* gdbarch.sh (copyright): Update years in generated header.
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 case "${class}" in
80 m ) staticdefault="${predefault}" ;;
81 M ) staticdefault="0" ;;
82 * ) test "${staticdefault}" || staticdefault=0 ;;
83 esac
84 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
85 # multi-arch defaults.
86 # test "${predefault}" || predefault=0
87
88 # come up with a format, use a few guesses for variables
89 case ":${class}:${fmt}:${print}:" in
90 :[vV]::: )
91 if [ "${returntype}" = int ]
92 then
93 fmt="%d"
94 print="${macro}"
95 elif [ "${returntype}" = long ]
96 then
97 fmt="%ld"
98 print="${macro}"
99 fi
100 ;;
101 esac
102 test "${fmt}" || fmt="%ld"
103 test "${print}" || print="(long) ${macro}"
104
105 case "${invalid_p}" in
106 0 ) valid_p=1 ;;
107 "" )
108 if [ -n "${predefault}" ]
109 then
110 #invalid_p="gdbarch->${function} == ${predefault}"
111 valid_p="gdbarch->${function} != ${predefault}"
112 else
113 #invalid_p="gdbarch->${function} == 0"
114 valid_p="gdbarch->${function} != 0"
115 fi
116 ;;
117 * ) valid_p="!(${invalid_p})"
118 esac
119
120 # PREDEFAULT is a valid fallback definition of MEMBER when
121 # multi-arch is not enabled. This ensures that the
122 # default value, when multi-arch is the same as the
123 # default value when not multi-arch. POSTDEFAULT is
124 # always a valid definition of MEMBER as this again
125 # ensures consistency.
126
127 if [ -n "${postdefault}" ]
128 then
129 fallbackdefault="${postdefault}"
130 elif [ -n "${predefault}" ]
131 then
132 fallbackdefault="${predefault}"
133 else
134 fallbackdefault="0"
135 fi
136
137 #NOT YET: See gdbarch.log for basic verification of
138 # database
139
140 break
141 fi
142 done
143 if [ -n "${class}" ]
144 then
145 true
146 else
147 false
148 fi
149 }
150
151
152 fallback_default_p ()
153 {
154 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
155 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
156 }
157
158 class_is_variable_p ()
159 {
160 case "${class}" in
161 *v* | *V* ) true ;;
162 * ) false ;;
163 esac
164 }
165
166 class_is_function_p ()
167 {
168 case "${class}" in
169 *f* | *F* | *m* | *M* ) true ;;
170 * ) false ;;
171 esac
172 }
173
174 class_is_multiarch_p ()
175 {
176 case "${class}" in
177 *m* | *M* ) true ;;
178 * ) false ;;
179 esac
180 }
181
182 class_is_predicate_p ()
183 {
184 case "${class}" in
185 *F* | *V* | *M* ) true ;;
186 * ) false ;;
187 esac
188 }
189
190 class_is_info_p ()
191 {
192 case "${class}" in
193 *i* ) true ;;
194 * ) false ;;
195 esac
196 }
197
198
199 # dump out/verify the doco
200 for field in ${read}
201 do
202 case ${field} in
203
204 class ) : ;;
205
206 # # -> line disable
207 # f -> function
208 # hiding a function
209 # F -> function + predicate
210 # hiding a function + predicate to test function validity
211 # v -> variable
212 # hiding a variable
213 # V -> variable + predicate
214 # hiding a variable + predicate to test variables validity
215 # i -> set from info
216 # hiding something from the ``struct info'' object
217 # m -> multi-arch function
218 # hiding a multi-arch function (parameterised with the architecture)
219 # M -> multi-arch function + predicate
220 # hiding a multi-arch function + predicate to test function validity
221
222 level ) : ;;
223
224 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
225 # LEVEL is a predicate on checking that a given method is
226 # initialized (using INVALID_P).
227
228 macro ) : ;;
229
230 # The name of the MACRO that this method is to be accessed by.
231
232 returntype ) : ;;
233
234 # For functions, the return type; for variables, the data type
235
236 function ) : ;;
237
238 # For functions, the member function name; for variables, the
239 # variable name. Member function names are always prefixed with
240 # ``gdbarch_'' for name-space purity.
241
242 formal ) : ;;
243
244 # The formal argument list. It is assumed that the formal
245 # argument list includes the actual name of each list element.
246 # A function with no arguments shall have ``void'' as the
247 # formal argument list.
248
249 actual ) : ;;
250
251 # The list of actual arguments. The arguments specified shall
252 # match the FORMAL list given above. Functions with out
253 # arguments leave this blank.
254
255 attrib ) : ;;
256
257 # Any GCC attributes that should be attached to the function
258 # declaration. At present this field is unused.
259
260 staticdefault ) : ;;
261
262 # To help with the GDB startup a static gdbarch object is
263 # created. STATICDEFAULT is the value to insert into that
264 # static gdbarch object. Since this a static object only
265 # simple expressions can be used.
266
267 # If STATICDEFAULT is empty, zero is used.
268
269 predefault ) : ;;
270
271 # An initial value to assign to MEMBER of the freshly
272 # malloc()ed gdbarch object. After initialization, the
273 # freshly malloc()ed object is passed to the target
274 # architecture code for further updates.
275
276 # If PREDEFAULT is empty, zero is used.
277
278 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
279 # INVALID_P are specified, PREDEFAULT will be used as the
280 # default for the non- multi-arch target.
281
282 # A zero PREDEFAULT function will force the fallback to call
283 # internal_error().
284
285 # Variable declarations can refer to ``gdbarch'' which will
286 # contain the current architecture. Care should be taken.
287
288 postdefault ) : ;;
289
290 # A value to assign to MEMBER of the new gdbarch object should
291 # the target architecture code fail to change the PREDEFAULT
292 # value.
293
294 # If POSTDEFAULT is empty, no post update is performed.
295
296 # If both INVALID_P and POSTDEFAULT are non-empty then
297 # INVALID_P will be used to determine if MEMBER should be
298 # changed to POSTDEFAULT.
299
300 # If a non-empty POSTDEFAULT and a zero INVALID_P are
301 # specified, POSTDEFAULT will be used as the default for the
302 # non- multi-arch target (regardless of the value of
303 # PREDEFAULT).
304
305 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
306
307 # Variable declarations can refer to ``gdbarch'' which will
308 # contain the current architecture. Care should be taken.
309
310 invalid_p ) : ;;
311
312 # A predicate equation that validates MEMBER. Non-zero is
313 # returned if the code creating the new architecture failed to
314 # initialize MEMBER or the initialized the member is invalid.
315 # If POSTDEFAULT is non-empty then MEMBER will be updated to
316 # that value. If POSTDEFAULT is empty then internal_error()
317 # is called.
318
319 # If INVALID_P is empty, a check that MEMBER is no longer
320 # equal to PREDEFAULT is used.
321
322 # The expression ``0'' disables the INVALID_P check making
323 # PREDEFAULT a legitimate value.
324
325 # See also PREDEFAULT and POSTDEFAULT.
326
327 fmt ) : ;;
328
329 # printf style format string that can be used to print out the
330 # MEMBER. Sometimes "%s" is useful. For functions, this is
331 # ignored and the function address is printed.
332
333 # If FMT is empty, ``%ld'' is used.
334
335 print ) : ;;
336
337 # An optional equation that casts MEMBER to a value suitable
338 # for formatting by FMT.
339
340 # If PRINT is empty, ``(long)'' is used.
341
342 print_p ) : ;;
343
344 # An optional indicator for any predicte to wrap around the
345 # print member code.
346
347 # () -> Call a custom function to do the dump.
348 # exp -> Wrap print up in ``if (${print_p}) ...
349 # ``'' -> No predicate
350
351 # If PRINT_P is empty, ``1'' is always used.
352
353 description ) : ;;
354
355 # Currently unused.
356
357 *) exit 1;;
358 esac
359 done
360
361
362 function_list ()
363 {
364 # See below (DOCO) for description of each field
365 cat <<EOF
366 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
367 #
368 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
369 # Number of bits in a char or unsigned char for the target machine.
370 # Just like CHAR_BIT in <limits.h> but describes the target machine.
371 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
372 #
373 # Number of bits in a short or unsigned short for the target machine.
374 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
375 # Number of bits in an int or unsigned int for the target machine.
376 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
377 # Number of bits in a long or unsigned long for the target machine.
378 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
379 # Number of bits in a long long or unsigned long long for the target
380 # machine.
381 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
382 # Number of bits in a float for the target machine.
383 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
384 # Number of bits in a double for the target machine.
385 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
386 # Number of bits in a long double for the target machine.
387 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
388 # For most targets, a pointer on the target and its representation as an
389 # address in GDB have the same size and "look the same". For such a
390 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
391 # / addr_bit will be set from it.
392 #
393 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
394 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
395 #
396 # ptr_bit is the size of a pointer on the target
397 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
398 # addr_bit is the size of a target address as represented in gdb
399 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
400 # Number of bits in a BFD_VMA for the target object file format.
401 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
402 #
403 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
404 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
405 #
406 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
407 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
408 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
409 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
410 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
411 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
412 # Function for getting target's idea of a frame pointer. FIXME: GDB's
413 # whole scheme for dealing with "frames" and "frame pointers" needs a
414 # serious shakedown.
415 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
416 #
417 M:::void:register_read:int regnum, char *buf:regnum, buf:
418 M:::void:register_write:int regnum, char *buf:regnum, buf:
419 #
420 v:2:NUM_REGS:int:num_regs::::0:-1
421 # This macro gives the number of pseudo-registers that live in the
422 # register namespace but do not get fetched or stored on the target.
423 # These pseudo-registers may be aliases for other registers,
424 # combinations of other registers, or they may be computed by GDB.
425 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
426 v:2:SP_REGNUM:int:sp_regnum::::0:-1
427 v:2:FP_REGNUM:int:fp_regnum::::0:-1
428 v:2:PC_REGNUM:int:pc_regnum::::0:-1
429 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
430 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
431 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
432 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
433 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
434 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
435 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
436 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
437 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
438 # Convert from an sdb register number to an internal gdb register number.
439 # This should be defined in tm.h, if REGISTER_NAMES is not set up
440 # to map one to one onto the sdb register numbers.
441 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
442 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
443 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
444 v:2:REGISTER_SIZE:int:register_size::::0:-1
445 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
446 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
447 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_raw_size:0
448 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
449 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_virtual_size:0
450 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
451 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
452 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
453 # MAP a GDB RAW register number onto a simulator register number. See
454 # also include/...-sim.h.
455 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
456 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
457 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
458 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
459 #
460 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
461 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
462 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
463 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
464 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
465 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
466 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
467 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
468 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
469 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
470 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
471 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
472 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
473 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
474 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
475 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
476 #
477 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
478 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
479 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
480 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
481 #
482 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
483 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
484 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
485 # This function is called when the value of a pseudo-register needs to
486 # be updated. Typically it will be defined on a per-architecture
487 # basis.
488 F:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:
489 # This function is called when the value of a pseudo-register needs to
490 # be set or stored. Typically it will be defined on a
491 # per-architecture basis.
492 F:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:
493 #
494 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
495 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
496 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
497 #
498 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
499 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
500 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
501 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
502 F:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
503 f:2:POP_FRAME:void:pop_frame:void:-:::0
504 #
505 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
506 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
507 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
508 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
509 #
510 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
511 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
512 #
513 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
514 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
515 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
516 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
517 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
518 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
519 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
520 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
521 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
522 #
523 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
524 #
525 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
526 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
527 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
528 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
529 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
530 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
531 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
532 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
533 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
534 #
535 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
536 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
537 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
538 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
539 v:2:PARM_BOUNDARY:int:parm_boundary
540 #
541 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
542 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
543 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
544 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
545 # On some machines there are bits in addresses which are not really
546 # part of the address, but are used by the kernel, the hardware, etc.
547 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
548 # we get a "real" address such as one would find in a symbol table.
549 # This is used only for addresses of instructions, and even then I'm
550 # not sure it's used in all contexts. It exists to deal with there
551 # being a few stray bits in the PC which would mislead us, not as some
552 # sort of generic thing to handle alignment or segmentation (it's
553 # possible it should be in TARGET_READ_PC instead).
554 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
555 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
556 # ADDR_BITS_REMOVE.
557 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
558 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
559 # the target needs software single step. An ISA method to implement it.
560 #
561 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
562 # using the breakpoint system instead of blatting memory directly (as with rs6000).
563 #
564 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
565 # single step. If not, then implement single step using breakpoints.
566 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
567 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
568 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
569 # For SVR4 shared libraries, each call goes through a small piece of
570 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
571 # to nonzero if we are current stopped in one of these.
572 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
573 # A target might have problems with watchpoints as soon as the stack
574 # frame of the current function has been destroyed. This mostly happens
575 # as the first action in a funtion's epilogue. in_function_epilogue_p()
576 # is defined to return a non-zero value if either the given addr is one
577 # instruction after the stack destroying instruction up to the trailing
578 # return instruction or if we can figure out that the stack frame has
579 # already been invalidated regardless of the value of addr. Targets
580 # which don't suffer from that problem could just let this functionality
581 # untouched.
582 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
583 # Given a vector of command-line arguments, return a newly allocated
584 # string which, when passed to the create_inferior function, will be
585 # parsed (on Unix systems, by the shell) to yield the same vector.
586 # This function should call error() if the argument vector is not
587 # representable for this target or if this target does not support
588 # command-line arguments.
589 # ARGC is the number of elements in the vector.
590 # ARGV is an array of strings, one per argument.
591 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
592 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
593 EOF
594 }
595
596 #
597 # The .log file
598 #
599 exec > new-gdbarch.log
600 function_list | while do_read
601 do
602 cat <<EOF
603 ${class} ${macro}(${actual})
604 ${returntype} ${function} ($formal)${attrib}
605 EOF
606 for r in ${read}
607 do
608 eval echo \"\ \ \ \ ${r}=\${${r}}\"
609 done
610 # #fallbackdefault=${fallbackdefault}
611 # #valid_p=${valid_p}
612 #EOF
613 if class_is_predicate_p && fallback_default_p
614 then
615 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
616 kill $$
617 exit 1
618 fi
619 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
620 then
621 echo "Error: postdefault is useless when invalid_p=0" 1>&2
622 kill $$
623 exit 1
624 fi
625 if class_is_multiarch_p
626 then
627 if class_is_predicate_p ; then :
628 elif test "x${predefault}" = "x"
629 then
630 echo "Error: pure multi-arch function must have a predefault" 1>&2
631 kill $$
632 exit 1
633 fi
634 fi
635 echo ""
636 done
637
638 exec 1>&2
639 compare_new gdbarch.log
640
641
642 copyright ()
643 {
644 cat <<EOF
645 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
646
647 /* Dynamic architecture support for GDB, the GNU debugger.
648 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
649
650 This file is part of GDB.
651
652 This program is free software; you can redistribute it and/or modify
653 it under the terms of the GNU General Public License as published by
654 the Free Software Foundation; either version 2 of the License, or
655 (at your option) any later version.
656
657 This program is distributed in the hope that it will be useful,
658 but WITHOUT ANY WARRANTY; without even the implied warranty of
659 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
660 GNU General Public License for more details.
661
662 You should have received a copy of the GNU General Public License
663 along with this program; if not, write to the Free Software
664 Foundation, Inc., 59 Temple Place - Suite 330,
665 Boston, MA 02111-1307, USA. */
666
667 /* This file was created with the aid of \`\`gdbarch.sh''.
668
669 The Bourne shell script \`\`gdbarch.sh'' creates the files
670 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
671 against the existing \`\`gdbarch.[hc]''. Any differences found
672 being reported.
673
674 If editing this file, please also run gdbarch.sh and merge any
675 changes into that script. Conversely, when making sweeping changes
676 to this file, modifying gdbarch.sh and using its output may prove
677 easier. */
678
679 EOF
680 }
681
682 #
683 # The .h file
684 #
685
686 exec > new-gdbarch.h
687 copyright
688 cat <<EOF
689 #ifndef GDBARCH_H
690 #define GDBARCH_H
691
692 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
693 #if !GDB_MULTI_ARCH
694 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
695 #endif
696
697 struct frame_info;
698 struct value;
699 struct objfile;
700
701 extern struct gdbarch *current_gdbarch;
702
703
704 /* If any of the following are defined, the target wasn't correctly
705 converted. */
706
707 #if GDB_MULTI_ARCH
708 #if defined (EXTRA_FRAME_INFO)
709 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
710 #endif
711 #endif
712
713 #if GDB_MULTI_ARCH
714 #if defined (FRAME_FIND_SAVED_REGS)
715 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
716 #endif
717 #endif
718
719 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
720 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
721 #endif
722 EOF
723
724 # function typedef's
725 printf "\n"
726 printf "\n"
727 printf "/* The following are pre-initialized by GDBARCH. */\n"
728 function_list | while do_read
729 do
730 if class_is_info_p
731 then
732 printf "\n"
733 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
734 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
735 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
736 printf "#error \"Non multi-arch definition of ${macro}\"\n"
737 printf "#endif\n"
738 printf "#if GDB_MULTI_ARCH\n"
739 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
740 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
741 printf "#endif\n"
742 printf "#endif\n"
743 fi
744 done
745
746 # function typedef's
747 printf "\n"
748 printf "\n"
749 printf "/* The following are initialized by the target dependent code. */\n"
750 function_list | while do_read
751 do
752 if [ -n "${comment}" ]
753 then
754 echo "${comment}" | sed \
755 -e '2 s,#,/*,' \
756 -e '3,$ s,#, ,' \
757 -e '$ s,$, */,'
758 fi
759 if class_is_multiarch_p
760 then
761 if class_is_predicate_p
762 then
763 printf "\n"
764 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
765 fi
766 else
767 if class_is_predicate_p
768 then
769 printf "\n"
770 printf "#if defined (${macro})\n"
771 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
772 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
773 printf "#if !defined (${macro}_P)\n"
774 printf "#define ${macro}_P() (1)\n"
775 printf "#endif\n"
776 printf "#endif\n"
777 printf "\n"
778 printf "/* Default predicate for non- multi-arch targets. */\n"
779 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
780 printf "#define ${macro}_P() (0)\n"
781 printf "#endif\n"
782 printf "\n"
783 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
784 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
785 printf "#error \"Non multi-arch definition of ${macro}\"\n"
786 printf "#endif\n"
787 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
788 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
789 printf "#endif\n"
790 fi
791 fi
792 if class_is_variable_p
793 then
794 if fallback_default_p || class_is_predicate_p
795 then
796 printf "\n"
797 printf "/* Default (value) for non- multi-arch platforms. */\n"
798 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
799 echo "#define ${macro} (${fallbackdefault})" \
800 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
801 printf "#endif\n"
802 fi
803 printf "\n"
804 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
805 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
806 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
807 printf "#error \"Non multi-arch definition of ${macro}\"\n"
808 printf "#endif\n"
809 printf "#if GDB_MULTI_ARCH\n"
810 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
811 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
812 printf "#endif\n"
813 printf "#endif\n"
814 fi
815 if class_is_function_p
816 then
817 if class_is_multiarch_p ; then :
818 elif fallback_default_p || class_is_predicate_p
819 then
820 printf "\n"
821 printf "/* Default (function) for non- multi-arch platforms. */\n"
822 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
823 if [ "x${fallbackdefault}" = "x0" ]
824 then
825 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
826 else
827 # FIXME: Should be passing current_gdbarch through!
828 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
829 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
830 fi
831 printf "#endif\n"
832 fi
833 printf "\n"
834 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
835 then
836 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
837 elif class_is_multiarch_p
838 then
839 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
840 else
841 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
842 fi
843 if [ "x${formal}" = "xvoid" ]
844 then
845 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
846 else
847 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
848 fi
849 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
850 if class_is_multiarch_p ; then :
851 else
852 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
853 printf "#error \"Non multi-arch definition of ${macro}\"\n"
854 printf "#endif\n"
855 printf "#if GDB_MULTI_ARCH\n"
856 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
857 if [ "x${actual}" = "x" ]
858 then
859 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
860 elif [ "x${actual}" = "x-" ]
861 then
862 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
863 else
864 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
865 fi
866 printf "#endif\n"
867 printf "#endif\n"
868 fi
869 fi
870 done
871
872 # close it off
873 cat <<EOF
874
875 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
876
877
878 /* Mechanism for co-ordinating the selection of a specific
879 architecture.
880
881 GDB targets (*-tdep.c) can register an interest in a specific
882 architecture. Other GDB components can register a need to maintain
883 per-architecture data.
884
885 The mechanisms below ensures that there is only a loose connection
886 between the set-architecture command and the various GDB
887 components. Each component can independently register their need
888 to maintain architecture specific data with gdbarch.
889
890 Pragmatics:
891
892 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
893 didn't scale.
894
895 The more traditional mega-struct containing architecture specific
896 data for all the various GDB components was also considered. Since
897 GDB is built from a variable number of (fairly independent)
898 components it was determined that the global aproach was not
899 applicable. */
900
901
902 /* Register a new architectural family with GDB.
903
904 Register support for the specified ARCHITECTURE with GDB. When
905 gdbarch determines that the specified architecture has been
906 selected, the corresponding INIT function is called.
907
908 --
909
910 The INIT function takes two parameters: INFO which contains the
911 information available to gdbarch about the (possibly new)
912 architecture; ARCHES which is a list of the previously created
913 \`\`struct gdbarch'' for this architecture.
914
915 The INIT function parameter INFO shall, as far as possible, be
916 pre-initialized with information obtained from INFO.ABFD or
917 previously selected architecture (if similar).
918
919 The INIT function shall return any of: NULL - indicating that it
920 doesn't recognize the selected architecture; an existing \`\`struct
921 gdbarch'' from the ARCHES list - indicating that the new
922 architecture is just a synonym for an earlier architecture (see
923 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
924 - that describes the selected architecture (see gdbarch_alloc()).
925
926 The DUMP_TDEP function shall print out all target specific values.
927 Care should be taken to ensure that the function works in both the
928 multi-arch and non- multi-arch cases. */
929
930 struct gdbarch_list
931 {
932 struct gdbarch *gdbarch;
933 struct gdbarch_list *next;
934 };
935
936 struct gdbarch_info
937 {
938 /* Use default: NULL (ZERO). */
939 const struct bfd_arch_info *bfd_arch_info;
940
941 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
942 int byte_order;
943
944 /* Use default: NULL (ZERO). */
945 bfd *abfd;
946
947 /* Use default: NULL (ZERO). */
948 struct gdbarch_tdep_info *tdep_info;
949 };
950
951 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
952 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
953
954 /* DEPRECATED - use gdbarch_register() */
955 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
956
957 extern void gdbarch_register (enum bfd_architecture architecture,
958 gdbarch_init_ftype *,
959 gdbarch_dump_tdep_ftype *);
960
961
962 /* Return a freshly allocated, NULL terminated, array of the valid
963 architecture names. Since architectures are registered during the
964 _initialize phase this function only returns useful information
965 once initialization has been completed. */
966
967 extern const char **gdbarch_printable_names (void);
968
969
970 /* Helper function. Search the list of ARCHES for a GDBARCH that
971 matches the information provided by INFO. */
972
973 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
974
975
976 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
977 basic initialization using values obtained from the INFO andTDEP
978 parameters. set_gdbarch_*() functions are called to complete the
979 initialization of the object. */
980
981 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
982
983
984 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
985 It is assumed that the caller freeds the \`\`struct
986 gdbarch_tdep''. */
987
988 extern void gdbarch_free (struct gdbarch *);
989
990
991 /* Helper function. Force an update of the current architecture.
992
993 The actual architecture selected is determined by INFO, \`\`(gdb) set
994 architecture'' et.al., the existing architecture and BFD's default
995 architecture. INFO should be initialized to zero and then selected
996 fields should be updated.
997
998 Returns non-zero if the update succeeds */
999
1000 extern int gdbarch_update_p (struct gdbarch_info info);
1001
1002
1003
1004 /* Register per-architecture data-pointer.
1005
1006 Reserve space for a per-architecture data-pointer. An identifier
1007 for the reserved data-pointer is returned. That identifer should
1008 be saved in a local static variable.
1009
1010 The per-architecture data-pointer can be initialized in one of two
1011 ways: The value can be set explicitly using a call to
1012 set_gdbarch_data(); the value can be set implicitly using the value
1013 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
1014 called after the basic architecture vector has been created.
1015
1016 When a previously created architecture is re-selected, the
1017 per-architecture data-pointer for that previous architecture is
1018 restored. INIT() is not called.
1019
1020 During initialization, multiple assignments of the data-pointer are
1021 allowed, non-NULL values are deleted by calling FREE(). If the
1022 architecture is deleted using gdbarch_free() all non-NULL data
1023 pointers are also deleted using FREE().
1024
1025 Multiple registrarants for any architecture are allowed (and
1026 strongly encouraged). */
1027
1028 struct gdbarch_data;
1029
1030 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1031 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1032 void *pointer);
1033 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1034 gdbarch_data_free_ftype *free);
1035 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1036 struct gdbarch_data *data,
1037 void *pointer);
1038
1039 extern void *gdbarch_data (struct gdbarch_data*);
1040
1041
1042 /* Register per-architecture memory region.
1043
1044 Provide a memory-region swap mechanism. Per-architecture memory
1045 region are created. These memory regions are swapped whenever the
1046 architecture is changed. For a new architecture, the memory region
1047 is initialized with zero (0) and the INIT function is called.
1048
1049 Memory regions are swapped / initialized in the order that they are
1050 registered. NULL DATA and/or INIT values can be specified.
1051
1052 New code should use register_gdbarch_data(). */
1053
1054 typedef void (gdbarch_swap_ftype) (void);
1055 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1056 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1057
1058
1059
1060 /* The target-system-dependent byte order is dynamic */
1061
1062 extern int target_byte_order;
1063 #ifndef TARGET_BYTE_ORDER
1064 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1065 #endif
1066
1067 extern int target_byte_order_auto;
1068 #ifndef TARGET_BYTE_ORDER_AUTO
1069 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1070 #endif
1071
1072
1073
1074 /* The target-system-dependent BFD architecture is dynamic */
1075
1076 extern int target_architecture_auto;
1077 #ifndef TARGET_ARCHITECTURE_AUTO
1078 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1079 #endif
1080
1081 extern const struct bfd_arch_info *target_architecture;
1082 #ifndef TARGET_ARCHITECTURE
1083 #define TARGET_ARCHITECTURE (target_architecture + 0)
1084 #endif
1085
1086
1087 /* The target-system-dependent disassembler is semi-dynamic */
1088
1089 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1090 unsigned int len, disassemble_info *info);
1091
1092 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1093 disassemble_info *info);
1094
1095 extern void dis_asm_print_address (bfd_vma addr,
1096 disassemble_info *info);
1097
1098 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1099 extern disassemble_info tm_print_insn_info;
1100 #ifndef TARGET_PRINT_INSN_INFO
1101 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1102 #endif
1103
1104
1105
1106 /* Set the dynamic target-system-dependent parameters (architecture,
1107 byte-order, ...) using information found in the BFD */
1108
1109 extern void set_gdbarch_from_file (bfd *);
1110
1111
1112 /* Initialize the current architecture to the "first" one we find on
1113 our list. */
1114
1115 extern void initialize_current_architecture (void);
1116
1117 /* For non-multiarched targets, do any initialization of the default
1118 gdbarch object necessary after the _initialize_MODULE functions
1119 have run. */
1120 extern void initialize_non_multiarch ();
1121
1122 /* gdbarch trace variable */
1123 extern int gdbarch_debug;
1124
1125 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1126
1127 #endif
1128 EOF
1129 exec 1>&2
1130 #../move-if-change new-gdbarch.h gdbarch.h
1131 compare_new gdbarch.h
1132
1133
1134 #
1135 # C file
1136 #
1137
1138 exec > new-gdbarch.c
1139 copyright
1140 cat <<EOF
1141
1142 #include "defs.h"
1143 #include "arch-utils.h"
1144
1145 #if GDB_MULTI_ARCH
1146 #include "gdbcmd.h"
1147 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1148 #else
1149 /* Just include everything in sight so that the every old definition
1150 of macro is visible. */
1151 #include "gdb_string.h"
1152 #include <ctype.h>
1153 #include "symtab.h"
1154 #include "frame.h"
1155 #include "inferior.h"
1156 #include "breakpoint.h"
1157 #include "gdb_wait.h"
1158 #include "gdbcore.h"
1159 #include "gdbcmd.h"
1160 #include "target.h"
1161 #include "gdbthread.h"
1162 #include "annotate.h"
1163 #include "symfile.h" /* for overlay functions */
1164 #include "value.h" /* For old tm.h/nm.h macros. */
1165 #endif
1166 #include "symcat.h"
1167
1168 #include "floatformat.h"
1169
1170 #include "gdb_assert.h"
1171 #include "gdb-events.h"
1172
1173 /* Static function declarations */
1174
1175 static void verify_gdbarch (struct gdbarch *gdbarch);
1176 static void alloc_gdbarch_data (struct gdbarch *);
1177 static void init_gdbarch_data (struct gdbarch *);
1178 static void free_gdbarch_data (struct gdbarch *);
1179 static void init_gdbarch_swap (struct gdbarch *);
1180 static void swapout_gdbarch_swap (struct gdbarch *);
1181 static void swapin_gdbarch_swap (struct gdbarch *);
1182
1183 /* Convenience macro for allocting typesafe memory. */
1184
1185 #ifndef XMALLOC
1186 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1187 #endif
1188
1189
1190 /* Non-zero if we want to trace architecture code. */
1191
1192 #ifndef GDBARCH_DEBUG
1193 #define GDBARCH_DEBUG 0
1194 #endif
1195 int gdbarch_debug = GDBARCH_DEBUG;
1196
1197 EOF
1198
1199 # gdbarch open the gdbarch object
1200 printf "\n"
1201 printf "/* Maintain the struct gdbarch object */\n"
1202 printf "\n"
1203 printf "struct gdbarch\n"
1204 printf "{\n"
1205 printf " /* basic architectural information */\n"
1206 function_list | while do_read
1207 do
1208 if class_is_info_p
1209 then
1210 printf " ${returntype} ${function};\n"
1211 fi
1212 done
1213 printf "\n"
1214 printf " /* target specific vector. */\n"
1215 printf " struct gdbarch_tdep *tdep;\n"
1216 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1217 printf "\n"
1218 printf " /* per-architecture data-pointers */\n"
1219 printf " unsigned nr_data;\n"
1220 printf " void **data;\n"
1221 printf "\n"
1222 printf " /* per-architecture swap-regions */\n"
1223 printf " struct gdbarch_swap *swap;\n"
1224 printf "\n"
1225 cat <<EOF
1226 /* Multi-arch values.
1227
1228 When extending this structure you must:
1229
1230 Add the field below.
1231
1232 Declare set/get functions and define the corresponding
1233 macro in gdbarch.h.
1234
1235 gdbarch_alloc(): If zero/NULL is not a suitable default,
1236 initialize the new field.
1237
1238 verify_gdbarch(): Confirm that the target updated the field
1239 correctly.
1240
1241 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1242 field is dumped out
1243
1244 \`\`startup_gdbarch()'': Append an initial value to the static
1245 variable (base values on the host's c-type system).
1246
1247 get_gdbarch(): Implement the set/get functions (probably using
1248 the macro's as shortcuts).
1249
1250 */
1251
1252 EOF
1253 function_list | while do_read
1254 do
1255 if class_is_variable_p
1256 then
1257 printf " ${returntype} ${function};\n"
1258 elif class_is_function_p
1259 then
1260 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1261 fi
1262 done
1263 printf "};\n"
1264
1265 # A pre-initialized vector
1266 printf "\n"
1267 printf "\n"
1268 cat <<EOF
1269 /* The default architecture uses host values (for want of a better
1270 choice). */
1271 EOF
1272 printf "\n"
1273 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1274 printf "\n"
1275 printf "struct gdbarch startup_gdbarch =\n"
1276 printf "{\n"
1277 printf " /* basic architecture information */\n"
1278 function_list | while do_read
1279 do
1280 if class_is_info_p
1281 then
1282 printf " ${staticdefault},\n"
1283 fi
1284 done
1285 cat <<EOF
1286 /* target specific vector and its dump routine */
1287 NULL, NULL,
1288 /*per-architecture data-pointers and swap regions */
1289 0, NULL, NULL,
1290 /* Multi-arch values */
1291 EOF
1292 function_list | while do_read
1293 do
1294 if class_is_function_p || class_is_variable_p
1295 then
1296 printf " ${staticdefault},\n"
1297 fi
1298 done
1299 cat <<EOF
1300 /* startup_gdbarch() */
1301 };
1302
1303 struct gdbarch *current_gdbarch = &startup_gdbarch;
1304
1305 /* Do any initialization needed for a non-multiarch configuration
1306 after the _initialize_MODULE functions have been run. */
1307 void
1308 initialize_non_multiarch ()
1309 {
1310 alloc_gdbarch_data (&startup_gdbarch);
1311 init_gdbarch_data (&startup_gdbarch);
1312 }
1313 EOF
1314
1315 # Create a new gdbarch struct
1316 printf "\n"
1317 printf "\n"
1318 cat <<EOF
1319 /* Create a new \`\`struct gdbarch'' based on information provided by
1320 \`\`struct gdbarch_info''. */
1321 EOF
1322 printf "\n"
1323 cat <<EOF
1324 struct gdbarch *
1325 gdbarch_alloc (const struct gdbarch_info *info,
1326 struct gdbarch_tdep *tdep)
1327 {
1328 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1329 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1330 the current local architecture and not the previous global
1331 architecture. This ensures that the new architectures initial
1332 values are not influenced by the previous architecture. Once
1333 everything is parameterised with gdbarch, this will go away. */
1334 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1335 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1336
1337 alloc_gdbarch_data (current_gdbarch);
1338
1339 current_gdbarch->tdep = tdep;
1340 EOF
1341 printf "\n"
1342 function_list | while do_read
1343 do
1344 if class_is_info_p
1345 then
1346 printf " current_gdbarch->${function} = info->${function};\n"
1347 fi
1348 done
1349 printf "\n"
1350 printf " /* Force the explicit initialization of these. */\n"
1351 function_list | while do_read
1352 do
1353 if class_is_function_p || class_is_variable_p
1354 then
1355 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1356 then
1357 printf " current_gdbarch->${function} = ${predefault};\n"
1358 fi
1359 fi
1360 done
1361 cat <<EOF
1362 /* gdbarch_alloc() */
1363
1364 return current_gdbarch;
1365 }
1366 EOF
1367
1368 # Free a gdbarch struct.
1369 printf "\n"
1370 printf "\n"
1371 cat <<EOF
1372 /* Free a gdbarch struct. This should never happen in normal
1373 operation --- once you've created a gdbarch, you keep it around.
1374 However, if an architecture's init function encounters an error
1375 building the structure, it may need to clean up a partially
1376 constructed gdbarch. */
1377
1378 void
1379 gdbarch_free (struct gdbarch *arch)
1380 {
1381 gdb_assert (arch != NULL);
1382 free_gdbarch_data (arch);
1383 xfree (arch);
1384 }
1385 EOF
1386
1387 # verify a new architecture
1388 printf "\n"
1389 printf "\n"
1390 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1391 printf "\n"
1392 cat <<EOF
1393 static void
1394 verify_gdbarch (struct gdbarch *gdbarch)
1395 {
1396 struct ui_file *log;
1397 struct cleanup *cleanups;
1398 long dummy;
1399 char *buf;
1400 /* Only perform sanity checks on a multi-arch target. */
1401 if (!GDB_MULTI_ARCH)
1402 return;
1403 log = mem_fileopen ();
1404 cleanups = make_cleanup_ui_file_delete (log);
1405 /* fundamental */
1406 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1407 fprintf_unfiltered (log, "\n\tbyte-order");
1408 if (gdbarch->bfd_arch_info == NULL)
1409 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1410 /* Check those that need to be defined for the given multi-arch level. */
1411 EOF
1412 function_list | while do_read
1413 do
1414 if class_is_function_p || class_is_variable_p
1415 then
1416 if [ "x${invalid_p}" = "x0" ]
1417 then
1418 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1419 elif class_is_predicate_p
1420 then
1421 printf " /* Skip verify of ${function}, has predicate */\n"
1422 # FIXME: See do_read for potential simplification
1423 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1424 then
1425 printf " if (${invalid_p})\n"
1426 printf " gdbarch->${function} = ${postdefault};\n"
1427 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1428 then
1429 printf " if (gdbarch->${function} == ${predefault})\n"
1430 printf " gdbarch->${function} = ${postdefault};\n"
1431 elif [ -n "${postdefault}" ]
1432 then
1433 printf " if (gdbarch->${function} == 0)\n"
1434 printf " gdbarch->${function} = ${postdefault};\n"
1435 elif [ -n "${invalid_p}" ]
1436 then
1437 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1438 printf " && (${invalid_p}))\n"
1439 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1440 elif [ -n "${predefault}" ]
1441 then
1442 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1443 printf " && (gdbarch->${function} == ${predefault}))\n"
1444 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1445 fi
1446 fi
1447 done
1448 cat <<EOF
1449 buf = ui_file_xstrdup (log, &dummy);
1450 make_cleanup (xfree, buf);
1451 if (strlen (buf) > 0)
1452 internal_error (__FILE__, __LINE__,
1453 "verify_gdbarch: the following are invalid ...%s",
1454 buf);
1455 do_cleanups (cleanups);
1456 }
1457 EOF
1458
1459 # dump the structure
1460 printf "\n"
1461 printf "\n"
1462 cat <<EOF
1463 /* Print out the details of the current architecture. */
1464
1465 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1466 just happens to match the global variable \`\`current_gdbarch''. That
1467 way macros refering to that variable get the local and not the global
1468 version - ulgh. Once everything is parameterised with gdbarch, this
1469 will go away. */
1470
1471 void
1472 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1473 {
1474 fprintf_unfiltered (file,
1475 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1476 GDB_MULTI_ARCH);
1477 EOF
1478 function_list | sort -t: +2 | while do_read
1479 do
1480 # multiarch functions don't have macros.
1481 if class_is_multiarch_p
1482 then
1483 printf " if (GDB_MULTI_ARCH)\n"
1484 printf " fprintf_unfiltered (file,\n"
1485 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1486 printf " (long) current_gdbarch->${function});\n"
1487 continue
1488 fi
1489 # Print the macro definition.
1490 printf "#ifdef ${macro}\n"
1491 if [ "x${returntype}" = "xvoid" ]
1492 then
1493 printf "#if GDB_MULTI_ARCH\n"
1494 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1495 fi
1496 if class_is_function_p
1497 then
1498 printf " fprintf_unfiltered (file,\n"
1499 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1500 printf " \"${macro}(${actual})\",\n"
1501 printf " XSTRING (${macro} (${actual})));\n"
1502 else
1503 printf " fprintf_unfiltered (file,\n"
1504 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1505 printf " XSTRING (${macro}));\n"
1506 fi
1507 # Print the architecture vector value
1508 if [ "x${returntype}" = "xvoid" ]
1509 then
1510 printf "#endif\n"
1511 fi
1512 if [ "x${print_p}" = "x()" ]
1513 then
1514 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1515 elif [ "x${print_p}" = "x0" ]
1516 then
1517 printf " /* skip print of ${macro}, print_p == 0. */\n"
1518 elif [ -n "${print_p}" ]
1519 then
1520 printf " if (${print_p})\n"
1521 printf " fprintf_unfiltered (file,\n"
1522 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1523 printf " ${print});\n"
1524 elif class_is_function_p
1525 then
1526 printf " if (GDB_MULTI_ARCH)\n"
1527 printf " fprintf_unfiltered (file,\n"
1528 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1529 printf " (long) current_gdbarch->${function}\n"
1530 printf " /*${macro} ()*/);\n"
1531 else
1532 printf " fprintf_unfiltered (file,\n"
1533 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1534 printf " ${print});\n"
1535 fi
1536 printf "#endif\n"
1537 done
1538 cat <<EOF
1539 if (current_gdbarch->dump_tdep != NULL)
1540 current_gdbarch->dump_tdep (current_gdbarch, file);
1541 }
1542 EOF
1543
1544
1545 # GET/SET
1546 printf "\n"
1547 cat <<EOF
1548 struct gdbarch_tdep *
1549 gdbarch_tdep (struct gdbarch *gdbarch)
1550 {
1551 if (gdbarch_debug >= 2)
1552 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1553 return gdbarch->tdep;
1554 }
1555 EOF
1556 printf "\n"
1557 function_list | while do_read
1558 do
1559 if class_is_predicate_p
1560 then
1561 printf "\n"
1562 printf "int\n"
1563 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1564 printf "{\n"
1565 if [ -n "${valid_p}" ]
1566 then
1567 printf " return ${valid_p};\n"
1568 else
1569 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1570 fi
1571 printf "}\n"
1572 fi
1573 if class_is_function_p
1574 then
1575 printf "\n"
1576 printf "${returntype}\n"
1577 if [ "x${formal}" = "xvoid" ]
1578 then
1579 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1580 else
1581 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1582 fi
1583 printf "{\n"
1584 printf " if (gdbarch->${function} == 0)\n"
1585 printf " internal_error (__FILE__, __LINE__,\n"
1586 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1587 printf " if (gdbarch_debug >= 2)\n"
1588 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1589 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1590 then
1591 if class_is_multiarch_p
1592 then
1593 params="gdbarch"
1594 else
1595 params=""
1596 fi
1597 else
1598 if class_is_multiarch_p
1599 then
1600 params="gdbarch, ${actual}"
1601 else
1602 params="${actual}"
1603 fi
1604 fi
1605 if [ "x${returntype}" = "xvoid" ]
1606 then
1607 printf " gdbarch->${function} (${params});\n"
1608 else
1609 printf " return gdbarch->${function} (${params});\n"
1610 fi
1611 printf "}\n"
1612 printf "\n"
1613 printf "void\n"
1614 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1615 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1616 printf "{\n"
1617 printf " gdbarch->${function} = ${function};\n"
1618 printf "}\n"
1619 elif class_is_variable_p
1620 then
1621 printf "\n"
1622 printf "${returntype}\n"
1623 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1624 printf "{\n"
1625 if [ "x${invalid_p}" = "x0" ]
1626 then
1627 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1628 elif [ -n "${invalid_p}" ]
1629 then
1630 printf " if (${invalid_p})\n"
1631 printf " internal_error (__FILE__, __LINE__,\n"
1632 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1633 elif [ -n "${predefault}" ]
1634 then
1635 printf " if (gdbarch->${function} == ${predefault})\n"
1636 printf " internal_error (__FILE__, __LINE__,\n"
1637 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1638 fi
1639 printf " if (gdbarch_debug >= 2)\n"
1640 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1641 printf " return gdbarch->${function};\n"
1642 printf "}\n"
1643 printf "\n"
1644 printf "void\n"
1645 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1646 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1647 printf "{\n"
1648 printf " gdbarch->${function} = ${function};\n"
1649 printf "}\n"
1650 elif class_is_info_p
1651 then
1652 printf "\n"
1653 printf "${returntype}\n"
1654 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1655 printf "{\n"
1656 printf " if (gdbarch_debug >= 2)\n"
1657 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1658 printf " return gdbarch->${function};\n"
1659 printf "}\n"
1660 fi
1661 done
1662
1663 # All the trailing guff
1664 cat <<EOF
1665
1666
1667 /* Keep a registry of per-architecture data-pointers required by GDB
1668 modules. */
1669
1670 struct gdbarch_data
1671 {
1672 unsigned index;
1673 gdbarch_data_init_ftype *init;
1674 gdbarch_data_free_ftype *free;
1675 };
1676
1677 struct gdbarch_data_registration
1678 {
1679 struct gdbarch_data *data;
1680 struct gdbarch_data_registration *next;
1681 };
1682
1683 struct gdbarch_data_registry
1684 {
1685 unsigned nr;
1686 struct gdbarch_data_registration *registrations;
1687 };
1688
1689 struct gdbarch_data_registry gdbarch_data_registry =
1690 {
1691 0, NULL,
1692 };
1693
1694 struct gdbarch_data *
1695 register_gdbarch_data (gdbarch_data_init_ftype *init,
1696 gdbarch_data_free_ftype *free)
1697 {
1698 struct gdbarch_data_registration **curr;
1699 for (curr = &gdbarch_data_registry.registrations;
1700 (*curr) != NULL;
1701 curr = &(*curr)->next);
1702 (*curr) = XMALLOC (struct gdbarch_data_registration);
1703 (*curr)->next = NULL;
1704 (*curr)->data = XMALLOC (struct gdbarch_data);
1705 (*curr)->data->index = gdbarch_data_registry.nr++;
1706 (*curr)->data->init = init;
1707 (*curr)->data->free = free;
1708 return (*curr)->data;
1709 }
1710
1711
1712 /* Walk through all the registered users initializing each in turn. */
1713
1714 static void
1715 init_gdbarch_data (struct gdbarch *gdbarch)
1716 {
1717 struct gdbarch_data_registration *rego;
1718 for (rego = gdbarch_data_registry.registrations;
1719 rego != NULL;
1720 rego = rego->next)
1721 {
1722 struct gdbarch_data *data = rego->data;
1723 gdb_assert (data->index < gdbarch->nr_data);
1724 if (data->init != NULL)
1725 {
1726 void *pointer = data->init (gdbarch);
1727 set_gdbarch_data (gdbarch, data, pointer);
1728 }
1729 }
1730 }
1731
1732 /* Create/delete the gdbarch data vector. */
1733
1734 static void
1735 alloc_gdbarch_data (struct gdbarch *gdbarch)
1736 {
1737 gdb_assert (gdbarch->data == NULL);
1738 gdbarch->nr_data = gdbarch_data_registry.nr;
1739 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1740 }
1741
1742 static void
1743 free_gdbarch_data (struct gdbarch *gdbarch)
1744 {
1745 struct gdbarch_data_registration *rego;
1746 gdb_assert (gdbarch->data != NULL);
1747 for (rego = gdbarch_data_registry.registrations;
1748 rego != NULL;
1749 rego = rego->next)
1750 {
1751 struct gdbarch_data *data = rego->data;
1752 gdb_assert (data->index < gdbarch->nr_data);
1753 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1754 {
1755 data->free (gdbarch, gdbarch->data[data->index]);
1756 gdbarch->data[data->index] = NULL;
1757 }
1758 }
1759 xfree (gdbarch->data);
1760 gdbarch->data = NULL;
1761 }
1762
1763
1764 /* Initialize the current value of thee specified per-architecture
1765 data-pointer. */
1766
1767 void
1768 set_gdbarch_data (struct gdbarch *gdbarch,
1769 struct gdbarch_data *data,
1770 void *pointer)
1771 {
1772 gdb_assert (data->index < gdbarch->nr_data);
1773 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1774 data->free (gdbarch, gdbarch->data[data->index]);
1775 gdbarch->data[data->index] = pointer;
1776 }
1777
1778 /* Return the current value of the specified per-architecture
1779 data-pointer. */
1780
1781 void *
1782 gdbarch_data (struct gdbarch_data *data)
1783 {
1784 gdb_assert (data->index < current_gdbarch->nr_data);
1785 return current_gdbarch->data[data->index];
1786 }
1787
1788
1789
1790 /* Keep a registry of swapped data required by GDB modules. */
1791
1792 struct gdbarch_swap
1793 {
1794 void *swap;
1795 struct gdbarch_swap_registration *source;
1796 struct gdbarch_swap *next;
1797 };
1798
1799 struct gdbarch_swap_registration
1800 {
1801 void *data;
1802 unsigned long sizeof_data;
1803 gdbarch_swap_ftype *init;
1804 struct gdbarch_swap_registration *next;
1805 };
1806
1807 struct gdbarch_swap_registry
1808 {
1809 int nr;
1810 struct gdbarch_swap_registration *registrations;
1811 };
1812
1813 struct gdbarch_swap_registry gdbarch_swap_registry =
1814 {
1815 0, NULL,
1816 };
1817
1818 void
1819 register_gdbarch_swap (void *data,
1820 unsigned long sizeof_data,
1821 gdbarch_swap_ftype *init)
1822 {
1823 struct gdbarch_swap_registration **rego;
1824 for (rego = &gdbarch_swap_registry.registrations;
1825 (*rego) != NULL;
1826 rego = &(*rego)->next);
1827 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1828 (*rego)->next = NULL;
1829 (*rego)->init = init;
1830 (*rego)->data = data;
1831 (*rego)->sizeof_data = sizeof_data;
1832 }
1833
1834
1835 static void
1836 init_gdbarch_swap (struct gdbarch *gdbarch)
1837 {
1838 struct gdbarch_swap_registration *rego;
1839 struct gdbarch_swap **curr = &gdbarch->swap;
1840 for (rego = gdbarch_swap_registry.registrations;
1841 rego != NULL;
1842 rego = rego->next)
1843 {
1844 if (rego->data != NULL)
1845 {
1846 (*curr) = XMALLOC (struct gdbarch_swap);
1847 (*curr)->source = rego;
1848 (*curr)->swap = xmalloc (rego->sizeof_data);
1849 (*curr)->next = NULL;
1850 memset (rego->data, 0, rego->sizeof_data);
1851 curr = &(*curr)->next;
1852 }
1853 if (rego->init != NULL)
1854 rego->init ();
1855 }
1856 }
1857
1858 static void
1859 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1860 {
1861 struct gdbarch_swap *curr;
1862 for (curr = gdbarch->swap;
1863 curr != NULL;
1864 curr = curr->next)
1865 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1866 }
1867
1868 static void
1869 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1870 {
1871 struct gdbarch_swap *curr;
1872 for (curr = gdbarch->swap;
1873 curr != NULL;
1874 curr = curr->next)
1875 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1876 }
1877
1878
1879 /* Keep a registry of the architectures known by GDB. */
1880
1881 struct gdbarch_registration
1882 {
1883 enum bfd_architecture bfd_architecture;
1884 gdbarch_init_ftype *init;
1885 gdbarch_dump_tdep_ftype *dump_tdep;
1886 struct gdbarch_list *arches;
1887 struct gdbarch_registration *next;
1888 };
1889
1890 static struct gdbarch_registration *gdbarch_registry = NULL;
1891
1892 static void
1893 append_name (const char ***buf, int *nr, const char *name)
1894 {
1895 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1896 (*buf)[*nr] = name;
1897 *nr += 1;
1898 }
1899
1900 const char **
1901 gdbarch_printable_names (void)
1902 {
1903 if (GDB_MULTI_ARCH)
1904 {
1905 /* Accumulate a list of names based on the registed list of
1906 architectures. */
1907 enum bfd_architecture a;
1908 int nr_arches = 0;
1909 const char **arches = NULL;
1910 struct gdbarch_registration *rego;
1911 for (rego = gdbarch_registry;
1912 rego != NULL;
1913 rego = rego->next)
1914 {
1915 const struct bfd_arch_info *ap;
1916 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1917 if (ap == NULL)
1918 internal_error (__FILE__, __LINE__,
1919 "gdbarch_architecture_names: multi-arch unknown");
1920 do
1921 {
1922 append_name (&arches, &nr_arches, ap->printable_name);
1923 ap = ap->next;
1924 }
1925 while (ap != NULL);
1926 }
1927 append_name (&arches, &nr_arches, NULL);
1928 return arches;
1929 }
1930 else
1931 /* Just return all the architectures that BFD knows. Assume that
1932 the legacy architecture framework supports them. */
1933 return bfd_arch_list ();
1934 }
1935
1936
1937 void
1938 gdbarch_register (enum bfd_architecture bfd_architecture,
1939 gdbarch_init_ftype *init,
1940 gdbarch_dump_tdep_ftype *dump_tdep)
1941 {
1942 struct gdbarch_registration **curr;
1943 const struct bfd_arch_info *bfd_arch_info;
1944 /* Check that BFD recognizes this architecture */
1945 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1946 if (bfd_arch_info == NULL)
1947 {
1948 internal_error (__FILE__, __LINE__,
1949 "gdbarch: Attempt to register unknown architecture (%d)",
1950 bfd_architecture);
1951 }
1952 /* Check that we haven't seen this architecture before */
1953 for (curr = &gdbarch_registry;
1954 (*curr) != NULL;
1955 curr = &(*curr)->next)
1956 {
1957 if (bfd_architecture == (*curr)->bfd_architecture)
1958 internal_error (__FILE__, __LINE__,
1959 "gdbarch: Duplicate registraration of architecture (%s)",
1960 bfd_arch_info->printable_name);
1961 }
1962 /* log it */
1963 if (gdbarch_debug)
1964 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1965 bfd_arch_info->printable_name,
1966 (long) init);
1967 /* Append it */
1968 (*curr) = XMALLOC (struct gdbarch_registration);
1969 (*curr)->bfd_architecture = bfd_architecture;
1970 (*curr)->init = init;
1971 (*curr)->dump_tdep = dump_tdep;
1972 (*curr)->arches = NULL;
1973 (*curr)->next = NULL;
1974 /* When non- multi-arch, install whatever target dump routine we've
1975 been provided - hopefully that routine has been written correctly
1976 and works regardless of multi-arch. */
1977 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1978 && startup_gdbarch.dump_tdep == NULL)
1979 startup_gdbarch.dump_tdep = dump_tdep;
1980 }
1981
1982 void
1983 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1984 gdbarch_init_ftype *init)
1985 {
1986 gdbarch_register (bfd_architecture, init, NULL);
1987 }
1988
1989
1990 /* Look for an architecture using gdbarch_info. Base search on only
1991 BFD_ARCH_INFO and BYTE_ORDER. */
1992
1993 struct gdbarch_list *
1994 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1995 const struct gdbarch_info *info)
1996 {
1997 for (; arches != NULL; arches = arches->next)
1998 {
1999 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2000 continue;
2001 if (info->byte_order != arches->gdbarch->byte_order)
2002 continue;
2003 return arches;
2004 }
2005 return NULL;
2006 }
2007
2008
2009 /* Update the current architecture. Return ZERO if the update request
2010 failed. */
2011
2012 int
2013 gdbarch_update_p (struct gdbarch_info info)
2014 {
2015 struct gdbarch *new_gdbarch;
2016 struct gdbarch_list **list;
2017 struct gdbarch_registration *rego;
2018
2019 /* Fill in missing parts of the INFO struct using a number of
2020 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2021
2022 /* \`\`(gdb) set architecture ...'' */
2023 if (info.bfd_arch_info == NULL
2024 && !TARGET_ARCHITECTURE_AUTO)
2025 info.bfd_arch_info = TARGET_ARCHITECTURE;
2026 if (info.bfd_arch_info == NULL
2027 && info.abfd != NULL
2028 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2029 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2030 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2031 if (info.bfd_arch_info == NULL)
2032 info.bfd_arch_info = TARGET_ARCHITECTURE;
2033
2034 /* \`\`(gdb) set byte-order ...'' */
2035 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2036 && !TARGET_BYTE_ORDER_AUTO)
2037 info.byte_order = TARGET_BYTE_ORDER;
2038 /* From the INFO struct. */
2039 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2040 && info.abfd != NULL)
2041 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2042 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2043 : BFD_ENDIAN_UNKNOWN);
2044 /* From the current target. */
2045 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2046 info.byte_order = TARGET_BYTE_ORDER;
2047
2048 /* Must have found some sort of architecture. */
2049 gdb_assert (info.bfd_arch_info != NULL);
2050
2051 if (gdbarch_debug)
2052 {
2053 fprintf_unfiltered (gdb_stdlog,
2054 "gdbarch_update: info.bfd_arch_info %s\n",
2055 (info.bfd_arch_info != NULL
2056 ? info.bfd_arch_info->printable_name
2057 : "(null)"));
2058 fprintf_unfiltered (gdb_stdlog,
2059 "gdbarch_update: info.byte_order %d (%s)\n",
2060 info.byte_order,
2061 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2062 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2063 : "default"));
2064 fprintf_unfiltered (gdb_stdlog,
2065 "gdbarch_update: info.abfd 0x%lx\n",
2066 (long) info.abfd);
2067 fprintf_unfiltered (gdb_stdlog,
2068 "gdbarch_update: info.tdep_info 0x%lx\n",
2069 (long) info.tdep_info);
2070 }
2071
2072 /* Find the target that knows about this architecture. */
2073 for (rego = gdbarch_registry;
2074 rego != NULL;
2075 rego = rego->next)
2076 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2077 break;
2078 if (rego == NULL)
2079 {
2080 if (gdbarch_debug)
2081 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2082 return 0;
2083 }
2084
2085 /* Ask the target for a replacement architecture. */
2086 new_gdbarch = rego->init (info, rego->arches);
2087
2088 /* Did the target like it? No. Reject the change. */
2089 if (new_gdbarch == NULL)
2090 {
2091 if (gdbarch_debug)
2092 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2093 return 0;
2094 }
2095
2096 /* Did the architecture change? No. Do nothing. */
2097 if (current_gdbarch == new_gdbarch)
2098 {
2099 if (gdbarch_debug)
2100 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2101 (long) new_gdbarch,
2102 new_gdbarch->bfd_arch_info->printable_name);
2103 return 1;
2104 }
2105
2106 /* Swap all data belonging to the old target out */
2107 swapout_gdbarch_swap (current_gdbarch);
2108
2109 /* Is this a pre-existing architecture? Yes. Swap it in. */
2110 for (list = &rego->arches;
2111 (*list) != NULL;
2112 list = &(*list)->next)
2113 {
2114 if ((*list)->gdbarch == new_gdbarch)
2115 {
2116 if (gdbarch_debug)
2117 fprintf_unfiltered (gdb_stdlog,
2118 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2119 (long) new_gdbarch,
2120 new_gdbarch->bfd_arch_info->printable_name);
2121 current_gdbarch = new_gdbarch;
2122 swapin_gdbarch_swap (new_gdbarch);
2123 architecture_changed_event ();
2124 return 1;
2125 }
2126 }
2127
2128 /* Append this new architecture to this targets list. */
2129 (*list) = XMALLOC (struct gdbarch_list);
2130 (*list)->next = NULL;
2131 (*list)->gdbarch = new_gdbarch;
2132
2133 /* Switch to this new architecture. Dump it out. */
2134 current_gdbarch = new_gdbarch;
2135 if (gdbarch_debug)
2136 {
2137 fprintf_unfiltered (gdb_stdlog,
2138 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2139 (long) new_gdbarch,
2140 new_gdbarch->bfd_arch_info->printable_name);
2141 }
2142
2143 /* Check that the newly installed architecture is valid. Plug in
2144 any post init values. */
2145 new_gdbarch->dump_tdep = rego->dump_tdep;
2146 verify_gdbarch (new_gdbarch);
2147
2148 /* Initialize the per-architecture memory (swap) areas.
2149 CURRENT_GDBARCH must be update before these modules are
2150 called. */
2151 init_gdbarch_swap (new_gdbarch);
2152
2153 /* Initialize the per-architecture data-pointer of all parties that
2154 registered an interest in this architecture. CURRENT_GDBARCH
2155 must be updated before these modules are called. */
2156 init_gdbarch_data (new_gdbarch);
2157 architecture_changed_event ();
2158
2159 if (gdbarch_debug)
2160 gdbarch_dump (current_gdbarch, gdb_stdlog);
2161
2162 return 1;
2163 }
2164
2165
2166 /* Disassembler */
2167
2168 /* Pointer to the target-dependent disassembly function. */
2169 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2170 disassemble_info tm_print_insn_info;
2171
2172
2173 extern void _initialize_gdbarch (void);
2174
2175 void
2176 _initialize_gdbarch (void)
2177 {
2178 struct cmd_list_element *c;
2179
2180 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2181 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2182 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2183 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2184 tm_print_insn_info.print_address_func = dis_asm_print_address;
2185
2186 add_show_from_set (add_set_cmd ("arch",
2187 class_maintenance,
2188 var_zinteger,
2189 (char *)&gdbarch_debug,
2190 "Set architecture debugging.\\n\\
2191 When non-zero, architecture debugging is enabled.", &setdebuglist),
2192 &showdebuglist);
2193 c = add_set_cmd ("archdebug",
2194 class_maintenance,
2195 var_zinteger,
2196 (char *)&gdbarch_debug,
2197 "Set architecture debugging.\\n\\
2198 When non-zero, architecture debugging is enabled.", &setlist);
2199
2200 deprecate_cmd (c, "set debug arch");
2201 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2202 }
2203 EOF
2204
2205 # close things off
2206 exec 1>&2
2207 #../move-if-change new-gdbarch.c gdbarch.c
2208 compare_new gdbarch.c