* gdbarch.sh: For for level one methods, disallow a definition
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -u ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 case "${level}" in
80 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
81 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
82 "" ) ;;
83 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
84 esac
85
86 case "${class}" in
87 m ) staticdefault="${predefault}" ;;
88 M ) staticdefault="0" ;;
89 * ) test "${staticdefault}" || staticdefault=0 ;;
90 esac
91 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
92 # multi-arch defaults.
93 # test "${predefault}" || predefault=0
94
95 # come up with a format, use a few guesses for variables
96 case ":${class}:${fmt}:${print}:" in
97 :[vV]::: )
98 if [ "${returntype}" = int ]
99 then
100 fmt="%d"
101 print="${macro}"
102 elif [ "${returntype}" = long ]
103 then
104 fmt="%ld"
105 print="${macro}"
106 fi
107 ;;
108 esac
109 test "${fmt}" || fmt="%ld"
110 test "${print}" || print="(long) ${macro}"
111
112 case "${invalid_p}" in
113 0 ) valid_p=1 ;;
114 "" )
115 if [ -n "${predefault}" ]
116 then
117 #invalid_p="gdbarch->${function} == ${predefault}"
118 valid_p="gdbarch->${function} != ${predefault}"
119 else
120 #invalid_p="gdbarch->${function} == 0"
121 valid_p="gdbarch->${function} != 0"
122 fi
123 ;;
124 * ) valid_p="!(${invalid_p})"
125 esac
126
127 # PREDEFAULT is a valid fallback definition of MEMBER when
128 # multi-arch is not enabled. This ensures that the
129 # default value, when multi-arch is the same as the
130 # default value when not multi-arch. POSTDEFAULT is
131 # always a valid definition of MEMBER as this again
132 # ensures consistency.
133
134 if [ -n "${postdefault}" ]
135 then
136 fallbackdefault="${postdefault}"
137 elif [ -n "${predefault}" ]
138 then
139 fallbackdefault="${predefault}"
140 else
141 fallbackdefault="0"
142 fi
143
144 #NOT YET: See gdbarch.log for basic verification of
145 # database
146
147 break
148 fi
149 done
150 if [ -n "${class}" ]
151 then
152 true
153 else
154 false
155 fi
156 }
157
158
159 fallback_default_p ()
160 {
161 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
162 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
163 }
164
165 class_is_variable_p ()
166 {
167 case "${class}" in
168 *v* | *V* ) true ;;
169 * ) false ;;
170 esac
171 }
172
173 class_is_function_p ()
174 {
175 case "${class}" in
176 *f* | *F* | *m* | *M* ) true ;;
177 * ) false ;;
178 esac
179 }
180
181 class_is_multiarch_p ()
182 {
183 case "${class}" in
184 *m* | *M* ) true ;;
185 * ) false ;;
186 esac
187 }
188
189 class_is_predicate_p ()
190 {
191 case "${class}" in
192 *F* | *V* | *M* ) true ;;
193 * ) false ;;
194 esac
195 }
196
197 class_is_info_p ()
198 {
199 case "${class}" in
200 *i* ) true ;;
201 * ) false ;;
202 esac
203 }
204
205
206 # dump out/verify the doco
207 for field in ${read}
208 do
209 case ${field} in
210
211 class ) : ;;
212
213 # # -> line disable
214 # f -> function
215 # hiding a function
216 # F -> function + predicate
217 # hiding a function + predicate to test function validity
218 # v -> variable
219 # hiding a variable
220 # V -> variable + predicate
221 # hiding a variable + predicate to test variables validity
222 # i -> set from info
223 # hiding something from the ``struct info'' object
224 # m -> multi-arch function
225 # hiding a multi-arch function (parameterised with the architecture)
226 # M -> multi-arch function + predicate
227 # hiding a multi-arch function + predicate to test function validity
228
229 level ) : ;;
230
231 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
232 # LEVEL is a predicate on checking that a given method is
233 # initialized (using INVALID_P).
234
235 macro ) : ;;
236
237 # The name of the MACRO that this method is to be accessed by.
238
239 returntype ) : ;;
240
241 # For functions, the return type; for variables, the data type
242
243 function ) : ;;
244
245 # For functions, the member function name; for variables, the
246 # variable name. Member function names are always prefixed with
247 # ``gdbarch_'' for name-space purity.
248
249 formal ) : ;;
250
251 # The formal argument list. It is assumed that the formal
252 # argument list includes the actual name of each list element.
253 # A function with no arguments shall have ``void'' as the
254 # formal argument list.
255
256 actual ) : ;;
257
258 # The list of actual arguments. The arguments specified shall
259 # match the FORMAL list given above. Functions with out
260 # arguments leave this blank.
261
262 attrib ) : ;;
263
264 # Any GCC attributes that should be attached to the function
265 # declaration. At present this field is unused.
266
267 staticdefault ) : ;;
268
269 # To help with the GDB startup a static gdbarch object is
270 # created. STATICDEFAULT is the value to insert into that
271 # static gdbarch object. Since this a static object only
272 # simple expressions can be used.
273
274 # If STATICDEFAULT is empty, zero is used.
275
276 predefault ) : ;;
277
278 # An initial value to assign to MEMBER of the freshly
279 # malloc()ed gdbarch object. After initialization, the
280 # freshly malloc()ed object is passed to the target
281 # architecture code for further updates.
282
283 # If PREDEFAULT is empty, zero is used.
284
285 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
286 # INVALID_P are specified, PREDEFAULT will be used as the
287 # default for the non- multi-arch target.
288
289 # A zero PREDEFAULT function will force the fallback to call
290 # internal_error().
291
292 # Variable declarations can refer to ``gdbarch'' which will
293 # contain the current architecture. Care should be taken.
294
295 postdefault ) : ;;
296
297 # A value to assign to MEMBER of the new gdbarch object should
298 # the target architecture code fail to change the PREDEFAULT
299 # value.
300
301 # If POSTDEFAULT is empty, no post update is performed.
302
303 # If both INVALID_P and POSTDEFAULT are non-empty then
304 # INVALID_P will be used to determine if MEMBER should be
305 # changed to POSTDEFAULT.
306
307 # If a non-empty POSTDEFAULT and a zero INVALID_P are
308 # specified, POSTDEFAULT will be used as the default for the
309 # non- multi-arch target (regardless of the value of
310 # PREDEFAULT).
311
312 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
313
314 # Variable declarations can refer to ``gdbarch'' which will
315 # contain the current architecture. Care should be taken.
316
317 invalid_p ) : ;;
318
319 # A predicate equation that validates MEMBER. Non-zero is
320 # returned if the code creating the new architecture failed to
321 # initialize MEMBER or the initialized the member is invalid.
322 # If POSTDEFAULT is non-empty then MEMBER will be updated to
323 # that value. If POSTDEFAULT is empty then internal_error()
324 # is called.
325
326 # If INVALID_P is empty, a check that MEMBER is no longer
327 # equal to PREDEFAULT is used.
328
329 # The expression ``0'' disables the INVALID_P check making
330 # PREDEFAULT a legitimate value.
331
332 # See also PREDEFAULT and POSTDEFAULT.
333
334 fmt ) : ;;
335
336 # printf style format string that can be used to print out the
337 # MEMBER. Sometimes "%s" is useful. For functions, this is
338 # ignored and the function address is printed.
339
340 # If FMT is empty, ``%ld'' is used.
341
342 print ) : ;;
343
344 # An optional equation that casts MEMBER to a value suitable
345 # for formatting by FMT.
346
347 # If PRINT is empty, ``(long)'' is used.
348
349 print_p ) : ;;
350
351 # An optional indicator for any predicte to wrap around the
352 # print member code.
353
354 # () -> Call a custom function to do the dump.
355 # exp -> Wrap print up in ``if (${print_p}) ...
356 # ``'' -> No predicate
357
358 # If PRINT_P is empty, ``1'' is always used.
359
360 description ) : ;;
361
362 # Currently unused.
363
364 *)
365 echo "Bad field ${field}"
366 exit 1;;
367 esac
368 done
369
370
371 function_list ()
372 {
373 # See below (DOCO) for description of each field
374 cat <<EOF
375 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
376 #
377 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
378 # Number of bits in a char or unsigned char for the target machine.
379 # Just like CHAR_BIT in <limits.h> but describes the target machine.
380 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
381 #
382 # Number of bits in a short or unsigned short for the target machine.
383 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
384 # Number of bits in an int or unsigned int for the target machine.
385 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
386 # Number of bits in a long or unsigned long for the target machine.
387 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
388 # Number of bits in a long long or unsigned long long for the target
389 # machine.
390 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
391 # Number of bits in a float for the target machine.
392 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
393 # Number of bits in a double for the target machine.
394 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
395 # Number of bits in a long double for the target machine.
396 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
397 # For most targets, a pointer on the target and its representation as an
398 # address in GDB have the same size and "look the same". For such a
399 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
400 # / addr_bit will be set from it.
401 #
402 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
403 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
404 #
405 # ptr_bit is the size of a pointer on the target
406 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
407 # addr_bit is the size of a target address as represented in gdb
408 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
409 # Number of bits in a BFD_VMA for the target object file format.
410 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
411 #
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
414 #
415 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
416 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
417 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
418 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
419 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
420 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
421 # Function for getting target's idea of a frame pointer. FIXME: GDB's
422 # whole scheme for dealing with "frames" and "frame pointers" needs a
423 # serious shakedown.
424 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
425 #
426 M:::void:register_read:int regnum, char *buf:regnum, buf:
427 M:::void:register_write:int regnum, char *buf:regnum, buf:
428 #
429 v:2:NUM_REGS:int:num_regs::::0:-1
430 # This macro gives the number of pseudo-registers that live in the
431 # register namespace but do not get fetched or stored on the target.
432 # These pseudo-registers may be aliases for other registers,
433 # combinations of other registers, or they may be computed by GDB.
434 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
435 v:2:SP_REGNUM:int:sp_regnum::::0:-1
436 v:2:FP_REGNUM:int:fp_regnum::::0:-1
437 v:2:PC_REGNUM:int:pc_regnum::::0:-1
438 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
439 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
440 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
441 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
442 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
443 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
444 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
445 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
446 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
447 # Convert from an sdb register number to an internal gdb register number.
448 # This should be defined in tm.h, if REGISTER_NAMES is not set up
449 # to map one to one onto the sdb register numbers.
450 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
451 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
452 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
453 v:2:REGISTER_SIZE:int:register_size::::0:-1
454 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
455 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
456 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_raw_size:0
457 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
458 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_virtual_size:0
459 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
460 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
461 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
462 f:2:PRINT_FLOAT_INFO:void:print_float_info:void::::default_print_float_info::0
463 # MAP a GDB RAW register number onto a simulator register number. See
464 # also include/...-sim.h.
465 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
466 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
467 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
468 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
469 #
470 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
471 # much better but at least they are vaguely consistent). The headers
472 # and body contain convoluted #if/#else sequences for determine how
473 # things should be compiled. Instead of trying to mimic that
474 # behaviour here (and hence entrench it further) gdbarch simply
475 # reqires that these methods be set up from the word go. This also
476 # avoids any potential problems with moving beyond multi-arch partial.
477 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
478 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
479 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
480 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
481 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
482 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
483 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
484 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
485 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
486 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
487 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
488 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
489 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
490 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
491 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
492 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
493 #
494 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
495 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
496 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
497 # GET_SAVED_REGISTER is like DUMMY_FRAMES. It is at level one as the
498 # old code has strange #ifdef interaction. So far no one has found
499 # that default_get_saved_register() is the default they are after.
500 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
501 #
502 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
503 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
504 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
505 # This function is called when the value of a pseudo-register needs to
506 # be updated. Typically it will be defined on a per-architecture
507 # basis.
508 F:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:
509 # This function is called when the value of a pseudo-register needs to
510 # be set or stored. Typically it will be defined on a
511 # per-architecture basis.
512 F:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:
513 #
514 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
515 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
516 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
517 #
518 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
519 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
520 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
521 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
522 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
523 f:2:POP_FRAME:void:pop_frame:void:-:::0
524 #
525 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
526 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
527 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
528 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
529 #
530 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
531 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
532 #
533 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
534 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
535 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
536 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
537 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
538 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
539 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
540 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
541 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
542 #
543 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
544 #
545 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
546 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
547 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
548 # See comments on DUMMY_FRAME for why this is required at level 1.
549 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
550 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
551 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
552 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
553 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
554 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
555 #
556 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
557 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
558 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
559 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
560 v:2:PARM_BOUNDARY:int:parm_boundary
561 #
562 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
563 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
564 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
565 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
566 # On some machines there are bits in addresses which are not really
567 # part of the address, but are used by the kernel, the hardware, etc.
568 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
569 # we get a "real" address such as one would find in a symbol table.
570 # This is used only for addresses of instructions, and even then I'm
571 # not sure it's used in all contexts. It exists to deal with there
572 # being a few stray bits in the PC which would mislead us, not as some
573 # sort of generic thing to handle alignment or segmentation (it's
574 # possible it should be in TARGET_READ_PC instead).
575 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
576 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
577 # ADDR_BITS_REMOVE.
578 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
579 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
580 # the target needs software single step. An ISA method to implement it.
581 #
582 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
583 # using the breakpoint system instead of blatting memory directly (as with rs6000).
584 #
585 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
586 # single step. If not, then implement single step using breakpoints.
587 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
588 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
589 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
590 # For SVR4 shared libraries, each call goes through a small piece of
591 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
592 # to nonzero if we are current stopped in one of these.
593 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
594 # A target might have problems with watchpoints as soon as the stack
595 # frame of the current function has been destroyed. This mostly happens
596 # as the first action in a funtion's epilogue. in_function_epilogue_p()
597 # is defined to return a non-zero value if either the given addr is one
598 # instruction after the stack destroying instruction up to the trailing
599 # return instruction or if we can figure out that the stack frame has
600 # already been invalidated regardless of the value of addr. Targets
601 # which don't suffer from that problem could just let this functionality
602 # untouched.
603 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
604 # Given a vector of command-line arguments, return a newly allocated
605 # string which, when passed to the create_inferior function, will be
606 # parsed (on Unix systems, by the shell) to yield the same vector.
607 # This function should call error() if the argument vector is not
608 # representable for this target or if this target does not support
609 # command-line arguments.
610 # ARGC is the number of elements in the vector.
611 # ARGV is an array of strings, one per argument.
612 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
613 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
614 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
615 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
616 EOF
617 }
618
619 #
620 # The .log file
621 #
622 exec > new-gdbarch.log
623 function_list | while do_read
624 do
625 cat <<EOF
626 ${class} ${macro}(${actual})
627 ${returntype} ${function} ($formal)${attrib}
628 EOF
629 for r in ${read}
630 do
631 eval echo \"\ \ \ \ ${r}=\${${r}}\"
632 done
633 # #fallbackdefault=${fallbackdefault}
634 # #valid_p=${valid_p}
635 #EOF
636 if class_is_predicate_p && fallback_default_p
637 then
638 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
639 kill $$
640 exit 1
641 fi
642 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
643 then
644 echo "Error: postdefault is useless when invalid_p=0" 1>&2
645 kill $$
646 exit 1
647 fi
648 if class_is_multiarch_p
649 then
650 if class_is_predicate_p ; then :
651 elif test "x${predefault}" = "x"
652 then
653 echo "Error: pure multi-arch function must have a predefault" 1>&2
654 kill $$
655 exit 1
656 fi
657 fi
658 echo ""
659 done
660
661 exec 1>&2
662 compare_new gdbarch.log
663
664
665 copyright ()
666 {
667 cat <<EOF
668 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
669
670 /* Dynamic architecture support for GDB, the GNU debugger.
671 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
672
673 This file is part of GDB.
674
675 This program is free software; you can redistribute it and/or modify
676 it under the terms of the GNU General Public License as published by
677 the Free Software Foundation; either version 2 of the License, or
678 (at your option) any later version.
679
680 This program is distributed in the hope that it will be useful,
681 but WITHOUT ANY WARRANTY; without even the implied warranty of
682 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
683 GNU General Public License for more details.
684
685 You should have received a copy of the GNU General Public License
686 along with this program; if not, write to the Free Software
687 Foundation, Inc., 59 Temple Place - Suite 330,
688 Boston, MA 02111-1307, USA. */
689
690 /* This file was created with the aid of \`\`gdbarch.sh''.
691
692 The Bourne shell script \`\`gdbarch.sh'' creates the files
693 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
694 against the existing \`\`gdbarch.[hc]''. Any differences found
695 being reported.
696
697 If editing this file, please also run gdbarch.sh and merge any
698 changes into that script. Conversely, when making sweeping changes
699 to this file, modifying gdbarch.sh and using its output may prove
700 easier. */
701
702 EOF
703 }
704
705 #
706 # The .h file
707 #
708
709 exec > new-gdbarch.h
710 copyright
711 cat <<EOF
712 #ifndef GDBARCH_H
713 #define GDBARCH_H
714
715 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
716 #if !GDB_MULTI_ARCH
717 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
718 #endif
719
720 struct frame_info;
721 struct value;
722 struct objfile;
723 struct minimal_symbol;
724
725 extern struct gdbarch *current_gdbarch;
726
727
728 /* If any of the following are defined, the target wasn't correctly
729 converted. */
730
731 #if GDB_MULTI_ARCH
732 #if defined (EXTRA_FRAME_INFO)
733 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
734 #endif
735 #endif
736
737 #if GDB_MULTI_ARCH
738 #if defined (FRAME_FIND_SAVED_REGS)
739 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
740 #endif
741 #endif
742
743 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
744 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
745 #endif
746 EOF
747
748 # function typedef's
749 printf "\n"
750 printf "\n"
751 printf "/* The following are pre-initialized by GDBARCH. */\n"
752 function_list | while do_read
753 do
754 if class_is_info_p
755 then
756 printf "\n"
757 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
758 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
759 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
760 printf "#error \"Non multi-arch definition of ${macro}\"\n"
761 printf "#endif\n"
762 printf "#if GDB_MULTI_ARCH\n"
763 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
764 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
765 printf "#endif\n"
766 printf "#endif\n"
767 fi
768 done
769
770 # function typedef's
771 printf "\n"
772 printf "\n"
773 printf "/* The following are initialized by the target dependent code. */\n"
774 function_list | while do_read
775 do
776 if [ -n "${comment}" ]
777 then
778 echo "${comment}" | sed \
779 -e '2 s,#,/*,' \
780 -e '3,$ s,#, ,' \
781 -e '$ s,$, */,'
782 fi
783 if class_is_multiarch_p
784 then
785 if class_is_predicate_p
786 then
787 printf "\n"
788 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
789 fi
790 else
791 if class_is_predicate_p
792 then
793 printf "\n"
794 printf "#if defined (${macro})\n"
795 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
796 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
797 printf "#if !defined (${macro}_P)\n"
798 printf "#define ${macro}_P() (1)\n"
799 printf "#endif\n"
800 printf "#endif\n"
801 printf "\n"
802 printf "/* Default predicate for non- multi-arch targets. */\n"
803 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
804 printf "#define ${macro}_P() (0)\n"
805 printf "#endif\n"
806 printf "\n"
807 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
808 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
809 printf "#error \"Non multi-arch definition of ${macro}\"\n"
810 printf "#endif\n"
811 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
812 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
813 printf "#endif\n"
814 fi
815 fi
816 if class_is_variable_p
817 then
818 if fallback_default_p || class_is_predicate_p
819 then
820 printf "\n"
821 printf "/* Default (value) for non- multi-arch platforms. */\n"
822 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
823 echo "#define ${macro} (${fallbackdefault})" \
824 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
825 printf "#endif\n"
826 fi
827 printf "\n"
828 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
829 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
830 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
831 printf "#error \"Non multi-arch definition of ${macro}\"\n"
832 printf "#endif\n"
833 printf "#if GDB_MULTI_ARCH\n"
834 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
835 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
836 printf "#endif\n"
837 printf "#endif\n"
838 fi
839 if class_is_function_p
840 then
841 if class_is_multiarch_p ; then :
842 elif fallback_default_p || class_is_predicate_p
843 then
844 printf "\n"
845 printf "/* Default (function) for non- multi-arch platforms. */\n"
846 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
847 if [ "x${fallbackdefault}" = "x0" ]
848 then
849 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
850 else
851 # FIXME: Should be passing current_gdbarch through!
852 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
853 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
854 fi
855 printf "#endif\n"
856 fi
857 printf "\n"
858 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
859 then
860 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
861 elif class_is_multiarch_p
862 then
863 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
864 else
865 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
866 fi
867 if [ "x${formal}" = "xvoid" ]
868 then
869 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
870 else
871 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
872 fi
873 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
874 if class_is_multiarch_p ; then :
875 else
876 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
877 printf "#error \"Non multi-arch definition of ${macro}\"\n"
878 printf "#endif\n"
879 printf "#if GDB_MULTI_ARCH\n"
880 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
881 if [ "x${actual}" = "x" ]
882 then
883 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
884 elif [ "x${actual}" = "x-" ]
885 then
886 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
887 else
888 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
889 fi
890 printf "#endif\n"
891 printf "#endif\n"
892 fi
893 fi
894 done
895
896 # close it off
897 cat <<EOF
898
899 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
900
901
902 /* Mechanism for co-ordinating the selection of a specific
903 architecture.
904
905 GDB targets (*-tdep.c) can register an interest in a specific
906 architecture. Other GDB components can register a need to maintain
907 per-architecture data.
908
909 The mechanisms below ensures that there is only a loose connection
910 between the set-architecture command and the various GDB
911 components. Each component can independently register their need
912 to maintain architecture specific data with gdbarch.
913
914 Pragmatics:
915
916 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
917 didn't scale.
918
919 The more traditional mega-struct containing architecture specific
920 data for all the various GDB components was also considered. Since
921 GDB is built from a variable number of (fairly independent)
922 components it was determined that the global aproach was not
923 applicable. */
924
925
926 /* Register a new architectural family with GDB.
927
928 Register support for the specified ARCHITECTURE with GDB. When
929 gdbarch determines that the specified architecture has been
930 selected, the corresponding INIT function is called.
931
932 --
933
934 The INIT function takes two parameters: INFO which contains the
935 information available to gdbarch about the (possibly new)
936 architecture; ARCHES which is a list of the previously created
937 \`\`struct gdbarch'' for this architecture.
938
939 The INIT function parameter INFO shall, as far as possible, be
940 pre-initialized with information obtained from INFO.ABFD or
941 previously selected architecture (if similar).
942
943 The INIT function shall return any of: NULL - indicating that it
944 doesn't recognize the selected architecture; an existing \`\`struct
945 gdbarch'' from the ARCHES list - indicating that the new
946 architecture is just a synonym for an earlier architecture (see
947 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
948 - that describes the selected architecture (see gdbarch_alloc()).
949
950 The DUMP_TDEP function shall print out all target specific values.
951 Care should be taken to ensure that the function works in both the
952 multi-arch and non- multi-arch cases. */
953
954 struct gdbarch_list
955 {
956 struct gdbarch *gdbarch;
957 struct gdbarch_list *next;
958 };
959
960 struct gdbarch_info
961 {
962 /* Use default: NULL (ZERO). */
963 const struct bfd_arch_info *bfd_arch_info;
964
965 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
966 int byte_order;
967
968 /* Use default: NULL (ZERO). */
969 bfd *abfd;
970
971 /* Use default: NULL (ZERO). */
972 struct gdbarch_tdep_info *tdep_info;
973 };
974
975 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
976 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
977
978 /* DEPRECATED - use gdbarch_register() */
979 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
980
981 extern void gdbarch_register (enum bfd_architecture architecture,
982 gdbarch_init_ftype *,
983 gdbarch_dump_tdep_ftype *);
984
985
986 /* Return a freshly allocated, NULL terminated, array of the valid
987 architecture names. Since architectures are registered during the
988 _initialize phase this function only returns useful information
989 once initialization has been completed. */
990
991 extern const char **gdbarch_printable_names (void);
992
993
994 /* Helper function. Search the list of ARCHES for a GDBARCH that
995 matches the information provided by INFO. */
996
997 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
998
999
1000 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1001 basic initialization using values obtained from the INFO andTDEP
1002 parameters. set_gdbarch_*() functions are called to complete the
1003 initialization of the object. */
1004
1005 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1006
1007
1008 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1009 It is assumed that the caller freeds the \`\`struct
1010 gdbarch_tdep''. */
1011
1012 extern void gdbarch_free (struct gdbarch *);
1013
1014
1015 /* Helper function. Force an update of the current architecture.
1016
1017 The actual architecture selected is determined by INFO, \`\`(gdb) set
1018 architecture'' et.al., the existing architecture and BFD's default
1019 architecture. INFO should be initialized to zero and then selected
1020 fields should be updated.
1021
1022 Returns non-zero if the update succeeds */
1023
1024 extern int gdbarch_update_p (struct gdbarch_info info);
1025
1026
1027
1028 /* Register per-architecture data-pointer.
1029
1030 Reserve space for a per-architecture data-pointer. An identifier
1031 for the reserved data-pointer is returned. That identifer should
1032 be saved in a local static variable.
1033
1034 The per-architecture data-pointer can be initialized in one of two
1035 ways: The value can be set explicitly using a call to
1036 set_gdbarch_data(); the value can be set implicitly using the value
1037 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
1038 called after the basic architecture vector has been created.
1039
1040 When a previously created architecture is re-selected, the
1041 per-architecture data-pointer for that previous architecture is
1042 restored. INIT() is not called.
1043
1044 During initialization, multiple assignments of the data-pointer are
1045 allowed, non-NULL values are deleted by calling FREE(). If the
1046 architecture is deleted using gdbarch_free() all non-NULL data
1047 pointers are also deleted using FREE().
1048
1049 Multiple registrarants for any architecture are allowed (and
1050 strongly encouraged). */
1051
1052 struct gdbarch_data;
1053
1054 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1055 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1056 void *pointer);
1057 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1058 gdbarch_data_free_ftype *free);
1059 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1060 struct gdbarch_data *data,
1061 void *pointer);
1062
1063 extern void *gdbarch_data (struct gdbarch_data*);
1064
1065
1066 /* Register per-architecture memory region.
1067
1068 Provide a memory-region swap mechanism. Per-architecture memory
1069 region are created. These memory regions are swapped whenever the
1070 architecture is changed. For a new architecture, the memory region
1071 is initialized with zero (0) and the INIT function is called.
1072
1073 Memory regions are swapped / initialized in the order that they are
1074 registered. NULL DATA and/or INIT values can be specified.
1075
1076 New code should use register_gdbarch_data(). */
1077
1078 typedef void (gdbarch_swap_ftype) (void);
1079 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1080 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1081
1082
1083
1084 /* The target-system-dependent byte order is dynamic */
1085
1086 extern int target_byte_order;
1087 #ifndef TARGET_BYTE_ORDER
1088 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1089 #endif
1090
1091 extern int target_byte_order_auto;
1092 #ifndef TARGET_BYTE_ORDER_AUTO
1093 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1094 #endif
1095
1096
1097
1098 /* The target-system-dependent BFD architecture is dynamic */
1099
1100 extern int target_architecture_auto;
1101 #ifndef TARGET_ARCHITECTURE_AUTO
1102 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1103 #endif
1104
1105 extern const struct bfd_arch_info *target_architecture;
1106 #ifndef TARGET_ARCHITECTURE
1107 #define TARGET_ARCHITECTURE (target_architecture + 0)
1108 #endif
1109
1110
1111 /* The target-system-dependent disassembler is semi-dynamic */
1112
1113 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1114 unsigned int len, disassemble_info *info);
1115
1116 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1117 disassemble_info *info);
1118
1119 extern void dis_asm_print_address (bfd_vma addr,
1120 disassemble_info *info);
1121
1122 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1123 extern disassemble_info tm_print_insn_info;
1124 #ifndef TARGET_PRINT_INSN_INFO
1125 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1126 #endif
1127
1128
1129
1130 /* Set the dynamic target-system-dependent parameters (architecture,
1131 byte-order, ...) using information found in the BFD */
1132
1133 extern void set_gdbarch_from_file (bfd *);
1134
1135
1136 /* Initialize the current architecture to the "first" one we find on
1137 our list. */
1138
1139 extern void initialize_current_architecture (void);
1140
1141 /* For non-multiarched targets, do any initialization of the default
1142 gdbarch object necessary after the _initialize_MODULE functions
1143 have run. */
1144 extern void initialize_non_multiarch ();
1145
1146 /* gdbarch trace variable */
1147 extern int gdbarch_debug;
1148
1149 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1150
1151 #endif
1152 EOF
1153 exec 1>&2
1154 #../move-if-change new-gdbarch.h gdbarch.h
1155 compare_new gdbarch.h
1156
1157
1158 #
1159 # C file
1160 #
1161
1162 exec > new-gdbarch.c
1163 copyright
1164 cat <<EOF
1165
1166 #include "defs.h"
1167 #include "arch-utils.h"
1168
1169 #if GDB_MULTI_ARCH
1170 #include "gdbcmd.h"
1171 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1172 #else
1173 /* Just include everything in sight so that the every old definition
1174 of macro is visible. */
1175 #include "gdb_string.h"
1176 #include <ctype.h>
1177 #include "symtab.h"
1178 #include "frame.h"
1179 #include "inferior.h"
1180 #include "breakpoint.h"
1181 #include "gdb_wait.h"
1182 #include "gdbcore.h"
1183 #include "gdbcmd.h"
1184 #include "target.h"
1185 #include "gdbthread.h"
1186 #include "annotate.h"
1187 #include "symfile.h" /* for overlay functions */
1188 #include "value.h" /* For old tm.h/nm.h macros. */
1189 #endif
1190 #include "symcat.h"
1191
1192 #include "floatformat.h"
1193
1194 #include "gdb_assert.h"
1195 #include "gdb-events.h"
1196
1197 /* Static function declarations */
1198
1199 static void verify_gdbarch (struct gdbarch *gdbarch);
1200 static void alloc_gdbarch_data (struct gdbarch *);
1201 static void init_gdbarch_data (struct gdbarch *);
1202 static void free_gdbarch_data (struct gdbarch *);
1203 static void init_gdbarch_swap (struct gdbarch *);
1204 static void swapout_gdbarch_swap (struct gdbarch *);
1205 static void swapin_gdbarch_swap (struct gdbarch *);
1206
1207 /* Convenience macro for allocting typesafe memory. */
1208
1209 #ifndef XMALLOC
1210 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1211 #endif
1212
1213
1214 /* Non-zero if we want to trace architecture code. */
1215
1216 #ifndef GDBARCH_DEBUG
1217 #define GDBARCH_DEBUG 0
1218 #endif
1219 int gdbarch_debug = GDBARCH_DEBUG;
1220
1221 EOF
1222
1223 # gdbarch open the gdbarch object
1224 printf "\n"
1225 printf "/* Maintain the struct gdbarch object */\n"
1226 printf "\n"
1227 printf "struct gdbarch\n"
1228 printf "{\n"
1229 printf " /* basic architectural information */\n"
1230 function_list | while do_read
1231 do
1232 if class_is_info_p
1233 then
1234 printf " ${returntype} ${function};\n"
1235 fi
1236 done
1237 printf "\n"
1238 printf " /* target specific vector. */\n"
1239 printf " struct gdbarch_tdep *tdep;\n"
1240 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1241 printf "\n"
1242 printf " /* per-architecture data-pointers */\n"
1243 printf " unsigned nr_data;\n"
1244 printf " void **data;\n"
1245 printf "\n"
1246 printf " /* per-architecture swap-regions */\n"
1247 printf " struct gdbarch_swap *swap;\n"
1248 printf "\n"
1249 cat <<EOF
1250 /* Multi-arch values.
1251
1252 When extending this structure you must:
1253
1254 Add the field below.
1255
1256 Declare set/get functions and define the corresponding
1257 macro in gdbarch.h.
1258
1259 gdbarch_alloc(): If zero/NULL is not a suitable default,
1260 initialize the new field.
1261
1262 verify_gdbarch(): Confirm that the target updated the field
1263 correctly.
1264
1265 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1266 field is dumped out
1267
1268 \`\`startup_gdbarch()'': Append an initial value to the static
1269 variable (base values on the host's c-type system).
1270
1271 get_gdbarch(): Implement the set/get functions (probably using
1272 the macro's as shortcuts).
1273
1274 */
1275
1276 EOF
1277 function_list | while do_read
1278 do
1279 if class_is_variable_p
1280 then
1281 printf " ${returntype} ${function};\n"
1282 elif class_is_function_p
1283 then
1284 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1285 fi
1286 done
1287 printf "};\n"
1288
1289 # A pre-initialized vector
1290 printf "\n"
1291 printf "\n"
1292 cat <<EOF
1293 /* The default architecture uses host values (for want of a better
1294 choice). */
1295 EOF
1296 printf "\n"
1297 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1298 printf "\n"
1299 printf "struct gdbarch startup_gdbarch =\n"
1300 printf "{\n"
1301 printf " /* basic architecture information */\n"
1302 function_list | while do_read
1303 do
1304 if class_is_info_p
1305 then
1306 printf " ${staticdefault},\n"
1307 fi
1308 done
1309 cat <<EOF
1310 /* target specific vector and its dump routine */
1311 NULL, NULL,
1312 /*per-architecture data-pointers and swap regions */
1313 0, NULL, NULL,
1314 /* Multi-arch values */
1315 EOF
1316 function_list | while do_read
1317 do
1318 if class_is_function_p || class_is_variable_p
1319 then
1320 printf " ${staticdefault},\n"
1321 fi
1322 done
1323 cat <<EOF
1324 /* startup_gdbarch() */
1325 };
1326
1327 struct gdbarch *current_gdbarch = &startup_gdbarch;
1328
1329 /* Do any initialization needed for a non-multiarch configuration
1330 after the _initialize_MODULE functions have been run. */
1331 void
1332 initialize_non_multiarch ()
1333 {
1334 alloc_gdbarch_data (&startup_gdbarch);
1335 init_gdbarch_data (&startup_gdbarch);
1336 }
1337 EOF
1338
1339 # Create a new gdbarch struct
1340 printf "\n"
1341 printf "\n"
1342 cat <<EOF
1343 /* Create a new \`\`struct gdbarch'' based on information provided by
1344 \`\`struct gdbarch_info''. */
1345 EOF
1346 printf "\n"
1347 cat <<EOF
1348 struct gdbarch *
1349 gdbarch_alloc (const struct gdbarch_info *info,
1350 struct gdbarch_tdep *tdep)
1351 {
1352 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1353 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1354 the current local architecture and not the previous global
1355 architecture. This ensures that the new architectures initial
1356 values are not influenced by the previous architecture. Once
1357 everything is parameterised with gdbarch, this will go away. */
1358 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1359 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1360
1361 alloc_gdbarch_data (current_gdbarch);
1362
1363 current_gdbarch->tdep = tdep;
1364 EOF
1365 printf "\n"
1366 function_list | while do_read
1367 do
1368 if class_is_info_p
1369 then
1370 printf " current_gdbarch->${function} = info->${function};\n"
1371 fi
1372 done
1373 printf "\n"
1374 printf " /* Force the explicit initialization of these. */\n"
1375 function_list | while do_read
1376 do
1377 if class_is_function_p || class_is_variable_p
1378 then
1379 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1380 then
1381 printf " current_gdbarch->${function} = ${predefault};\n"
1382 fi
1383 fi
1384 done
1385 cat <<EOF
1386 /* gdbarch_alloc() */
1387
1388 return current_gdbarch;
1389 }
1390 EOF
1391
1392 # Free a gdbarch struct.
1393 printf "\n"
1394 printf "\n"
1395 cat <<EOF
1396 /* Free a gdbarch struct. This should never happen in normal
1397 operation --- once you've created a gdbarch, you keep it around.
1398 However, if an architecture's init function encounters an error
1399 building the structure, it may need to clean up a partially
1400 constructed gdbarch. */
1401
1402 void
1403 gdbarch_free (struct gdbarch *arch)
1404 {
1405 gdb_assert (arch != NULL);
1406 free_gdbarch_data (arch);
1407 xfree (arch);
1408 }
1409 EOF
1410
1411 # verify a new architecture
1412 printf "\n"
1413 printf "\n"
1414 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1415 printf "\n"
1416 cat <<EOF
1417 static void
1418 verify_gdbarch (struct gdbarch *gdbarch)
1419 {
1420 struct ui_file *log;
1421 struct cleanup *cleanups;
1422 long dummy;
1423 char *buf;
1424 /* Only perform sanity checks on a multi-arch target. */
1425 if (!GDB_MULTI_ARCH)
1426 return;
1427 log = mem_fileopen ();
1428 cleanups = make_cleanup_ui_file_delete (log);
1429 /* fundamental */
1430 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1431 fprintf_unfiltered (log, "\n\tbyte-order");
1432 if (gdbarch->bfd_arch_info == NULL)
1433 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1434 /* Check those that need to be defined for the given multi-arch level. */
1435 EOF
1436 function_list | while do_read
1437 do
1438 if class_is_function_p || class_is_variable_p
1439 then
1440 if [ "x${invalid_p}" = "x0" ]
1441 then
1442 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1443 elif class_is_predicate_p
1444 then
1445 printf " /* Skip verify of ${function}, has predicate */\n"
1446 # FIXME: See do_read for potential simplification
1447 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1448 then
1449 printf " if (${invalid_p})\n"
1450 printf " gdbarch->${function} = ${postdefault};\n"
1451 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1452 then
1453 printf " if (gdbarch->${function} == ${predefault})\n"
1454 printf " gdbarch->${function} = ${postdefault};\n"
1455 elif [ -n "${postdefault}" ]
1456 then
1457 printf " if (gdbarch->${function} == 0)\n"
1458 printf " gdbarch->${function} = ${postdefault};\n"
1459 elif [ -n "${invalid_p}" ]
1460 then
1461 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1462 printf " && (${invalid_p}))\n"
1463 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1464 elif [ -n "${predefault}" ]
1465 then
1466 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1467 printf " && (gdbarch->${function} == ${predefault}))\n"
1468 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1469 fi
1470 fi
1471 done
1472 cat <<EOF
1473 buf = ui_file_xstrdup (log, &dummy);
1474 make_cleanup (xfree, buf);
1475 if (strlen (buf) > 0)
1476 internal_error (__FILE__, __LINE__,
1477 "verify_gdbarch: the following are invalid ...%s",
1478 buf);
1479 do_cleanups (cleanups);
1480 }
1481 EOF
1482
1483 # dump the structure
1484 printf "\n"
1485 printf "\n"
1486 cat <<EOF
1487 /* Print out the details of the current architecture. */
1488
1489 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1490 just happens to match the global variable \`\`current_gdbarch''. That
1491 way macros refering to that variable get the local and not the global
1492 version - ulgh. Once everything is parameterised with gdbarch, this
1493 will go away. */
1494
1495 void
1496 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1497 {
1498 fprintf_unfiltered (file,
1499 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1500 GDB_MULTI_ARCH);
1501 EOF
1502 function_list | sort -t: +2 | while do_read
1503 do
1504 # multiarch functions don't have macros.
1505 if class_is_multiarch_p
1506 then
1507 printf " if (GDB_MULTI_ARCH)\n"
1508 printf " fprintf_unfiltered (file,\n"
1509 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1510 printf " (long) current_gdbarch->${function});\n"
1511 continue
1512 fi
1513 # Print the macro definition.
1514 printf "#ifdef ${macro}\n"
1515 if [ "x${returntype}" = "xvoid" ]
1516 then
1517 printf "#if GDB_MULTI_ARCH\n"
1518 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1519 fi
1520 if class_is_function_p
1521 then
1522 printf " fprintf_unfiltered (file,\n"
1523 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1524 printf " \"${macro}(${actual})\",\n"
1525 printf " XSTRING (${macro} (${actual})));\n"
1526 else
1527 printf " fprintf_unfiltered (file,\n"
1528 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1529 printf " XSTRING (${macro}));\n"
1530 fi
1531 # Print the architecture vector value
1532 if [ "x${returntype}" = "xvoid" ]
1533 then
1534 printf "#endif\n"
1535 fi
1536 if [ "x${print_p}" = "x()" ]
1537 then
1538 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1539 elif [ "x${print_p}" = "x0" ]
1540 then
1541 printf " /* skip print of ${macro}, print_p == 0. */\n"
1542 elif [ -n "${print_p}" ]
1543 then
1544 printf " if (${print_p})\n"
1545 printf " fprintf_unfiltered (file,\n"
1546 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1547 printf " ${print});\n"
1548 elif class_is_function_p
1549 then
1550 printf " if (GDB_MULTI_ARCH)\n"
1551 printf " fprintf_unfiltered (file,\n"
1552 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1553 printf " (long) current_gdbarch->${function}\n"
1554 printf " /*${macro} ()*/);\n"
1555 else
1556 printf " fprintf_unfiltered (file,\n"
1557 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1558 printf " ${print});\n"
1559 fi
1560 printf "#endif\n"
1561 done
1562 cat <<EOF
1563 if (current_gdbarch->dump_tdep != NULL)
1564 current_gdbarch->dump_tdep (current_gdbarch, file);
1565 }
1566 EOF
1567
1568
1569 # GET/SET
1570 printf "\n"
1571 cat <<EOF
1572 struct gdbarch_tdep *
1573 gdbarch_tdep (struct gdbarch *gdbarch)
1574 {
1575 if (gdbarch_debug >= 2)
1576 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1577 return gdbarch->tdep;
1578 }
1579 EOF
1580 printf "\n"
1581 function_list | while do_read
1582 do
1583 if class_is_predicate_p
1584 then
1585 printf "\n"
1586 printf "int\n"
1587 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1588 printf "{\n"
1589 if [ -n "${valid_p}" ]
1590 then
1591 printf " return ${valid_p};\n"
1592 else
1593 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1594 fi
1595 printf "}\n"
1596 fi
1597 if class_is_function_p
1598 then
1599 printf "\n"
1600 printf "${returntype}\n"
1601 if [ "x${formal}" = "xvoid" ]
1602 then
1603 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1604 else
1605 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1606 fi
1607 printf "{\n"
1608 printf " if (gdbarch->${function} == 0)\n"
1609 printf " internal_error (__FILE__, __LINE__,\n"
1610 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1611 printf " if (gdbarch_debug >= 2)\n"
1612 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1613 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1614 then
1615 if class_is_multiarch_p
1616 then
1617 params="gdbarch"
1618 else
1619 params=""
1620 fi
1621 else
1622 if class_is_multiarch_p
1623 then
1624 params="gdbarch, ${actual}"
1625 else
1626 params="${actual}"
1627 fi
1628 fi
1629 if [ "x${returntype}" = "xvoid" ]
1630 then
1631 printf " gdbarch->${function} (${params});\n"
1632 else
1633 printf " return gdbarch->${function} (${params});\n"
1634 fi
1635 printf "}\n"
1636 printf "\n"
1637 printf "void\n"
1638 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1639 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1640 printf "{\n"
1641 printf " gdbarch->${function} = ${function};\n"
1642 printf "}\n"
1643 elif class_is_variable_p
1644 then
1645 printf "\n"
1646 printf "${returntype}\n"
1647 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1648 printf "{\n"
1649 if [ "x${invalid_p}" = "x0" ]
1650 then
1651 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1652 elif [ -n "${invalid_p}" ]
1653 then
1654 printf " if (${invalid_p})\n"
1655 printf " internal_error (__FILE__, __LINE__,\n"
1656 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1657 elif [ -n "${predefault}" ]
1658 then
1659 printf " if (gdbarch->${function} == ${predefault})\n"
1660 printf " internal_error (__FILE__, __LINE__,\n"
1661 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1662 fi
1663 printf " if (gdbarch_debug >= 2)\n"
1664 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1665 printf " return gdbarch->${function};\n"
1666 printf "}\n"
1667 printf "\n"
1668 printf "void\n"
1669 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1670 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1671 printf "{\n"
1672 printf " gdbarch->${function} = ${function};\n"
1673 printf "}\n"
1674 elif class_is_info_p
1675 then
1676 printf "\n"
1677 printf "${returntype}\n"
1678 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1679 printf "{\n"
1680 printf " if (gdbarch_debug >= 2)\n"
1681 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1682 printf " return gdbarch->${function};\n"
1683 printf "}\n"
1684 fi
1685 done
1686
1687 # All the trailing guff
1688 cat <<EOF
1689
1690
1691 /* Keep a registry of per-architecture data-pointers required by GDB
1692 modules. */
1693
1694 struct gdbarch_data
1695 {
1696 unsigned index;
1697 gdbarch_data_init_ftype *init;
1698 gdbarch_data_free_ftype *free;
1699 };
1700
1701 struct gdbarch_data_registration
1702 {
1703 struct gdbarch_data *data;
1704 struct gdbarch_data_registration *next;
1705 };
1706
1707 struct gdbarch_data_registry
1708 {
1709 unsigned nr;
1710 struct gdbarch_data_registration *registrations;
1711 };
1712
1713 struct gdbarch_data_registry gdbarch_data_registry =
1714 {
1715 0, NULL,
1716 };
1717
1718 struct gdbarch_data *
1719 register_gdbarch_data (gdbarch_data_init_ftype *init,
1720 gdbarch_data_free_ftype *free)
1721 {
1722 struct gdbarch_data_registration **curr;
1723 for (curr = &gdbarch_data_registry.registrations;
1724 (*curr) != NULL;
1725 curr = &(*curr)->next);
1726 (*curr) = XMALLOC (struct gdbarch_data_registration);
1727 (*curr)->next = NULL;
1728 (*curr)->data = XMALLOC (struct gdbarch_data);
1729 (*curr)->data->index = gdbarch_data_registry.nr++;
1730 (*curr)->data->init = init;
1731 (*curr)->data->free = free;
1732 return (*curr)->data;
1733 }
1734
1735
1736 /* Walk through all the registered users initializing each in turn. */
1737
1738 static void
1739 init_gdbarch_data (struct gdbarch *gdbarch)
1740 {
1741 struct gdbarch_data_registration *rego;
1742 for (rego = gdbarch_data_registry.registrations;
1743 rego != NULL;
1744 rego = rego->next)
1745 {
1746 struct gdbarch_data *data = rego->data;
1747 gdb_assert (data->index < gdbarch->nr_data);
1748 if (data->init != NULL)
1749 {
1750 void *pointer = data->init (gdbarch);
1751 set_gdbarch_data (gdbarch, data, pointer);
1752 }
1753 }
1754 }
1755
1756 /* Create/delete the gdbarch data vector. */
1757
1758 static void
1759 alloc_gdbarch_data (struct gdbarch *gdbarch)
1760 {
1761 gdb_assert (gdbarch->data == NULL);
1762 gdbarch->nr_data = gdbarch_data_registry.nr;
1763 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1764 }
1765
1766 static void
1767 free_gdbarch_data (struct gdbarch *gdbarch)
1768 {
1769 struct gdbarch_data_registration *rego;
1770 gdb_assert (gdbarch->data != NULL);
1771 for (rego = gdbarch_data_registry.registrations;
1772 rego != NULL;
1773 rego = rego->next)
1774 {
1775 struct gdbarch_data *data = rego->data;
1776 gdb_assert (data->index < gdbarch->nr_data);
1777 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1778 {
1779 data->free (gdbarch, gdbarch->data[data->index]);
1780 gdbarch->data[data->index] = NULL;
1781 }
1782 }
1783 xfree (gdbarch->data);
1784 gdbarch->data = NULL;
1785 }
1786
1787
1788 /* Initialize the current value of thee specified per-architecture
1789 data-pointer. */
1790
1791 void
1792 set_gdbarch_data (struct gdbarch *gdbarch,
1793 struct gdbarch_data *data,
1794 void *pointer)
1795 {
1796 gdb_assert (data->index < gdbarch->nr_data);
1797 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1798 data->free (gdbarch, gdbarch->data[data->index]);
1799 gdbarch->data[data->index] = pointer;
1800 }
1801
1802 /* Return the current value of the specified per-architecture
1803 data-pointer. */
1804
1805 void *
1806 gdbarch_data (struct gdbarch_data *data)
1807 {
1808 gdb_assert (data->index < current_gdbarch->nr_data);
1809 return current_gdbarch->data[data->index];
1810 }
1811
1812
1813
1814 /* Keep a registry of swapped data required by GDB modules. */
1815
1816 struct gdbarch_swap
1817 {
1818 void *swap;
1819 struct gdbarch_swap_registration *source;
1820 struct gdbarch_swap *next;
1821 };
1822
1823 struct gdbarch_swap_registration
1824 {
1825 void *data;
1826 unsigned long sizeof_data;
1827 gdbarch_swap_ftype *init;
1828 struct gdbarch_swap_registration *next;
1829 };
1830
1831 struct gdbarch_swap_registry
1832 {
1833 int nr;
1834 struct gdbarch_swap_registration *registrations;
1835 };
1836
1837 struct gdbarch_swap_registry gdbarch_swap_registry =
1838 {
1839 0, NULL,
1840 };
1841
1842 void
1843 register_gdbarch_swap (void *data,
1844 unsigned long sizeof_data,
1845 gdbarch_swap_ftype *init)
1846 {
1847 struct gdbarch_swap_registration **rego;
1848 for (rego = &gdbarch_swap_registry.registrations;
1849 (*rego) != NULL;
1850 rego = &(*rego)->next);
1851 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1852 (*rego)->next = NULL;
1853 (*rego)->init = init;
1854 (*rego)->data = data;
1855 (*rego)->sizeof_data = sizeof_data;
1856 }
1857
1858
1859 static void
1860 init_gdbarch_swap (struct gdbarch *gdbarch)
1861 {
1862 struct gdbarch_swap_registration *rego;
1863 struct gdbarch_swap **curr = &gdbarch->swap;
1864 for (rego = gdbarch_swap_registry.registrations;
1865 rego != NULL;
1866 rego = rego->next)
1867 {
1868 if (rego->data != NULL)
1869 {
1870 (*curr) = XMALLOC (struct gdbarch_swap);
1871 (*curr)->source = rego;
1872 (*curr)->swap = xmalloc (rego->sizeof_data);
1873 (*curr)->next = NULL;
1874 memset (rego->data, 0, rego->sizeof_data);
1875 curr = &(*curr)->next;
1876 }
1877 if (rego->init != NULL)
1878 rego->init ();
1879 }
1880 }
1881
1882 static void
1883 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1884 {
1885 struct gdbarch_swap *curr;
1886 for (curr = gdbarch->swap;
1887 curr != NULL;
1888 curr = curr->next)
1889 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1890 }
1891
1892 static void
1893 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1894 {
1895 struct gdbarch_swap *curr;
1896 for (curr = gdbarch->swap;
1897 curr != NULL;
1898 curr = curr->next)
1899 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1900 }
1901
1902
1903 /* Keep a registry of the architectures known by GDB. */
1904
1905 struct gdbarch_registration
1906 {
1907 enum bfd_architecture bfd_architecture;
1908 gdbarch_init_ftype *init;
1909 gdbarch_dump_tdep_ftype *dump_tdep;
1910 struct gdbarch_list *arches;
1911 struct gdbarch_registration *next;
1912 };
1913
1914 static struct gdbarch_registration *gdbarch_registry = NULL;
1915
1916 static void
1917 append_name (const char ***buf, int *nr, const char *name)
1918 {
1919 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1920 (*buf)[*nr] = name;
1921 *nr += 1;
1922 }
1923
1924 const char **
1925 gdbarch_printable_names (void)
1926 {
1927 if (GDB_MULTI_ARCH)
1928 {
1929 /* Accumulate a list of names based on the registed list of
1930 architectures. */
1931 enum bfd_architecture a;
1932 int nr_arches = 0;
1933 const char **arches = NULL;
1934 struct gdbarch_registration *rego;
1935 for (rego = gdbarch_registry;
1936 rego != NULL;
1937 rego = rego->next)
1938 {
1939 const struct bfd_arch_info *ap;
1940 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1941 if (ap == NULL)
1942 internal_error (__FILE__, __LINE__,
1943 "gdbarch_architecture_names: multi-arch unknown");
1944 do
1945 {
1946 append_name (&arches, &nr_arches, ap->printable_name);
1947 ap = ap->next;
1948 }
1949 while (ap != NULL);
1950 }
1951 append_name (&arches, &nr_arches, NULL);
1952 return arches;
1953 }
1954 else
1955 /* Just return all the architectures that BFD knows. Assume that
1956 the legacy architecture framework supports them. */
1957 return bfd_arch_list ();
1958 }
1959
1960
1961 void
1962 gdbarch_register (enum bfd_architecture bfd_architecture,
1963 gdbarch_init_ftype *init,
1964 gdbarch_dump_tdep_ftype *dump_tdep)
1965 {
1966 struct gdbarch_registration **curr;
1967 const struct bfd_arch_info *bfd_arch_info;
1968 /* Check that BFD recognizes this architecture */
1969 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1970 if (bfd_arch_info == NULL)
1971 {
1972 internal_error (__FILE__, __LINE__,
1973 "gdbarch: Attempt to register unknown architecture (%d)",
1974 bfd_architecture);
1975 }
1976 /* Check that we haven't seen this architecture before */
1977 for (curr = &gdbarch_registry;
1978 (*curr) != NULL;
1979 curr = &(*curr)->next)
1980 {
1981 if (bfd_architecture == (*curr)->bfd_architecture)
1982 internal_error (__FILE__, __LINE__,
1983 "gdbarch: Duplicate registraration of architecture (%s)",
1984 bfd_arch_info->printable_name);
1985 }
1986 /* log it */
1987 if (gdbarch_debug)
1988 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1989 bfd_arch_info->printable_name,
1990 (long) init);
1991 /* Append it */
1992 (*curr) = XMALLOC (struct gdbarch_registration);
1993 (*curr)->bfd_architecture = bfd_architecture;
1994 (*curr)->init = init;
1995 (*curr)->dump_tdep = dump_tdep;
1996 (*curr)->arches = NULL;
1997 (*curr)->next = NULL;
1998 /* When non- multi-arch, install whatever target dump routine we've
1999 been provided - hopefully that routine has been written correctly
2000 and works regardless of multi-arch. */
2001 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2002 && startup_gdbarch.dump_tdep == NULL)
2003 startup_gdbarch.dump_tdep = dump_tdep;
2004 }
2005
2006 void
2007 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2008 gdbarch_init_ftype *init)
2009 {
2010 gdbarch_register (bfd_architecture, init, NULL);
2011 }
2012
2013
2014 /* Look for an architecture using gdbarch_info. Base search on only
2015 BFD_ARCH_INFO and BYTE_ORDER. */
2016
2017 struct gdbarch_list *
2018 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2019 const struct gdbarch_info *info)
2020 {
2021 for (; arches != NULL; arches = arches->next)
2022 {
2023 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2024 continue;
2025 if (info->byte_order != arches->gdbarch->byte_order)
2026 continue;
2027 return arches;
2028 }
2029 return NULL;
2030 }
2031
2032
2033 /* Update the current architecture. Return ZERO if the update request
2034 failed. */
2035
2036 int
2037 gdbarch_update_p (struct gdbarch_info info)
2038 {
2039 struct gdbarch *new_gdbarch;
2040 struct gdbarch_list **list;
2041 struct gdbarch_registration *rego;
2042
2043 /* Fill in missing parts of the INFO struct using a number of
2044 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2045
2046 /* \`\`(gdb) set architecture ...'' */
2047 if (info.bfd_arch_info == NULL
2048 && !TARGET_ARCHITECTURE_AUTO)
2049 info.bfd_arch_info = TARGET_ARCHITECTURE;
2050 if (info.bfd_arch_info == NULL
2051 && info.abfd != NULL
2052 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2053 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2054 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2055 if (info.bfd_arch_info == NULL)
2056 info.bfd_arch_info = TARGET_ARCHITECTURE;
2057
2058 /* \`\`(gdb) set byte-order ...'' */
2059 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2060 && !TARGET_BYTE_ORDER_AUTO)
2061 info.byte_order = TARGET_BYTE_ORDER;
2062 /* From the INFO struct. */
2063 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2064 && info.abfd != NULL)
2065 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2066 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2067 : BFD_ENDIAN_UNKNOWN);
2068 /* From the current target. */
2069 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2070 info.byte_order = TARGET_BYTE_ORDER;
2071
2072 /* Must have found some sort of architecture. */
2073 gdb_assert (info.bfd_arch_info != NULL);
2074
2075 if (gdbarch_debug)
2076 {
2077 fprintf_unfiltered (gdb_stdlog,
2078 "gdbarch_update: info.bfd_arch_info %s\n",
2079 (info.bfd_arch_info != NULL
2080 ? info.bfd_arch_info->printable_name
2081 : "(null)"));
2082 fprintf_unfiltered (gdb_stdlog,
2083 "gdbarch_update: info.byte_order %d (%s)\n",
2084 info.byte_order,
2085 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2086 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2087 : "default"));
2088 fprintf_unfiltered (gdb_stdlog,
2089 "gdbarch_update: info.abfd 0x%lx\n",
2090 (long) info.abfd);
2091 fprintf_unfiltered (gdb_stdlog,
2092 "gdbarch_update: info.tdep_info 0x%lx\n",
2093 (long) info.tdep_info);
2094 }
2095
2096 /* Find the target that knows about this architecture. */
2097 for (rego = gdbarch_registry;
2098 rego != NULL;
2099 rego = rego->next)
2100 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2101 break;
2102 if (rego == NULL)
2103 {
2104 if (gdbarch_debug)
2105 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2106 return 0;
2107 }
2108
2109 /* Ask the target for a replacement architecture. */
2110 new_gdbarch = rego->init (info, rego->arches);
2111
2112 /* Did the target like it? No. Reject the change. */
2113 if (new_gdbarch == NULL)
2114 {
2115 if (gdbarch_debug)
2116 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2117 return 0;
2118 }
2119
2120 /* Did the architecture change? No. Do nothing. */
2121 if (current_gdbarch == new_gdbarch)
2122 {
2123 if (gdbarch_debug)
2124 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2125 (long) new_gdbarch,
2126 new_gdbarch->bfd_arch_info->printable_name);
2127 return 1;
2128 }
2129
2130 /* Swap all data belonging to the old target out */
2131 swapout_gdbarch_swap (current_gdbarch);
2132
2133 /* Is this a pre-existing architecture? Yes. Swap it in. */
2134 for (list = &rego->arches;
2135 (*list) != NULL;
2136 list = &(*list)->next)
2137 {
2138 if ((*list)->gdbarch == new_gdbarch)
2139 {
2140 if (gdbarch_debug)
2141 fprintf_unfiltered (gdb_stdlog,
2142 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2143 (long) new_gdbarch,
2144 new_gdbarch->bfd_arch_info->printable_name);
2145 current_gdbarch = new_gdbarch;
2146 swapin_gdbarch_swap (new_gdbarch);
2147 architecture_changed_event ();
2148 return 1;
2149 }
2150 }
2151
2152 /* Append this new architecture to this targets list. */
2153 (*list) = XMALLOC (struct gdbarch_list);
2154 (*list)->next = NULL;
2155 (*list)->gdbarch = new_gdbarch;
2156
2157 /* Switch to this new architecture. Dump it out. */
2158 current_gdbarch = new_gdbarch;
2159 if (gdbarch_debug)
2160 {
2161 fprintf_unfiltered (gdb_stdlog,
2162 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2163 (long) new_gdbarch,
2164 new_gdbarch->bfd_arch_info->printable_name);
2165 }
2166
2167 /* Check that the newly installed architecture is valid. Plug in
2168 any post init values. */
2169 new_gdbarch->dump_tdep = rego->dump_tdep;
2170 verify_gdbarch (new_gdbarch);
2171
2172 /* Initialize the per-architecture memory (swap) areas.
2173 CURRENT_GDBARCH must be update before these modules are
2174 called. */
2175 init_gdbarch_swap (new_gdbarch);
2176
2177 /* Initialize the per-architecture data-pointer of all parties that
2178 registered an interest in this architecture. CURRENT_GDBARCH
2179 must be updated before these modules are called. */
2180 init_gdbarch_data (new_gdbarch);
2181 architecture_changed_event ();
2182
2183 if (gdbarch_debug)
2184 gdbarch_dump (current_gdbarch, gdb_stdlog);
2185
2186 return 1;
2187 }
2188
2189
2190 /* Disassembler */
2191
2192 /* Pointer to the target-dependent disassembly function. */
2193 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2194 disassemble_info tm_print_insn_info;
2195
2196
2197 extern void _initialize_gdbarch (void);
2198
2199 void
2200 _initialize_gdbarch (void)
2201 {
2202 struct cmd_list_element *c;
2203
2204 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2205 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2206 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2207 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2208 tm_print_insn_info.print_address_func = dis_asm_print_address;
2209
2210 add_show_from_set (add_set_cmd ("arch",
2211 class_maintenance,
2212 var_zinteger,
2213 (char *)&gdbarch_debug,
2214 "Set architecture debugging.\\n\\
2215 When non-zero, architecture debugging is enabled.", &setdebuglist),
2216 &showdebuglist);
2217 c = add_set_cmd ("archdebug",
2218 class_maintenance,
2219 var_zinteger,
2220 (char *)&gdbarch_debug,
2221 "Set architecture debugging.\\n\\
2222 When non-zero, architecture debugging is enabled.", &setlist);
2223
2224 deprecate_cmd (c, "set debug arch");
2225 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2226 }
2227 EOF
2228
2229 # close things off
2230 exec 1>&2
2231 #../move-if-change new-gdbarch.c gdbarch.c
2232 compare_new gdbarch.c