
1922 params="gdbarch"
1923 else
1924 params=""
1925 fi
1926 else
1927 if class_is_multiarch_p
1928 then
1929 params="gdbarch, ${actual}"
1930 else
1931 params="${actual}"
1932 fi
1933 fi
1934 if [ "x${returntype}" = "xvoid" ]
1935 then
1936 printf " gdbarch->${function} (${params});\n"
1937 else
1938 printf " return gdbarch->${function} (${params});\n"
1939 fi
1940 printf "}\n"
1941 printf "\n"
1942 printf "void\n"
1943 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1944 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1945 printf "{\n"
1946 printf " gdbarch->${function} = ${function};\n"
1947 printf "}\n"
1948 elif class_is_variable_p
1949 then
1950 printf "\n"
1951 printf "${returntype}\n"
1952 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1953 printf "{\n"
1954 printf " gdb_assert (gdbarch != NULL);\n"
1955 if [ "x${invalid_p}" = "x0" ]
1956 then
1957 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1958 elif [ -n "${invalid_p}" ]
1959 then
1960 printf " /* Check variable is valid. */\n"
1961 printf " gdb_assert (!(${invalid_p}));\n"
1962 elif [ -n "${predefault}" ]
1963 then
1964 printf " /* Check variable changed from pre-default. */\n"
1965 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1966 fi
1967 printf " if (gdbarch_debug >= 2)\n"
1968 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1969 printf " return gdbarch->${function};\n"
1970 printf "}\n"
1971 printf "\n"
1972 printf "void\n"
1973 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1974 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1975 printf "{\n"
1976 printf " gdbarch->${function} = ${function};\n"
1977 printf "}\n"
1978 elif class_is_info_p
1979 then
1980 printf "\n"
1981 printf "${returntype}\n"
1982 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1983 printf "{\n"
1984 printf " gdb_assert (gdbarch != NULL);\n"
1985 printf " if (gdbarch_debug >= 2)\n"
1986 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1987 printf " return gdbarch->${function};\n"
1988 printf "}\n"
1989 fi
1990 done
1991
1992 # All the trailing guff
1993 cat <<EOF
1994
1995
1996 /* Keep a registry of per-architecture data-pointers required by GDB
1997 modules. */
1998
1999 struct gdbarch_data
2000 {
2001 unsigned index;
2002 int init_p;
2003 gdbarch_data_pre_init_ftype *pre_init;
2004 gdbarch_data_post_init_ftype *post_init;
2005 };
2006
2007 struct gdbarch_data_registration
2008 {
2009 struct gdbarch_data *data;
2010 struct gdbarch_data_registration *next;
2011 };
2012
2013 struct gdbarch_data_registry
2014 {
2015 unsigned nr;
2016 struct gdbarch_data_registration *registrations;
2017 };
2018
2019 struct gdbarch_data_registry gdbarch_data_registry =
2020 {
2021 0, NULL,
2022 };
2023
2024 static struct gdbarch_data *
2025 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2026 gdbarch_data_post_init_ftype *post_init)
2027 {
2028 struct gdbarch_data_registration **curr;
2029
2030 /* Append the new registration. */
2031 for (curr = &gdbarch_data_registry.registrations;
2032 (*curr) != NULL;
2033 curr = &(*curr)->next);
2034 (*curr) = XNEW (struct gdbarch_data_registration);
2035 (*curr)->next = NULL;
2036 (*curr)->data = XNEW (struct gdbarch_data);
2037 (*curr)->data->index = gdbarch_data_registry.nr++;
2038 (*curr)->data->pre_init = pre_init;
2039 (*curr)->data->post_init = post_init;
2040 (*curr)->data->init_p = 1;
2041 return (*curr)->data;
2042 }
2043
2044 struct gdbarch_data *
2045 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2046 {
2047 return gdbarch_data_register (pre_init, NULL);
2048 }
2049
2050 struct gdbarch_data *
2051 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2052 {
2053 return gdbarch_data_register (NULL, post_init);
2054 }
2055
2056 /* Create/delete the gdbarch data vector. */
2057
2058 static void
2059 alloc_gdbarch_data (struct gdbarch *gdbarch)
2060 {
2061 gdb_assert (gdbarch->data == NULL);
2062 gdbarch->nr_data = gdbarch_data_registry.nr;
2063 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2064 }
2065
2066 /* Initialize the current value of the specified per-architecture
2067 data-pointer. */
2068
2069 void
2070 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2071 struct gdbarch_data *data,
2072 void *pointer)
2073 {
2074 gdb_assert (data->index < gdbarch->nr_data);
2075 gdb_assert (gdbarch->data[data->index] == NULL);
2076 gdb_assert (data->pre_init == NULL);
2077 gdbarch->data[data->index] = pointer;
2078 }
2079
2080 /* Return the current value of the specified per-architecture
2081 data-pointer. */
2082
2083 void *
2084 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2085 {
2086 gdb_assert (data->index < gdbarch->nr_data);
2087 if (gdbarch->data[data->index] == NULL)
2088 {
2089 /* The data-pointer isn't initialized, call init() to get a
2090 value. */
2091 if (data->pre_init != NULL)
2092 /* Mid architecture creation: pass just the obstack, and not
2093 the entire architecture, as that way it isn't possible for
2094 pre-init code to refer to undefined architecture
2095 fields. */
2096 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2097 else if (gdbarch->initialized_p
2098 && data->post_init != NULL)
2099 /* Post architecture creation: pass the entire architecture
2100 (as all fields are valid), but be careful to also detect
2101 recursive references. */
2102 {
2103 gdb_assert (data->init_p);
2104 data->init_p = 0;
2105 gdbarch->data[data->index] = data->post_init (gdbarch);
2106 data->init_p = 1;
2107 }
2108 else
2109 /* The architecture initialization hasn't completed - punt -
2110 hope that the caller knows what they are doing. Once
2111 deprecated_set_gdbarch_data has been initialized, this can be
2112 changed to an internal error. */
2113 return NULL;
2114 gdb_assert (gdbarch->data[data->index] != NULL);
2115 }
2116 return gdbarch->data[data->index];
2117 }
2118
2119
2120 /* Keep a registry of the architectures known by GDB. */
2121
2122 struct gdbarch_registration
2123 {
2124 enum bfd_architecture bfd_architecture;
2125 gdbarch_init_ftype *init;
2126 gdbarch_dump_tdep_ftype *dump_tdep;
2127 struct gdbarch_list *arches;
2128 struct gdbarch_registration *next;
2129 };
2130
2131 static struct gdbarch_registration *gdbarch_registry = NULL;
2132
2133 static void
2134 append_name (const char ***buf, int *nr, const char *name)
2135 {
2136 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2137 (*buf)[*nr] = name;
2138 *nr += 1;
2139 }
2140
2141 const char **
2142 gdbarch_printable_names (void)
2143 {
2144 /* Accumulate a list of names based on the registed list of
2145 architectures. */
2146 int nr_arches = 0;
2147 const char **arches = NULL;
2148 struct gdbarch_registration *rego;
2149
2150 for (rego = gdbarch_registry;
2151 rego != NULL;
2152 rego = rego->next)
2153 {
2154 const struct bfd_arch_info *ap;
2155 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2156 if (ap == NULL)
2157 internal_error (__FILE__, __LINE__,
2158 _("gdbarch_architecture_names: multi-arch unknown"));
2159 do
2160 {
2161 append_name (&arches, &nr_arches, ap->printable_name);
2162 ap = ap->next;
2163 }
2164 while (ap != NULL);
2165 }
2166 append_name (&arches, &nr_arches, NULL);
2167 return arches;
2168 }
2169
2170
2171 void
2172 gdbarch_register (enum bfd_architecture bfd_architecture,
2173 gdbarch_init_ftype *init,
2174 gdbarch_dump_tdep_ftype *dump_tdep)
2175 {
2176 struct gdbarch_registration **curr;
2177 const struct bfd_arch_info *bfd_arch_info;
2178
2179 /* Check that BFD recognizes this architecture */
2180 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2181 if (bfd_arch_info == NULL)
2182 {
2183 internal_error (__FILE__, __LINE__,
2184 _("gdbarch: Attempt to register "
2185 "unknown architecture (%d)"),
2186 bfd_architecture);
2187 }
2188 /* Check that we haven't seen this architecture before. */
2189 for (curr = &gdbarch_registry;
2190 (*curr) != NULL;
2191 curr = &(*curr)->next)
2192 {
2193 if (bfd_architecture == (*curr)->bfd_architecture)
2194 internal_error (__FILE__, __LINE__,
2195 _("gdbarch: Duplicate registration "
2196 "of architecture (%s)"),
2197 bfd_arch_info->printable_name);
2198 }
2199 /* log it */
2200 if (gdbarch_debug)
2201 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2202 bfd_arch_info->printable_name,
2203 host_address_to_string (init));
2204 /* Append it */
2205 (*curr) = XNEW (struct gdbarch_registration);
2206 (*curr)->bfd_architecture = bfd_architecture;
2207 (*curr)->init = init;
2208 (*curr)->dump_tdep = dump_tdep;
2209 (*curr)->arches = NULL;
2210 (*curr)->next = NULL;
2211 }
2212
2213 void
2214 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2215 gdbarch_init_ftype *init)
2216 {
2217 gdbarch_register (bfd_architecture, init, NULL);
2218 }
2219
2220
2221 /* Look for an architecture using gdbarch_info. */
2222
2223 struct gdbarch_list *
2224 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2225 const struct gdbarch_info *info)
2226 {
2227 for (; arches != NULL; arches = arches->next)
2228 {
2229 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2230 continue;
2231 if (info->byte_order != arches->gdbarch->byte_order)
2232 continue;
2233 if (info->osabi != arches->gdbarch->osabi)
2234 continue;
2235 if (info->target_desc != arches->gdbarch->target_desc)
2236 continue;
2237 return arches;
2238 }
2239 return NULL;
2240 }
2241
2242
2243 /* Find an architecture that matches the specified INFO. Create a new
2244 architecture if needed. Return that new architecture. */
2245
2246 struct gdbarch *
2247 gdbarch_find_by_info (struct gdbarch_info info)
2248 {
2249 struct gdbarch *new_gdbarch;
2250 struct gdbarch_registration *rego;
2251
2252 /* Fill in missing parts of the INFO struct using a number of
2253 sources: "set ..."; INFOabfd supplied; and the global
2254 defaults. */
2255 gdbarch_info_fill (&info);
2256
2257 /* Must have found some sort of architecture. */
2258 gdb_assert (info.bfd_arch_info != NULL);
2259
2260 if (gdbarch_debug)
2261 {
2262 fprintf_unfiltered (gdb_stdlog,
2263 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2264 (info.bfd_arch_info != NULL
2265 ? info.bfd_arch_info->printable_name
2266 : "(null)"));
2267 fprintf_unfiltered (gdb_stdlog,
2268 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2269 info.byte_order,
2270 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2271 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2272 : "default"));
2273 fprintf_unfiltered (gdb_stdlog,
2274 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2275 info.osabi, gdbarch_osabi_name (info.osabi));
2276 fprintf_unfiltered (gdb_stdlog,
2277 "gdbarch_find_by_info: info.abfd %s\n",
2278 host_address_to_string (info.abfd));
2279 fprintf_unfiltered (gdb_stdlog,
2280 "gdbarch_find_by_info: info.tdep_info %s\n",
2281 host_address_to_string (info.tdep_info));
2282 }
2283
2284 /* Find the tdep code that knows about this architecture. */
2285 for (rego = gdbarch_registry;
2286 rego != NULL;
2287 rego = rego->next)
2288 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2289 break;
2290 if (rego == NULL)
2291 {
2292 if (gdbarch_debug)
2293 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2294 "No matching architecture\n");
2295 return 0;
2296 }
2297
2298 /* Ask the tdep code for an architecture that matches "info". */
2299 new_gdbarch = rego->init (info, rego->arches);
2300
2301 /* Did the tdep code like it? No. Reject the change and revert to
2302 the old architecture. */
2303 if (new_gdbarch == NULL)
2304 {
2305 if (gdbarch_debug)
2306 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2307 "Target rejected architecture\n");
2308 return NULL;
2309 }
2310
2311 /* Is this a pre-existing architecture (as determined by already
2312 being initialized)? Move it to the front of the architecture
2313 list (keeping the list sorted Most Recently Used). */
2314 if (new_gdbarch->initialized_p)
2315 {
2316 struct gdbarch_list **list;
2317 struct gdbarch_list *this;
2318 if (gdbarch_debug)
2319 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2320 "Previous architecture %s (%s) selected\n",
2321 host_address_to_string (new_gdbarch),
2322 new_gdbarch->bfd_arch_info->printable_name);
2323 /* Find the existing arch in the list. */
2324 for (list = &rego->arches;
2325 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2326 list = &(*list)->next);
2327 /* It had better be in the list of architectures. */
2328 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2329 /* Unlink THIS. */
2330 this = (*list);
2331 (*list) = this->next;
2332 /* Insert THIS at the front. */
2333 this->next = rego->arches;
2334 rego->arches = this;
2335 /* Return it. */
2336 return new_gdbarch;
2337 }
2338
2339 /* It's a new architecture. */
2340 if (gdbarch_debug)
2341 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2342 "New architecture %s (%s) selected\n",
2343 host_address_to_string (new_gdbarch),
2344 new_gdbarch->bfd_arch_info->printable_name);
2345
2346 /* Insert the new architecture into the front of the architecture
2347 list (keep the list sorted Most Recently Used). */
2348 {
2349 struct gdbarch_list *this = XNEW (struct gdbarch_list);
2350 this->next = rego->arches;
2351 this->gdbarch = new_gdbarch;
2352 rego->arches = this;
2353 }
2354
2355 /* Check that the newly installed architecture is valid. Plug in
2356 any post init values. */
2357 new_gdbarch->dump_tdep = rego->dump_tdep;
2358 verify_gdbarch (new_gdbarch);
2359 new_gdbarch->initialized_p = 1;
2360
2361 if (gdbarch_debug)
2362 gdbarch_dump (new_gdbarch, gdb_stdlog);
2363
2364 return new_gdbarch;
2365 }
2366
2367 /* Make the specified architecture current. */
2368
2369 void
2370 set_target_gdbarch (struct gdbarch *new_gdbarch)
2371 {
2372 gdb_assert (new_gdbarch != NULL);
2373 gdb_assert (new_gdbarch->initialized_p);
2374 current_inferior ()->gdbarch = new_gdbarch;
2375 observer_notify_architecture_changed (new_gdbarch);
2376 registers_changed ();
2377 }
2378
2379 /* Return the current inferior's arch. */
2380
2381 struct gdbarch *
2382 target_gdbarch (void)
2383 {
2384 return current_inferior ()->gdbarch;
2385 }
2386
2387 extern void _initialize_gdbarch (void);
2388
2389 void
2390 _initialize_gdbarch (void)
2391 {
2392 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2393 Set architecture debugging."), _("\\
2394 Show architecture debugging."), _("\\
2395 When non-zero, architecture debugging is enabled."),
2396 NULL,
2397 show_gdbarch_debug,
2398 &setdebuglist, &showdebuglist);
2399 }
2400 EOF
2401
2402 # close things off
2403 exec 1>&2
2404 #../move-if-change new-gdbarch.c gdbarch.c
2405 compare_new gdbarch.c