Fix problem parsing symbol version strings when they are preceeded by whitespace.
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 f:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # This is simply not needed. See value_of_builtin_frame_fp_reg and
432 # call_function_by_hand.
433 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
434 f:2:TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
435 # The dummy call frame SP should be set by push_dummy_call.
436 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
437 # Function for getting target's idea of a frame pointer. FIXME: GDB's
438 # whole scheme for dealing with "frames" and "frame pointers" needs a
439 # serious shakedown.
440 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
441 #
442 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
443 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
444 #
445 v:2:NUM_REGS:int:num_regs::::0:-1
446 # This macro gives the number of pseudo-registers that live in the
447 # register namespace but do not get fetched or stored on the target.
448 # These pseudo-registers may be aliases for other registers,
449 # combinations of other registers, or they may be computed by GDB.
450 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
451
452 # GDB's standard (or well known) register numbers. These can map onto
453 # a real register or a pseudo (computed) register or not be defined at
454 # all (-1).
455 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
456 # This is simply not needed. See value_of_builtin_frame_fp_reg and
457 # call_function_by_hand.
458 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
459 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
460 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
461 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
462 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
463 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
464 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
465 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
466 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
467 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
468 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
469 # Convert from an sdb register number to an internal gdb register number.
470 # This should be defined in tm.h, if REGISTER_NAMES is not set up
471 # to map one to one onto the sdb register numbers.
472 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
473 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
474 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
475 v:2:REGISTER_SIZE:int:register_size::::0:-1
476 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
477 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
478 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
479 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
480 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
481 # by REGISTER_TYPE.
482 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
483 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
484 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
485 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
486 # by REGISTER_TYPE.
487 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
488 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
489 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
490 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
491 # by REGISTER_TYPE.
492 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
493 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
494 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
495 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
496 # by REGISTER_TYPE.
497 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
498 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
499 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
500 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE have all being replaced
501 # by REGISTER_TYPE.
502 F:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
503 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
504 #
505 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
506 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
507 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
508 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
509 # MAP a GDB RAW register number onto a simulator register number. See
510 # also include/...-sim.h.
511 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
512 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
513 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
514 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
515 # setjmp/longjmp support.
516 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
517 #
518 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
519 # much better but at least they are vaguely consistent). The headers
520 # and body contain convoluted #if/#else sequences for determine how
521 # things should be compiled. Instead of trying to mimic that
522 # behaviour here (and hence entrench it further) gdbarch simply
523 # reqires that these methods be set up from the word go. This also
524 # avoids any potential problems with moving beyond multi-arch partial.
525 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
526 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
527 f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0
528 v::CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset
529 v::CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset
530 v::CALL_DUMMY_LENGTH:int:call_dummy_length
531 # NOTE: cagney/2002-11-24: This function with predicate has a valid
532 # (callable) initial value. As a consequence, even when the predicate
533 # is false, the corresponding function works. This simplifies the
534 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
535 # doesn't need to be modified.
536 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
537 v::CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538 v::SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
539 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust::::0
540 F::FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
541 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
542 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
543 #
544 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
545 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
546 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
547 #
548 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
549 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
550 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
551 #
552 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
553 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
554 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
555 #
556 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
557 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
558 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
559 #
560 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
561 # Replaced by PUSH_DUMMY_CALL
562 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
563 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:struct regcache *regcache, CORE_ADDR dummy_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:regcache, dummy_addr, nargs, args, sp, struct_return, struct_addr
564 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
565 # NOTE: This can be handled directly in push_dummy_call.
566 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
567 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-:::0
568 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
569 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
570 #
571 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
572 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
573 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
574 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
575 #
576 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
577 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
578 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
579 #
580 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame:::0
581 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
582 #
583 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
584 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
585 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
586 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
587 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
588 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
589 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
590 f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
591 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
592 #
593 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
594 #
595 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
596 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
597 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame::0:0
598 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
599 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
600 # note, per UNWIND_PC's doco, that while the two have similar
601 # interfaces they have very different underlying implementations.
602 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi::0:0
603 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame:
604 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
605 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
606 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
607 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
608 #
609 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
610 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
611 # NOTE: cagney/2003-03-24: This is better handled by PUSH_ARGUMENTS.
612 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
613 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
614 # FIXME: kettenis/2003-03-08: This should be replaced by a function
615 # parametrized with (at least) the regcache.
616 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
617 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info::0:0
618 v:2:PARM_BOUNDARY:int:parm_boundary
619 #
620 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
621 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
622 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
623 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
624 # On some machines there are bits in addresses which are not really
625 # part of the address, but are used by the kernel, the hardware, etc.
626 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
627 # we get a "real" address such as one would find in a symbol table.
628 # This is used only for addresses of instructions, and even then I'm
629 # not sure it's used in all contexts. It exists to deal with there
630 # being a few stray bits in the PC which would mislead us, not as some
631 # sort of generic thing to handle alignment or segmentation (it's
632 # possible it should be in TARGET_READ_PC instead).
633 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
634 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
635 # ADDR_BITS_REMOVE.
636 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
637 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
638 # the target needs software single step. An ISA method to implement it.
639 #
640 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
641 # using the breakpoint system instead of blatting memory directly (as with rs6000).
642 #
643 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
644 # single step. If not, then implement single step using breakpoints.
645 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
646 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
647 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
648
649
650 # For SVR4 shared libraries, each call goes through a small piece of
651 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
652 # to nonzero if we are currently stopped in one of these.
653 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
654
655 # Some systems also have trampoline code for returning from shared libs.
656 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
657
658 # Sigtramp is a routine that the kernel calls (which then calls the
659 # signal handler). On most machines it is a library routine that is
660 # linked into the executable.
661 #
662 # This macro, given a program counter value and the name of the
663 # function in which that PC resides (which can be null if the name is
664 # not known), returns nonzero if the PC and name show that we are in
665 # sigtramp.
666 #
667 # On most machines just see if the name is sigtramp (and if we have
668 # no name, assume we are not in sigtramp).
669 #
670 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
671 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
672 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
673 # own local NAME lookup.
674 #
675 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
676 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
677 # does not.
678 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
679 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
680 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
681 # A target might have problems with watchpoints as soon as the stack
682 # frame of the current function has been destroyed. This mostly happens
683 # as the first action in a funtion's epilogue. in_function_epilogue_p()
684 # is defined to return a non-zero value if either the given addr is one
685 # instruction after the stack destroying instruction up to the trailing
686 # return instruction or if we can figure out that the stack frame has
687 # already been invalidated regardless of the value of addr. Targets
688 # which don't suffer from that problem could just let this functionality
689 # untouched.
690 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
691 # Given a vector of command-line arguments, return a newly allocated
692 # string which, when passed to the create_inferior function, will be
693 # parsed (on Unix systems, by the shell) to yield the same vector.
694 # This function should call error() if the argument vector is not
695 # representable for this target or if this target does not support
696 # command-line arguments.
697 # ARGC is the number of elements in the vector.
698 # ARGV is an array of strings, one per argument.
699 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
700 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
701 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
702 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
703 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
704 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
705 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
706 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
707 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
708 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
709 # Is a register in a group
710 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
711 EOF
712 }
713
714 #
715 # The .log file
716 #
717 exec > new-gdbarch.log
718 function_list | while do_read
719 do
720 cat <<EOF
721 ${class} ${macro}(${actual})
722 ${returntype} ${function} ($formal)${attrib}
723 EOF
724 for r in ${read}
725 do
726 eval echo \"\ \ \ \ ${r}=\${${r}}\"
727 done
728 if class_is_predicate_p && fallback_default_p
729 then
730 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
731 kill $$
732 exit 1
733 fi
734 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
735 then
736 echo "Error: postdefault is useless when invalid_p=0" 1>&2
737 kill $$
738 exit 1
739 fi
740 if class_is_multiarch_p
741 then
742 if class_is_predicate_p ; then :
743 elif test "x${predefault}" = "x"
744 then
745 echo "Error: pure multi-arch function must have a predefault" 1>&2
746 kill $$
747 exit 1
748 fi
749 fi
750 echo ""
751 done
752
753 exec 1>&2
754 compare_new gdbarch.log
755
756
757 copyright ()
758 {
759 cat <<EOF
760 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
761
762 /* Dynamic architecture support for GDB, the GNU debugger.
763 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
764
765 This file is part of GDB.
766
767 This program is free software; you can redistribute it and/or modify
768 it under the terms of the GNU General Public License as published by
769 the Free Software Foundation; either version 2 of the License, or
770 (at your option) any later version.
771
772 This program is distributed in the hope that it will be useful,
773 but WITHOUT ANY WARRANTY; without even the implied warranty of
774 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
775 GNU General Public License for more details.
776
777 You should have received a copy of the GNU General Public License
778 along with this program; if not, write to the Free Software
779 Foundation, Inc., 59 Temple Place - Suite 330,
780 Boston, MA 02111-1307, USA. */
781
782 /* This file was created with the aid of \`\`gdbarch.sh''.
783
784 The Bourne shell script \`\`gdbarch.sh'' creates the files
785 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
786 against the existing \`\`gdbarch.[hc]''. Any differences found
787 being reported.
788
789 If editing this file, please also run gdbarch.sh and merge any
790 changes into that script. Conversely, when making sweeping changes
791 to this file, modifying gdbarch.sh and using its output may prove
792 easier. */
793
794 EOF
795 }
796
797 #
798 # The .h file
799 #
800
801 exec > new-gdbarch.h
802 copyright
803 cat <<EOF
804 #ifndef GDBARCH_H
805 #define GDBARCH_H
806
807 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
808 #if !GDB_MULTI_ARCH
809 /* Pull in function declarations refered to, indirectly, via macros. */
810 #include "inferior.h" /* For unsigned_address_to_pointer(). */
811 #include "symfile.h" /* For entry_point_address(). */
812 #endif
813
814 struct floatformat;
815 struct ui_file;
816 struct frame_info;
817 struct value;
818 struct objfile;
819 struct minimal_symbol;
820 struct regcache;
821 struct reggroup;
822
823 extern struct gdbarch *current_gdbarch;
824
825
826 /* If any of the following are defined, the target wasn't correctly
827 converted. */
828
829 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
830 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
831 #endif
832 EOF
833
834 # function typedef's
835 printf "\n"
836 printf "\n"
837 printf "/* The following are pre-initialized by GDBARCH. */\n"
838 function_list | while do_read
839 do
840 if class_is_info_p
841 then
842 printf "\n"
843 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
844 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
845 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
846 printf "#error \"Non multi-arch definition of ${macro}\"\n"
847 printf "#endif\n"
848 printf "#if GDB_MULTI_ARCH\n"
849 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
850 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
851 printf "#endif\n"
852 printf "#endif\n"
853 fi
854 done
855
856 # function typedef's
857 printf "\n"
858 printf "\n"
859 printf "/* The following are initialized by the target dependent code. */\n"
860 function_list | while do_read
861 do
862 if [ -n "${comment}" ]
863 then
864 echo "${comment}" | sed \
865 -e '2 s,#,/*,' \
866 -e '3,$ s,#, ,' \
867 -e '$ s,$, */,'
868 fi
869 if class_is_multiarch_p
870 then
871 if class_is_predicate_p
872 then
873 printf "\n"
874 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
875 fi
876 else
877 if class_is_predicate_p
878 then
879 printf "\n"
880 printf "#if defined (${macro})\n"
881 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
882 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
883 printf "#if !defined (${macro}_P)\n"
884 printf "#define ${macro}_P() (1)\n"
885 printf "#endif\n"
886 printf "#endif\n"
887 printf "\n"
888 printf "/* Default predicate for non- multi-arch targets. */\n"
889 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
890 printf "#define ${macro}_P() (0)\n"
891 printf "#endif\n"
892 printf "\n"
893 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
894 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
895 printf "#error \"Non multi-arch definition of ${macro}\"\n"
896 printf "#endif\n"
897 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
898 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
899 printf "#endif\n"
900 fi
901 fi
902 if class_is_variable_p
903 then
904 if fallback_default_p || class_is_predicate_p
905 then
906 printf "\n"
907 printf "/* Default (value) for non- multi-arch platforms. */\n"
908 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
909 echo "#define ${macro} (${fallbackdefault})" \
910 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
911 printf "#endif\n"
912 fi
913 printf "\n"
914 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
915 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
916 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
917 printf "#error \"Non multi-arch definition of ${macro}\"\n"
918 printf "#endif\n"
919 if test "${level}" = ""
920 then
921 printf "#if !defined (${macro})\n"
922 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
923 printf "#endif\n"
924 else
925 printf "#if GDB_MULTI_ARCH\n"
926 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
927 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
928 printf "#endif\n"
929 printf "#endif\n"
930 fi
931 fi
932 if class_is_function_p
933 then
934 if class_is_multiarch_p ; then :
935 elif fallback_default_p || class_is_predicate_p
936 then
937 printf "\n"
938 printf "/* Default (function) for non- multi-arch platforms. */\n"
939 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
940 if [ "x${fallbackdefault}" = "x0" ]
941 then
942 if [ "x${actual}" = "x-" ]
943 then
944 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
945 else
946 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
947 fi
948 else
949 # FIXME: Should be passing current_gdbarch through!
950 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
951 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
952 fi
953 printf "#endif\n"
954 fi
955 printf "\n"
956 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
957 then
958 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
959 elif class_is_multiarch_p
960 then
961 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
962 else
963 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
964 fi
965 if [ "x${formal}" = "xvoid" ]
966 then
967 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
968 else
969 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
970 fi
971 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
972 if class_is_multiarch_p ; then :
973 else
974 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
975 printf "#error \"Non multi-arch definition of ${macro}\"\n"
976 printf "#endif\n"
977 printf "#if GDB_MULTI_ARCH\n"
978 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
979 if [ "x${actual}" = "x" ]
980 then
981 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
982 elif [ "x${actual}" = "x-" ]
983 then
984 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
985 else
986 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
987 fi
988 printf "#endif\n"
989 printf "#endif\n"
990 fi
991 fi
992 done
993
994 # close it off
995 cat <<EOF
996
997 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
998
999
1000 /* Mechanism for co-ordinating the selection of a specific
1001 architecture.
1002
1003 GDB targets (*-tdep.c) can register an interest in a specific
1004 architecture. Other GDB components can register a need to maintain
1005 per-architecture data.
1006
1007 The mechanisms below ensures that there is only a loose connection
1008 between the set-architecture command and the various GDB
1009 components. Each component can independently register their need
1010 to maintain architecture specific data with gdbarch.
1011
1012 Pragmatics:
1013
1014 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1015 didn't scale.
1016
1017 The more traditional mega-struct containing architecture specific
1018 data for all the various GDB components was also considered. Since
1019 GDB is built from a variable number of (fairly independent)
1020 components it was determined that the global aproach was not
1021 applicable. */
1022
1023
1024 /* Register a new architectural family with GDB.
1025
1026 Register support for the specified ARCHITECTURE with GDB. When
1027 gdbarch determines that the specified architecture has been
1028 selected, the corresponding INIT function is called.
1029
1030 --
1031
1032 The INIT function takes two parameters: INFO which contains the
1033 information available to gdbarch about the (possibly new)
1034 architecture; ARCHES which is a list of the previously created
1035 \`\`struct gdbarch'' for this architecture.
1036
1037 The INFO parameter is, as far as possible, be pre-initialized with
1038 information obtained from INFO.ABFD or the previously selected
1039 architecture.
1040
1041 The ARCHES parameter is a linked list (sorted most recently used)
1042 of all the previously created architures for this architecture
1043 family. The (possibly NULL) ARCHES->gdbarch can used to access
1044 values from the previously selected architecture for this
1045 architecture family. The global \`\`current_gdbarch'' shall not be
1046 used.
1047
1048 The INIT function shall return any of: NULL - indicating that it
1049 doesn't recognize the selected architecture; an existing \`\`struct
1050 gdbarch'' from the ARCHES list - indicating that the new
1051 architecture is just a synonym for an earlier architecture (see
1052 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1053 - that describes the selected architecture (see gdbarch_alloc()).
1054
1055 The DUMP_TDEP function shall print out all target specific values.
1056 Care should be taken to ensure that the function works in both the
1057 multi-arch and non- multi-arch cases. */
1058
1059 struct gdbarch_list
1060 {
1061 struct gdbarch *gdbarch;
1062 struct gdbarch_list *next;
1063 };
1064
1065 struct gdbarch_info
1066 {
1067 /* Use default: NULL (ZERO). */
1068 const struct bfd_arch_info *bfd_arch_info;
1069
1070 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1071 int byte_order;
1072
1073 /* Use default: NULL (ZERO). */
1074 bfd *abfd;
1075
1076 /* Use default: NULL (ZERO). */
1077 struct gdbarch_tdep_info *tdep_info;
1078
1079 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1080 enum gdb_osabi osabi;
1081 };
1082
1083 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1084 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1085
1086 /* DEPRECATED - use gdbarch_register() */
1087 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1088
1089 extern void gdbarch_register (enum bfd_architecture architecture,
1090 gdbarch_init_ftype *,
1091 gdbarch_dump_tdep_ftype *);
1092
1093
1094 /* Return a freshly allocated, NULL terminated, array of the valid
1095 architecture names. Since architectures are registered during the
1096 _initialize phase this function only returns useful information
1097 once initialization has been completed. */
1098
1099 extern const char **gdbarch_printable_names (void);
1100
1101
1102 /* Helper function. Search the list of ARCHES for a GDBARCH that
1103 matches the information provided by INFO. */
1104
1105 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1106
1107
1108 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1109 basic initialization using values obtained from the INFO andTDEP
1110 parameters. set_gdbarch_*() functions are called to complete the
1111 initialization of the object. */
1112
1113 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1114
1115
1116 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1117 It is assumed that the caller freeds the \`\`struct
1118 gdbarch_tdep''. */
1119
1120 extern void gdbarch_free (struct gdbarch *);
1121
1122
1123 /* Helper function. Force an update of the current architecture.
1124
1125 The actual architecture selected is determined by INFO, \`\`(gdb) set
1126 architecture'' et.al., the existing architecture and BFD's default
1127 architecture. INFO should be initialized to zero and then selected
1128 fields should be updated.
1129
1130 Returns non-zero if the update succeeds */
1131
1132 extern int gdbarch_update_p (struct gdbarch_info info);
1133
1134
1135
1136 /* Register per-architecture data-pointer.
1137
1138 Reserve space for a per-architecture data-pointer. An identifier
1139 for the reserved data-pointer is returned. That identifer should
1140 be saved in a local static variable.
1141
1142 The per-architecture data-pointer is either initialized explicitly
1143 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1144 gdbarch_data()). FREE() is called to delete either an existing
1145 data-pointer overridden by set_gdbarch_data() or when the
1146 architecture object is being deleted.
1147
1148 When a previously created architecture is re-selected, the
1149 per-architecture data-pointer for that previous architecture is
1150 restored. INIT() is not re-called.
1151
1152 Multiple registrarants for any architecture are allowed (and
1153 strongly encouraged). */
1154
1155 struct gdbarch_data;
1156
1157 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1158 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1159 void *pointer);
1160 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1161 gdbarch_data_free_ftype *free);
1162 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1163 struct gdbarch_data *data,
1164 void *pointer);
1165
1166 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1167
1168
1169 /* Register per-architecture memory region.
1170
1171 Provide a memory-region swap mechanism. Per-architecture memory
1172 region are created. These memory regions are swapped whenever the
1173 architecture is changed. For a new architecture, the memory region
1174 is initialized with zero (0) and the INIT function is called.
1175
1176 Memory regions are swapped / initialized in the order that they are
1177 registered. NULL DATA and/or INIT values can be specified.
1178
1179 New code should use register_gdbarch_data(). */
1180
1181 typedef void (gdbarch_swap_ftype) (void);
1182 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1183 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1184
1185
1186
1187 /* The target-system-dependent byte order is dynamic */
1188
1189 extern int target_byte_order;
1190 #ifndef TARGET_BYTE_ORDER
1191 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1192 #endif
1193
1194 extern int target_byte_order_auto;
1195 #ifndef TARGET_BYTE_ORDER_AUTO
1196 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1197 #endif
1198
1199
1200
1201 /* The target-system-dependent BFD architecture is dynamic */
1202
1203 extern int target_architecture_auto;
1204 #ifndef TARGET_ARCHITECTURE_AUTO
1205 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1206 #endif
1207
1208 extern const struct bfd_arch_info *target_architecture;
1209 #ifndef TARGET_ARCHITECTURE
1210 #define TARGET_ARCHITECTURE (target_architecture + 0)
1211 #endif
1212
1213
1214 /* The target-system-dependent disassembler is semi-dynamic */
1215
1216 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1217 unsigned int len, disassemble_info *info);
1218
1219 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1220 disassemble_info *info);
1221
1222 extern void dis_asm_print_address (bfd_vma addr,
1223 disassemble_info *info);
1224
1225 /* Use set_gdbarch_print_insn instead. */
1226 extern int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info*);
1227 extern disassemble_info tm_print_insn_info;
1228 #ifndef TARGET_PRINT_INSN_INFO
1229 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1230 #endif
1231
1232
1233
1234 /* Set the dynamic target-system-dependent parameters (architecture,
1235 byte-order, ...) using information found in the BFD */
1236
1237 extern void set_gdbarch_from_file (bfd *);
1238
1239
1240 /* Initialize the current architecture to the "first" one we find on
1241 our list. */
1242
1243 extern void initialize_current_architecture (void);
1244
1245 /* For non-multiarched targets, do any initialization of the default
1246 gdbarch object necessary after the _initialize_MODULE functions
1247 have run. */
1248 extern void initialize_non_multiarch (void);
1249
1250 /* gdbarch trace variable */
1251 extern int gdbarch_debug;
1252
1253 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1254
1255 #endif
1256 EOF
1257 exec 1>&2
1258 #../move-if-change new-gdbarch.h gdbarch.h
1259 compare_new gdbarch.h
1260
1261
1262 #
1263 # C file
1264 #
1265
1266 exec > new-gdbarch.c
1267 copyright
1268 cat <<EOF
1269
1270 #include "defs.h"
1271 #include "arch-utils.h"
1272
1273 #if GDB_MULTI_ARCH
1274 #include "gdbcmd.h"
1275 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1276 #else
1277 /* Just include everything in sight so that the every old definition
1278 of macro is visible. */
1279 #include "gdb_string.h"
1280 #include <ctype.h>
1281 #include "symtab.h"
1282 #include "frame.h"
1283 #include "inferior.h"
1284 #include "breakpoint.h"
1285 #include "gdb_wait.h"
1286 #include "gdbcore.h"
1287 #include "gdbcmd.h"
1288 #include "target.h"
1289 #include "gdbthread.h"
1290 #include "annotate.h"
1291 #include "symfile.h" /* for overlay functions */
1292 #include "value.h" /* For old tm.h/nm.h macros. */
1293 #endif
1294 #include "symcat.h"
1295
1296 #include "floatformat.h"
1297
1298 #include "gdb_assert.h"
1299 #include "gdb_string.h"
1300 #include "gdb-events.h"
1301 #include "reggroups.h"
1302 #include "osabi.h"
1303 #include "symfile.h" /* For entry_point_address. */
1304
1305 /* Static function declarations */
1306
1307 static void verify_gdbarch (struct gdbarch *gdbarch);
1308 static void alloc_gdbarch_data (struct gdbarch *);
1309 static void free_gdbarch_data (struct gdbarch *);
1310 static void init_gdbarch_swap (struct gdbarch *);
1311 static void clear_gdbarch_swap (struct gdbarch *);
1312 static void swapout_gdbarch_swap (struct gdbarch *);
1313 static void swapin_gdbarch_swap (struct gdbarch *);
1314
1315 /* Non-zero if we want to trace architecture code. */
1316
1317 #ifndef GDBARCH_DEBUG
1318 #define GDBARCH_DEBUG 0
1319 #endif
1320 int gdbarch_debug = GDBARCH_DEBUG;
1321
1322 EOF
1323
1324 # gdbarch open the gdbarch object
1325 printf "\n"
1326 printf "/* Maintain the struct gdbarch object */\n"
1327 printf "\n"
1328 printf "struct gdbarch\n"
1329 printf "{\n"
1330 printf " /* Has this architecture been fully initialized? */\n"
1331 printf " int initialized_p;\n"
1332 printf " /* basic architectural information */\n"
1333 function_list | while do_read
1334 do
1335 if class_is_info_p
1336 then
1337 printf " ${returntype} ${function};\n"
1338 fi
1339 done
1340 printf "\n"
1341 printf " /* target specific vector. */\n"
1342 printf " struct gdbarch_tdep *tdep;\n"
1343 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1344 printf "\n"
1345 printf " /* per-architecture data-pointers */\n"
1346 printf " unsigned nr_data;\n"
1347 printf " void **data;\n"
1348 printf "\n"
1349 printf " /* per-architecture swap-regions */\n"
1350 printf " struct gdbarch_swap *swap;\n"
1351 printf "\n"
1352 cat <<EOF
1353 /* Multi-arch values.
1354
1355 When extending this structure you must:
1356
1357 Add the field below.
1358
1359 Declare set/get functions and define the corresponding
1360 macro in gdbarch.h.
1361
1362 gdbarch_alloc(): If zero/NULL is not a suitable default,
1363 initialize the new field.
1364
1365 verify_gdbarch(): Confirm that the target updated the field
1366 correctly.
1367
1368 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1369 field is dumped out
1370
1371 \`\`startup_gdbarch()'': Append an initial value to the static
1372 variable (base values on the host's c-type system).
1373
1374 get_gdbarch(): Implement the set/get functions (probably using
1375 the macro's as shortcuts).
1376
1377 */
1378
1379 EOF
1380 function_list | while do_read
1381 do
1382 if class_is_variable_p
1383 then
1384 printf " ${returntype} ${function};\n"
1385 elif class_is_function_p
1386 then
1387 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1388 fi
1389 done
1390 printf "};\n"
1391
1392 # A pre-initialized vector
1393 printf "\n"
1394 printf "\n"
1395 cat <<EOF
1396 /* The default architecture uses host values (for want of a better
1397 choice). */
1398 EOF
1399 printf "\n"
1400 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1401 printf "\n"
1402 printf "struct gdbarch startup_gdbarch =\n"
1403 printf "{\n"
1404 printf " 1, /* Always initialized. */\n"
1405 printf " /* basic architecture information */\n"
1406 function_list | while do_read
1407 do
1408 if class_is_info_p
1409 then
1410 printf " ${staticdefault},\n"
1411 fi
1412 done
1413 cat <<EOF
1414 /* target specific vector and its dump routine */
1415 NULL, NULL,
1416 /*per-architecture data-pointers and swap regions */
1417 0, NULL, NULL,
1418 /* Multi-arch values */
1419 EOF
1420 function_list | while do_read
1421 do
1422 if class_is_function_p || class_is_variable_p
1423 then
1424 printf " ${staticdefault},\n"
1425 fi
1426 done
1427 cat <<EOF
1428 /* startup_gdbarch() */
1429 };
1430
1431 struct gdbarch *current_gdbarch = &startup_gdbarch;
1432
1433 /* Do any initialization needed for a non-multiarch configuration
1434 after the _initialize_MODULE functions have been run. */
1435 void
1436 initialize_non_multiarch (void)
1437 {
1438 alloc_gdbarch_data (&startup_gdbarch);
1439 /* Ensure that all swap areas are zeroed so that they again think
1440 they are starting from scratch. */
1441 clear_gdbarch_swap (&startup_gdbarch);
1442 init_gdbarch_swap (&startup_gdbarch);
1443 }
1444 EOF
1445
1446 # Create a new gdbarch struct
1447 printf "\n"
1448 printf "\n"
1449 cat <<EOF
1450 /* Create a new \`\`struct gdbarch'' based on information provided by
1451 \`\`struct gdbarch_info''. */
1452 EOF
1453 printf "\n"
1454 cat <<EOF
1455 struct gdbarch *
1456 gdbarch_alloc (const struct gdbarch_info *info,
1457 struct gdbarch_tdep *tdep)
1458 {
1459 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1460 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1461 the current local architecture and not the previous global
1462 architecture. This ensures that the new architectures initial
1463 values are not influenced by the previous architecture. Once
1464 everything is parameterised with gdbarch, this will go away. */
1465 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1466 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1467
1468 alloc_gdbarch_data (current_gdbarch);
1469
1470 current_gdbarch->tdep = tdep;
1471 EOF
1472 printf "\n"
1473 function_list | while do_read
1474 do
1475 if class_is_info_p
1476 then
1477 printf " current_gdbarch->${function} = info->${function};\n"
1478 fi
1479 done
1480 printf "\n"
1481 printf " /* Force the explicit initialization of these. */\n"
1482 function_list | while do_read
1483 do
1484 if class_is_function_p || class_is_variable_p
1485 then
1486 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1487 then
1488 printf " current_gdbarch->${function} = ${predefault};\n"
1489 fi
1490 fi
1491 done
1492 cat <<EOF
1493 /* gdbarch_alloc() */
1494
1495 return current_gdbarch;
1496 }
1497 EOF
1498
1499 # Free a gdbarch struct.
1500 printf "\n"
1501 printf "\n"
1502 cat <<EOF
1503 /* Free a gdbarch struct. This should never happen in normal
1504 operation --- once you've created a gdbarch, you keep it around.
1505 However, if an architecture's init function encounters an error
1506 building the structure, it may need to clean up a partially
1507 constructed gdbarch. */
1508
1509 void
1510 gdbarch_free (struct gdbarch *arch)
1511 {
1512 gdb_assert (arch != NULL);
1513 free_gdbarch_data (arch);
1514 xfree (arch);
1515 }
1516 EOF
1517
1518 # verify a new architecture
1519 printf "\n"
1520 printf "\n"
1521 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1522 printf "\n"
1523 cat <<EOF
1524 static void
1525 verify_gdbarch (struct gdbarch *gdbarch)
1526 {
1527 struct ui_file *log;
1528 struct cleanup *cleanups;
1529 long dummy;
1530 char *buf;
1531 /* Only perform sanity checks on a multi-arch target. */
1532 if (!GDB_MULTI_ARCH)
1533 return;
1534 log = mem_fileopen ();
1535 cleanups = make_cleanup_ui_file_delete (log);
1536 /* fundamental */
1537 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1538 fprintf_unfiltered (log, "\n\tbyte-order");
1539 if (gdbarch->bfd_arch_info == NULL)
1540 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1541 /* Check those that need to be defined for the given multi-arch level. */
1542 EOF
1543 function_list | while do_read
1544 do
1545 if class_is_function_p || class_is_variable_p
1546 then
1547 if [ "x${invalid_p}" = "x0" ]
1548 then
1549 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1550 elif class_is_predicate_p
1551 then
1552 printf " /* Skip verify of ${function}, has predicate */\n"
1553 # FIXME: See do_read for potential simplification
1554 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1555 then
1556 printf " if (${invalid_p})\n"
1557 printf " gdbarch->${function} = ${postdefault};\n"
1558 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1559 then
1560 printf " if (gdbarch->${function} == ${predefault})\n"
1561 printf " gdbarch->${function} = ${postdefault};\n"
1562 elif [ -n "${postdefault}" ]
1563 then
1564 printf " if (gdbarch->${function} == 0)\n"
1565 printf " gdbarch->${function} = ${postdefault};\n"
1566 elif [ -n "${invalid_p}" ]
1567 then
1568 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1569 printf " && (${invalid_p}))\n"
1570 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1571 elif [ -n "${predefault}" ]
1572 then
1573 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1574 printf " && (gdbarch->${function} == ${predefault}))\n"
1575 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1576 fi
1577 fi
1578 done
1579 cat <<EOF
1580 buf = ui_file_xstrdup (log, &dummy);
1581 make_cleanup (xfree, buf);
1582 if (strlen (buf) > 0)
1583 internal_error (__FILE__, __LINE__,
1584 "verify_gdbarch: the following are invalid ...%s",
1585 buf);
1586 do_cleanups (cleanups);
1587 }
1588 EOF
1589
1590 # dump the structure
1591 printf "\n"
1592 printf "\n"
1593 cat <<EOF
1594 /* Print out the details of the current architecture. */
1595
1596 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1597 just happens to match the global variable \`\`current_gdbarch''. That
1598 way macros refering to that variable get the local and not the global
1599 version - ulgh. Once everything is parameterised with gdbarch, this
1600 will go away. */
1601
1602 void
1603 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1604 {
1605 fprintf_unfiltered (file,
1606 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1607 GDB_MULTI_ARCH);
1608 EOF
1609 function_list | sort -t: -k 3 | while do_read
1610 do
1611 # First the predicate
1612 if class_is_predicate_p
1613 then
1614 if class_is_multiarch_p
1615 then
1616 printf " if (GDB_MULTI_ARCH)\n"
1617 printf " fprintf_unfiltered (file,\n"
1618 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1619 printf " gdbarch_${function}_p (current_gdbarch));\n"
1620 else
1621 printf "#ifdef ${macro}_P\n"
1622 printf " fprintf_unfiltered (file,\n"
1623 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1624 printf " \"${macro}_P()\",\n"
1625 printf " XSTRING (${macro}_P ()));\n"
1626 printf " fprintf_unfiltered (file,\n"
1627 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1628 printf " ${macro}_P ());\n"
1629 printf "#endif\n"
1630 fi
1631 fi
1632 # multiarch functions don't have macros.
1633 if class_is_multiarch_p
1634 then
1635 printf " if (GDB_MULTI_ARCH)\n"
1636 printf " fprintf_unfiltered (file,\n"
1637 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1638 printf " (long) current_gdbarch->${function});\n"
1639 continue
1640 fi
1641 # Print the macro definition.
1642 printf "#ifdef ${macro}\n"
1643 if [ "x${returntype}" = "xvoid" ]
1644 then
1645 printf "#if GDB_MULTI_ARCH\n"
1646 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1647 fi
1648 if class_is_function_p
1649 then
1650 printf " fprintf_unfiltered (file,\n"
1651 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1652 printf " \"${macro}(${actual})\",\n"
1653 printf " XSTRING (${macro} (${actual})));\n"
1654 else
1655 printf " fprintf_unfiltered (file,\n"
1656 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1657 printf " XSTRING (${macro}));\n"
1658 fi
1659 # Print the architecture vector value
1660 if [ "x${returntype}" = "xvoid" ]
1661 then
1662 printf "#endif\n"
1663 fi
1664 if [ "x${print_p}" = "x()" ]
1665 then
1666 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1667 elif [ "x${print_p}" = "x0" ]
1668 then
1669 printf " /* skip print of ${macro}, print_p == 0. */\n"
1670 elif [ -n "${print_p}" ]
1671 then
1672 printf " if (${print_p})\n"
1673 printf " fprintf_unfiltered (file,\n"
1674 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1675 printf " ${print});\n"
1676 elif class_is_function_p
1677 then
1678 printf " if (GDB_MULTI_ARCH)\n"
1679 printf " fprintf_unfiltered (file,\n"
1680 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1681 printf " (long) current_gdbarch->${function}\n"
1682 printf " /*${macro} ()*/);\n"
1683 else
1684 printf " fprintf_unfiltered (file,\n"
1685 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1686 printf " ${print});\n"
1687 fi
1688 printf "#endif\n"
1689 done
1690 cat <<EOF
1691 if (current_gdbarch->dump_tdep != NULL)
1692 current_gdbarch->dump_tdep (current_gdbarch, file);
1693 }
1694 EOF
1695
1696
1697 # GET/SET
1698 printf "\n"
1699 cat <<EOF
1700 struct gdbarch_tdep *
1701 gdbarch_tdep (struct gdbarch *gdbarch)
1702 {
1703 if (gdbarch_debug >= 2)
1704 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1705 return gdbarch->tdep;
1706 }
1707 EOF
1708 printf "\n"
1709 function_list | while do_read
1710 do
1711 if class_is_predicate_p
1712 then
1713 printf "\n"
1714 printf "int\n"
1715 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1716 printf "{\n"
1717 printf " gdb_assert (gdbarch != NULL);\n"
1718 if [ -n "${predicate}" ]
1719 then
1720 printf " return ${predicate};\n"
1721 else
1722 printf " return gdbarch->${function} != 0;\n"
1723 fi
1724 printf "}\n"
1725 fi
1726 if class_is_function_p
1727 then
1728 printf "\n"
1729 printf "${returntype}\n"
1730 if [ "x${formal}" = "xvoid" ]
1731 then
1732 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1733 else
1734 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1735 fi
1736 printf "{\n"
1737 printf " gdb_assert (gdbarch != NULL);\n"
1738 printf " if (gdbarch->${function} == 0)\n"
1739 printf " internal_error (__FILE__, __LINE__,\n"
1740 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1741 if class_is_predicate_p && test -n "${predicate}"
1742 then
1743 # Allow a call to a function with a predicate.
1744 printf " /* Ignore predicate (${predicate}). */\n"
1745 fi
1746 printf " if (gdbarch_debug >= 2)\n"
1747 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1748 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1749 then
1750 if class_is_multiarch_p
1751 then
1752 params="gdbarch"
1753 else
1754 params=""
1755 fi
1756 else
1757 if class_is_multiarch_p
1758 then
1759 params="gdbarch, ${actual}"
1760 else
1761 params="${actual}"
1762 fi
1763 fi
1764 if [ "x${returntype}" = "xvoid" ]
1765 then
1766 printf " gdbarch->${function} (${params});\n"
1767 else
1768 printf " return gdbarch->${function} (${params});\n"
1769 fi
1770 printf "}\n"
1771 printf "\n"
1772 printf "void\n"
1773 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1774 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1775 printf "{\n"
1776 printf " gdbarch->${function} = ${function};\n"
1777 printf "}\n"
1778 elif class_is_variable_p
1779 then
1780 printf "\n"
1781 printf "${returntype}\n"
1782 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1783 printf "{\n"
1784 printf " gdb_assert (gdbarch != NULL);\n"
1785 if [ "x${invalid_p}" = "x0" ]
1786 then
1787 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1788 elif [ -n "${invalid_p}" ]
1789 then
1790 printf " if (${invalid_p})\n"
1791 printf " internal_error (__FILE__, __LINE__,\n"
1792 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1793 elif [ -n "${predefault}" ]
1794 then
1795 printf " if (gdbarch->${function} == ${predefault})\n"
1796 printf " internal_error (__FILE__, __LINE__,\n"
1797 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1798 fi
1799 printf " if (gdbarch_debug >= 2)\n"
1800 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1801 printf " return gdbarch->${function};\n"
1802 printf "}\n"
1803 printf "\n"
1804 printf "void\n"
1805 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1806 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1807 printf "{\n"
1808 printf " gdbarch->${function} = ${function};\n"
1809 printf "}\n"
1810 elif class_is_info_p
1811 then
1812 printf "\n"
1813 printf "${returntype}\n"
1814 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1815 printf "{\n"
1816 printf " gdb_assert (gdbarch != NULL);\n"
1817 printf " if (gdbarch_debug >= 2)\n"
1818 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1819 printf " return gdbarch->${function};\n"
1820 printf "}\n"
1821 fi
1822 done
1823
1824 # All the trailing guff
1825 cat <<EOF
1826
1827
1828 /* Keep a registry of per-architecture data-pointers required by GDB
1829 modules. */
1830
1831 struct gdbarch_data
1832 {
1833 unsigned index;
1834 int init_p;
1835 gdbarch_data_init_ftype *init;
1836 gdbarch_data_free_ftype *free;
1837 };
1838
1839 struct gdbarch_data_registration
1840 {
1841 struct gdbarch_data *data;
1842 struct gdbarch_data_registration *next;
1843 };
1844
1845 struct gdbarch_data_registry
1846 {
1847 unsigned nr;
1848 struct gdbarch_data_registration *registrations;
1849 };
1850
1851 struct gdbarch_data_registry gdbarch_data_registry =
1852 {
1853 0, NULL,
1854 };
1855
1856 struct gdbarch_data *
1857 register_gdbarch_data (gdbarch_data_init_ftype *init,
1858 gdbarch_data_free_ftype *free)
1859 {
1860 struct gdbarch_data_registration **curr;
1861 /* Append the new registraration. */
1862 for (curr = &gdbarch_data_registry.registrations;
1863 (*curr) != NULL;
1864 curr = &(*curr)->next);
1865 (*curr) = XMALLOC (struct gdbarch_data_registration);
1866 (*curr)->next = NULL;
1867 (*curr)->data = XMALLOC (struct gdbarch_data);
1868 (*curr)->data->index = gdbarch_data_registry.nr++;
1869 (*curr)->data->init = init;
1870 (*curr)->data->init_p = 1;
1871 (*curr)->data->free = free;
1872 return (*curr)->data;
1873 }
1874
1875
1876 /* Create/delete the gdbarch data vector. */
1877
1878 static void
1879 alloc_gdbarch_data (struct gdbarch *gdbarch)
1880 {
1881 gdb_assert (gdbarch->data == NULL);
1882 gdbarch->nr_data = gdbarch_data_registry.nr;
1883 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1884 }
1885
1886 static void
1887 free_gdbarch_data (struct gdbarch *gdbarch)
1888 {
1889 struct gdbarch_data_registration *rego;
1890 gdb_assert (gdbarch->data != NULL);
1891 for (rego = gdbarch_data_registry.registrations;
1892 rego != NULL;
1893 rego = rego->next)
1894 {
1895 struct gdbarch_data *data = rego->data;
1896 gdb_assert (data->index < gdbarch->nr_data);
1897 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1898 {
1899 data->free (gdbarch, gdbarch->data[data->index]);
1900 gdbarch->data[data->index] = NULL;
1901 }
1902 }
1903 xfree (gdbarch->data);
1904 gdbarch->data = NULL;
1905 }
1906
1907
1908 /* Initialize the current value of the specified per-architecture
1909 data-pointer. */
1910
1911 void
1912 set_gdbarch_data (struct gdbarch *gdbarch,
1913 struct gdbarch_data *data,
1914 void *pointer)
1915 {
1916 gdb_assert (data->index < gdbarch->nr_data);
1917 if (gdbarch->data[data->index] != NULL)
1918 {
1919 gdb_assert (data->free != NULL);
1920 data->free (gdbarch, gdbarch->data[data->index]);
1921 }
1922 gdbarch->data[data->index] = pointer;
1923 }
1924
1925 /* Return the current value of the specified per-architecture
1926 data-pointer. */
1927
1928 void *
1929 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1930 {
1931 gdb_assert (data->index < gdbarch->nr_data);
1932 /* The data-pointer isn't initialized, call init() to get a value but
1933 only if the architecture initializaiton has completed. Otherwise
1934 punt - hope that the caller knows what they are doing. */
1935 if (gdbarch->data[data->index] == NULL
1936 && gdbarch->initialized_p)
1937 {
1938 /* Be careful to detect an initialization cycle. */
1939 gdb_assert (data->init_p);
1940 data->init_p = 0;
1941 gdb_assert (data->init != NULL);
1942 gdbarch->data[data->index] = data->init (gdbarch);
1943 data->init_p = 1;
1944 gdb_assert (gdbarch->data[data->index] != NULL);
1945 }
1946 return gdbarch->data[data->index];
1947 }
1948
1949
1950
1951 /* Keep a registry of swapped data required by GDB modules. */
1952
1953 struct gdbarch_swap
1954 {
1955 void *swap;
1956 struct gdbarch_swap_registration *source;
1957 struct gdbarch_swap *next;
1958 };
1959
1960 struct gdbarch_swap_registration
1961 {
1962 void *data;
1963 unsigned long sizeof_data;
1964 gdbarch_swap_ftype *init;
1965 struct gdbarch_swap_registration *next;
1966 };
1967
1968 struct gdbarch_swap_registry
1969 {
1970 int nr;
1971 struct gdbarch_swap_registration *registrations;
1972 };
1973
1974 struct gdbarch_swap_registry gdbarch_swap_registry =
1975 {
1976 0, NULL,
1977 };
1978
1979 void
1980 register_gdbarch_swap (void *data,
1981 unsigned long sizeof_data,
1982 gdbarch_swap_ftype *init)
1983 {
1984 struct gdbarch_swap_registration **rego;
1985 for (rego = &gdbarch_swap_registry.registrations;
1986 (*rego) != NULL;
1987 rego = &(*rego)->next);
1988 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1989 (*rego)->next = NULL;
1990 (*rego)->init = init;
1991 (*rego)->data = data;
1992 (*rego)->sizeof_data = sizeof_data;
1993 }
1994
1995 static void
1996 clear_gdbarch_swap (struct gdbarch *gdbarch)
1997 {
1998 struct gdbarch_swap *curr;
1999 for (curr = gdbarch->swap;
2000 curr != NULL;
2001 curr = curr->next)
2002 {
2003 memset (curr->source->data, 0, curr->source->sizeof_data);
2004 }
2005 }
2006
2007 static void
2008 init_gdbarch_swap (struct gdbarch *gdbarch)
2009 {
2010 struct gdbarch_swap_registration *rego;
2011 struct gdbarch_swap **curr = &gdbarch->swap;
2012 for (rego = gdbarch_swap_registry.registrations;
2013 rego != NULL;
2014 rego = rego->next)
2015 {
2016 if (rego->data != NULL)
2017 {
2018 (*curr) = XMALLOC (struct gdbarch_swap);
2019 (*curr)->source = rego;
2020 (*curr)->swap = xmalloc (rego->sizeof_data);
2021 (*curr)->next = NULL;
2022 curr = &(*curr)->next;
2023 }
2024 if (rego->init != NULL)
2025 rego->init ();
2026 }
2027 }
2028
2029 static void
2030 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2031 {
2032 struct gdbarch_swap *curr;
2033 for (curr = gdbarch->swap;
2034 curr != NULL;
2035 curr = curr->next)
2036 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2037 }
2038
2039 static void
2040 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2041 {
2042 struct gdbarch_swap *curr;
2043 for (curr = gdbarch->swap;
2044 curr != NULL;
2045 curr = curr->next)
2046 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2047 }
2048
2049
2050 /* Keep a registry of the architectures known by GDB. */
2051
2052 struct gdbarch_registration
2053 {
2054 enum bfd_architecture bfd_architecture;
2055 gdbarch_init_ftype *init;
2056 gdbarch_dump_tdep_ftype *dump_tdep;
2057 struct gdbarch_list *arches;
2058 struct gdbarch_registration *next;
2059 };
2060
2061 static struct gdbarch_registration *gdbarch_registry = NULL;
2062
2063 static void
2064 append_name (const char ***buf, int *nr, const char *name)
2065 {
2066 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2067 (*buf)[*nr] = name;
2068 *nr += 1;
2069 }
2070
2071 const char **
2072 gdbarch_printable_names (void)
2073 {
2074 if (GDB_MULTI_ARCH)
2075 {
2076 /* Accumulate a list of names based on the registed list of
2077 architectures. */
2078 enum bfd_architecture a;
2079 int nr_arches = 0;
2080 const char **arches = NULL;
2081 struct gdbarch_registration *rego;
2082 for (rego = gdbarch_registry;
2083 rego != NULL;
2084 rego = rego->next)
2085 {
2086 const struct bfd_arch_info *ap;
2087 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2088 if (ap == NULL)
2089 internal_error (__FILE__, __LINE__,
2090 "gdbarch_architecture_names: multi-arch unknown");
2091 do
2092 {
2093 append_name (&arches, &nr_arches, ap->printable_name);
2094 ap = ap->next;
2095 }
2096 while (ap != NULL);
2097 }
2098 append_name (&arches, &nr_arches, NULL);
2099 return arches;
2100 }
2101 else
2102 /* Just return all the architectures that BFD knows. Assume that
2103 the legacy architecture framework supports them. */
2104 return bfd_arch_list ();
2105 }
2106
2107
2108 void
2109 gdbarch_register (enum bfd_architecture bfd_architecture,
2110 gdbarch_init_ftype *init,
2111 gdbarch_dump_tdep_ftype *dump_tdep)
2112 {
2113 struct gdbarch_registration **curr;
2114 const struct bfd_arch_info *bfd_arch_info;
2115 /* Check that BFD recognizes this architecture */
2116 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2117 if (bfd_arch_info == NULL)
2118 {
2119 internal_error (__FILE__, __LINE__,
2120 "gdbarch: Attempt to register unknown architecture (%d)",
2121 bfd_architecture);
2122 }
2123 /* Check that we haven't seen this architecture before */
2124 for (curr = &gdbarch_registry;
2125 (*curr) != NULL;
2126 curr = &(*curr)->next)
2127 {
2128 if (bfd_architecture == (*curr)->bfd_architecture)
2129 internal_error (__FILE__, __LINE__,
2130 "gdbarch: Duplicate registraration of architecture (%s)",
2131 bfd_arch_info->printable_name);
2132 }
2133 /* log it */
2134 if (gdbarch_debug)
2135 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2136 bfd_arch_info->printable_name,
2137 (long) init);
2138 /* Append it */
2139 (*curr) = XMALLOC (struct gdbarch_registration);
2140 (*curr)->bfd_architecture = bfd_architecture;
2141 (*curr)->init = init;
2142 (*curr)->dump_tdep = dump_tdep;
2143 (*curr)->arches = NULL;
2144 (*curr)->next = NULL;
2145 /* When non- multi-arch, install whatever target dump routine we've
2146 been provided - hopefully that routine has been written correctly
2147 and works regardless of multi-arch. */
2148 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2149 && startup_gdbarch.dump_tdep == NULL)
2150 startup_gdbarch.dump_tdep = dump_tdep;
2151 }
2152
2153 void
2154 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2155 gdbarch_init_ftype *init)
2156 {
2157 gdbarch_register (bfd_architecture, init, NULL);
2158 }
2159
2160
2161 /* Look for an architecture using gdbarch_info. Base search on only
2162 BFD_ARCH_INFO and BYTE_ORDER. */
2163
2164 struct gdbarch_list *
2165 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2166 const struct gdbarch_info *info)
2167 {
2168 for (; arches != NULL; arches = arches->next)
2169 {
2170 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2171 continue;
2172 if (info->byte_order != arches->gdbarch->byte_order)
2173 continue;
2174 if (info->osabi != arches->gdbarch->osabi)
2175 continue;
2176 return arches;
2177 }
2178 return NULL;
2179 }
2180
2181
2182 /* Update the current architecture. Return ZERO if the update request
2183 failed. */
2184
2185 int
2186 gdbarch_update_p (struct gdbarch_info info)
2187 {
2188 struct gdbarch *new_gdbarch;
2189 struct gdbarch *old_gdbarch;
2190 struct gdbarch_registration *rego;
2191
2192 /* Fill in missing parts of the INFO struct using a number of
2193 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2194
2195 /* \`\`(gdb) set architecture ...'' */
2196 if (info.bfd_arch_info == NULL
2197 && !TARGET_ARCHITECTURE_AUTO)
2198 info.bfd_arch_info = TARGET_ARCHITECTURE;
2199 if (info.bfd_arch_info == NULL
2200 && info.abfd != NULL
2201 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2202 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2203 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2204 if (info.bfd_arch_info == NULL)
2205 info.bfd_arch_info = TARGET_ARCHITECTURE;
2206
2207 /* \`\`(gdb) set byte-order ...'' */
2208 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2209 && !TARGET_BYTE_ORDER_AUTO)
2210 info.byte_order = TARGET_BYTE_ORDER;
2211 /* From the INFO struct. */
2212 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2213 && info.abfd != NULL)
2214 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2215 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2216 : BFD_ENDIAN_UNKNOWN);
2217 /* From the current target. */
2218 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2219 info.byte_order = TARGET_BYTE_ORDER;
2220
2221 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2222 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2223 info.osabi = gdbarch_lookup_osabi (info.abfd);
2224 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2225 info.osabi = current_gdbarch->osabi;
2226
2227 /* Must have found some sort of architecture. */
2228 gdb_assert (info.bfd_arch_info != NULL);
2229
2230 if (gdbarch_debug)
2231 {
2232 fprintf_unfiltered (gdb_stdlog,
2233 "gdbarch_update: info.bfd_arch_info %s\n",
2234 (info.bfd_arch_info != NULL
2235 ? info.bfd_arch_info->printable_name
2236 : "(null)"));
2237 fprintf_unfiltered (gdb_stdlog,
2238 "gdbarch_update: info.byte_order %d (%s)\n",
2239 info.byte_order,
2240 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2241 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2242 : "default"));
2243 fprintf_unfiltered (gdb_stdlog,
2244 "gdbarch_update: info.osabi %d (%s)\n",
2245 info.osabi, gdbarch_osabi_name (info.osabi));
2246 fprintf_unfiltered (gdb_stdlog,
2247 "gdbarch_update: info.abfd 0x%lx\n",
2248 (long) info.abfd);
2249 fprintf_unfiltered (gdb_stdlog,
2250 "gdbarch_update: info.tdep_info 0x%lx\n",
2251 (long) info.tdep_info);
2252 }
2253
2254 /* Find the target that knows about this architecture. */
2255 for (rego = gdbarch_registry;
2256 rego != NULL;
2257 rego = rego->next)
2258 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2259 break;
2260 if (rego == NULL)
2261 {
2262 if (gdbarch_debug)
2263 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2264 return 0;
2265 }
2266
2267 /* Swap the data belonging to the old target out setting the
2268 installed data to zero. This stops the ->init() function trying
2269 to refer to the previous architecture's global data structures. */
2270 swapout_gdbarch_swap (current_gdbarch);
2271 clear_gdbarch_swap (current_gdbarch);
2272
2273 /* Save the previously selected architecture, setting the global to
2274 NULL. This stops ->init() trying to use the previous
2275 architecture's configuration. The previous architecture may not
2276 even be of the same architecture family. The most recent
2277 architecture of the same family is found at the head of the
2278 rego->arches list. */
2279 old_gdbarch = current_gdbarch;
2280 current_gdbarch = NULL;
2281
2282 /* Ask the target for a replacement architecture. */
2283 new_gdbarch = rego->init (info, rego->arches);
2284
2285 /* Did the target like it? No. Reject the change and revert to the
2286 old architecture. */
2287 if (new_gdbarch == NULL)
2288 {
2289 if (gdbarch_debug)
2290 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2291 swapin_gdbarch_swap (old_gdbarch);
2292 current_gdbarch = old_gdbarch;
2293 return 0;
2294 }
2295
2296 /* Did the architecture change? No. Oops, put the old architecture
2297 back. */
2298 if (old_gdbarch == new_gdbarch)
2299 {
2300 if (gdbarch_debug)
2301 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2302 (long) new_gdbarch,
2303 new_gdbarch->bfd_arch_info->printable_name);
2304 swapin_gdbarch_swap (old_gdbarch);
2305 current_gdbarch = old_gdbarch;
2306 return 1;
2307 }
2308
2309 /* Is this a pre-existing architecture? Yes. Move it to the front
2310 of the list of architectures (keeping the list sorted Most
2311 Recently Used) and then copy it in. */
2312 {
2313 struct gdbarch_list **list;
2314 for (list = &rego->arches;
2315 (*list) != NULL;
2316 list = &(*list)->next)
2317 {
2318 if ((*list)->gdbarch == new_gdbarch)
2319 {
2320 struct gdbarch_list *this;
2321 if (gdbarch_debug)
2322 fprintf_unfiltered (gdb_stdlog,
2323 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2324 (long) new_gdbarch,
2325 new_gdbarch->bfd_arch_info->printable_name);
2326 /* Unlink this. */
2327 this = (*list);
2328 (*list) = this->next;
2329 /* Insert in the front. */
2330 this->next = rego->arches;
2331 rego->arches = this;
2332 /* Copy the new architecture in. */
2333 current_gdbarch = new_gdbarch;
2334 swapin_gdbarch_swap (new_gdbarch);
2335 architecture_changed_event ();
2336 return 1;
2337 }
2338 }
2339 }
2340
2341 /* Prepend this new architecture to the architecture list (keep the
2342 list sorted Most Recently Used). */
2343 {
2344 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2345 this->next = rego->arches;
2346 this->gdbarch = new_gdbarch;
2347 rego->arches = this;
2348 }
2349
2350 /* Switch to this new architecture marking it initialized. */
2351 current_gdbarch = new_gdbarch;
2352 current_gdbarch->initialized_p = 1;
2353 if (gdbarch_debug)
2354 {
2355 fprintf_unfiltered (gdb_stdlog,
2356 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2357 (long) new_gdbarch,
2358 new_gdbarch->bfd_arch_info->printable_name);
2359 }
2360
2361 /* Check that the newly installed architecture is valid. Plug in
2362 any post init values. */
2363 new_gdbarch->dump_tdep = rego->dump_tdep;
2364 verify_gdbarch (new_gdbarch);
2365
2366 /* Initialize the per-architecture memory (swap) areas.
2367 CURRENT_GDBARCH must be update before these modules are
2368 called. */
2369 init_gdbarch_swap (new_gdbarch);
2370
2371 /* Initialize the per-architecture data. CURRENT_GDBARCH
2372 must be updated before these modules are called. */
2373 architecture_changed_event ();
2374
2375 if (gdbarch_debug)
2376 gdbarch_dump (current_gdbarch, gdb_stdlog);
2377
2378 return 1;
2379 }
2380
2381
2382 /* Disassembler */
2383
2384 /* Pointer to the target-dependent disassembly function. */
2385 int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info *);
2386 disassemble_info tm_print_insn_info;
2387
2388
2389 extern void _initialize_gdbarch (void);
2390
2391 void
2392 _initialize_gdbarch (void)
2393 {
2394 struct cmd_list_element *c;
2395
2396 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2397 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2398 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2399 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2400 tm_print_insn_info.print_address_func = dis_asm_print_address;
2401
2402 add_show_from_set (add_set_cmd ("arch",
2403 class_maintenance,
2404 var_zinteger,
2405 (char *)&gdbarch_debug,
2406 "Set architecture debugging.\\n\\
2407 When non-zero, architecture debugging is enabled.", &setdebuglist),
2408 &showdebuglist);
2409 c = add_set_cmd ("archdebug",
2410 class_maintenance,
2411 var_zinteger,
2412 (char *)&gdbarch_debug,
2413 "Set architecture debugging.\\n\\
2414 When non-zero, architecture debugging is enabled.", &setlist);
2415
2416 deprecate_cmd (c, "set debug arch");
2417 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2418 }
2419 EOF
2420
2421 # close things off
2422 exec 1>&2
2423 #../move-if-change new-gdbarch.c gdbarch.c
2424 compare_new gdbarch.c