* cli-out.c: Include "gdb_assert.h'.
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 test "${staticdefault}" || staticdefault=0
80 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
81 # multi-arch defaults.
82 # test "${predefault}" || predefault=0
83 test "${fmt}" || fmt="%ld"
84 test "${print}" || print="(long) ${macro}"
85 case "${invalid_p}" in
86 0 ) valid_p=1 ;;
87 "" )
88 if [ -n "${predefault}" ]
89 then
90 #invalid_p="gdbarch->${function} == ${predefault}"
91 valid_p="gdbarch->${function} != ${predefault}"
92 else
93 #invalid_p="gdbarch->${function} == 0"
94 valid_p="gdbarch->${function} != 0"
95 fi
96 ;;
97 * ) valid_p="!(${invalid_p})"
98 esac
99
100 # PREDEFAULT is a valid fallback definition of MEMBER when
101 # multi-arch is not enabled. This ensures that the
102 # default value, when multi-arch is the same as the
103 # default value when not multi-arch. POSTDEFAULT is
104 # always a valid definition of MEMBER as this again
105 # ensures consistency.
106
107 if [ -n "${postdefault}" ]
108 then
109 fallbackdefault="${postdefault}"
110 elif [ -n "${predefault}" ]
111 then
112 fallbackdefault="${predefault}"
113 else
114 fallbackdefault=""
115 fi
116
117 #NOT YET: See gdbarch.log for basic verification of
118 # database
119
120 break
121 fi
122 done
123 if [ -n "${class}" ]
124 then
125 true
126 else
127 false
128 fi
129 }
130
131
132 fallback_default_p ()
133 {
134 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
135 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
136 }
137
138 class_is_variable_p ()
139 {
140 case "${class}" in
141 *v* | *V* ) true ;;
142 * ) false ;;
143 esac
144 }
145
146 class_is_function_p ()
147 {
148 case "${class}" in
149 *f* | *F* | *m* | *M* ) true ;;
150 * ) false ;;
151 esac
152 }
153
154 class_is_multiarch_p ()
155 {
156 case "${class}" in
157 *m* | *M* ) true ;;
158 * ) false ;;
159 esac
160 }
161
162 class_is_predicate_p ()
163 {
164 case "${class}" in
165 *F* | *V* | *M* ) true ;;
166 * ) false ;;
167 esac
168 }
169
170 class_is_info_p ()
171 {
172 case "${class}" in
173 *i* ) true ;;
174 * ) false ;;
175 esac
176 }
177
178
179 # dump out/verify the doco
180 for field in ${read}
181 do
182 case ${field} in
183
184 class ) : ;;
185
186 # # -> line disable
187 # f -> function
188 # hiding a function
189 # F -> function + predicate
190 # hiding a function + predicate to test function validity
191 # v -> variable
192 # hiding a variable
193 # V -> variable + predicate
194 # hiding a variable + predicate to test variables validity
195 # i -> set from info
196 # hiding something from the ``struct info'' object
197 # m -> multi-arch function
198 # hiding a multi-arch function (parameterised with the architecture)
199 # M -> multi-arch function + predicate
200 # hiding a multi-arch function + predicate to test function validity
201
202 level ) : ;;
203
204 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
205 # LEVEL is a predicate on checking that a given method is
206 # initialized (using INVALID_P).
207
208 macro ) : ;;
209
210 # The name of the MACRO that this method is to be accessed by.
211
212 returntype ) : ;;
213
214 # For functions, the return type; for variables, the data type
215
216 function ) : ;;
217
218 # For functions, the member function name; for variables, the
219 # variable name. Member function names are always prefixed with
220 # ``gdbarch_'' for name-space purity.
221
222 formal ) : ;;
223
224 # The formal argument list. It is assumed that the formal
225 # argument list includes the actual name of each list element.
226 # A function with no arguments shall have ``void'' as the
227 # formal argument list.
228
229 actual ) : ;;
230
231 # The list of actual arguments. The arguments specified shall
232 # match the FORMAL list given above. Functions with out
233 # arguments leave this blank.
234
235 attrib ) : ;;
236
237 # Any GCC attributes that should be attached to the function
238 # declaration. At present this field is unused.
239
240 staticdefault ) : ;;
241
242 # To help with the GDB startup a static gdbarch object is
243 # created. STATICDEFAULT is the value to insert into that
244 # static gdbarch object. Since this a static object only
245 # simple expressions can be used.
246
247 # If STATICDEFAULT is empty, zero is used.
248
249 predefault ) : ;;
250
251 # An initial value to assign to MEMBER of the freshly
252 # malloc()ed gdbarch object. After initialization, the
253 # freshly malloc()ed object is passed to the target
254 # architecture code for further updates.
255
256 # If PREDEFAULT is empty, zero is used.
257
258 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
259 # INVALID_P are specified, PREDEFAULT will be used as the
260 # default for the non- multi-arch target.
261
262 # A zero PREDEFAULT function will force the fallback to call
263 # internal_error().
264
265 # Variable declarations can refer to ``gdbarch'' which will
266 # contain the current architecture. Care should be taken.
267
268 postdefault ) : ;;
269
270 # A value to assign to MEMBER of the new gdbarch object should
271 # the target architecture code fail to change the PREDEFAULT
272 # value.
273
274 # If POSTDEFAULT is empty, no post update is performed.
275
276 # If both INVALID_P and POSTDEFAULT are non-empty then
277 # INVALID_P will be used to determine if MEMBER should be
278 # changed to POSTDEFAULT.
279
280 # If a non-empty POSTDEFAULT and a zero INVALID_P are
281 # specified, POSTDEFAULT will be used as the default for the
282 # non- multi-arch target (regardless of the value of
283 # PREDEFAULT).
284
285 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
286
287 # Variable declarations can refer to ``gdbarch'' which will
288 # contain the current architecture. Care should be taken.
289
290 invalid_p ) : ;;
291
292 # A predicate equation that validates MEMBER. Non-zero is
293 # returned if the code creating the new architecture failed to
294 # initialize MEMBER or the initialized the member is invalid.
295 # If POSTDEFAULT is non-empty then MEMBER will be updated to
296 # that value. If POSTDEFAULT is empty then internal_error()
297 # is called.
298
299 # If INVALID_P is empty, a check that MEMBER is no longer
300 # equal to PREDEFAULT is used.
301
302 # The expression ``0'' disables the INVALID_P check making
303 # PREDEFAULT a legitimate value.
304
305 # See also PREDEFAULT and POSTDEFAULT.
306
307 fmt ) : ;;
308
309 # printf style format string that can be used to print out the
310 # MEMBER. Sometimes "%s" is useful. For functions, this is
311 # ignored and the function address is printed.
312
313 # If FMT is empty, ``%ld'' is used.
314
315 print ) : ;;
316
317 # An optional equation that casts MEMBER to a value suitable
318 # for formatting by FMT.
319
320 # If PRINT is empty, ``(long)'' is used.
321
322 print_p ) : ;;
323
324 # An optional indicator for any predicte to wrap around the
325 # print member code.
326
327 # () -> Call a custom function to do the dump.
328 # exp -> Wrap print up in ``if (${print_p}) ...
329 # ``'' -> No predicate
330
331 # If PRINT_P is empty, ``1'' is always used.
332
333 description ) : ;;
334
335 # Currently unused.
336
337 *) exit 1;;
338 esac
339 done
340
341
342 function_list ()
343 {
344 # See below (DOCO) for description of each field
345 cat <<EOF
346 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
347 #
348 i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
349 # Number of bits in a char or unsigned char for the target machine.
350 # Just like CHAR_BIT in <limits.h> but describes the target machine.
351 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
352 #
353 # Number of bits in a short or unsigned short for the target machine.
354 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
355 # Number of bits in an int or unsigned int for the target machine.
356 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
357 # Number of bits in a long or unsigned long for the target machine.
358 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long long or unsigned long long for the target
360 # machine.
361 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
362 # Number of bits in a float for the target machine.
363 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
364 # Number of bits in a double for the target machine.
365 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
366 # Number of bits in a long double for the target machine.
367 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
368 # For most targets, a pointer on the target and its representation as an
369 # address in GDB have the same size and "look the same". For such a
370 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
371 # / addr_bit will be set from it.
372 #
373 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
374 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
375 #
376 # ptr_bit is the size of a pointer on the target
377 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
378 # addr_bit is the size of a target address as represented in gdb
379 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
380 # Number of bits in a BFD_VMA for the target object file format.
381 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
382 #
383 v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
384 #
385 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
386 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
387 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
388 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
389 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
390 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
391 #
392 M:::void:register_read:int regnum, char *buf:regnum, buf:
393 M:::void:register_write:int regnum, char *buf:regnum, buf:
394 #
395 v:2:NUM_REGS:int:num_regs::::0:-1
396 # This macro gives the number of pseudo-registers that live in the
397 # register namespace but do not get fetched or stored on the target.
398 # These pseudo-registers may be aliases for other registers,
399 # combinations of other registers, or they may be computed by GDB.
400 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
401 v:2:SP_REGNUM:int:sp_regnum::::0:-1
402 v:2:FP_REGNUM:int:fp_regnum::::0:-1
403 v:2:PC_REGNUM:int:pc_regnum::::0:-1
404 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
405 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
406 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
407 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
408 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
409 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
410 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
411 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
412 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
413 # Convert from an sdb register number to an internal gdb register number.
414 # This should be defined in tm.h, if REGISTER_NAMES is not set up
415 # to map one to one onto the sdb register numbers.
416 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
417 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
418 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
419 v:2:REGISTER_SIZE:int:register_size::::0:-1
420 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
421 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
422 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
423 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
424 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
425 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
426 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
427 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
428 # MAP a GDB RAW register number onto a simulator register number. See
429 # also include/...-sim.h.
430 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
431 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
432 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
433 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
434 #
435 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
436 v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
437 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
438 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
439 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1:::0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
440 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
441 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
442 f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
443 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
444 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
445 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
446 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
447 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
448 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
449 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
450 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
451 #
452 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
453 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
454 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
455 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
456 #
457 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
458 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
459 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
460 # This function is called when the value of a pseudo-register needs to
461 # be updated. Typically it will be defined on a per-architecture
462 # basis.
463 f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
464 # This function is called when the value of a pseudo-register needs to
465 # be set or stored. Typically it will be defined on a
466 # per-architecture basis.
467 f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
468 #
469 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
470 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
471 #
472 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
473 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
474 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
475 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
476 f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
477 f:2:POP_FRAME:void:pop_frame:void:-:::0
478 #
479 # I wish that these would just go away....
480 f:2:D10V_MAKE_DADDR:CORE_ADDR:d10v_make_daddr:CORE_ADDR x:x:::0::0
481 f:2:D10V_MAKE_IADDR:CORE_ADDR:d10v_make_iaddr:CORE_ADDR x:x:::0::0
482 f:2:D10V_DADDR_P:int:d10v_daddr_p:CORE_ADDR x:x:::0::0
483 f:2:D10V_IADDR_P:int:d10v_iaddr_p:CORE_ADDR x:x:::0::0
484 f:2:D10V_CONVERT_DADDR_TO_RAW:CORE_ADDR:d10v_convert_daddr_to_raw:CORE_ADDR x:x:::0::0
485 f:2:D10V_CONVERT_IADDR_TO_RAW:CORE_ADDR:d10v_convert_iaddr_to_raw:CORE_ADDR x:x:::0::0
486 #
487 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
488 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
489 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
490 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0
491 #
492 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
493 f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
494 #
495 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
496 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
497 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
498 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
499 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
500 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
501 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
502 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
503 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
504 #
505 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
506 #
507 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
508 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
509 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
510 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
511 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
512 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
513 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
514 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
515 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
516 #
517 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
518 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
519 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
520 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
521 v:2:PARM_BOUNDARY:int:parm_boundary
522 #
523 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
524 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
525 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
526 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
527 # On some machines there are bits in addresses which are not really
528 # part of the address, but are used by the kernel, the hardware, etc.
529 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
530 # we get a "real" address such as one would find in a symbol table.
531 # This is used only for addresses of instructions, and even then I'm
532 # not sure it's used in all contexts. It exists to deal with there
533 # being a few stray bits in the PC which would mislead us, not as some
534 # sort of generic thing to handle alignment or segmentation (it's
535 # possible it should be in TARGET_READ_PC instead).
536 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
537 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
538 # the target needs software single step. An ISA method to implement it.
539 #
540 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
541 # using the breakpoint system instead of blatting memory directly (as with rs6000).
542 #
543 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
544 # single step. If not, then implement single step using breakpoints.
545 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
546 EOF
547 }
548
549 #
550 # The .log file
551 #
552 exec > new-gdbarch.log
553 function_list | while do_read
554 do
555 cat <<EOF
556 ${class} ${macro}(${actual})
557 ${returntype} ${function} ($formal)${attrib}
558 EOF
559 for r in ${read}
560 do
561 eval echo \"\ \ \ \ ${r}=\${${r}}\"
562 done
563 # #fallbackdefault=${fallbackdefault}
564 # #valid_p=${valid_p}
565 #EOF
566 if class_is_predicate_p && fallback_default_p
567 then
568 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
569 kill $$
570 exit 1
571 fi
572 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
573 then
574 echo "Error: postdefault is useless when invalid_p=0" 1>&2
575 kill $$
576 exit 1
577 fi
578 echo ""
579 done
580
581 exec 1>&2
582 compare_new gdbarch.log
583
584
585 copyright ()
586 {
587 cat <<EOF
588 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
589
590 /* Dynamic architecture support for GDB, the GNU debugger.
591 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
592
593 This file is part of GDB.
594
595 This program is free software; you can redistribute it and/or modify
596 it under the terms of the GNU General Public License as published by
597 the Free Software Foundation; either version 2 of the License, or
598 (at your option) any later version.
599
600 This program is distributed in the hope that it will be useful,
601 but WITHOUT ANY WARRANTY; without even the implied warranty of
602 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
603 GNU General Public License for more details.
604
605 You should have received a copy of the GNU General Public License
606 along with this program; if not, write to the Free Software
607 Foundation, Inc., 59 Temple Place - Suite 330,
608 Boston, MA 02111-1307, USA. */
609
610 /* This file was created with the aid of \`\`gdbarch.sh''.
611
612 The Bourne shell script \`\`gdbarch.sh'' creates the files
613 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
614 against the existing \`\`gdbarch.[hc]''. Any differences found
615 being reported.
616
617 If editing this file, please also run gdbarch.sh and merge any
618 changes into that script. Conversely, when making sweeping changes
619 to this file, modifying gdbarch.sh and using its output may prove
620 easier. */
621
622 EOF
623 }
624
625 #
626 # The .h file
627 #
628
629 exec > new-gdbarch.h
630 copyright
631 cat <<EOF
632 #ifndef GDBARCH_H
633 #define GDBARCH_H
634
635 struct frame_info;
636 struct value;
637
638
639 extern struct gdbarch *current_gdbarch;
640
641
642 /* If any of the following are defined, the target wasn't correctly
643 converted. */
644
645 #if GDB_MULTI_ARCH
646 #if defined (EXTRA_FRAME_INFO)
647 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
648 #endif
649 #endif
650
651 #if GDB_MULTI_ARCH
652 #if defined (FRAME_FIND_SAVED_REGS)
653 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
654 #endif
655 #endif
656
657 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
658 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
659 #endif
660 EOF
661
662 # function typedef's
663 printf "\n"
664 printf "\n"
665 printf "/* The following are pre-initialized by GDBARCH. */\n"
666 function_list | while do_read
667 do
668 if class_is_info_p
669 then
670 printf "\n"
671 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
672 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
673 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
674 printf "#error \"Non multi-arch definition of ${macro}\"\n"
675 printf "#endif\n"
676 printf "#if GDB_MULTI_ARCH\n"
677 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
678 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
679 printf "#endif\n"
680 printf "#endif\n"
681 fi
682 done
683
684 # function typedef's
685 printf "\n"
686 printf "\n"
687 printf "/* The following are initialized by the target dependent code. */\n"
688 function_list | while do_read
689 do
690 if [ -n "${comment}" ]
691 then
692 echo "${comment}" | sed \
693 -e '2 s,#,/*,' \
694 -e '3,$ s,#, ,' \
695 -e '$ s,$, */,'
696 fi
697 if class_is_multiarch_p
698 then
699 if class_is_predicate_p
700 then
701 printf "\n"
702 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
703 fi
704 else
705 if class_is_predicate_p
706 then
707 printf "\n"
708 printf "#if defined (${macro})\n"
709 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
710 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
711 printf "#if !defined (${macro}_P)\n"
712 printf "#define ${macro}_P() (1)\n"
713 printf "#endif\n"
714 printf "#endif\n"
715 printf "\n"
716 printf "/* Default predicate for non- multi-arch targets. */\n"
717 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
718 printf "#define ${macro}_P() (0)\n"
719 printf "#endif\n"
720 printf "\n"
721 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
722 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
723 printf "#error \"Non multi-arch definition of ${macro}\"\n"
724 printf "#endif\n"
725 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
726 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
727 printf "#endif\n"
728 fi
729 fi
730 if class_is_variable_p
731 then
732 if fallback_default_p || class_is_predicate_p
733 then
734 printf "\n"
735 printf "/* Default (value) for non- multi-arch platforms. */\n"
736 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
737 echo "#define ${macro} (${fallbackdefault})" \
738 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
739 printf "#endif\n"
740 fi
741 printf "\n"
742 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
743 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
744 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
745 printf "#error \"Non multi-arch definition of ${macro}\"\n"
746 printf "#endif\n"
747 printf "#if GDB_MULTI_ARCH\n"
748 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
749 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
750 printf "#endif\n"
751 printf "#endif\n"
752 fi
753 if class_is_function_p
754 then
755 if class_is_multiarch_p ; then :
756 elif fallback_default_p || class_is_predicate_p
757 then
758 printf "\n"
759 printf "/* Default (function) for non- multi-arch platforms. */\n"
760 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
761 if [ "x${fallbackdefault}" = "x0" ]
762 then
763 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
764 else
765 # FIXME: Should be passing current_gdbarch through!
766 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
767 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
768 fi
769 printf "#endif\n"
770 fi
771 printf "\n"
772 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
773 then
774 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
775 elif class_is_multiarch_p
776 then
777 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
778 else
779 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
780 fi
781 if [ "x${formal}" = "xvoid" ]
782 then
783 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
784 else
785 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
786 fi
787 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
788 if class_is_multiarch_p ; then :
789 else
790 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
791 printf "#error \"Non multi-arch definition of ${macro}\"\n"
792 printf "#endif\n"
793 printf "#if GDB_MULTI_ARCH\n"
794 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
795 if [ "x${actual}" = "x" ]
796 then
797 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
798 elif [ "x${actual}" = "x-" ]
799 then
800 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
801 else
802 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
803 fi
804 printf "#endif\n"
805 printf "#endif\n"
806 fi
807 fi
808 done
809
810 # close it off
811 cat <<EOF
812
813 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
814
815
816 /* Mechanism for co-ordinating the selection of a specific
817 architecture.
818
819 GDB targets (*-tdep.c) can register an interest in a specific
820 architecture. Other GDB components can register a need to maintain
821 per-architecture data.
822
823 The mechanisms below ensures that there is only a loose connection
824 between the set-architecture command and the various GDB
825 components. Each component can independently register their need
826 to maintain architecture specific data with gdbarch.
827
828 Pragmatics:
829
830 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
831 didn't scale.
832
833 The more traditional mega-struct containing architecture specific
834 data for all the various GDB components was also considered. Since
835 GDB is built from a variable number of (fairly independent)
836 components it was determined that the global aproach was not
837 applicable. */
838
839
840 /* Register a new architectural family with GDB.
841
842 Register support for the specified ARCHITECTURE with GDB. When
843 gdbarch determines that the specified architecture has been
844 selected, the corresponding INIT function is called.
845
846 --
847
848 The INIT function takes two parameters: INFO which contains the
849 information available to gdbarch about the (possibly new)
850 architecture; ARCHES which is a list of the previously created
851 \`\`struct gdbarch'' for this architecture.
852
853 The INIT function parameter INFO shall, as far as possible, be
854 pre-initialized with information obtained from INFO.ABFD or
855 previously selected architecture (if similar). INIT shall ensure
856 that the INFO.BYTE_ORDER is non-zero.
857
858 The INIT function shall return any of: NULL - indicating that it
859 doesn't recognize the selected architecture; an existing \`\`struct
860 gdbarch'' from the ARCHES list - indicating that the new
861 architecture is just a synonym for an earlier architecture (see
862 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
863 - that describes the selected architecture (see gdbarch_alloc()).
864
865 The DUMP_TDEP function shall print out all target specific values.
866 Care should be taken to ensure that the function works in both the
867 multi-arch and non- multi-arch cases. */
868
869 struct gdbarch_list
870 {
871 struct gdbarch *gdbarch;
872 struct gdbarch_list *next;
873 };
874
875 struct gdbarch_info
876 {
877 /* Use default: NULL (ZERO). */
878 const struct bfd_arch_info *bfd_arch_info;
879
880 /* Use default: 0 (ZERO). */
881 int byte_order;
882
883 /* Use default: NULL (ZERO). */
884 bfd *abfd;
885
886 /* Use default: NULL (ZERO). */
887 struct gdbarch_tdep_info *tdep_info;
888 };
889
890 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
891 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
892
893 /* DEPRECATED - use gdbarch_register() */
894 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
895
896 extern void gdbarch_register (enum bfd_architecture architecture,
897 gdbarch_init_ftype *,
898 gdbarch_dump_tdep_ftype *);
899
900
901 /* Return a freshly allocated, NULL terminated, array of the valid
902 architecture names. Since architectures are registered during the
903 _initialize phase this function only returns useful information
904 once initialization has been completed. */
905
906 extern const char **gdbarch_printable_names (void);
907
908
909 /* Helper function. Search the list of ARCHES for a GDBARCH that
910 matches the information provided by INFO. */
911
912 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
913
914
915 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
916 basic initialization using values obtained from the INFO andTDEP
917 parameters. set_gdbarch_*() functions are called to complete the
918 initialization of the object. */
919
920 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
921
922
923 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
924 It is assumed that the caller freeds the \`\`struct
925 gdbarch_tdep''. */
926
927 extern void gdbarch_free (struct gdbarch *);
928
929
930 /* Helper function. Force an update of the current architecture.
931
932 The actual architecture selected is determined by INFO, \`\`(gdb) set
933 architecture'' et.al., the existing architecture and BFD's default
934 architecture. INFO should be initialized to zero and then selected
935 fields should be updated.
936
937 Returns non-zero if the update succeeds */
938
939 extern int gdbarch_update_p (struct gdbarch_info info);
940
941
942
943 /* Register per-architecture data-pointer.
944
945 Reserve space for a per-architecture data-pointer. An identifier
946 for the reserved data-pointer is returned. That identifer should
947 be saved in a local static variable.
948
949 The per-architecture data-pointer can be initialized in one of two
950 ways: The value can be set explicitly using a call to
951 set_gdbarch_data(); the value can be set implicitly using the value
952 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
953 called after the basic architecture vector has been created.
954
955 When a previously created architecture is re-selected, the
956 per-architecture data-pointer for that previous architecture is
957 restored. INIT() is not called.
958
959 During initialization, multiple assignments of the data-pointer are
960 allowed, non-NULL values are deleted by calling FREE(). If the
961 architecture is deleted using gdbarch_free() all non-NULL data
962 pointers are also deleted using FREE().
963
964 Multiple registrarants for any architecture are allowed (and
965 strongly encouraged). */
966
967 struct gdbarch_data;
968
969 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
970 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
971 void *pointer);
972 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
973 gdbarch_data_free_ftype *free);
974 extern void set_gdbarch_data (struct gdbarch *gdbarch,
975 struct gdbarch_data *data,
976 void *pointer);
977
978 extern void *gdbarch_data (struct gdbarch_data*);
979
980
981 /* Register per-architecture memory region.
982
983 Provide a memory-region swap mechanism. Per-architecture memory
984 region are created. These memory regions are swapped whenever the
985 architecture is changed. For a new architecture, the memory region
986 is initialized with zero (0) and the INIT function is called.
987
988 Memory regions are swapped / initialized in the order that they are
989 registered. NULL DATA and/or INIT values can be specified.
990
991 New code should use register_gdbarch_data(). */
992
993 typedef void (gdbarch_swap_ftype) (void);
994 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
995 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
996
997
998
999 /* The target-system-dependent byte order is dynamic */
1000
1001 /* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
1002 is selectable at runtime. The user can use the \`\`set endian''
1003 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
1004 target_byte_order should be auto-detected (from the program image
1005 say). */
1006
1007 #if GDB_MULTI_ARCH
1008 /* Multi-arch GDB is always bi-endian. */
1009 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1010 #endif
1011
1012 #ifndef TARGET_BYTE_ORDER_SELECTABLE_P
1013 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
1014 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
1015 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1016 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1017 #else
1018 #define TARGET_BYTE_ORDER_SELECTABLE_P 0
1019 #endif
1020 #endif
1021
1022 extern int target_byte_order;
1023 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1024 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
1025 and expect defs.h to re-define TARGET_BYTE_ORDER. */
1026 #undef TARGET_BYTE_ORDER
1027 #endif
1028 #ifndef TARGET_BYTE_ORDER
1029 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1030 #endif
1031
1032 extern int target_byte_order_auto;
1033 #ifndef TARGET_BYTE_ORDER_AUTO
1034 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1035 #endif
1036
1037
1038
1039 /* The target-system-dependent BFD architecture is dynamic */
1040
1041 extern int target_architecture_auto;
1042 #ifndef TARGET_ARCHITECTURE_AUTO
1043 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1044 #endif
1045
1046 extern const struct bfd_arch_info *target_architecture;
1047 #ifndef TARGET_ARCHITECTURE
1048 #define TARGET_ARCHITECTURE (target_architecture + 0)
1049 #endif
1050
1051
1052 /* The target-system-dependent disassembler is semi-dynamic */
1053
1054 #include "dis-asm.h" /* Get defs for disassemble_info */
1055
1056 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1057 unsigned int len, disassemble_info *info);
1058
1059 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1060 disassemble_info *info);
1061
1062 extern void dis_asm_print_address (bfd_vma addr,
1063 disassemble_info *info);
1064
1065 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1066 extern disassemble_info tm_print_insn_info;
1067 #ifndef TARGET_PRINT_INSN
1068 #define TARGET_PRINT_INSN(vma, info) (*tm_print_insn) (vma, info)
1069 #endif
1070 #ifndef TARGET_PRINT_INSN_INFO
1071 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1072 #endif
1073
1074
1075
1076 /* Explicit test for D10V architecture.
1077 USE of these macro's is *STRONGLY* discouraged. */
1078
1079 #define GDB_TARGET_IS_D10V (TARGET_ARCHITECTURE->arch == bfd_arch_d10v)
1080
1081
1082 /* Set the dynamic target-system-dependent parameters (architecture,
1083 byte-order, ...) using information found in the BFD */
1084
1085 extern void set_gdbarch_from_file (bfd *);
1086
1087
1088 /* Initialize the current architecture to the "first" one we find on
1089 our list. */
1090
1091 extern void initialize_current_architecture (void);
1092
1093 /* For non-multiarched targets, do any initialization of the default
1094 gdbarch object necessary after the _initialize_MODULE functions
1095 have run. */
1096 extern void initialize_non_multiarch ();
1097
1098 /* gdbarch trace variable */
1099 extern int gdbarch_debug;
1100
1101 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1102
1103 #endif
1104 EOF
1105 exec 1>&2
1106 #../move-if-change new-gdbarch.h gdbarch.h
1107 compare_new gdbarch.h
1108
1109
1110 #
1111 # C file
1112 #
1113
1114 exec > new-gdbarch.c
1115 copyright
1116 cat <<EOF
1117
1118 #include "defs.h"
1119 #include "arch-utils.h"
1120
1121 #if GDB_MULTI_ARCH
1122 #include "gdbcmd.h"
1123 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1124 #else
1125 /* Just include everything in sight so that the every old definition
1126 of macro is visible. */
1127 #include "gdb_string.h"
1128 #include <ctype.h>
1129 #include "symtab.h"
1130 #include "frame.h"
1131 #include "inferior.h"
1132 #include "breakpoint.h"
1133 #include "gdb_wait.h"
1134 #include "gdbcore.h"
1135 #include "gdbcmd.h"
1136 #include "target.h"
1137 #include "gdbthread.h"
1138 #include "annotate.h"
1139 #include "symfile.h" /* for overlay functions */
1140 #endif
1141 #include "symcat.h"
1142
1143 #include "floatformat.h"
1144
1145 #include "gdb_assert.h"
1146
1147 /* Static function declarations */
1148
1149 static void verify_gdbarch (struct gdbarch *gdbarch);
1150 static void alloc_gdbarch_data (struct gdbarch *);
1151 static void init_gdbarch_data (struct gdbarch *);
1152 static void free_gdbarch_data (struct gdbarch *);
1153 static void init_gdbarch_swap (struct gdbarch *);
1154 static void swapout_gdbarch_swap (struct gdbarch *);
1155 static void swapin_gdbarch_swap (struct gdbarch *);
1156
1157 /* Convenience macro for allocting typesafe memory. */
1158
1159 #ifndef XMALLOC
1160 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1161 #endif
1162
1163
1164 /* Non-zero if we want to trace architecture code. */
1165
1166 #ifndef GDBARCH_DEBUG
1167 #define GDBARCH_DEBUG 0
1168 #endif
1169 int gdbarch_debug = GDBARCH_DEBUG;
1170
1171 EOF
1172
1173 # gdbarch open the gdbarch object
1174 printf "\n"
1175 printf "/* Maintain the struct gdbarch object */\n"
1176 printf "\n"
1177 printf "struct gdbarch\n"
1178 printf "{\n"
1179 printf " /* basic architectural information */\n"
1180 function_list | while do_read
1181 do
1182 if class_is_info_p
1183 then
1184 printf " ${returntype} ${function};\n"
1185 fi
1186 done
1187 printf "\n"
1188 printf " /* target specific vector. */\n"
1189 printf " struct gdbarch_tdep *tdep;\n"
1190 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1191 printf "\n"
1192 printf " /* per-architecture data-pointers */\n"
1193 printf " unsigned nr_data;\n"
1194 printf " void **data;\n"
1195 printf "\n"
1196 printf " /* per-architecture swap-regions */\n"
1197 printf " struct gdbarch_swap *swap;\n"
1198 printf "\n"
1199 cat <<EOF
1200 /* Multi-arch values.
1201
1202 When extending this structure you must:
1203
1204 Add the field below.
1205
1206 Declare set/get functions and define the corresponding
1207 macro in gdbarch.h.
1208
1209 gdbarch_alloc(): If zero/NULL is not a suitable default,
1210 initialize the new field.
1211
1212 verify_gdbarch(): Confirm that the target updated the field
1213 correctly.
1214
1215 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1216 field is dumped out
1217
1218 \`\`startup_gdbarch()'': Append an initial value to the static
1219 variable (base values on the host's c-type system).
1220
1221 get_gdbarch(): Implement the set/get functions (probably using
1222 the macro's as shortcuts).
1223
1224 */
1225
1226 EOF
1227 function_list | while do_read
1228 do
1229 if class_is_variable_p
1230 then
1231 printf " ${returntype} ${function};\n"
1232 elif class_is_function_p
1233 then
1234 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1235 fi
1236 done
1237 printf "};\n"
1238
1239 # A pre-initialized vector
1240 printf "\n"
1241 printf "\n"
1242 cat <<EOF
1243 /* The default architecture uses host values (for want of a better
1244 choice). */
1245 EOF
1246 printf "\n"
1247 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1248 printf "\n"
1249 printf "struct gdbarch startup_gdbarch =\n"
1250 printf "{\n"
1251 printf " /* basic architecture information */\n"
1252 function_list | while do_read
1253 do
1254 if class_is_info_p
1255 then
1256 printf " ${staticdefault},\n"
1257 fi
1258 done
1259 cat <<EOF
1260 /* target specific vector and its dump routine */
1261 NULL, NULL,
1262 /*per-architecture data-pointers and swap regions */
1263 0, NULL, NULL,
1264 /* Multi-arch values */
1265 EOF
1266 function_list | while do_read
1267 do
1268 if class_is_function_p || class_is_variable_p
1269 then
1270 printf " ${staticdefault},\n"
1271 fi
1272 done
1273 cat <<EOF
1274 /* startup_gdbarch() */
1275 };
1276
1277 struct gdbarch *current_gdbarch = &startup_gdbarch;
1278
1279 /* Do any initialization needed for a non-multiarch configuration
1280 after the _initialize_MODULE functions have been run. */
1281 void
1282 initialize_non_multiarch ()
1283 {
1284 alloc_gdbarch_data (&startup_gdbarch);
1285 init_gdbarch_data (&startup_gdbarch);
1286 }
1287 EOF
1288
1289 # Create a new gdbarch struct
1290 printf "\n"
1291 printf "\n"
1292 cat <<EOF
1293 /* Create a new \`\`struct gdbarch'' based on information provided by
1294 \`\`struct gdbarch_info''. */
1295 EOF
1296 printf "\n"
1297 cat <<EOF
1298 struct gdbarch *
1299 gdbarch_alloc (const struct gdbarch_info *info,
1300 struct gdbarch_tdep *tdep)
1301 {
1302 struct gdbarch *gdbarch = XMALLOC (struct gdbarch);
1303 memset (gdbarch, 0, sizeof (*gdbarch));
1304
1305 alloc_gdbarch_data (gdbarch);
1306
1307 gdbarch->tdep = tdep;
1308 EOF
1309 printf "\n"
1310 function_list | while do_read
1311 do
1312 if class_is_info_p
1313 then
1314 printf " gdbarch->${function} = info->${function};\n"
1315 fi
1316 done
1317 printf "\n"
1318 printf " /* Force the explicit initialization of these. */\n"
1319 function_list | while do_read
1320 do
1321 if class_is_function_p || class_is_variable_p
1322 then
1323 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1324 then
1325 printf " gdbarch->${function} = ${predefault};\n"
1326 fi
1327 fi
1328 done
1329 cat <<EOF
1330 /* gdbarch_alloc() */
1331
1332 return gdbarch;
1333 }
1334 EOF
1335
1336 # Free a gdbarch struct.
1337 printf "\n"
1338 printf "\n"
1339 cat <<EOF
1340 /* Free a gdbarch struct. This should never happen in normal
1341 operation --- once you've created a gdbarch, you keep it around.
1342 However, if an architecture's init function encounters an error
1343 building the structure, it may need to clean up a partially
1344 constructed gdbarch. */
1345
1346 void
1347 gdbarch_free (struct gdbarch *arch)
1348 {
1349 gdb_assert (arch != NULL);
1350 free_gdbarch_data (arch);
1351 xfree (arch);
1352 }
1353 EOF
1354
1355 # verify a new architecture
1356 printf "\n"
1357 printf "\n"
1358 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1359 printf "\n"
1360 cat <<EOF
1361 static void
1362 verify_gdbarch (struct gdbarch *gdbarch)
1363 {
1364 /* Only perform sanity checks on a multi-arch target. */
1365 if (!GDB_MULTI_ARCH)
1366 return;
1367 /* fundamental */
1368 if (gdbarch->byte_order == 0)
1369 internal_error (__FILE__, __LINE__,
1370 "verify_gdbarch: byte-order unset");
1371 if (gdbarch->bfd_arch_info == NULL)
1372 internal_error (__FILE__, __LINE__,
1373 "verify_gdbarch: bfd_arch_info unset");
1374 /* Check those that need to be defined for the given multi-arch level. */
1375 EOF
1376 function_list | while do_read
1377 do
1378 if class_is_function_p || class_is_variable_p
1379 then
1380 if [ "x${invalid_p}" = "x0" ]
1381 then
1382 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1383 elif class_is_predicate_p
1384 then
1385 printf " /* Skip verify of ${function}, has predicate */\n"
1386 # FIXME: See do_read for potential simplification
1387 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1388 then
1389 printf " if (${invalid_p})\n"
1390 printf " gdbarch->${function} = ${postdefault};\n"
1391 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1392 then
1393 printf " if (gdbarch->${function} == ${predefault})\n"
1394 printf " gdbarch->${function} = ${postdefault};\n"
1395 elif [ -n "${postdefault}" ]
1396 then
1397 printf " if (gdbarch->${function} == 0)\n"
1398 printf " gdbarch->${function} = ${postdefault};\n"
1399 elif [ -n "${invalid_p}" ]
1400 then
1401 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1402 printf " && (${invalid_p}))\n"
1403 printf " internal_error (__FILE__, __LINE__,\n"
1404 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1405 elif [ -n "${predefault}" ]
1406 then
1407 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1408 printf " && (gdbarch->${function} == ${predefault}))\n"
1409 printf " internal_error (__FILE__, __LINE__,\n"
1410 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1411 fi
1412 fi
1413 done
1414 cat <<EOF
1415 }
1416 EOF
1417
1418 # dump the structure
1419 printf "\n"
1420 printf "\n"
1421 cat <<EOF
1422 /* Print out the details of the current architecture. */
1423
1424 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1425 just happens to match the global variable \`\`current_gdbarch''. That
1426 way macros refering to that variable get the local and not the global
1427 version - ulgh. Once everything is parameterised with gdbarch, this
1428 will go away. */
1429
1430 void
1431 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1432 {
1433 fprintf_unfiltered (file,
1434 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1435 GDB_MULTI_ARCH);
1436 EOF
1437 function_list | while do_read
1438 do
1439 # multiarch functions don't have macros.
1440 class_is_multiarch_p && continue
1441 if [ "x${returntype}" = "xvoid" ]
1442 then
1443 printf "#if defined (${macro}) && GDB_MULTI_ARCH\n"
1444 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1445 else
1446 printf "#ifdef ${macro}\n"
1447 fi
1448 if class_is_function_p
1449 then
1450 printf " fprintf_unfiltered (file,\n"
1451 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1452 printf " \"${macro}(${actual})\",\n"
1453 printf " XSTRING (${macro} (${actual})));\n"
1454 else
1455 printf " fprintf_unfiltered (file,\n"
1456 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1457 printf " XSTRING (${macro}));\n"
1458 fi
1459 printf "#endif\n"
1460 done
1461 function_list | while do_read
1462 do
1463 if class_is_multiarch_p
1464 then
1465 printf " if (GDB_MULTI_ARCH)\n"
1466 printf " fprintf_unfiltered (file,\n"
1467 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1468 printf " (long) current_gdbarch->${function});\n"
1469 continue
1470 fi
1471 printf "#ifdef ${macro}\n"
1472 if [ "x${print_p}" = "x()" ]
1473 then
1474 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1475 elif [ "x${print_p}" = "x0" ]
1476 then
1477 printf " /* skip print of ${macro}, print_p == 0. */\n"
1478 elif [ -n "${print_p}" ]
1479 then
1480 printf " if (${print_p})\n"
1481 printf " fprintf_unfiltered (file,\n"
1482 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1483 printf " ${print});\n"
1484 elif class_is_function_p
1485 then
1486 printf " if (GDB_MULTI_ARCH)\n"
1487 printf " fprintf_unfiltered (file,\n"
1488 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1489 printf " (long) current_gdbarch->${function}\n"
1490 printf " /*${macro} ()*/);\n"
1491 else
1492 printf " fprintf_unfiltered (file,\n"
1493 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1494 printf " ${print});\n"
1495 fi
1496 printf "#endif\n"
1497 done
1498 cat <<EOF
1499 if (current_gdbarch->dump_tdep != NULL)
1500 current_gdbarch->dump_tdep (current_gdbarch, file);
1501 }
1502 EOF
1503
1504
1505 # GET/SET
1506 printf "\n"
1507 cat <<EOF
1508 struct gdbarch_tdep *
1509 gdbarch_tdep (struct gdbarch *gdbarch)
1510 {
1511 if (gdbarch_debug >= 2)
1512 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1513 return gdbarch->tdep;
1514 }
1515 EOF
1516 printf "\n"
1517 function_list | while do_read
1518 do
1519 if class_is_predicate_p
1520 then
1521 printf "\n"
1522 printf "int\n"
1523 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1524 printf "{\n"
1525 if [ -n "${valid_p}" ]
1526 then
1527 printf " return ${valid_p};\n"
1528 else
1529 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1530 fi
1531 printf "}\n"
1532 fi
1533 if class_is_function_p
1534 then
1535 printf "\n"
1536 printf "${returntype}\n"
1537 if [ "x${formal}" = "xvoid" ]
1538 then
1539 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1540 else
1541 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1542 fi
1543 printf "{\n"
1544 printf " if (gdbarch->${function} == 0)\n"
1545 printf " internal_error (__FILE__, __LINE__,\n"
1546 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1547 printf " if (gdbarch_debug >= 2)\n"
1548 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1549 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1550 then
1551 if class_is_multiarch_p
1552 then
1553 params="gdbarch"
1554 else
1555 params=""
1556 fi
1557 else
1558 if class_is_multiarch_p
1559 then
1560 params="gdbarch, ${actual}"
1561 else
1562 params="${actual}"
1563 fi
1564 fi
1565 if [ "x${returntype}" = "xvoid" ]
1566 then
1567 printf " gdbarch->${function} (${params});\n"
1568 else
1569 printf " return gdbarch->${function} (${params});\n"
1570 fi
1571 printf "}\n"
1572 printf "\n"
1573 printf "void\n"
1574 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1575 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1576 printf "{\n"
1577 printf " gdbarch->${function} = ${function};\n"
1578 printf "}\n"
1579 elif class_is_variable_p
1580 then
1581 printf "\n"
1582 printf "${returntype}\n"
1583 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1584 printf "{\n"
1585 if [ "x${invalid_p}" = "x0" ]
1586 then
1587 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1588 elif [ -n "${invalid_p}" ]
1589 then
1590 printf " if (${invalid_p})\n"
1591 printf " internal_error (__FILE__, __LINE__,\n"
1592 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1593 elif [ -n "${predefault}" ]
1594 then
1595 printf " if (gdbarch->${function} == ${predefault})\n"
1596 printf " internal_error (__FILE__, __LINE__,\n"
1597 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1598 fi
1599 printf " if (gdbarch_debug >= 2)\n"
1600 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1601 printf " return gdbarch->${function};\n"
1602 printf "}\n"
1603 printf "\n"
1604 printf "void\n"
1605 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1606 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1607 printf "{\n"
1608 printf " gdbarch->${function} = ${function};\n"
1609 printf "}\n"
1610 elif class_is_info_p
1611 then
1612 printf "\n"
1613 printf "${returntype}\n"
1614 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1615 printf "{\n"
1616 printf " if (gdbarch_debug >= 2)\n"
1617 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1618 printf " return gdbarch->${function};\n"
1619 printf "}\n"
1620 fi
1621 done
1622
1623 # All the trailing guff
1624 cat <<EOF
1625
1626
1627 /* Keep a registry of per-architecture data-pointers required by GDB
1628 modules. */
1629
1630 struct gdbarch_data
1631 {
1632 unsigned index;
1633 gdbarch_data_init_ftype *init;
1634 gdbarch_data_free_ftype *free;
1635 };
1636
1637 struct gdbarch_data_registration
1638 {
1639 struct gdbarch_data *data;
1640 struct gdbarch_data_registration *next;
1641 };
1642
1643 struct gdbarch_data_registry
1644 {
1645 unsigned nr;
1646 struct gdbarch_data_registration *registrations;
1647 };
1648
1649 struct gdbarch_data_registry gdbarch_data_registry =
1650 {
1651 0, NULL,
1652 };
1653
1654 struct gdbarch_data *
1655 register_gdbarch_data (gdbarch_data_init_ftype *init,
1656 gdbarch_data_free_ftype *free)
1657 {
1658 struct gdbarch_data_registration **curr;
1659 for (curr = &gdbarch_data_registry.registrations;
1660 (*curr) != NULL;
1661 curr = &(*curr)->next);
1662 (*curr) = XMALLOC (struct gdbarch_data_registration);
1663 (*curr)->next = NULL;
1664 (*curr)->data = XMALLOC (struct gdbarch_data);
1665 (*curr)->data->index = gdbarch_data_registry.nr++;
1666 (*curr)->data->init = init;
1667 (*curr)->data->free = free;
1668 return (*curr)->data;
1669 }
1670
1671
1672 /* Walk through all the registered users initializing each in turn. */
1673
1674 static void
1675 init_gdbarch_data (struct gdbarch *gdbarch)
1676 {
1677 struct gdbarch_data_registration *rego;
1678 for (rego = gdbarch_data_registry.registrations;
1679 rego != NULL;
1680 rego = rego->next)
1681 {
1682 struct gdbarch_data *data = rego->data;
1683 gdb_assert (data->index < gdbarch->nr_data);
1684 if (data->init != NULL)
1685 {
1686 void *pointer = data->init (gdbarch);
1687 set_gdbarch_data (gdbarch, data, pointer);
1688 }
1689 }
1690 }
1691
1692 /* Create/delete the gdbarch data vector. */
1693
1694 static void
1695 alloc_gdbarch_data (struct gdbarch *gdbarch)
1696 {
1697 gdb_assert (gdbarch->data == NULL);
1698 gdbarch->nr_data = gdbarch_data_registry.nr;
1699 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1700 }
1701
1702 static void
1703 free_gdbarch_data (struct gdbarch *gdbarch)
1704 {
1705 struct gdbarch_data_registration *rego;
1706 gdb_assert (gdbarch->data != NULL);
1707 for (rego = gdbarch_data_registry.registrations;
1708 rego != NULL;
1709 rego = rego->next)
1710 {
1711 struct gdbarch_data *data = rego->data;
1712 gdb_assert (data->index < gdbarch->nr_data);
1713 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1714 {
1715 data->free (gdbarch, gdbarch->data[data->index]);
1716 gdbarch->data[data->index] = NULL;
1717 }
1718 }
1719 xfree (gdbarch->data);
1720 gdbarch->data = NULL;
1721 }
1722
1723
1724 /* Initialize the current value of thee specified per-architecture
1725 data-pointer. */
1726
1727 void
1728 set_gdbarch_data (struct gdbarch *gdbarch,
1729 struct gdbarch_data *data,
1730 void *pointer)
1731 {
1732 gdb_assert (data->index < gdbarch->nr_data);
1733 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1734 data->free (gdbarch, gdbarch->data[data->index]);
1735 gdbarch->data[data->index] = pointer;
1736 }
1737
1738 /* Return the current value of the specified per-architecture
1739 data-pointer. */
1740
1741 void *
1742 gdbarch_data (struct gdbarch_data *data)
1743 {
1744 gdb_assert (data->index < current_gdbarch->nr_data);
1745 return current_gdbarch->data[data->index];
1746 }
1747
1748
1749
1750 /* Keep a registry of swapped data required by GDB modules. */
1751
1752 struct gdbarch_swap
1753 {
1754 void *swap;
1755 struct gdbarch_swap_registration *source;
1756 struct gdbarch_swap *next;
1757 };
1758
1759 struct gdbarch_swap_registration
1760 {
1761 void *data;
1762 unsigned long sizeof_data;
1763 gdbarch_swap_ftype *init;
1764 struct gdbarch_swap_registration *next;
1765 };
1766
1767 struct gdbarch_swap_registry
1768 {
1769 int nr;
1770 struct gdbarch_swap_registration *registrations;
1771 };
1772
1773 struct gdbarch_swap_registry gdbarch_swap_registry =
1774 {
1775 0, NULL,
1776 };
1777
1778 void
1779 register_gdbarch_swap (void *data,
1780 unsigned long sizeof_data,
1781 gdbarch_swap_ftype *init)
1782 {
1783 struct gdbarch_swap_registration **rego;
1784 for (rego = &gdbarch_swap_registry.registrations;
1785 (*rego) != NULL;
1786 rego = &(*rego)->next);
1787 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1788 (*rego)->next = NULL;
1789 (*rego)->init = init;
1790 (*rego)->data = data;
1791 (*rego)->sizeof_data = sizeof_data;
1792 }
1793
1794
1795 static void
1796 init_gdbarch_swap (struct gdbarch *gdbarch)
1797 {
1798 struct gdbarch_swap_registration *rego;
1799 struct gdbarch_swap **curr = &gdbarch->swap;
1800 for (rego = gdbarch_swap_registry.registrations;
1801 rego != NULL;
1802 rego = rego->next)
1803 {
1804 if (rego->data != NULL)
1805 {
1806 (*curr) = XMALLOC (struct gdbarch_swap);
1807 (*curr)->source = rego;
1808 (*curr)->swap = xmalloc (rego->sizeof_data);
1809 (*curr)->next = NULL;
1810 memset (rego->data, 0, rego->sizeof_data);
1811 curr = &(*curr)->next;
1812 }
1813 if (rego->init != NULL)
1814 rego->init ();
1815 }
1816 }
1817
1818 static void
1819 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1820 {
1821 struct gdbarch_swap *curr;
1822 for (curr = gdbarch->swap;
1823 curr != NULL;
1824 curr = curr->next)
1825 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1826 }
1827
1828 static void
1829 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1830 {
1831 struct gdbarch_swap *curr;
1832 for (curr = gdbarch->swap;
1833 curr != NULL;
1834 curr = curr->next)
1835 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1836 }
1837
1838
1839 /* Keep a registry of the architectures known by GDB. */
1840
1841 struct gdbarch_registration
1842 {
1843 enum bfd_architecture bfd_architecture;
1844 gdbarch_init_ftype *init;
1845 gdbarch_dump_tdep_ftype *dump_tdep;
1846 struct gdbarch_list *arches;
1847 struct gdbarch_registration *next;
1848 };
1849
1850 static struct gdbarch_registration *gdbarch_registry = NULL;
1851
1852 static void
1853 append_name (const char ***buf, int *nr, const char *name)
1854 {
1855 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1856 (*buf)[*nr] = name;
1857 *nr += 1;
1858 }
1859
1860 const char **
1861 gdbarch_printable_names (void)
1862 {
1863 if (GDB_MULTI_ARCH)
1864 {
1865 /* Accumulate a list of names based on the registed list of
1866 architectures. */
1867 enum bfd_architecture a;
1868 int nr_arches = 0;
1869 const char **arches = NULL;
1870 struct gdbarch_registration *rego;
1871 for (rego = gdbarch_registry;
1872 rego != NULL;
1873 rego = rego->next)
1874 {
1875 const struct bfd_arch_info *ap;
1876 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1877 if (ap == NULL)
1878 internal_error (__FILE__, __LINE__,
1879 "gdbarch_architecture_names: multi-arch unknown");
1880 do
1881 {
1882 append_name (&arches, &nr_arches, ap->printable_name);
1883 ap = ap->next;
1884 }
1885 while (ap != NULL);
1886 }
1887 append_name (&arches, &nr_arches, NULL);
1888 return arches;
1889 }
1890 else
1891 /* Just return all the architectures that BFD knows. Assume that
1892 the legacy architecture framework supports them. */
1893 return bfd_arch_list ();
1894 }
1895
1896
1897 void
1898 gdbarch_register (enum bfd_architecture bfd_architecture,
1899 gdbarch_init_ftype *init,
1900 gdbarch_dump_tdep_ftype *dump_tdep)
1901 {
1902 struct gdbarch_registration **curr;
1903 const struct bfd_arch_info *bfd_arch_info;
1904 /* Check that BFD recognizes this architecture */
1905 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1906 if (bfd_arch_info == NULL)
1907 {
1908 internal_error (__FILE__, __LINE__,
1909 "gdbarch: Attempt to register unknown architecture (%d)",
1910 bfd_architecture);
1911 }
1912 /* Check that we haven't seen this architecture before */
1913 for (curr = &gdbarch_registry;
1914 (*curr) != NULL;
1915 curr = &(*curr)->next)
1916 {
1917 if (bfd_architecture == (*curr)->bfd_architecture)
1918 internal_error (__FILE__, __LINE__,
1919 "gdbarch: Duplicate registraration of architecture (%s)",
1920 bfd_arch_info->printable_name);
1921 }
1922 /* log it */
1923 if (gdbarch_debug)
1924 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1925 bfd_arch_info->printable_name,
1926 (long) init);
1927 /* Append it */
1928 (*curr) = XMALLOC (struct gdbarch_registration);
1929 (*curr)->bfd_architecture = bfd_architecture;
1930 (*curr)->init = init;
1931 (*curr)->dump_tdep = dump_tdep;
1932 (*curr)->arches = NULL;
1933 (*curr)->next = NULL;
1934 /* When non- multi-arch, install whatever target dump routine we've
1935 been provided - hopefully that routine has been written correctly
1936 and works regardless of multi-arch. */
1937 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1938 && startup_gdbarch.dump_tdep == NULL)
1939 startup_gdbarch.dump_tdep = dump_tdep;
1940 }
1941
1942 void
1943 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1944 gdbarch_init_ftype *init)
1945 {
1946 gdbarch_register (bfd_architecture, init, NULL);
1947 }
1948
1949
1950 /* Look for an architecture using gdbarch_info. Base search on only
1951 BFD_ARCH_INFO and BYTE_ORDER. */
1952
1953 struct gdbarch_list *
1954 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1955 const struct gdbarch_info *info)
1956 {
1957 for (; arches != NULL; arches = arches->next)
1958 {
1959 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1960 continue;
1961 if (info->byte_order != arches->gdbarch->byte_order)
1962 continue;
1963 return arches;
1964 }
1965 return NULL;
1966 }
1967
1968
1969 /* Update the current architecture. Return ZERO if the update request
1970 failed. */
1971
1972 int
1973 gdbarch_update_p (struct gdbarch_info info)
1974 {
1975 struct gdbarch *new_gdbarch;
1976 struct gdbarch_list **list;
1977 struct gdbarch_registration *rego;
1978
1979 /* Fill in missing parts of the INFO struct using a number of
1980 sources: \`\`set ...''; INFOabfd supplied; existing target. */
1981
1982 /* \`\`(gdb) set architecture ...'' */
1983 if (info.bfd_arch_info == NULL
1984 && !TARGET_ARCHITECTURE_AUTO)
1985 info.bfd_arch_info = TARGET_ARCHITECTURE;
1986 if (info.bfd_arch_info == NULL
1987 && info.abfd != NULL
1988 && bfd_get_arch (info.abfd) != bfd_arch_unknown
1989 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
1990 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
1991 if (info.bfd_arch_info == NULL)
1992 info.bfd_arch_info = TARGET_ARCHITECTURE;
1993
1994 /* \`\`(gdb) set byte-order ...'' */
1995 if (info.byte_order == 0
1996 && !TARGET_BYTE_ORDER_AUTO)
1997 info.byte_order = TARGET_BYTE_ORDER;
1998 /* From the INFO struct. */
1999 if (info.byte_order == 0
2000 && info.abfd != NULL)
2001 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
2002 : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
2003 : 0);
2004 /* From the current target. */
2005 if (info.byte_order == 0)
2006 info.byte_order = TARGET_BYTE_ORDER;
2007
2008 /* Must have found some sort of architecture. */
2009 gdb_assert (info.bfd_arch_info != NULL);
2010
2011 if (gdbarch_debug)
2012 {
2013 fprintf_unfiltered (gdb_stdlog,
2014 "gdbarch_update: info.bfd_arch_info %s\n",
2015 (info.bfd_arch_info != NULL
2016 ? info.bfd_arch_info->printable_name
2017 : "(null)"));
2018 fprintf_unfiltered (gdb_stdlog,
2019 "gdbarch_update: info.byte_order %d (%s)\n",
2020 info.byte_order,
2021 (info.byte_order == BIG_ENDIAN ? "big"
2022 : info.byte_order == LITTLE_ENDIAN ? "little"
2023 : "default"));
2024 fprintf_unfiltered (gdb_stdlog,
2025 "gdbarch_update: info.abfd 0x%lx\n",
2026 (long) info.abfd);
2027 fprintf_unfiltered (gdb_stdlog,
2028 "gdbarch_update: info.tdep_info 0x%lx\n",
2029 (long) info.tdep_info);
2030 }
2031
2032 /* Find the target that knows about this architecture. */
2033 for (rego = gdbarch_registry;
2034 rego != NULL;
2035 rego = rego->next)
2036 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2037 break;
2038 if (rego == NULL)
2039 {
2040 if (gdbarch_debug)
2041 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2042 return 0;
2043 }
2044
2045 /* Ask the target for a replacement architecture. */
2046 new_gdbarch = rego->init (info, rego->arches);
2047
2048 /* Did the target like it? No. Reject the change. */
2049 if (new_gdbarch == NULL)
2050 {
2051 if (gdbarch_debug)
2052 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2053 return 0;
2054 }
2055
2056 /* Did the architecture change? No. Do nothing. */
2057 if (current_gdbarch == new_gdbarch)
2058 {
2059 if (gdbarch_debug)
2060 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2061 (long) new_gdbarch,
2062 new_gdbarch->bfd_arch_info->printable_name);
2063 return 1;
2064 }
2065
2066 /* Swap all data belonging to the old target out */
2067 swapout_gdbarch_swap (current_gdbarch);
2068
2069 /* Is this a pre-existing architecture? Yes. Swap it in. */
2070 for (list = &rego->arches;
2071 (*list) != NULL;
2072 list = &(*list)->next)
2073 {
2074 if ((*list)->gdbarch == new_gdbarch)
2075 {
2076 if (gdbarch_debug)
2077 fprintf_unfiltered (gdb_stdlog,
2078 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2079 (long) new_gdbarch,
2080 new_gdbarch->bfd_arch_info->printable_name);
2081 current_gdbarch = new_gdbarch;
2082 swapin_gdbarch_swap (new_gdbarch);
2083 return 1;
2084 }
2085 }
2086
2087 /* Append this new architecture to this targets list. */
2088 (*list) = XMALLOC (struct gdbarch_list);
2089 (*list)->next = NULL;
2090 (*list)->gdbarch = new_gdbarch;
2091
2092 /* Switch to this new architecture. Dump it out. */
2093 current_gdbarch = new_gdbarch;
2094 if (gdbarch_debug)
2095 {
2096 fprintf_unfiltered (gdb_stdlog,
2097 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2098 (long) new_gdbarch,
2099 new_gdbarch->bfd_arch_info->printable_name);
2100 }
2101
2102 /* Check that the newly installed architecture is valid. Plug in
2103 any post init values. */
2104 new_gdbarch->dump_tdep = rego->dump_tdep;
2105 verify_gdbarch (new_gdbarch);
2106
2107 /* Initialize the per-architecture memory (swap) areas.
2108 CURRENT_GDBARCH must be update before these modules are
2109 called. */
2110 init_gdbarch_swap (new_gdbarch);
2111
2112 /* Initialize the per-architecture data-pointer of all parties that
2113 registered an interest in this architecture. CURRENT_GDBARCH
2114 must be updated before these modules are called. */
2115 init_gdbarch_data (new_gdbarch);
2116
2117 if (gdbarch_debug)
2118 gdbarch_dump (current_gdbarch, gdb_stdlog);
2119
2120 return 1;
2121 }
2122
2123
2124 /* Disassembler */
2125
2126 /* Pointer to the target-dependent disassembly function. */
2127 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2128 disassemble_info tm_print_insn_info;
2129
2130
2131 extern void _initialize_gdbarch (void);
2132
2133 void
2134 _initialize_gdbarch (void)
2135 {
2136 struct cmd_list_element *c;
2137
2138 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2139 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2140 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2141 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2142 tm_print_insn_info.print_address_func = dis_asm_print_address;
2143
2144 add_show_from_set (add_set_cmd ("arch",
2145 class_maintenance,
2146 var_zinteger,
2147 (char *)&gdbarch_debug,
2148 "Set architecture debugging.\\n\\
2149 When non-zero, architecture debugging is enabled.", &setdebuglist),
2150 &showdebuglist);
2151 c = add_set_cmd ("archdebug",
2152 class_maintenance,
2153 var_zinteger,
2154 (char *)&gdbarch_debug,
2155 "Set architecture debugging.\\n\\
2156 When non-zero, architecture debugging is enabled.", &setlist);
2157
2158 deprecate_cmd (c, "set debug arch");
2159 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2160 }
2161 EOF
2162
2163 # close things off
2164 exec 1>&2
2165 #../move-if-change new-gdbarch.c gdbarch.c
2166 compare_new gdbarch.c