Multi-arch INIT_FRAME_PC() and INIT_FRAME_PC_FIRST().
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 test "${staticdefault}" || staticdefault=0
80 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
81 # multi-arch defaults.
82 # test "${predefault}" || predefault=0
83 test "${fmt}" || fmt="%ld"
84 test "${print}" || print="(long) ${macro}"
85 case "${invalid_p}" in
86 0 ) valid_p=1 ;;
87 "" )
88 if [ -n "${predefault}" ]
89 then
90 #invalid_p="gdbarch->${function} == ${predefault}"
91 valid_p="gdbarch->${function} != ${predefault}"
92 else
93 #invalid_p="gdbarch->${function} == 0"
94 valid_p="gdbarch->${function} != 0"
95 fi
96 ;;
97 * ) valid_p="!(${invalid_p})"
98 esac
99
100 # PREDEFAULT is a valid fallback definition of MEMBER when
101 # multi-arch is not enabled. This ensures that the
102 # default value, when multi-arch is the same as the
103 # default value when not multi-arch. POSTDEFAULT is
104 # always a valid definition of MEMBER as this again
105 # ensures consistency.
106
107 if [ -n "${postdefault}" ]
108 then
109 fallbackdefault="${postdefault}"
110 elif [ -n "${predefault}" ]
111 then
112 fallbackdefault="${predefault}"
113 else
114 fallbackdefault=""
115 fi
116
117 #NOT YET: See gdbarch.log for basic verification of
118 # database
119
120 break
121 fi
122 done
123 if [ -n "${class}" ]
124 then
125 true
126 else
127 false
128 fi
129 }
130
131
132 fallback_default_p ()
133 {
134 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
135 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
136 }
137
138 class_is_variable_p ()
139 {
140 case "${class}" in
141 *v* | *V* ) true ;;
142 * ) false ;;
143 esac
144 }
145
146 class_is_function_p ()
147 {
148 case "${class}" in
149 *f* | *F* | *m* | *M* ) true ;;
150 * ) false ;;
151 esac
152 }
153
154 class_is_multiarch_p ()
155 {
156 case "${class}" in
157 *m* | *M* ) true ;;
158 * ) false ;;
159 esac
160 }
161
162 class_is_predicate_p ()
163 {
164 case "${class}" in
165 *F* | *V* | *M* ) true ;;
166 * ) false ;;
167 esac
168 }
169
170 class_is_info_p ()
171 {
172 case "${class}" in
173 *i* ) true ;;
174 * ) false ;;
175 esac
176 }
177
178
179 # dump out/verify the doco
180 for field in ${read}
181 do
182 case ${field} in
183
184 class ) : ;;
185
186 # # -> line disable
187 # f -> function
188 # hiding a function
189 # F -> function + predicate
190 # hiding a function + predicate to test function validity
191 # v -> variable
192 # hiding a variable
193 # V -> variable + predicate
194 # hiding a variable + predicate to test variables validity
195 # i -> set from info
196 # hiding something from the ``struct info'' object
197 # m -> multi-arch function
198 # hiding a multi-arch function (parameterised with the architecture)
199 # M -> multi-arch function + predicate
200 # hiding a multi-arch function + predicate to test function validity
201
202 level ) : ;;
203
204 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
205 # LEVEL is a predicate on checking that a given method is
206 # initialized (using INVALID_P).
207
208 macro ) : ;;
209
210 # The name of the MACRO that this method is to be accessed by.
211
212 returntype ) : ;;
213
214 # For functions, the return type; for variables, the data type
215
216 function ) : ;;
217
218 # For functions, the member function name; for variables, the
219 # variable name. Member function names are always prefixed with
220 # ``gdbarch_'' for name-space purity.
221
222 formal ) : ;;
223
224 # The formal argument list. It is assumed that the formal
225 # argument list includes the actual name of each list element.
226 # A function with no arguments shall have ``void'' as the
227 # formal argument list.
228
229 actual ) : ;;
230
231 # The list of actual arguments. The arguments specified shall
232 # match the FORMAL list given above. Functions with out
233 # arguments leave this blank.
234
235 attrib ) : ;;
236
237 # Any GCC attributes that should be attached to the function
238 # declaration. At present this field is unused.
239
240 staticdefault ) : ;;
241
242 # To help with the GDB startup a static gdbarch object is
243 # created. STATICDEFAULT is the value to insert into that
244 # static gdbarch object. Since this a static object only
245 # simple expressions can be used.
246
247 # If STATICDEFAULT is empty, zero is used.
248
249 predefault ) : ;;
250
251 # An initial value to assign to MEMBER of the freshly
252 # malloc()ed gdbarch object. After initialization, the
253 # freshly malloc()ed object is passed to the target
254 # architecture code for further updates.
255
256 # If PREDEFAULT is empty, zero is used.
257
258 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
259 # INVALID_P are specified, PREDEFAULT will be used as the
260 # default for the non- multi-arch target.
261
262 # A zero PREDEFAULT function will force the fallback to call
263 # internal_error().
264
265 # Variable declarations can refer to ``gdbarch'' which will
266 # contain the current architecture. Care should be taken.
267
268 postdefault ) : ;;
269
270 # A value to assign to MEMBER of the new gdbarch object should
271 # the target architecture code fail to change the PREDEFAULT
272 # value.
273
274 # If POSTDEFAULT is empty, no post update is performed.
275
276 # If both INVALID_P and POSTDEFAULT are non-empty then
277 # INVALID_P will be used to determine if MEMBER should be
278 # changed to POSTDEFAULT.
279
280 # If a non-empty POSTDEFAULT and a zero INVALID_P are
281 # specified, POSTDEFAULT will be used as the default for the
282 # non- multi-arch target (regardless of the value of
283 # PREDEFAULT).
284
285 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
286
287 # Variable declarations can refer to ``gdbarch'' which will
288 # contain the current architecture. Care should be taken.
289
290 invalid_p ) : ;;
291
292 # A predicate equation that validates MEMBER. Non-zero is
293 # returned if the code creating the new architecture failed to
294 # initialize MEMBER or the initialized the member is invalid.
295 # If POSTDEFAULT is non-empty then MEMBER will be updated to
296 # that value. If POSTDEFAULT is empty then internal_error()
297 # is called.
298
299 # If INVALID_P is empty, a check that MEMBER is no longer
300 # equal to PREDEFAULT is used.
301
302 # The expression ``0'' disables the INVALID_P check making
303 # PREDEFAULT a legitimate value.
304
305 # See also PREDEFAULT and POSTDEFAULT.
306
307 fmt ) : ;;
308
309 # printf style format string that can be used to print out the
310 # MEMBER. Sometimes "%s" is useful. For functions, this is
311 # ignored and the function address is printed.
312
313 # If FMT is empty, ``%ld'' is used.
314
315 print ) : ;;
316
317 # An optional equation that casts MEMBER to a value suitable
318 # for formatting by FMT.
319
320 # If PRINT is empty, ``(long)'' is used.
321
322 print_p ) : ;;
323
324 # An optional indicator for any predicte to wrap around the
325 # print member code.
326
327 # () -> Call a custom function to do the dump.
328 # exp -> Wrap print up in ``if (${print_p}) ...
329 # ``'' -> No predicate
330
331 # If PRINT_P is empty, ``1'' is always used.
332
333 description ) : ;;
334
335 # Currently unused.
336
337 *) exit 1;;
338 esac
339 done
340
341
342 function_list ()
343 {
344 # See below (DOCO) for description of each field
345 cat <<EOF
346 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
347 #
348 i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
349 # Number of bits in a char or unsigned char for the target machine.
350 # Just like CHAR_BIT in <limits.h> but describes the target machine.
351 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
352 #
353 # Number of bits in a short or unsigned short for the target machine.
354 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
355 # Number of bits in an int or unsigned int for the target machine.
356 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
357 # Number of bits in a long or unsigned long for the target machine.
358 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long long or unsigned long long for the target
360 # machine.
361 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
362 # Number of bits in a float for the target machine.
363 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
364 # Number of bits in a double for the target machine.
365 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
366 # Number of bits in a long double for the target machine.
367 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
368 # For most targets, a pointer on the target and its representation as an
369 # address in GDB have the same size and "look the same". For such a
370 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
371 # / addr_bit will be set from it.
372 #
373 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
374 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
375 #
376 # ptr_bit is the size of a pointer on the target
377 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
378 # addr_bit is the size of a target address as represented in gdb
379 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
380 # Number of bits in a BFD_VMA for the target object file format.
381 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
382 #
383 v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
384 #
385 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
386 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
387 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
388 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
389 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
390 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
391 #
392 M:::void:register_read:int regnum, char *buf:regnum, buf:
393 M:::void:register_write:int regnum, char *buf:regnum, buf:
394 #
395 v:2:NUM_REGS:int:num_regs::::0:-1
396 # This macro gives the number of pseudo-registers that live in the
397 # register namespace but do not get fetched or stored on the target.
398 # These pseudo-registers may be aliases for other registers,
399 # combinations of other registers, or they may be computed by GDB.
400 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
401 v:2:SP_REGNUM:int:sp_regnum::::0:-1
402 v:2:FP_REGNUM:int:fp_regnum::::0:-1
403 v:2:PC_REGNUM:int:pc_regnum::::0:-1
404 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
405 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
406 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
407 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
408 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
409 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
410 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
411 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
412 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
413 # Convert from an sdb register number to an internal gdb register number.
414 # This should be defined in tm.h, if REGISTER_NAMES is not set up
415 # to map one to one onto the sdb register numbers.
416 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
417 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
418 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
419 v:2:REGISTER_SIZE:int:register_size::::0:-1
420 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
421 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
422 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
423 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
424 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
425 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
426 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
427 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
428 # MAP a GDB RAW register number onto a simulator register number. See
429 # also include/...-sim.h.
430 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
431 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
432 #
433 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
434 v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
435 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
436 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
437 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1:::0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
438 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
439 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
440 f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
441 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
442 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
443 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
444 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
445 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
446 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
447 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
448 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
449 #
450 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
451 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
452 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
453 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
454 #
455 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
456 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
457 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
458 # This function is called when the value of a pseudo-register needs to
459 # be updated. Typically it will be defined on a per-architecture
460 # basis.
461 f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
462 # This function is called when the value of a pseudo-register needs to
463 # be set or stored. Typically it will be defined on a
464 # per-architecture basis.
465 f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
466 #
467 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
468 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
469 #
470 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
471 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
472 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
473 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
474 f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
475 f:2:POP_FRAME:void:pop_frame:void:-:::0
476 #
477 # I wish that these would just go away....
478 f:2:D10V_MAKE_DADDR:CORE_ADDR:d10v_make_daddr:CORE_ADDR x:x:::0::0
479 f:2:D10V_MAKE_IADDR:CORE_ADDR:d10v_make_iaddr:CORE_ADDR x:x:::0::0
480 f:2:D10V_DADDR_P:int:d10v_daddr_p:CORE_ADDR x:x:::0::0
481 f:2:D10V_IADDR_P:int:d10v_iaddr_p:CORE_ADDR x:x:::0::0
482 f:2:D10V_CONVERT_DADDR_TO_RAW:CORE_ADDR:d10v_convert_daddr_to_raw:CORE_ADDR x:x:::0::0
483 f:2:D10V_CONVERT_IADDR_TO_RAW:CORE_ADDR:d10v_convert_iaddr_to_raw:CORE_ADDR x:x:::0::0
484 #
485 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
486 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
487 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
488 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0
489 #
490 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
491 f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
492 #
493 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
494 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
495 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
496 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
497 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
498 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
499 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
500 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
501 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
502 #
503 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
504 #
505 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
506 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
507 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
508 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
509 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
510 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
511 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
512 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
513 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
514 #
515 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
516 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
517 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
518 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
519 v:2:PARM_BOUNDARY:int:parm_boundary
520 #
521 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
522 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
523 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
524 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
525 # On some machines there are bits in addresses which are not really
526 # part of the address, but are used by the kernel, the hardware, etc.
527 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
528 # we get a "real" address such as one would find in a symbol table.
529 # This is used only for addresses of instructions, and even then I'm
530 # not sure it's used in all contexts. It exists to deal with there
531 # being a few stray bits in the PC which would mislead us, not as some
532 # sort of generic thing to handle alignment or segmentation (it's
533 # possible it should be in TARGET_READ_PC instead).
534 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
535 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
536 # the target needs software single step. An ISA method to implement it.
537 #
538 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
539 # using the breakpoint system instead of blatting memory directly (as with rs6000).
540 #
541 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
542 # single step. If not, then implement single step using breakpoints.
543 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
544 EOF
545 }
546
547 #
548 # The .log file
549 #
550 exec > new-gdbarch.log
551 function_list | while do_read
552 do
553 cat <<EOF
554 ${class} ${macro}(${actual})
555 ${returntype} ${function} ($formal)${attrib}
556 EOF
557 for r in ${read}
558 do
559 eval echo \"\ \ \ \ ${r}=\${${r}}\"
560 done
561 # #fallbackdefault=${fallbackdefault}
562 # #valid_p=${valid_p}
563 #EOF
564 if class_is_predicate_p && fallback_default_p
565 then
566 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
567 kill $$
568 exit 1
569 fi
570 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
571 then
572 echo "Error: postdefault is useless when invalid_p=0" 1>&2
573 kill $$
574 exit 1
575 fi
576 echo ""
577 done
578
579 exec 1>&2
580 compare_new gdbarch.log
581
582
583 copyright ()
584 {
585 cat <<EOF
586 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
587
588 /* Dynamic architecture support for GDB, the GNU debugger.
589 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
590
591 This file is part of GDB.
592
593 This program is free software; you can redistribute it and/or modify
594 it under the terms of the GNU General Public License as published by
595 the Free Software Foundation; either version 2 of the License, or
596 (at your option) any later version.
597
598 This program is distributed in the hope that it will be useful,
599 but WITHOUT ANY WARRANTY; without even the implied warranty of
600 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
601 GNU General Public License for more details.
602
603 You should have received a copy of the GNU General Public License
604 along with this program; if not, write to the Free Software
605 Foundation, Inc., 59 Temple Place - Suite 330,
606 Boston, MA 02111-1307, USA. */
607
608 /* This file was created with the aid of \`\`gdbarch.sh''.
609
610 The Bourne shell script \`\`gdbarch.sh'' creates the files
611 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
612 against the existing \`\`gdbarch.[hc]''. Any differences found
613 being reported.
614
615 If editing this file, please also run gdbarch.sh and merge any
616 changes into that script. Conversely, when making sweeping changes
617 to this file, modifying gdbarch.sh and using its output may prove
618 easier. */
619
620 EOF
621 }
622
623 #
624 # The .h file
625 #
626
627 exec > new-gdbarch.h
628 copyright
629 cat <<EOF
630 #ifndef GDBARCH_H
631 #define GDBARCH_H
632
633 struct frame_info;
634 struct value;
635
636
637 extern struct gdbarch *current_gdbarch;
638
639
640 /* If any of the following are defined, the target wasn't correctly
641 converted. */
642
643 #if GDB_MULTI_ARCH
644 #if defined (EXTRA_FRAME_INFO)
645 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
646 #endif
647 #endif
648
649 #if GDB_MULTI_ARCH
650 #if defined (FRAME_FIND_SAVED_REGS)
651 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
652 #endif
653 #endif
654 EOF
655
656 # function typedef's
657 printf "\n"
658 printf "\n"
659 printf "/* The following are pre-initialized by GDBARCH. */\n"
660 function_list | while do_read
661 do
662 if class_is_info_p
663 then
664 printf "\n"
665 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
666 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
667 printf "#if GDB_MULTI_ARCH\n"
668 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
669 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
670 printf "#endif\n"
671 printf "#endif\n"
672 fi
673 done
674
675 # function typedef's
676 printf "\n"
677 printf "\n"
678 printf "/* The following are initialized by the target dependent code. */\n"
679 function_list | while do_read
680 do
681 if [ -n "${comment}" ]
682 then
683 echo "${comment}" | sed \
684 -e '2 s,#,/*,' \
685 -e '3,$ s,#, ,' \
686 -e '$ s,$, */,'
687 fi
688 if class_is_multiarch_p
689 then
690 if class_is_predicate_p
691 then
692 printf "\n"
693 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
694 fi
695 else
696 if class_is_predicate_p
697 then
698 printf "\n"
699 printf "#if defined (${macro})\n"
700 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
701 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
702 printf "#if !defined (${macro}_P)\n"
703 printf "#define ${macro}_P() (1)\n"
704 printf "#endif\n"
705 printf "#endif\n"
706 printf "\n"
707 printf "/* Default predicate for non- multi-arch targets. */\n"
708 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
709 printf "#define ${macro}_P() (0)\n"
710 printf "#endif\n"
711 printf "\n"
712 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
713 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
714 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
715 printf "#endif\n"
716 fi
717 fi
718 if class_is_variable_p
719 then
720 if fallback_default_p || class_is_predicate_p
721 then
722 printf "\n"
723 printf "/* Default (value) for non- multi-arch platforms. */\n"
724 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
725 echo "#define ${macro} (${fallbackdefault})" \
726 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
727 printf "#endif\n"
728 fi
729 printf "\n"
730 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
731 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
732 printf "#if GDB_MULTI_ARCH\n"
733 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
734 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
735 printf "#endif\n"
736 printf "#endif\n"
737 fi
738 if class_is_function_p
739 then
740 if class_is_multiarch_p ; then :
741 elif fallback_default_p || class_is_predicate_p
742 then
743 printf "\n"
744 printf "/* Default (function) for non- multi-arch platforms. */\n"
745 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
746 if [ "x${fallbackdefault}" = "x0" ]
747 then
748 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
749 else
750 # FIXME: Should be passing current_gdbarch through!
751 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
752 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
753 fi
754 printf "#endif\n"
755 fi
756 printf "\n"
757 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
758 then
759 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
760 elif class_is_multiarch_p
761 then
762 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
763 else
764 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
765 fi
766 if [ "x${formal}" = "xvoid" ]
767 then
768 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
769 else
770 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
771 fi
772 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
773 if class_is_multiarch_p ; then :
774 else
775 printf "#if GDB_MULTI_ARCH\n"
776 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
777 if [ "x${actual}" = "x" ]
778 then
779 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
780 elif [ "x${actual}" = "x-" ]
781 then
782 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
783 else
784 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
785 fi
786 printf "#endif\n"
787 printf "#endif\n"
788 fi
789 fi
790 done
791
792 # close it off
793 cat <<EOF
794
795 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
796
797
798 /* Mechanism for co-ordinating the selection of a specific
799 architecture.
800
801 GDB targets (*-tdep.c) can register an interest in a specific
802 architecture. Other GDB components can register a need to maintain
803 per-architecture data.
804
805 The mechanisms below ensures that there is only a loose connection
806 between the set-architecture command and the various GDB
807 components. Each component can independently register their need
808 to maintain architecture specific data with gdbarch.
809
810 Pragmatics:
811
812 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
813 didn't scale.
814
815 The more traditional mega-struct containing architecture specific
816 data for all the various GDB components was also considered. Since
817 GDB is built from a variable number of (fairly independent)
818 components it was determined that the global aproach was not
819 applicable. */
820
821
822 /* Register a new architectural family with GDB.
823
824 Register support for the specified ARCHITECTURE with GDB. When
825 gdbarch determines that the specified architecture has been
826 selected, the corresponding INIT function is called.
827
828 --
829
830 The INIT function takes two parameters: INFO which contains the
831 information available to gdbarch about the (possibly new)
832 architecture; ARCHES which is a list of the previously created
833 \`\`struct gdbarch'' for this architecture.
834
835 The INIT function parameter INFO shall, as far as possible, be
836 pre-initialized with information obtained from INFO.ABFD or
837 previously selected architecture (if similar). INIT shall ensure
838 that the INFO.BYTE_ORDER is non-zero.
839
840 The INIT function shall return any of: NULL - indicating that it
841 doesn't recognize the selected architecture; an existing \`\`struct
842 gdbarch'' from the ARCHES list - indicating that the new
843 architecture is just a synonym for an earlier architecture (see
844 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
845 - that describes the selected architecture (see gdbarch_alloc()).
846
847 The DUMP_TDEP function shall print out all target specific values.
848 Care should be taken to ensure that the function works in both the
849 multi-arch and non- multi-arch cases. */
850
851 struct gdbarch_list
852 {
853 struct gdbarch *gdbarch;
854 struct gdbarch_list *next;
855 };
856
857 struct gdbarch_info
858 {
859 /* Use default: NULL (ZERO). */
860 const struct bfd_arch_info *bfd_arch_info;
861
862 /* Use default: 0 (ZERO). */
863 int byte_order;
864
865 /* Use default: NULL (ZERO). */
866 bfd *abfd;
867
868 /* Use default: NULL (ZERO). */
869 struct gdbarch_tdep_info *tdep_info;
870 };
871
872 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
873 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
874
875 /* DEPRECATED - use gdbarch_register() */
876 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
877
878 extern void gdbarch_register (enum bfd_architecture architecture,
879 gdbarch_init_ftype *,
880 gdbarch_dump_tdep_ftype *);
881
882
883 /* Return a freshly allocated, NULL terminated, array of the valid
884 architecture names. Since architectures are registered during the
885 _initialize phase this function only returns useful information
886 once initialization has been completed. */
887
888 extern const char **gdbarch_printable_names (void);
889
890
891 /* Helper function. Search the list of ARCHES for a GDBARCH that
892 matches the information provided by INFO. */
893
894 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
895
896
897 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
898 basic initialization using values obtained from the INFO andTDEP
899 parameters. set_gdbarch_*() functions are called to complete the
900 initialization of the object. */
901
902 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
903
904
905 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
906 It is assumed that the caller freeds the \`\`struct
907 gdbarch_tdep''. */
908
909 extern void gdbarch_free (struct gdbarch *);
910
911
912 /* Helper function. Force an update of the current architecture.
913
914 The actual architecture selected is determined by INFO, \`\`(gdb) set
915 architecture'' et.al., the existing architecture and BFD's default
916 architecture. INFO should be initialized to zero and then selected
917 fields should be updated.
918
919 Returns non-zero if the update succeeds */
920
921 extern int gdbarch_update_p (struct gdbarch_info info);
922
923
924
925 /* Register per-architecture data-pointer.
926
927 Reserve space for a per-architecture data-pointer. An identifier
928 for the reserved data-pointer is returned. That identifer should
929 be saved in a local static variable.
930
931 The per-architecture data-pointer can be initialized in one of two
932 ways: The value can be set explicitly using a call to
933 set_gdbarch_data(); the value can be set implicitly using the value
934 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
935 called after the basic architecture vector has been created.
936
937 When a previously created architecture is re-selected, the
938 per-architecture data-pointer for that previous architecture is
939 restored. INIT() is not called.
940
941 During initialization, multiple assignments of the data-pointer are
942 allowed, non-NULL values are deleted by calling FREE(). If the
943 architecture is deleted using gdbarch_free() all non-NULL data
944 pointers are also deleted using FREE().
945
946 Multiple registrarants for any architecture are allowed (and
947 strongly encouraged). */
948
949 struct gdbarch_data;
950
951 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
952 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
953 void *pointer);
954 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
955 gdbarch_data_free_ftype *free);
956 extern void set_gdbarch_data (struct gdbarch *gdbarch,
957 struct gdbarch_data *data,
958 void *pointer);
959
960 extern void *gdbarch_data (struct gdbarch_data*);
961
962
963 /* Register per-architecture memory region.
964
965 Provide a memory-region swap mechanism. Per-architecture memory
966 region are created. These memory regions are swapped whenever the
967 architecture is changed. For a new architecture, the memory region
968 is initialized with zero (0) and the INIT function is called.
969
970 Memory regions are swapped / initialized in the order that they are
971 registered. NULL DATA and/or INIT values can be specified.
972
973 New code should use register_gdbarch_data(). */
974
975 typedef void (gdbarch_swap_ftype) (void);
976 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
977 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
978
979
980
981 /* The target-system-dependent byte order is dynamic */
982
983 /* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
984 is selectable at runtime. The user can use the \`\`set endian''
985 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
986 target_byte_order should be auto-detected (from the program image
987 say). */
988
989 #if GDB_MULTI_ARCH
990 /* Multi-arch GDB is always bi-endian. */
991 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
992 #endif
993
994 #ifndef TARGET_BYTE_ORDER_SELECTABLE_P
995 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
996 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
997 #ifdef TARGET_BYTE_ORDER_SELECTABLE
998 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
999 #else
1000 #define TARGET_BYTE_ORDER_SELECTABLE_P 0
1001 #endif
1002 #endif
1003
1004 extern int target_byte_order;
1005 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1006 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
1007 and expect defs.h to re-define TARGET_BYTE_ORDER. */
1008 #undef TARGET_BYTE_ORDER
1009 #endif
1010 #ifndef TARGET_BYTE_ORDER
1011 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1012 #endif
1013
1014 extern int target_byte_order_auto;
1015 #ifndef TARGET_BYTE_ORDER_AUTO
1016 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1017 #endif
1018
1019
1020
1021 /* The target-system-dependent BFD architecture is dynamic */
1022
1023 extern int target_architecture_auto;
1024 #ifndef TARGET_ARCHITECTURE_AUTO
1025 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1026 #endif
1027
1028 extern const struct bfd_arch_info *target_architecture;
1029 #ifndef TARGET_ARCHITECTURE
1030 #define TARGET_ARCHITECTURE (target_architecture + 0)
1031 #endif
1032
1033
1034 /* The target-system-dependent disassembler is semi-dynamic */
1035
1036 #include "dis-asm.h" /* Get defs for disassemble_info */
1037
1038 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1039 unsigned int len, disassemble_info *info);
1040
1041 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1042 disassemble_info *info);
1043
1044 extern void dis_asm_print_address (bfd_vma addr,
1045 disassemble_info *info);
1046
1047 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1048 extern disassemble_info tm_print_insn_info;
1049 #ifndef TARGET_PRINT_INSN
1050 #define TARGET_PRINT_INSN(vma, info) (*tm_print_insn) (vma, info)
1051 #endif
1052 #ifndef TARGET_PRINT_INSN_INFO
1053 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1054 #endif
1055
1056
1057
1058 /* Explicit test for D10V architecture.
1059 USE of these macro's is *STRONGLY* discouraged. */
1060
1061 #define GDB_TARGET_IS_D10V (TARGET_ARCHITECTURE->arch == bfd_arch_d10v)
1062
1063
1064 /* Set the dynamic target-system-dependent parameters (architecture,
1065 byte-order, ...) using information found in the BFD */
1066
1067 extern void set_gdbarch_from_file (bfd *);
1068
1069
1070 /* Initialize the current architecture to the "first" one we find on
1071 our list. */
1072
1073 extern void initialize_current_architecture (void);
1074
1075 /* For non-multiarched targets, do any initialization of the default
1076 gdbarch object necessary after the _initialize_MODULE functions
1077 have run. */
1078 extern void initialize_non_multiarch ();
1079
1080 /* gdbarch trace variable */
1081 extern int gdbarch_debug;
1082
1083 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1084
1085 #endif
1086 EOF
1087 exec 1>&2
1088 #../move-if-change new-gdbarch.h gdbarch.h
1089 compare_new gdbarch.h
1090
1091
1092 #
1093 # C file
1094 #
1095
1096 exec > new-gdbarch.c
1097 copyright
1098 cat <<EOF
1099
1100 #include "defs.h"
1101 #include "arch-utils.h"
1102
1103 #if GDB_MULTI_ARCH
1104 #include "gdbcmd.h"
1105 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1106 #else
1107 /* Just include everything in sight so that the every old definition
1108 of macro is visible. */
1109 #include "gdb_string.h"
1110 #include <ctype.h>
1111 #include "symtab.h"
1112 #include "frame.h"
1113 #include "inferior.h"
1114 #include "breakpoint.h"
1115 #include "gdb_wait.h"
1116 #include "gdbcore.h"
1117 #include "gdbcmd.h"
1118 #include "target.h"
1119 #include "gdbthread.h"
1120 #include "annotate.h"
1121 #include "symfile.h" /* for overlay functions */
1122 #endif
1123 #include "symcat.h"
1124
1125 #include "floatformat.h"
1126
1127 #include "gdb_assert.h"
1128
1129 /* Static function declarations */
1130
1131 static void verify_gdbarch (struct gdbarch *gdbarch);
1132 static void alloc_gdbarch_data (struct gdbarch *);
1133 static void init_gdbarch_data (struct gdbarch *);
1134 static void free_gdbarch_data (struct gdbarch *);
1135 static void init_gdbarch_swap (struct gdbarch *);
1136 static void swapout_gdbarch_swap (struct gdbarch *);
1137 static void swapin_gdbarch_swap (struct gdbarch *);
1138
1139 /* Convenience macro for allocting typesafe memory. */
1140
1141 #ifndef XMALLOC
1142 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1143 #endif
1144
1145
1146 /* Non-zero if we want to trace architecture code. */
1147
1148 #ifndef GDBARCH_DEBUG
1149 #define GDBARCH_DEBUG 0
1150 #endif
1151 int gdbarch_debug = GDBARCH_DEBUG;
1152
1153 EOF
1154
1155 # gdbarch open the gdbarch object
1156 printf "\n"
1157 printf "/* Maintain the struct gdbarch object */\n"
1158 printf "\n"
1159 printf "struct gdbarch\n"
1160 printf "{\n"
1161 printf " /* basic architectural information */\n"
1162 function_list | while do_read
1163 do
1164 if class_is_info_p
1165 then
1166 printf " ${returntype} ${function};\n"
1167 fi
1168 done
1169 printf "\n"
1170 printf " /* target specific vector. */\n"
1171 printf " struct gdbarch_tdep *tdep;\n"
1172 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1173 printf "\n"
1174 printf " /* per-architecture data-pointers */\n"
1175 printf " unsigned nr_data;\n"
1176 printf " void **data;\n"
1177 printf "\n"
1178 printf " /* per-architecture swap-regions */\n"
1179 printf " struct gdbarch_swap *swap;\n"
1180 printf "\n"
1181 cat <<EOF
1182 /* Multi-arch values.
1183
1184 When extending this structure you must:
1185
1186 Add the field below.
1187
1188 Declare set/get functions and define the corresponding
1189 macro in gdbarch.h.
1190
1191 gdbarch_alloc(): If zero/NULL is not a suitable default,
1192 initialize the new field.
1193
1194 verify_gdbarch(): Confirm that the target updated the field
1195 correctly.
1196
1197 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1198 field is dumped out
1199
1200 \`\`startup_gdbarch()'': Append an initial value to the static
1201 variable (base values on the host's c-type system).
1202
1203 get_gdbarch(): Implement the set/get functions (probably using
1204 the macro's as shortcuts).
1205
1206 */
1207
1208 EOF
1209 function_list | while do_read
1210 do
1211 if class_is_variable_p
1212 then
1213 printf " ${returntype} ${function};\n"
1214 elif class_is_function_p
1215 then
1216 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1217 fi
1218 done
1219 printf "};\n"
1220
1221 # A pre-initialized vector
1222 printf "\n"
1223 printf "\n"
1224 cat <<EOF
1225 /* The default architecture uses host values (for want of a better
1226 choice). */
1227 EOF
1228 printf "\n"
1229 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1230 printf "\n"
1231 printf "struct gdbarch startup_gdbarch =\n"
1232 printf "{\n"
1233 printf " /* basic architecture information */\n"
1234 function_list | while do_read
1235 do
1236 if class_is_info_p
1237 then
1238 printf " ${staticdefault},\n"
1239 fi
1240 done
1241 cat <<EOF
1242 /* target specific vector and its dump routine */
1243 NULL, NULL,
1244 /*per-architecture data-pointers and swap regions */
1245 0, NULL, NULL,
1246 /* Multi-arch values */
1247 EOF
1248 function_list | while do_read
1249 do
1250 if class_is_function_p || class_is_variable_p
1251 then
1252 printf " ${staticdefault},\n"
1253 fi
1254 done
1255 cat <<EOF
1256 /* startup_gdbarch() */
1257 };
1258
1259 struct gdbarch *current_gdbarch = &startup_gdbarch;
1260
1261 /* Do any initialization needed for a non-multiarch configuration
1262 after the _initialize_MODULE functions have been run. */
1263 void
1264 initialize_non_multiarch ()
1265 {
1266 alloc_gdbarch_data (&startup_gdbarch);
1267 init_gdbarch_data (&startup_gdbarch);
1268 }
1269 EOF
1270
1271 # Create a new gdbarch struct
1272 printf "\n"
1273 printf "\n"
1274 cat <<EOF
1275 /* Create a new \`\`struct gdbarch'' based on information provided by
1276 \`\`struct gdbarch_info''. */
1277 EOF
1278 printf "\n"
1279 cat <<EOF
1280 struct gdbarch *
1281 gdbarch_alloc (const struct gdbarch_info *info,
1282 struct gdbarch_tdep *tdep)
1283 {
1284 struct gdbarch *gdbarch = XMALLOC (struct gdbarch);
1285 memset (gdbarch, 0, sizeof (*gdbarch));
1286
1287 alloc_gdbarch_data (gdbarch);
1288
1289 gdbarch->tdep = tdep;
1290 EOF
1291 printf "\n"
1292 function_list | while do_read
1293 do
1294 if class_is_info_p
1295 then
1296 printf " gdbarch->${function} = info->${function};\n"
1297 fi
1298 done
1299 printf "\n"
1300 printf " /* Force the explicit initialization of these. */\n"
1301 function_list | while do_read
1302 do
1303 if class_is_function_p || class_is_variable_p
1304 then
1305 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1306 then
1307 printf " gdbarch->${function} = ${predefault};\n"
1308 fi
1309 fi
1310 done
1311 cat <<EOF
1312 /* gdbarch_alloc() */
1313
1314 return gdbarch;
1315 }
1316 EOF
1317
1318 # Free a gdbarch struct.
1319 printf "\n"
1320 printf "\n"
1321 cat <<EOF
1322 /* Free a gdbarch struct. This should never happen in normal
1323 operation --- once you've created a gdbarch, you keep it around.
1324 However, if an architecture's init function encounters an error
1325 building the structure, it may need to clean up a partially
1326 constructed gdbarch. */
1327
1328 void
1329 gdbarch_free (struct gdbarch *arch)
1330 {
1331 gdb_assert (arch != NULL);
1332 free_gdbarch_data (arch);
1333 xfree (arch);
1334 }
1335 EOF
1336
1337 # verify a new architecture
1338 printf "\n"
1339 printf "\n"
1340 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1341 printf "\n"
1342 cat <<EOF
1343 static void
1344 verify_gdbarch (struct gdbarch *gdbarch)
1345 {
1346 /* Only perform sanity checks on a multi-arch target. */
1347 if (!GDB_MULTI_ARCH)
1348 return;
1349 /* fundamental */
1350 if (gdbarch->byte_order == 0)
1351 internal_error (__FILE__, __LINE__,
1352 "verify_gdbarch: byte-order unset");
1353 if (gdbarch->bfd_arch_info == NULL)
1354 internal_error (__FILE__, __LINE__,
1355 "verify_gdbarch: bfd_arch_info unset");
1356 /* Check those that need to be defined for the given multi-arch level. */
1357 EOF
1358 function_list | while do_read
1359 do
1360 if class_is_function_p || class_is_variable_p
1361 then
1362 if [ "x${invalid_p}" = "x0" ]
1363 then
1364 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1365 elif class_is_predicate_p
1366 then
1367 printf " /* Skip verify of ${function}, has predicate */\n"
1368 # FIXME: See do_read for potential simplification
1369 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1370 then
1371 printf " if (${invalid_p})\n"
1372 printf " gdbarch->${function} = ${postdefault};\n"
1373 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1374 then
1375 printf " if (gdbarch->${function} == ${predefault})\n"
1376 printf " gdbarch->${function} = ${postdefault};\n"
1377 elif [ -n "${postdefault}" ]
1378 then
1379 printf " if (gdbarch->${function} == 0)\n"
1380 printf " gdbarch->${function} = ${postdefault};\n"
1381 elif [ -n "${invalid_p}" ]
1382 then
1383 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1384 printf " && (${invalid_p}))\n"
1385 printf " internal_error (__FILE__, __LINE__,\n"
1386 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1387 elif [ -n "${predefault}" ]
1388 then
1389 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1390 printf " && (gdbarch->${function} == ${predefault}))\n"
1391 printf " internal_error (__FILE__, __LINE__,\n"
1392 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1393 fi
1394 fi
1395 done
1396 cat <<EOF
1397 }
1398 EOF
1399
1400 # dump the structure
1401 printf "\n"
1402 printf "\n"
1403 cat <<EOF
1404 /* Print out the details of the current architecture. */
1405
1406 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1407 just happens to match the global variable \`\`current_gdbarch''. That
1408 way macros refering to that variable get the local and not the global
1409 version - ulgh. Once everything is parameterised with gdbarch, this
1410 will go away. */
1411
1412 void
1413 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1414 {
1415 fprintf_unfiltered (file,
1416 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1417 GDB_MULTI_ARCH);
1418 EOF
1419 function_list | while do_read
1420 do
1421 # multiarch functions don't have macros.
1422 class_is_multiarch_p && continue
1423 if [ "x${returntype}" = "xvoid" ]
1424 then
1425 printf "#if defined (${macro}) && GDB_MULTI_ARCH\n"
1426 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1427 else
1428 printf "#ifdef ${macro}\n"
1429 fi
1430 if class_is_function_p
1431 then
1432 printf " fprintf_unfiltered (file,\n"
1433 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1434 printf " \"${macro}(${actual})\",\n"
1435 printf " XSTRING (${macro} (${actual})));\n"
1436 else
1437 printf " fprintf_unfiltered (file,\n"
1438 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1439 printf " XSTRING (${macro}));\n"
1440 fi
1441 printf "#endif\n"
1442 done
1443 function_list | while do_read
1444 do
1445 if class_is_multiarch_p
1446 then
1447 printf " if (GDB_MULTI_ARCH)\n"
1448 printf " fprintf_unfiltered (file,\n"
1449 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1450 printf " (long) current_gdbarch->${function});\n"
1451 continue
1452 fi
1453 printf "#ifdef ${macro}\n"
1454 if [ "x${print_p}" = "x()" ]
1455 then
1456 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1457 elif [ "x${print_p}" = "x0" ]
1458 then
1459 printf " /* skip print of ${macro}, print_p == 0. */\n"
1460 elif [ -n "${print_p}" ]
1461 then
1462 printf " if (${print_p})\n"
1463 printf " fprintf_unfiltered (file,\n"
1464 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1465 printf " ${print});\n"
1466 elif class_is_function_p
1467 then
1468 printf " if (GDB_MULTI_ARCH)\n"
1469 printf " fprintf_unfiltered (file,\n"
1470 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1471 printf " (long) current_gdbarch->${function}\n"
1472 printf " /*${macro} ()*/);\n"
1473 else
1474 printf " fprintf_unfiltered (file,\n"
1475 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1476 printf " ${print});\n"
1477 fi
1478 printf "#endif\n"
1479 done
1480 cat <<EOF
1481 if (current_gdbarch->dump_tdep != NULL)
1482 current_gdbarch->dump_tdep (current_gdbarch, file);
1483 }
1484 EOF
1485
1486
1487 # GET/SET
1488 printf "\n"
1489 cat <<EOF
1490 struct gdbarch_tdep *
1491 gdbarch_tdep (struct gdbarch *gdbarch)
1492 {
1493 if (gdbarch_debug >= 2)
1494 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1495 return gdbarch->tdep;
1496 }
1497 EOF
1498 printf "\n"
1499 function_list | while do_read
1500 do
1501 if class_is_predicate_p
1502 then
1503 printf "\n"
1504 printf "int\n"
1505 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1506 printf "{\n"
1507 if [ -n "${valid_p}" ]
1508 then
1509 printf " return ${valid_p};\n"
1510 else
1511 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1512 fi
1513 printf "}\n"
1514 fi
1515 if class_is_function_p
1516 then
1517 printf "\n"
1518 printf "${returntype}\n"
1519 if [ "x${formal}" = "xvoid" ]
1520 then
1521 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1522 else
1523 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1524 fi
1525 printf "{\n"
1526 printf " if (gdbarch->${function} == 0)\n"
1527 printf " internal_error (__FILE__, __LINE__,\n"
1528 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1529 printf " if (gdbarch_debug >= 2)\n"
1530 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1531 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1532 then
1533 if class_is_multiarch_p
1534 then
1535 params="gdbarch"
1536 else
1537 params=""
1538 fi
1539 else
1540 if class_is_multiarch_p
1541 then
1542 params="gdbarch, ${actual}"
1543 else
1544 params="${actual}"
1545 fi
1546 fi
1547 if [ "x${returntype}" = "xvoid" ]
1548 then
1549 printf " gdbarch->${function} (${params});\n"
1550 else
1551 printf " return gdbarch->${function} (${params});\n"
1552 fi
1553 printf "}\n"
1554 printf "\n"
1555 printf "void\n"
1556 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1557 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1558 printf "{\n"
1559 printf " gdbarch->${function} = ${function};\n"
1560 printf "}\n"
1561 elif class_is_variable_p
1562 then
1563 printf "\n"
1564 printf "${returntype}\n"
1565 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1566 printf "{\n"
1567 if [ "x${invalid_p}" = "x0" ]
1568 then
1569 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1570 elif [ -n "${invalid_p}" ]
1571 then
1572 printf " if (${invalid_p})\n"
1573 printf " internal_error (__FILE__, __LINE__,\n"
1574 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1575 elif [ -n "${predefault}" ]
1576 then
1577 printf " if (gdbarch->${function} == ${predefault})\n"
1578 printf " internal_error (__FILE__, __LINE__,\n"
1579 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1580 fi
1581 printf " if (gdbarch_debug >= 2)\n"
1582 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1583 printf " return gdbarch->${function};\n"
1584 printf "}\n"
1585 printf "\n"
1586 printf "void\n"
1587 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1588 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1589 printf "{\n"
1590 printf " gdbarch->${function} = ${function};\n"
1591 printf "}\n"
1592 elif class_is_info_p
1593 then
1594 printf "\n"
1595 printf "${returntype}\n"
1596 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1597 printf "{\n"
1598 printf " if (gdbarch_debug >= 2)\n"
1599 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1600 printf " return gdbarch->${function};\n"
1601 printf "}\n"
1602 fi
1603 done
1604
1605 # All the trailing guff
1606 cat <<EOF
1607
1608
1609 /* Keep a registry of per-architecture data-pointers required by GDB
1610 modules. */
1611
1612 struct gdbarch_data
1613 {
1614 unsigned index;
1615 gdbarch_data_init_ftype *init;
1616 gdbarch_data_free_ftype *free;
1617 };
1618
1619 struct gdbarch_data_registration
1620 {
1621 struct gdbarch_data *data;
1622 struct gdbarch_data_registration *next;
1623 };
1624
1625 struct gdbarch_data_registry
1626 {
1627 unsigned nr;
1628 struct gdbarch_data_registration *registrations;
1629 };
1630
1631 struct gdbarch_data_registry gdbarch_data_registry =
1632 {
1633 0, NULL,
1634 };
1635
1636 struct gdbarch_data *
1637 register_gdbarch_data (gdbarch_data_init_ftype *init,
1638 gdbarch_data_free_ftype *free)
1639 {
1640 struct gdbarch_data_registration **curr;
1641 for (curr = &gdbarch_data_registry.registrations;
1642 (*curr) != NULL;
1643 curr = &(*curr)->next);
1644 (*curr) = XMALLOC (struct gdbarch_data_registration);
1645 (*curr)->next = NULL;
1646 (*curr)->data = XMALLOC (struct gdbarch_data);
1647 (*curr)->data->index = gdbarch_data_registry.nr++;
1648 (*curr)->data->init = init;
1649 (*curr)->data->free = free;
1650 return (*curr)->data;
1651 }
1652
1653
1654 /* Walk through all the registered users initializing each in turn. */
1655
1656 static void
1657 init_gdbarch_data (struct gdbarch *gdbarch)
1658 {
1659 struct gdbarch_data_registration *rego;
1660 for (rego = gdbarch_data_registry.registrations;
1661 rego != NULL;
1662 rego = rego->next)
1663 {
1664 struct gdbarch_data *data = rego->data;
1665 gdb_assert (data->index < gdbarch->nr_data);
1666 if (data->init != NULL)
1667 {
1668 void *pointer = data->init (gdbarch);
1669 set_gdbarch_data (gdbarch, data, pointer);
1670 }
1671 }
1672 }
1673
1674 /* Create/delete the gdbarch data vector. */
1675
1676 static void
1677 alloc_gdbarch_data (struct gdbarch *gdbarch)
1678 {
1679 gdb_assert (gdbarch->data == NULL);
1680 gdbarch->nr_data = gdbarch_data_registry.nr;
1681 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1682 }
1683
1684 static void
1685 free_gdbarch_data (struct gdbarch *gdbarch)
1686 {
1687 struct gdbarch_data_registration *rego;
1688 gdb_assert (gdbarch->data != NULL);
1689 for (rego = gdbarch_data_registry.registrations;
1690 rego != NULL;
1691 rego = rego->next)
1692 {
1693 struct gdbarch_data *data = rego->data;
1694 gdb_assert (data->index < gdbarch->nr_data);
1695 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1696 {
1697 data->free (gdbarch, gdbarch->data[data->index]);
1698 gdbarch->data[data->index] = NULL;
1699 }
1700 }
1701 xfree (gdbarch->data);
1702 gdbarch->data = NULL;
1703 }
1704
1705
1706 /* Initialize the current value of thee specified per-architecture
1707 data-pointer. */
1708
1709 void
1710 set_gdbarch_data (struct gdbarch *gdbarch,
1711 struct gdbarch_data *data,
1712 void *pointer)
1713 {
1714 gdb_assert (data->index < gdbarch->nr_data);
1715 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1716 data->free (gdbarch, gdbarch->data[data->index]);
1717 gdbarch->data[data->index] = pointer;
1718 }
1719
1720 /* Return the current value of the specified per-architecture
1721 data-pointer. */
1722
1723 void *
1724 gdbarch_data (struct gdbarch_data *data)
1725 {
1726 gdb_assert (data->index < current_gdbarch->nr_data);
1727 return current_gdbarch->data[data->index];
1728 }
1729
1730
1731
1732 /* Keep a registry of swapped data required by GDB modules. */
1733
1734 struct gdbarch_swap
1735 {
1736 void *swap;
1737 struct gdbarch_swap_registration *source;
1738 struct gdbarch_swap *next;
1739 };
1740
1741 struct gdbarch_swap_registration
1742 {
1743 void *data;
1744 unsigned long sizeof_data;
1745 gdbarch_swap_ftype *init;
1746 struct gdbarch_swap_registration *next;
1747 };
1748
1749 struct gdbarch_swap_registry
1750 {
1751 int nr;
1752 struct gdbarch_swap_registration *registrations;
1753 };
1754
1755 struct gdbarch_swap_registry gdbarch_swap_registry =
1756 {
1757 0, NULL,
1758 };
1759
1760 void
1761 register_gdbarch_swap (void *data,
1762 unsigned long sizeof_data,
1763 gdbarch_swap_ftype *init)
1764 {
1765 struct gdbarch_swap_registration **rego;
1766 for (rego = &gdbarch_swap_registry.registrations;
1767 (*rego) != NULL;
1768 rego = &(*rego)->next);
1769 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1770 (*rego)->next = NULL;
1771 (*rego)->init = init;
1772 (*rego)->data = data;
1773 (*rego)->sizeof_data = sizeof_data;
1774 }
1775
1776
1777 static void
1778 init_gdbarch_swap (struct gdbarch *gdbarch)
1779 {
1780 struct gdbarch_swap_registration *rego;
1781 struct gdbarch_swap **curr = &gdbarch->swap;
1782 for (rego = gdbarch_swap_registry.registrations;
1783 rego != NULL;
1784 rego = rego->next)
1785 {
1786 if (rego->data != NULL)
1787 {
1788 (*curr) = XMALLOC (struct gdbarch_swap);
1789 (*curr)->source = rego;
1790 (*curr)->swap = xmalloc (rego->sizeof_data);
1791 (*curr)->next = NULL;
1792 memset (rego->data, 0, rego->sizeof_data);
1793 curr = &(*curr)->next;
1794 }
1795 if (rego->init != NULL)
1796 rego->init ();
1797 }
1798 }
1799
1800 static void
1801 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1802 {
1803 struct gdbarch_swap *curr;
1804 for (curr = gdbarch->swap;
1805 curr != NULL;
1806 curr = curr->next)
1807 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1808 }
1809
1810 static void
1811 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1812 {
1813 struct gdbarch_swap *curr;
1814 for (curr = gdbarch->swap;
1815 curr != NULL;
1816 curr = curr->next)
1817 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1818 }
1819
1820
1821 /* Keep a registry of the architectures known by GDB. */
1822
1823 struct gdbarch_registration
1824 {
1825 enum bfd_architecture bfd_architecture;
1826 gdbarch_init_ftype *init;
1827 gdbarch_dump_tdep_ftype *dump_tdep;
1828 struct gdbarch_list *arches;
1829 struct gdbarch_registration *next;
1830 };
1831
1832 static struct gdbarch_registration *gdbarch_registry = NULL;
1833
1834 static void
1835 append_name (const char ***buf, int *nr, const char *name)
1836 {
1837 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1838 (*buf)[*nr] = name;
1839 *nr += 1;
1840 }
1841
1842 const char **
1843 gdbarch_printable_names (void)
1844 {
1845 if (GDB_MULTI_ARCH)
1846 {
1847 /* Accumulate a list of names based on the registed list of
1848 architectures. */
1849 enum bfd_architecture a;
1850 int nr_arches = 0;
1851 const char **arches = NULL;
1852 struct gdbarch_registration *rego;
1853 for (rego = gdbarch_registry;
1854 rego != NULL;
1855 rego = rego->next)
1856 {
1857 const struct bfd_arch_info *ap;
1858 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1859 if (ap == NULL)
1860 internal_error (__FILE__, __LINE__,
1861 "gdbarch_architecture_names: multi-arch unknown");
1862 do
1863 {
1864 append_name (&arches, &nr_arches, ap->printable_name);
1865 ap = ap->next;
1866 }
1867 while (ap != NULL);
1868 }
1869 append_name (&arches, &nr_arches, NULL);
1870 return arches;
1871 }
1872 else
1873 /* Just return all the architectures that BFD knows. Assume that
1874 the legacy architecture framework supports them. */
1875 return bfd_arch_list ();
1876 }
1877
1878
1879 void
1880 gdbarch_register (enum bfd_architecture bfd_architecture,
1881 gdbarch_init_ftype *init,
1882 gdbarch_dump_tdep_ftype *dump_tdep)
1883 {
1884 struct gdbarch_registration **curr;
1885 const struct bfd_arch_info *bfd_arch_info;
1886 /* Check that BFD recognizes this architecture */
1887 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1888 if (bfd_arch_info == NULL)
1889 {
1890 internal_error (__FILE__, __LINE__,
1891 "gdbarch: Attempt to register unknown architecture (%d)",
1892 bfd_architecture);
1893 }
1894 /* Check that we haven't seen this architecture before */
1895 for (curr = &gdbarch_registry;
1896 (*curr) != NULL;
1897 curr = &(*curr)->next)
1898 {
1899 if (bfd_architecture == (*curr)->bfd_architecture)
1900 internal_error (__FILE__, __LINE__,
1901 "gdbarch: Duplicate registraration of architecture (%s)",
1902 bfd_arch_info->printable_name);
1903 }
1904 /* log it */
1905 if (gdbarch_debug)
1906 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1907 bfd_arch_info->printable_name,
1908 (long) init);
1909 /* Append it */
1910 (*curr) = XMALLOC (struct gdbarch_registration);
1911 (*curr)->bfd_architecture = bfd_architecture;
1912 (*curr)->init = init;
1913 (*curr)->dump_tdep = dump_tdep;
1914 (*curr)->arches = NULL;
1915 (*curr)->next = NULL;
1916 /* When non- multi-arch, install whatever target dump routine we've
1917 been provided - hopefully that routine has been written correctly
1918 and works regardless of multi-arch. */
1919 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1920 && startup_gdbarch.dump_tdep == NULL)
1921 startup_gdbarch.dump_tdep = dump_tdep;
1922 }
1923
1924 void
1925 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1926 gdbarch_init_ftype *init)
1927 {
1928 gdbarch_register (bfd_architecture, init, NULL);
1929 }
1930
1931
1932 /* Look for an architecture using gdbarch_info. Base search on only
1933 BFD_ARCH_INFO and BYTE_ORDER. */
1934
1935 struct gdbarch_list *
1936 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1937 const struct gdbarch_info *info)
1938 {
1939 for (; arches != NULL; arches = arches->next)
1940 {
1941 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1942 continue;
1943 if (info->byte_order != arches->gdbarch->byte_order)
1944 continue;
1945 return arches;
1946 }
1947 return NULL;
1948 }
1949
1950
1951 /* Update the current architecture. Return ZERO if the update request
1952 failed. */
1953
1954 int
1955 gdbarch_update_p (struct gdbarch_info info)
1956 {
1957 struct gdbarch *new_gdbarch;
1958 struct gdbarch_list **list;
1959 struct gdbarch_registration *rego;
1960
1961 /* Fill in missing parts of the INFO struct using a number of
1962 sources: \`\`set ...''; INFOabfd supplied; existing target. */
1963
1964 /* \`\`(gdb) set architecture ...'' */
1965 if (info.bfd_arch_info == NULL
1966 && !TARGET_ARCHITECTURE_AUTO)
1967 info.bfd_arch_info = TARGET_ARCHITECTURE;
1968 if (info.bfd_arch_info == NULL
1969 && info.abfd != NULL
1970 && bfd_get_arch (info.abfd) != bfd_arch_unknown
1971 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
1972 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
1973 if (info.bfd_arch_info == NULL)
1974 info.bfd_arch_info = TARGET_ARCHITECTURE;
1975
1976 /* \`\`(gdb) set byte-order ...'' */
1977 if (info.byte_order == 0
1978 && !TARGET_BYTE_ORDER_AUTO)
1979 info.byte_order = TARGET_BYTE_ORDER;
1980 /* From the INFO struct. */
1981 if (info.byte_order == 0
1982 && info.abfd != NULL)
1983 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
1984 : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
1985 : 0);
1986 /* From the current target. */
1987 if (info.byte_order == 0)
1988 info.byte_order = TARGET_BYTE_ORDER;
1989
1990 /* Must have found some sort of architecture. */
1991 gdb_assert (info.bfd_arch_info != NULL);
1992
1993 if (gdbarch_debug)
1994 {
1995 fprintf_unfiltered (gdb_stdlog,
1996 "gdbarch_update: info.bfd_arch_info %s\n",
1997 (info.bfd_arch_info != NULL
1998 ? info.bfd_arch_info->printable_name
1999 : "(null)"));
2000 fprintf_unfiltered (gdb_stdlog,
2001 "gdbarch_update: info.byte_order %d (%s)\n",
2002 info.byte_order,
2003 (info.byte_order == BIG_ENDIAN ? "big"
2004 : info.byte_order == LITTLE_ENDIAN ? "little"
2005 : "default"));
2006 fprintf_unfiltered (gdb_stdlog,
2007 "gdbarch_update: info.abfd 0x%lx\n",
2008 (long) info.abfd);
2009 fprintf_unfiltered (gdb_stdlog,
2010 "gdbarch_update: info.tdep_info 0x%lx\n",
2011 (long) info.tdep_info);
2012 }
2013
2014 /* Find the target that knows about this architecture. */
2015 for (rego = gdbarch_registry;
2016 rego != NULL;
2017 rego = rego->next)
2018 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2019 break;
2020 if (rego == NULL)
2021 {
2022 if (gdbarch_debug)
2023 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2024 return 0;
2025 }
2026
2027 /* Ask the target for a replacement architecture. */
2028 new_gdbarch = rego->init (info, rego->arches);
2029
2030 /* Did the target like it? No. Reject the change. */
2031 if (new_gdbarch == NULL)
2032 {
2033 if (gdbarch_debug)
2034 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2035 return 0;
2036 }
2037
2038 /* Did the architecture change? No. Do nothing. */
2039 if (current_gdbarch == new_gdbarch)
2040 {
2041 if (gdbarch_debug)
2042 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2043 (long) new_gdbarch,
2044 new_gdbarch->bfd_arch_info->printable_name);
2045 return 1;
2046 }
2047
2048 /* Swap all data belonging to the old target out */
2049 swapout_gdbarch_swap (current_gdbarch);
2050
2051 /* Is this a pre-existing architecture? Yes. Swap it in. */
2052 for (list = &rego->arches;
2053 (*list) != NULL;
2054 list = &(*list)->next)
2055 {
2056 if ((*list)->gdbarch == new_gdbarch)
2057 {
2058 if (gdbarch_debug)
2059 fprintf_unfiltered (gdb_stdlog,
2060 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2061 (long) new_gdbarch,
2062 new_gdbarch->bfd_arch_info->printable_name);
2063 current_gdbarch = new_gdbarch;
2064 swapin_gdbarch_swap (new_gdbarch);
2065 return 1;
2066 }
2067 }
2068
2069 /* Append this new architecture to this targets list. */
2070 (*list) = XMALLOC (struct gdbarch_list);
2071 (*list)->next = NULL;
2072 (*list)->gdbarch = new_gdbarch;
2073
2074 /* Switch to this new architecture. Dump it out. */
2075 current_gdbarch = new_gdbarch;
2076 if (gdbarch_debug)
2077 {
2078 fprintf_unfiltered (gdb_stdlog,
2079 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2080 (long) new_gdbarch,
2081 new_gdbarch->bfd_arch_info->printable_name);
2082 }
2083
2084 /* Check that the newly installed architecture is valid. Plug in
2085 any post init values. */
2086 new_gdbarch->dump_tdep = rego->dump_tdep;
2087 verify_gdbarch (new_gdbarch);
2088
2089 /* Initialize the per-architecture memory (swap) areas.
2090 CURRENT_GDBARCH must be update before these modules are
2091 called. */
2092 init_gdbarch_swap (new_gdbarch);
2093
2094 /* Initialize the per-architecture data-pointer of all parties that
2095 registered an interest in this architecture. CURRENT_GDBARCH
2096 must be updated before these modules are called. */
2097 init_gdbarch_data (new_gdbarch);
2098
2099 if (gdbarch_debug)
2100 gdbarch_dump (current_gdbarch, gdb_stdlog);
2101
2102 return 1;
2103 }
2104
2105
2106 /* Disassembler */
2107
2108 /* Pointer to the target-dependent disassembly function. */
2109 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2110 disassemble_info tm_print_insn_info;
2111
2112
2113 extern void _initialize_gdbarch (void);
2114
2115 void
2116 _initialize_gdbarch (void)
2117 {
2118 struct cmd_list_element *c;
2119
2120 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2121 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2122 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2123 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2124 tm_print_insn_info.print_address_func = dis_asm_print_address;
2125
2126 add_show_from_set (add_set_cmd ("arch",
2127 class_maintenance,
2128 var_zinteger,
2129 (char *)&gdbarch_debug,
2130 "Set architecture debugging.\\n\\
2131 When non-zero, architecture debugging is enabled.", &setdebuglist),
2132 &showdebuglist);
2133 c = add_set_cmd ("archdebug",
2134 class_maintenance,
2135 var_zinteger,
2136 (char *)&gdbarch_debug,
2137 "Set architecture debugging.\\n\\
2138 When non-zero, architecture debugging is enabled.", &setlist);
2139
2140 deprecate_cmd (c, "set debug arch");
2141 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2142 }
2143 EOF
2144
2145 # close things off
2146 exec 1>&2
2147 #../move-if-change new-gdbarch.c gdbarch.c
2148 compare_new gdbarch.c