* gdbarch.sh (TARGET_CHAR_SIGNED): Do not specify the print
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 case "${class}" in
80 m ) staticdefault="${predefault}" ;;
81 M ) staticdefault="0" ;;
82 * ) test "${staticdefault}" || staticdefault=0 ;;
83 esac
84 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
85 # multi-arch defaults.
86 # test "${predefault}" || predefault=0
87 test "${fmt}" || fmt="%ld"
88 test "${print}" || print="(long) ${macro}"
89 case "${invalid_p}" in
90 0 ) valid_p=1 ;;
91 "" )
92 if [ -n "${predefault}" ]
93 then
94 #invalid_p="gdbarch->${function} == ${predefault}"
95 valid_p="gdbarch->${function} != ${predefault}"
96 else
97 #invalid_p="gdbarch->${function} == 0"
98 valid_p="gdbarch->${function} != 0"
99 fi
100 ;;
101 * ) valid_p="!(${invalid_p})"
102 esac
103
104 # PREDEFAULT is a valid fallback definition of MEMBER when
105 # multi-arch is not enabled. This ensures that the
106 # default value, when multi-arch is the same as the
107 # default value when not multi-arch. POSTDEFAULT is
108 # always a valid definition of MEMBER as this again
109 # ensures consistency.
110
111 if [ -n "${postdefault}" ]
112 then
113 fallbackdefault="${postdefault}"
114 elif [ -n "${predefault}" ]
115 then
116 fallbackdefault="${predefault}"
117 else
118 fallbackdefault="0"
119 fi
120
121 #NOT YET: See gdbarch.log for basic verification of
122 # database
123
124 break
125 fi
126 done
127 if [ -n "${class}" ]
128 then
129 true
130 else
131 false
132 fi
133 }
134
135
136 fallback_default_p ()
137 {
138 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
139 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
140 }
141
142 class_is_variable_p ()
143 {
144 case "${class}" in
145 *v* | *V* ) true ;;
146 * ) false ;;
147 esac
148 }
149
150 class_is_function_p ()
151 {
152 case "${class}" in
153 *f* | *F* | *m* | *M* ) true ;;
154 * ) false ;;
155 esac
156 }
157
158 class_is_multiarch_p ()
159 {
160 case "${class}" in
161 *m* | *M* ) true ;;
162 * ) false ;;
163 esac
164 }
165
166 class_is_predicate_p ()
167 {
168 case "${class}" in
169 *F* | *V* | *M* ) true ;;
170 * ) false ;;
171 esac
172 }
173
174 class_is_info_p ()
175 {
176 case "${class}" in
177 *i* ) true ;;
178 * ) false ;;
179 esac
180 }
181
182
183 # dump out/verify the doco
184 for field in ${read}
185 do
186 case ${field} in
187
188 class ) : ;;
189
190 # # -> line disable
191 # f -> function
192 # hiding a function
193 # F -> function + predicate
194 # hiding a function + predicate to test function validity
195 # v -> variable
196 # hiding a variable
197 # V -> variable + predicate
198 # hiding a variable + predicate to test variables validity
199 # i -> set from info
200 # hiding something from the ``struct info'' object
201 # m -> multi-arch function
202 # hiding a multi-arch function (parameterised with the architecture)
203 # M -> multi-arch function + predicate
204 # hiding a multi-arch function + predicate to test function validity
205
206 level ) : ;;
207
208 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
209 # LEVEL is a predicate on checking that a given method is
210 # initialized (using INVALID_P).
211
212 macro ) : ;;
213
214 # The name of the MACRO that this method is to be accessed by.
215
216 returntype ) : ;;
217
218 # For functions, the return type; for variables, the data type
219
220 function ) : ;;
221
222 # For functions, the member function name; for variables, the
223 # variable name. Member function names are always prefixed with
224 # ``gdbarch_'' for name-space purity.
225
226 formal ) : ;;
227
228 # The formal argument list. It is assumed that the formal
229 # argument list includes the actual name of each list element.
230 # A function with no arguments shall have ``void'' as the
231 # formal argument list.
232
233 actual ) : ;;
234
235 # The list of actual arguments. The arguments specified shall
236 # match the FORMAL list given above. Functions with out
237 # arguments leave this blank.
238
239 attrib ) : ;;
240
241 # Any GCC attributes that should be attached to the function
242 # declaration. At present this field is unused.
243
244 staticdefault ) : ;;
245
246 # To help with the GDB startup a static gdbarch object is
247 # created. STATICDEFAULT is the value to insert into that
248 # static gdbarch object. Since this a static object only
249 # simple expressions can be used.
250
251 # If STATICDEFAULT is empty, zero is used.
252
253 predefault ) : ;;
254
255 # An initial value to assign to MEMBER of the freshly
256 # malloc()ed gdbarch object. After initialization, the
257 # freshly malloc()ed object is passed to the target
258 # architecture code for further updates.
259
260 # If PREDEFAULT is empty, zero is used.
261
262 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
263 # INVALID_P are specified, PREDEFAULT will be used as the
264 # default for the non- multi-arch target.
265
266 # A zero PREDEFAULT function will force the fallback to call
267 # internal_error().
268
269 # Variable declarations can refer to ``gdbarch'' which will
270 # contain the current architecture. Care should be taken.
271
272 postdefault ) : ;;
273
274 # A value to assign to MEMBER of the new gdbarch object should
275 # the target architecture code fail to change the PREDEFAULT
276 # value.
277
278 # If POSTDEFAULT is empty, no post update is performed.
279
280 # If both INVALID_P and POSTDEFAULT are non-empty then
281 # INVALID_P will be used to determine if MEMBER should be
282 # changed to POSTDEFAULT.
283
284 # If a non-empty POSTDEFAULT and a zero INVALID_P are
285 # specified, POSTDEFAULT will be used as the default for the
286 # non- multi-arch target (regardless of the value of
287 # PREDEFAULT).
288
289 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
290
291 # Variable declarations can refer to ``gdbarch'' which will
292 # contain the current architecture. Care should be taken.
293
294 invalid_p ) : ;;
295
296 # A predicate equation that validates MEMBER. Non-zero is
297 # returned if the code creating the new architecture failed to
298 # initialize MEMBER or the initialized the member is invalid.
299 # If POSTDEFAULT is non-empty then MEMBER will be updated to
300 # that value. If POSTDEFAULT is empty then internal_error()
301 # is called.
302
303 # If INVALID_P is empty, a check that MEMBER is no longer
304 # equal to PREDEFAULT is used.
305
306 # The expression ``0'' disables the INVALID_P check making
307 # PREDEFAULT a legitimate value.
308
309 # See also PREDEFAULT and POSTDEFAULT.
310
311 fmt ) : ;;
312
313 # printf style format string that can be used to print out the
314 # MEMBER. Sometimes "%s" is useful. For functions, this is
315 # ignored and the function address is printed.
316
317 # If FMT is empty, ``%ld'' is used.
318
319 print ) : ;;
320
321 # An optional equation that casts MEMBER to a value suitable
322 # for formatting by FMT.
323
324 # If PRINT is empty, ``(long)'' is used.
325
326 print_p ) : ;;
327
328 # An optional indicator for any predicte to wrap around the
329 # print member code.
330
331 # () -> Call a custom function to do the dump.
332 # exp -> Wrap print up in ``if (${print_p}) ...
333 # ``'' -> No predicate
334
335 # If PRINT_P is empty, ``1'' is always used.
336
337 description ) : ;;
338
339 # Currently unused.
340
341 *) exit 1;;
342 esac
343 done
344
345
346 function_list ()
347 {
348 # See below (DOCO) for description of each field
349 cat <<EOF
350 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
351 #
352 i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
353 # Number of bits in a char or unsigned char for the target machine.
354 # Just like CHAR_BIT in <limits.h> but describes the target machine.
355 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
356 #
357 # Number of bits in a short or unsigned short for the target machine.
358 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
359 # Number of bits in an int or unsigned int for the target machine.
360 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long or unsigned long for the target machine.
362 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
363 # Number of bits in a long long or unsigned long long for the target
364 # machine.
365 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
366 # Number of bits in a float for the target machine.
367 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
368 # Number of bits in a double for the target machine.
369 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
370 # Number of bits in a long double for the target machine.
371 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
372 # For most targets, a pointer on the target and its representation as an
373 # address in GDB have the same size and "look the same". For such a
374 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
375 # / addr_bit will be set from it.
376 #
377 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
378 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
379 #
380 # ptr_bit is the size of a pointer on the target
381 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
382 # addr_bit is the size of a target address as represented in gdb
383 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
384 # Number of bits in a BFD_VMA for the target object file format.
385 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
386 #
387 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
388 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
389 #
390 v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
391 #
392 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
393 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
394 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
395 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
396 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
397 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 # serious shakedown.
401 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
402 #
403 M:::void:register_read:int regnum, char *buf:regnum, buf:
404 M:::void:register_write:int regnum, char *buf:regnum, buf:
405 #
406 v:2:NUM_REGS:int:num_regs::::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
412 v:2:SP_REGNUM:int:sp_regnum::::0:-1
413 v:2:FP_REGNUM:int:fp_regnum::::0:-1
414 v:2:PC_REGNUM:int:pc_regnum::::0:-1
415 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
416 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
417 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
418 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
419 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
420 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
421 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
422 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
423 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
424 # Convert from an sdb register number to an internal gdb register number.
425 # This should be defined in tm.h, if REGISTER_NAMES is not set up
426 # to map one to one onto the sdb register numbers.
427 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
428 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
429 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
430 v:2:REGISTER_SIZE:int:register_size::::0:-1
431 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
432 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
433 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_raw_size:0
434 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
435 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_virtual_size:0
436 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
437 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
438 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
439 # MAP a GDB RAW register number onto a simulator register number. See
440 # also include/...-sim.h.
441 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
442 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
443 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
444 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
445 #
446 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
447 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
448 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
449 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
450 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
451 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
452 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
453 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
454 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
455 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
456 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
457 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
458 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
459 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
460 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
461 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
462 #
463 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
464 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
465 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
466 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
467 #
468 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
469 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
470 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
471 # This function is called when the value of a pseudo-register needs to
472 # be updated. Typically it will be defined on a per-architecture
473 # basis.
474 F:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:
475 # This function is called when the value of a pseudo-register needs to
476 # be set or stored. Typically it will be defined on a
477 # per-architecture basis.
478 F:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:
479 #
480 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
481 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
482 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
483 #
484 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
485 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
486 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
487 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
488 F:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
489 f:2:POP_FRAME:void:pop_frame:void:-:::0
490 #
491 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
492 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
493 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
494 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
495 #
496 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
497 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
498 #
499 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
500 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
501 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
502 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
503 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
504 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
505 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
506 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
507 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
508 #
509 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
510 #
511 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
512 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
513 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
514 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
515 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
516 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
517 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
518 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
519 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
520 #
521 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
522 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
523 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
524 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
525 v:2:PARM_BOUNDARY:int:parm_boundary
526 #
527 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
528 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
529 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
530 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
531 # On some machines there are bits in addresses which are not really
532 # part of the address, but are used by the kernel, the hardware, etc.
533 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
534 # we get a "real" address such as one would find in a symbol table.
535 # This is used only for addresses of instructions, and even then I'm
536 # not sure it's used in all contexts. It exists to deal with there
537 # being a few stray bits in the PC which would mislead us, not as some
538 # sort of generic thing to handle alignment or segmentation (it's
539 # possible it should be in TARGET_READ_PC instead).
540 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
541 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
542 # the target needs software single step. An ISA method to implement it.
543 #
544 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
545 # using the breakpoint system instead of blatting memory directly (as with rs6000).
546 #
547 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
548 # single step. If not, then implement single step using breakpoints.
549 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
550 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
551 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
552 # For SVR4 shared libraries, each call goes through a small piece of
553 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
554 # to nonzero if we are current stopped in one of these.
555 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
556 # A target might have problems with watchpoints as soon as the stack
557 # frame of the current function has been destroyed. This mostly happens
558 # as the first action in a funtion's epilogue. in_function_epilogue_p()
559 # is defined to return a non-zero value if either the given addr is one
560 # instruction after the stack destroying instruction up to the trailing
561 # return instruction or if we can figure out that the stack frame has
562 # already been invalidated regardless of the value of addr. Targets
563 # which don't suffer from that problem could just let this functionality
564 # untouched.
565 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
566 # Given a vector of command-line arguments, return a newly allocated
567 # string which, when passed to the create_inferior function, will be
568 # parsed (on Unix systems, by the shell) to yield the same vector.
569 # This function should call error() if the argument vector is not
570 # representable for this target or if this target does not support
571 # command-line arguments.
572 # ARGC is the number of elements in the vector.
573 # ARGV is an array of strings, one per argument.
574 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
575 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
576 EOF
577 }
578
579 #
580 # The .log file
581 #
582 exec > new-gdbarch.log
583 function_list | while do_read
584 do
585 cat <<EOF
586 ${class} ${macro}(${actual})
587 ${returntype} ${function} ($formal)${attrib}
588 EOF
589 for r in ${read}
590 do
591 eval echo \"\ \ \ \ ${r}=\${${r}}\"
592 done
593 # #fallbackdefault=${fallbackdefault}
594 # #valid_p=${valid_p}
595 #EOF
596 if class_is_predicate_p && fallback_default_p
597 then
598 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
599 kill $$
600 exit 1
601 fi
602 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
603 then
604 echo "Error: postdefault is useless when invalid_p=0" 1>&2
605 kill $$
606 exit 1
607 fi
608 if class_is_multiarch_p
609 then
610 if class_is_predicate_p ; then :
611 elif test "x${predefault}" = "x"
612 then
613 echo "Error: pure multi-arch function must have a predefault" 1>&2
614 kill $$
615 exit 1
616 fi
617 fi
618 echo ""
619 done
620
621 exec 1>&2
622 compare_new gdbarch.log
623
624
625 copyright ()
626 {
627 cat <<EOF
628 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
629
630 /* Dynamic architecture support for GDB, the GNU debugger.
631 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
632
633 This file is part of GDB.
634
635 This program is free software; you can redistribute it and/or modify
636 it under the terms of the GNU General Public License as published by
637 the Free Software Foundation; either version 2 of the License, or
638 (at your option) any later version.
639
640 This program is distributed in the hope that it will be useful,
641 but WITHOUT ANY WARRANTY; without even the implied warranty of
642 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643 GNU General Public License for more details.
644
645 You should have received a copy of the GNU General Public License
646 along with this program; if not, write to the Free Software
647 Foundation, Inc., 59 Temple Place - Suite 330,
648 Boston, MA 02111-1307, USA. */
649
650 /* This file was created with the aid of \`\`gdbarch.sh''.
651
652 The Bourne shell script \`\`gdbarch.sh'' creates the files
653 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
654 against the existing \`\`gdbarch.[hc]''. Any differences found
655 being reported.
656
657 If editing this file, please also run gdbarch.sh and merge any
658 changes into that script. Conversely, when making sweeping changes
659 to this file, modifying gdbarch.sh and using its output may prove
660 easier. */
661
662 EOF
663 }
664
665 #
666 # The .h file
667 #
668
669 exec > new-gdbarch.h
670 copyright
671 cat <<EOF
672 #ifndef GDBARCH_H
673 #define GDBARCH_H
674
675 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
676 #if !GDB_MULTI_ARCH
677 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
678 #endif
679
680 struct frame_info;
681 struct value;
682 struct objfile;
683
684 extern struct gdbarch *current_gdbarch;
685
686
687 /* If any of the following are defined, the target wasn't correctly
688 converted. */
689
690 #if GDB_MULTI_ARCH
691 #if defined (EXTRA_FRAME_INFO)
692 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
693 #endif
694 #endif
695
696 #if GDB_MULTI_ARCH
697 #if defined (FRAME_FIND_SAVED_REGS)
698 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
699 #endif
700 #endif
701
702 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
703 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
704 #endif
705 EOF
706
707 # function typedef's
708 printf "\n"
709 printf "\n"
710 printf "/* The following are pre-initialized by GDBARCH. */\n"
711 function_list | while do_read
712 do
713 if class_is_info_p
714 then
715 printf "\n"
716 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
717 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
718 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
719 printf "#error \"Non multi-arch definition of ${macro}\"\n"
720 printf "#endif\n"
721 printf "#if GDB_MULTI_ARCH\n"
722 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
723 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
724 printf "#endif\n"
725 printf "#endif\n"
726 fi
727 done
728
729 # function typedef's
730 printf "\n"
731 printf "\n"
732 printf "/* The following are initialized by the target dependent code. */\n"
733 function_list | while do_read
734 do
735 if [ -n "${comment}" ]
736 then
737 echo "${comment}" | sed \
738 -e '2 s,#,/*,' \
739 -e '3,$ s,#, ,' \
740 -e '$ s,$, */,'
741 fi
742 if class_is_multiarch_p
743 then
744 if class_is_predicate_p
745 then
746 printf "\n"
747 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
748 fi
749 else
750 if class_is_predicate_p
751 then
752 printf "\n"
753 printf "#if defined (${macro})\n"
754 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
755 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
756 printf "#if !defined (${macro}_P)\n"
757 printf "#define ${macro}_P() (1)\n"
758 printf "#endif\n"
759 printf "#endif\n"
760 printf "\n"
761 printf "/* Default predicate for non- multi-arch targets. */\n"
762 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
763 printf "#define ${macro}_P() (0)\n"
764 printf "#endif\n"
765 printf "\n"
766 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
767 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
768 printf "#error \"Non multi-arch definition of ${macro}\"\n"
769 printf "#endif\n"
770 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
771 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
772 printf "#endif\n"
773 fi
774 fi
775 if class_is_variable_p
776 then
777 if fallback_default_p || class_is_predicate_p
778 then
779 printf "\n"
780 printf "/* Default (value) for non- multi-arch platforms. */\n"
781 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
782 echo "#define ${macro} (${fallbackdefault})" \
783 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
784 printf "#endif\n"
785 fi
786 printf "\n"
787 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
788 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
789 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
790 printf "#error \"Non multi-arch definition of ${macro}\"\n"
791 printf "#endif\n"
792 printf "#if GDB_MULTI_ARCH\n"
793 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
794 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
795 printf "#endif\n"
796 printf "#endif\n"
797 fi
798 if class_is_function_p
799 then
800 if class_is_multiarch_p ; then :
801 elif fallback_default_p || class_is_predicate_p
802 then
803 printf "\n"
804 printf "/* Default (function) for non- multi-arch platforms. */\n"
805 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
806 if [ "x${fallbackdefault}" = "x0" ]
807 then
808 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
809 else
810 # FIXME: Should be passing current_gdbarch through!
811 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
812 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
813 fi
814 printf "#endif\n"
815 fi
816 printf "\n"
817 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
818 then
819 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
820 elif class_is_multiarch_p
821 then
822 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
823 else
824 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
825 fi
826 if [ "x${formal}" = "xvoid" ]
827 then
828 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
829 else
830 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
831 fi
832 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
833 if class_is_multiarch_p ; then :
834 else
835 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
836 printf "#error \"Non multi-arch definition of ${macro}\"\n"
837 printf "#endif\n"
838 printf "#if GDB_MULTI_ARCH\n"
839 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
840 if [ "x${actual}" = "x" ]
841 then
842 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
843 elif [ "x${actual}" = "x-" ]
844 then
845 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
846 else
847 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
848 fi
849 printf "#endif\n"
850 printf "#endif\n"
851 fi
852 fi
853 done
854
855 # close it off
856 cat <<EOF
857
858 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
859
860
861 /* Mechanism for co-ordinating the selection of a specific
862 architecture.
863
864 GDB targets (*-tdep.c) can register an interest in a specific
865 architecture. Other GDB components can register a need to maintain
866 per-architecture data.
867
868 The mechanisms below ensures that there is only a loose connection
869 between the set-architecture command and the various GDB
870 components. Each component can independently register their need
871 to maintain architecture specific data with gdbarch.
872
873 Pragmatics:
874
875 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
876 didn't scale.
877
878 The more traditional mega-struct containing architecture specific
879 data for all the various GDB components was also considered. Since
880 GDB is built from a variable number of (fairly independent)
881 components it was determined that the global aproach was not
882 applicable. */
883
884
885 /* Register a new architectural family with GDB.
886
887 Register support for the specified ARCHITECTURE with GDB. When
888 gdbarch determines that the specified architecture has been
889 selected, the corresponding INIT function is called.
890
891 --
892
893 The INIT function takes two parameters: INFO which contains the
894 information available to gdbarch about the (possibly new)
895 architecture; ARCHES which is a list of the previously created
896 \`\`struct gdbarch'' for this architecture.
897
898 The INIT function parameter INFO shall, as far as possible, be
899 pre-initialized with information obtained from INFO.ABFD or
900 previously selected architecture (if similar). INIT shall ensure
901 that the INFO.BYTE_ORDER is non-zero.
902
903 The INIT function shall return any of: NULL - indicating that it
904 doesn't recognize the selected architecture; an existing \`\`struct
905 gdbarch'' from the ARCHES list - indicating that the new
906 architecture is just a synonym for an earlier architecture (see
907 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
908 - that describes the selected architecture (see gdbarch_alloc()).
909
910 The DUMP_TDEP function shall print out all target specific values.
911 Care should be taken to ensure that the function works in both the
912 multi-arch and non- multi-arch cases. */
913
914 struct gdbarch_list
915 {
916 struct gdbarch *gdbarch;
917 struct gdbarch_list *next;
918 };
919
920 struct gdbarch_info
921 {
922 /* Use default: NULL (ZERO). */
923 const struct bfd_arch_info *bfd_arch_info;
924
925 /* Use default: 0 (ZERO). */
926 int byte_order;
927
928 /* Use default: NULL (ZERO). */
929 bfd *abfd;
930
931 /* Use default: NULL (ZERO). */
932 struct gdbarch_tdep_info *tdep_info;
933 };
934
935 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
936 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
937
938 /* DEPRECATED - use gdbarch_register() */
939 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
940
941 extern void gdbarch_register (enum bfd_architecture architecture,
942 gdbarch_init_ftype *,
943 gdbarch_dump_tdep_ftype *);
944
945
946 /* Return a freshly allocated, NULL terminated, array of the valid
947 architecture names. Since architectures are registered during the
948 _initialize phase this function only returns useful information
949 once initialization has been completed. */
950
951 extern const char **gdbarch_printable_names (void);
952
953
954 /* Helper function. Search the list of ARCHES for a GDBARCH that
955 matches the information provided by INFO. */
956
957 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
958
959
960 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
961 basic initialization using values obtained from the INFO andTDEP
962 parameters. set_gdbarch_*() functions are called to complete the
963 initialization of the object. */
964
965 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
966
967
968 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
969 It is assumed that the caller freeds the \`\`struct
970 gdbarch_tdep''. */
971
972 extern void gdbarch_free (struct gdbarch *);
973
974
975 /* Helper function. Force an update of the current architecture.
976
977 The actual architecture selected is determined by INFO, \`\`(gdb) set
978 architecture'' et.al., the existing architecture and BFD's default
979 architecture. INFO should be initialized to zero and then selected
980 fields should be updated.
981
982 Returns non-zero if the update succeeds */
983
984 extern int gdbarch_update_p (struct gdbarch_info info);
985
986
987
988 /* Register per-architecture data-pointer.
989
990 Reserve space for a per-architecture data-pointer. An identifier
991 for the reserved data-pointer is returned. That identifer should
992 be saved in a local static variable.
993
994 The per-architecture data-pointer can be initialized in one of two
995 ways: The value can be set explicitly using a call to
996 set_gdbarch_data(); the value can be set implicitly using the value
997 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
998 called after the basic architecture vector has been created.
999
1000 When a previously created architecture is re-selected, the
1001 per-architecture data-pointer for that previous architecture is
1002 restored. INIT() is not called.
1003
1004 During initialization, multiple assignments of the data-pointer are
1005 allowed, non-NULL values are deleted by calling FREE(). If the
1006 architecture is deleted using gdbarch_free() all non-NULL data
1007 pointers are also deleted using FREE().
1008
1009 Multiple registrarants for any architecture are allowed (and
1010 strongly encouraged). */
1011
1012 struct gdbarch_data;
1013
1014 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1015 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1016 void *pointer);
1017 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1018 gdbarch_data_free_ftype *free);
1019 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1020 struct gdbarch_data *data,
1021 void *pointer);
1022
1023 extern void *gdbarch_data (struct gdbarch_data*);
1024
1025
1026 /* Register per-architecture memory region.
1027
1028 Provide a memory-region swap mechanism. Per-architecture memory
1029 region are created. These memory regions are swapped whenever the
1030 architecture is changed. For a new architecture, the memory region
1031 is initialized with zero (0) and the INIT function is called.
1032
1033 Memory regions are swapped / initialized in the order that they are
1034 registered. NULL DATA and/or INIT values can be specified.
1035
1036 New code should use register_gdbarch_data(). */
1037
1038 typedef void (gdbarch_swap_ftype) (void);
1039 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1040 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1041
1042
1043
1044 /* The target-system-dependent byte order is dynamic */
1045
1046 /* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
1047 is selectable at runtime. The user can use the \`\`set endian''
1048 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
1049 target_byte_order should be auto-detected (from the program image
1050 say). */
1051
1052 #if GDB_MULTI_ARCH
1053 /* Multi-arch GDB is always bi-endian. */
1054 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1055 #endif
1056
1057 #ifndef TARGET_BYTE_ORDER_SELECTABLE_P
1058 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
1059 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
1060 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1061 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1062 #else
1063 #define TARGET_BYTE_ORDER_SELECTABLE_P 0
1064 #endif
1065 #endif
1066
1067 extern int target_byte_order;
1068 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1069 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
1070 and expect defs.h to re-define TARGET_BYTE_ORDER. */
1071 #undef TARGET_BYTE_ORDER
1072 #endif
1073 #ifndef TARGET_BYTE_ORDER
1074 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1075 #endif
1076
1077 extern int target_byte_order_auto;
1078 #ifndef TARGET_BYTE_ORDER_AUTO
1079 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1080 #endif
1081
1082
1083
1084 /* The target-system-dependent BFD architecture is dynamic */
1085
1086 extern int target_architecture_auto;
1087 #ifndef TARGET_ARCHITECTURE_AUTO
1088 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1089 #endif
1090
1091 extern const struct bfd_arch_info *target_architecture;
1092 #ifndef TARGET_ARCHITECTURE
1093 #define TARGET_ARCHITECTURE (target_architecture + 0)
1094 #endif
1095
1096
1097 /* The target-system-dependent disassembler is semi-dynamic */
1098
1099 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1100 unsigned int len, disassemble_info *info);
1101
1102 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1103 disassemble_info *info);
1104
1105 extern void dis_asm_print_address (bfd_vma addr,
1106 disassemble_info *info);
1107
1108 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1109 extern disassemble_info tm_print_insn_info;
1110 #ifndef TARGET_PRINT_INSN_INFO
1111 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1112 #endif
1113
1114
1115
1116 /* Set the dynamic target-system-dependent parameters (architecture,
1117 byte-order, ...) using information found in the BFD */
1118
1119 extern void set_gdbarch_from_file (bfd *);
1120
1121
1122 /* Initialize the current architecture to the "first" one we find on
1123 our list. */
1124
1125 extern void initialize_current_architecture (void);
1126
1127 /* For non-multiarched targets, do any initialization of the default
1128 gdbarch object necessary after the _initialize_MODULE functions
1129 have run. */
1130 extern void initialize_non_multiarch ();
1131
1132 /* gdbarch trace variable */
1133 extern int gdbarch_debug;
1134
1135 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1136
1137 #endif
1138 EOF
1139 exec 1>&2
1140 #../move-if-change new-gdbarch.h gdbarch.h
1141 compare_new gdbarch.h
1142
1143
1144 #
1145 # C file
1146 #
1147
1148 exec > new-gdbarch.c
1149 copyright
1150 cat <<EOF
1151
1152 #include "defs.h"
1153 #include "arch-utils.h"
1154
1155 #if GDB_MULTI_ARCH
1156 #include "gdbcmd.h"
1157 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1158 #else
1159 /* Just include everything in sight so that the every old definition
1160 of macro is visible. */
1161 #include "gdb_string.h"
1162 #include <ctype.h>
1163 #include "symtab.h"
1164 #include "frame.h"
1165 #include "inferior.h"
1166 #include "breakpoint.h"
1167 #include "gdb_wait.h"
1168 #include "gdbcore.h"
1169 #include "gdbcmd.h"
1170 #include "target.h"
1171 #include "gdbthread.h"
1172 #include "annotate.h"
1173 #include "symfile.h" /* for overlay functions */
1174 #include "value.h" /* For old tm.h/nm.h macros. */
1175 #endif
1176 #include "symcat.h"
1177
1178 #include "floatformat.h"
1179
1180 #include "gdb_assert.h"
1181 #include "gdb-events.h"
1182
1183 /* Static function declarations */
1184
1185 static void verify_gdbarch (struct gdbarch *gdbarch);
1186 static void alloc_gdbarch_data (struct gdbarch *);
1187 static void init_gdbarch_data (struct gdbarch *);
1188 static void free_gdbarch_data (struct gdbarch *);
1189 static void init_gdbarch_swap (struct gdbarch *);
1190 static void swapout_gdbarch_swap (struct gdbarch *);
1191 static void swapin_gdbarch_swap (struct gdbarch *);
1192
1193 /* Convenience macro for allocting typesafe memory. */
1194
1195 #ifndef XMALLOC
1196 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1197 #endif
1198
1199
1200 /* Non-zero if we want to trace architecture code. */
1201
1202 #ifndef GDBARCH_DEBUG
1203 #define GDBARCH_DEBUG 0
1204 #endif
1205 int gdbarch_debug = GDBARCH_DEBUG;
1206
1207 EOF
1208
1209 # gdbarch open the gdbarch object
1210 printf "\n"
1211 printf "/* Maintain the struct gdbarch object */\n"
1212 printf "\n"
1213 printf "struct gdbarch\n"
1214 printf "{\n"
1215 printf " /* basic architectural information */\n"
1216 function_list | while do_read
1217 do
1218 if class_is_info_p
1219 then
1220 printf " ${returntype} ${function};\n"
1221 fi
1222 done
1223 printf "\n"
1224 printf " /* target specific vector. */\n"
1225 printf " struct gdbarch_tdep *tdep;\n"
1226 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1227 printf "\n"
1228 printf " /* per-architecture data-pointers */\n"
1229 printf " unsigned nr_data;\n"
1230 printf " void **data;\n"
1231 printf "\n"
1232 printf " /* per-architecture swap-regions */\n"
1233 printf " struct gdbarch_swap *swap;\n"
1234 printf "\n"
1235 cat <<EOF
1236 /* Multi-arch values.
1237
1238 When extending this structure you must:
1239
1240 Add the field below.
1241
1242 Declare set/get functions and define the corresponding
1243 macro in gdbarch.h.
1244
1245 gdbarch_alloc(): If zero/NULL is not a suitable default,
1246 initialize the new field.
1247
1248 verify_gdbarch(): Confirm that the target updated the field
1249 correctly.
1250
1251 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1252 field is dumped out
1253
1254 \`\`startup_gdbarch()'': Append an initial value to the static
1255 variable (base values on the host's c-type system).
1256
1257 get_gdbarch(): Implement the set/get functions (probably using
1258 the macro's as shortcuts).
1259
1260 */
1261
1262 EOF
1263 function_list | while do_read
1264 do
1265 if class_is_variable_p
1266 then
1267 printf " ${returntype} ${function};\n"
1268 elif class_is_function_p
1269 then
1270 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1271 fi
1272 done
1273 printf "};\n"
1274
1275 # A pre-initialized vector
1276 printf "\n"
1277 printf "\n"
1278 cat <<EOF
1279 /* The default architecture uses host values (for want of a better
1280 choice). */
1281 EOF
1282 printf "\n"
1283 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1284 printf "\n"
1285 printf "struct gdbarch startup_gdbarch =\n"
1286 printf "{\n"
1287 printf " /* basic architecture information */\n"
1288 function_list | while do_read
1289 do
1290 if class_is_info_p
1291 then
1292 printf " ${staticdefault},\n"
1293 fi
1294 done
1295 cat <<EOF
1296 /* target specific vector and its dump routine */
1297 NULL, NULL,
1298 /*per-architecture data-pointers and swap regions */
1299 0, NULL, NULL,
1300 /* Multi-arch values */
1301 EOF
1302 function_list | while do_read
1303 do
1304 if class_is_function_p || class_is_variable_p
1305 then
1306 printf " ${staticdefault},\n"
1307 fi
1308 done
1309 cat <<EOF
1310 /* startup_gdbarch() */
1311 };
1312
1313 struct gdbarch *current_gdbarch = &startup_gdbarch;
1314
1315 /* Do any initialization needed for a non-multiarch configuration
1316 after the _initialize_MODULE functions have been run. */
1317 void
1318 initialize_non_multiarch ()
1319 {
1320 alloc_gdbarch_data (&startup_gdbarch);
1321 init_gdbarch_data (&startup_gdbarch);
1322 }
1323 EOF
1324
1325 # Create a new gdbarch struct
1326 printf "\n"
1327 printf "\n"
1328 cat <<EOF
1329 /* Create a new \`\`struct gdbarch'' based on information provided by
1330 \`\`struct gdbarch_info''. */
1331 EOF
1332 printf "\n"
1333 cat <<EOF
1334 struct gdbarch *
1335 gdbarch_alloc (const struct gdbarch_info *info,
1336 struct gdbarch_tdep *tdep)
1337 {
1338 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1339 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1340 the current local architecture and not the previous global
1341 architecture. This ensures that the new architectures initial
1342 values are not influenced by the previous architecture. Once
1343 everything is parameterised with gdbarch, this will go away. */
1344 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1345 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1346
1347 alloc_gdbarch_data (current_gdbarch);
1348
1349 current_gdbarch->tdep = tdep;
1350 EOF
1351 printf "\n"
1352 function_list | while do_read
1353 do
1354 if class_is_info_p
1355 then
1356 printf " current_gdbarch->${function} = info->${function};\n"
1357 fi
1358 done
1359 printf "\n"
1360 printf " /* Force the explicit initialization of these. */\n"
1361 function_list | while do_read
1362 do
1363 if class_is_function_p || class_is_variable_p
1364 then
1365 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1366 then
1367 printf " current_gdbarch->${function} = ${predefault};\n"
1368 fi
1369 fi
1370 done
1371 cat <<EOF
1372 /* gdbarch_alloc() */
1373
1374 return current_gdbarch;
1375 }
1376 EOF
1377
1378 # Free a gdbarch struct.
1379 printf "\n"
1380 printf "\n"
1381 cat <<EOF
1382 /* Free a gdbarch struct. This should never happen in normal
1383 operation --- once you've created a gdbarch, you keep it around.
1384 However, if an architecture's init function encounters an error
1385 building the structure, it may need to clean up a partially
1386 constructed gdbarch. */
1387
1388 void
1389 gdbarch_free (struct gdbarch *arch)
1390 {
1391 gdb_assert (arch != NULL);
1392 free_gdbarch_data (arch);
1393 xfree (arch);
1394 }
1395 EOF
1396
1397 # verify a new architecture
1398 printf "\n"
1399 printf "\n"
1400 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1401 printf "\n"
1402 cat <<EOF
1403 static void
1404 verify_gdbarch (struct gdbarch *gdbarch)
1405 {
1406 struct ui_file *log;
1407 struct cleanup *cleanups;
1408 long dummy;
1409 char *buf;
1410 /* Only perform sanity checks on a multi-arch target. */
1411 if (!GDB_MULTI_ARCH)
1412 return;
1413 log = mem_fileopen ();
1414 cleanups = make_cleanup_ui_file_delete (log);
1415 /* fundamental */
1416 if (gdbarch->byte_order == 0)
1417 fprintf_unfiltered (log, "\n\tbyte-order");
1418 if (gdbarch->bfd_arch_info == NULL)
1419 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1420 /* Check those that need to be defined for the given multi-arch level. */
1421 EOF
1422 function_list | while do_read
1423 do
1424 if class_is_function_p || class_is_variable_p
1425 then
1426 if [ "x${invalid_p}" = "x0" ]
1427 then
1428 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1429 elif class_is_predicate_p
1430 then
1431 printf " /* Skip verify of ${function}, has predicate */\n"
1432 # FIXME: See do_read for potential simplification
1433 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1434 then
1435 printf " if (${invalid_p})\n"
1436 printf " gdbarch->${function} = ${postdefault};\n"
1437 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1438 then
1439 printf " if (gdbarch->${function} == ${predefault})\n"
1440 printf " gdbarch->${function} = ${postdefault};\n"
1441 elif [ -n "${postdefault}" ]
1442 then
1443 printf " if (gdbarch->${function} == 0)\n"
1444 printf " gdbarch->${function} = ${postdefault};\n"
1445 elif [ -n "${invalid_p}" ]
1446 then
1447 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1448 printf " && (${invalid_p}))\n"
1449 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1450 elif [ -n "${predefault}" ]
1451 then
1452 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1453 printf " && (gdbarch->${function} == ${predefault}))\n"
1454 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1455 fi
1456 fi
1457 done
1458 cat <<EOF
1459 buf = ui_file_xstrdup (log, &dummy);
1460 make_cleanup (xfree, buf);
1461 if (strlen (buf) > 0)
1462 internal_error (__FILE__, __LINE__,
1463 "verify_gdbarch: the following are invalid ...%s",
1464 buf);
1465 do_cleanups (cleanups);
1466 }
1467 EOF
1468
1469 # dump the structure
1470 printf "\n"
1471 printf "\n"
1472 cat <<EOF
1473 /* Print out the details of the current architecture. */
1474
1475 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1476 just happens to match the global variable \`\`current_gdbarch''. That
1477 way macros refering to that variable get the local and not the global
1478 version - ulgh. Once everything is parameterised with gdbarch, this
1479 will go away. */
1480
1481 void
1482 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1483 {
1484 fprintf_unfiltered (file,
1485 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1486 GDB_MULTI_ARCH);
1487 EOF
1488 function_list | sort -t: +2 | while do_read
1489 do
1490 # multiarch functions don't have macros.
1491 if class_is_multiarch_p
1492 then
1493 printf " if (GDB_MULTI_ARCH)\n"
1494 printf " fprintf_unfiltered (file,\n"
1495 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1496 printf " (long) current_gdbarch->${function});\n"
1497 continue
1498 fi
1499 printf "#ifdef ${macro}\n"
1500 if [ "x${returntype}" = "xvoid" ]
1501 then
1502 printf "#if GDB_MULTI_ARCH\n"
1503 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1504 fi
1505 if class_is_function_p
1506 then
1507 printf " fprintf_unfiltered (file,\n"
1508 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1509 printf " \"${macro}(${actual})\",\n"
1510 printf " XSTRING (${macro} (${actual})));\n"
1511 else
1512 printf " fprintf_unfiltered (file,\n"
1513 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1514 printf " XSTRING (${macro}));\n"
1515 fi
1516 if [ "x${returntype}" = "xvoid" ]
1517 then
1518 printf "#endif\n"
1519 fi
1520 if [ "x${print_p}" = "x()" ]
1521 then
1522 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1523 elif [ "x${print_p}" = "x0" ]
1524 then
1525 printf " /* skip print of ${macro}, print_p == 0. */\n"
1526 elif [ -n "${print_p}" ]
1527 then
1528 printf " if (${print_p})\n"
1529 printf " fprintf_unfiltered (file,\n"
1530 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1531 printf " ${print});\n"
1532 elif class_is_function_p
1533 then
1534 printf " if (GDB_MULTI_ARCH)\n"
1535 printf " fprintf_unfiltered (file,\n"
1536 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1537 printf " (long) current_gdbarch->${function}\n"
1538 printf " /*${macro} ()*/);\n"
1539 else
1540 printf " fprintf_unfiltered (file,\n"
1541 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1542 printf " ${print});\n"
1543 fi
1544 printf "#endif\n"
1545 done
1546 cat <<EOF
1547 if (current_gdbarch->dump_tdep != NULL)
1548 current_gdbarch->dump_tdep (current_gdbarch, file);
1549 }
1550 EOF
1551
1552
1553 # GET/SET
1554 printf "\n"
1555 cat <<EOF
1556 struct gdbarch_tdep *
1557 gdbarch_tdep (struct gdbarch *gdbarch)
1558 {
1559 if (gdbarch_debug >= 2)
1560 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1561 return gdbarch->tdep;
1562 }
1563 EOF
1564 printf "\n"
1565 function_list | while do_read
1566 do
1567 if class_is_predicate_p
1568 then
1569 printf "\n"
1570 printf "int\n"
1571 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1572 printf "{\n"
1573 if [ -n "${valid_p}" ]
1574 then
1575 printf " return ${valid_p};\n"
1576 else
1577 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1578 fi
1579 printf "}\n"
1580 fi
1581 if class_is_function_p
1582 then
1583 printf "\n"
1584 printf "${returntype}\n"
1585 if [ "x${formal}" = "xvoid" ]
1586 then
1587 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1588 else
1589 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1590 fi
1591 printf "{\n"
1592 printf " if (gdbarch->${function} == 0)\n"
1593 printf " internal_error (__FILE__, __LINE__,\n"
1594 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1595 printf " if (gdbarch_debug >= 2)\n"
1596 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1597 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1598 then
1599 if class_is_multiarch_p
1600 then
1601 params="gdbarch"
1602 else
1603 params=""
1604 fi
1605 else
1606 if class_is_multiarch_p
1607 then
1608 params="gdbarch, ${actual}"
1609 else
1610 params="${actual}"
1611 fi
1612 fi
1613 if [ "x${returntype}" = "xvoid" ]
1614 then
1615 printf " gdbarch->${function} (${params});\n"
1616 else
1617 printf " return gdbarch->${function} (${params});\n"
1618 fi
1619 printf "}\n"
1620 printf "\n"
1621 printf "void\n"
1622 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1623 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1624 printf "{\n"
1625 printf " gdbarch->${function} = ${function};\n"
1626 printf "}\n"
1627 elif class_is_variable_p
1628 then
1629 printf "\n"
1630 printf "${returntype}\n"
1631 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1632 printf "{\n"
1633 if [ "x${invalid_p}" = "x0" ]
1634 then
1635 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1636 elif [ -n "${invalid_p}" ]
1637 then
1638 printf " if (${invalid_p})\n"
1639 printf " internal_error (__FILE__, __LINE__,\n"
1640 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1641 elif [ -n "${predefault}" ]
1642 then
1643 printf " if (gdbarch->${function} == ${predefault})\n"
1644 printf " internal_error (__FILE__, __LINE__,\n"
1645 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1646 fi
1647 printf " if (gdbarch_debug >= 2)\n"
1648 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1649 printf " return gdbarch->${function};\n"
1650 printf "}\n"
1651 printf "\n"
1652 printf "void\n"
1653 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1654 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1655 printf "{\n"
1656 printf " gdbarch->${function} = ${function};\n"
1657 printf "}\n"
1658 elif class_is_info_p
1659 then
1660 printf "\n"
1661 printf "${returntype}\n"
1662 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1663 printf "{\n"
1664 printf " if (gdbarch_debug >= 2)\n"
1665 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1666 printf " return gdbarch->${function};\n"
1667 printf "}\n"
1668 fi
1669 done
1670
1671 # All the trailing guff
1672 cat <<EOF
1673
1674
1675 /* Keep a registry of per-architecture data-pointers required by GDB
1676 modules. */
1677
1678 struct gdbarch_data
1679 {
1680 unsigned index;
1681 gdbarch_data_init_ftype *init;
1682 gdbarch_data_free_ftype *free;
1683 };
1684
1685 struct gdbarch_data_registration
1686 {
1687 struct gdbarch_data *data;
1688 struct gdbarch_data_registration *next;
1689 };
1690
1691 struct gdbarch_data_registry
1692 {
1693 unsigned nr;
1694 struct gdbarch_data_registration *registrations;
1695 };
1696
1697 struct gdbarch_data_registry gdbarch_data_registry =
1698 {
1699 0, NULL,
1700 };
1701
1702 struct gdbarch_data *
1703 register_gdbarch_data (gdbarch_data_init_ftype *init,
1704 gdbarch_data_free_ftype *free)
1705 {
1706 struct gdbarch_data_registration **curr;
1707 for (curr = &gdbarch_data_registry.registrations;
1708 (*curr) != NULL;
1709 curr = &(*curr)->next);
1710 (*curr) = XMALLOC (struct gdbarch_data_registration);
1711 (*curr)->next = NULL;
1712 (*curr)->data = XMALLOC (struct gdbarch_data);
1713 (*curr)->data->index = gdbarch_data_registry.nr++;
1714 (*curr)->data->init = init;
1715 (*curr)->data->free = free;
1716 return (*curr)->data;
1717 }
1718
1719
1720 /* Walk through all the registered users initializing each in turn. */
1721
1722 static void
1723 init_gdbarch_data (struct gdbarch *gdbarch)
1724 {
1725 struct gdbarch_data_registration *rego;
1726 for (rego = gdbarch_data_registry.registrations;
1727 rego != NULL;
1728 rego = rego->next)
1729 {
1730 struct gdbarch_data *data = rego->data;
1731 gdb_assert (data->index < gdbarch->nr_data);
1732 if (data->init != NULL)
1733 {
1734 void *pointer = data->init (gdbarch);
1735 set_gdbarch_data (gdbarch, data, pointer);
1736 }
1737 }
1738 }
1739
1740 /* Create/delete the gdbarch data vector. */
1741
1742 static void
1743 alloc_gdbarch_data (struct gdbarch *gdbarch)
1744 {
1745 gdb_assert (gdbarch->data == NULL);
1746 gdbarch->nr_data = gdbarch_data_registry.nr;
1747 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1748 }
1749
1750 static void
1751 free_gdbarch_data (struct gdbarch *gdbarch)
1752 {
1753 struct gdbarch_data_registration *rego;
1754 gdb_assert (gdbarch->data != NULL);
1755 for (rego = gdbarch_data_registry.registrations;
1756 rego != NULL;
1757 rego = rego->next)
1758 {
1759 struct gdbarch_data *data = rego->data;
1760 gdb_assert (data->index < gdbarch->nr_data);
1761 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1762 {
1763 data->free (gdbarch, gdbarch->data[data->index]);
1764 gdbarch->data[data->index] = NULL;
1765 }
1766 }
1767 xfree (gdbarch->data);
1768 gdbarch->data = NULL;
1769 }
1770
1771
1772 /* Initialize the current value of thee specified per-architecture
1773 data-pointer. */
1774
1775 void
1776 set_gdbarch_data (struct gdbarch *gdbarch,
1777 struct gdbarch_data *data,
1778 void *pointer)
1779 {
1780 gdb_assert (data->index < gdbarch->nr_data);
1781 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1782 data->free (gdbarch, gdbarch->data[data->index]);
1783 gdbarch->data[data->index] = pointer;
1784 }
1785
1786 /* Return the current value of the specified per-architecture
1787 data-pointer. */
1788
1789 void *
1790 gdbarch_data (struct gdbarch_data *data)
1791 {
1792 gdb_assert (data->index < current_gdbarch->nr_data);
1793 return current_gdbarch->data[data->index];
1794 }
1795
1796
1797
1798 /* Keep a registry of swapped data required by GDB modules. */
1799
1800 struct gdbarch_swap
1801 {
1802 void *swap;
1803 struct gdbarch_swap_registration *source;
1804 struct gdbarch_swap *next;
1805 };
1806
1807 struct gdbarch_swap_registration
1808 {
1809 void *data;
1810 unsigned long sizeof_data;
1811 gdbarch_swap_ftype *init;
1812 struct gdbarch_swap_registration *next;
1813 };
1814
1815 struct gdbarch_swap_registry
1816 {
1817 int nr;
1818 struct gdbarch_swap_registration *registrations;
1819 };
1820
1821 struct gdbarch_swap_registry gdbarch_swap_registry =
1822 {
1823 0, NULL,
1824 };
1825
1826 void
1827 register_gdbarch_swap (void *data,
1828 unsigned long sizeof_data,
1829 gdbarch_swap_ftype *init)
1830 {
1831 struct gdbarch_swap_registration **rego;
1832 for (rego = &gdbarch_swap_registry.registrations;
1833 (*rego) != NULL;
1834 rego = &(*rego)->next);
1835 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1836 (*rego)->next = NULL;
1837 (*rego)->init = init;
1838 (*rego)->data = data;
1839 (*rego)->sizeof_data = sizeof_data;
1840 }
1841
1842
1843 static void
1844 init_gdbarch_swap (struct gdbarch *gdbarch)
1845 {
1846 struct gdbarch_swap_registration *rego;
1847 struct gdbarch_swap **curr = &gdbarch->swap;
1848 for (rego = gdbarch_swap_registry.registrations;
1849 rego != NULL;
1850 rego = rego->next)
1851 {
1852 if (rego->data != NULL)
1853 {
1854 (*curr) = XMALLOC (struct gdbarch_swap);
1855 (*curr)->source = rego;
1856 (*curr)->swap = xmalloc (rego->sizeof_data);
1857 (*curr)->next = NULL;
1858 memset (rego->data, 0, rego->sizeof_data);
1859 curr = &(*curr)->next;
1860 }
1861 if (rego->init != NULL)
1862 rego->init ();
1863 }
1864 }
1865
1866 static void
1867 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1868 {
1869 struct gdbarch_swap *curr;
1870 for (curr = gdbarch->swap;
1871 curr != NULL;
1872 curr = curr->next)
1873 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1874 }
1875
1876 static void
1877 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1878 {
1879 struct gdbarch_swap *curr;
1880 for (curr = gdbarch->swap;
1881 curr != NULL;
1882 curr = curr->next)
1883 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1884 }
1885
1886
1887 /* Keep a registry of the architectures known by GDB. */
1888
1889 struct gdbarch_registration
1890 {
1891 enum bfd_architecture bfd_architecture;
1892 gdbarch_init_ftype *init;
1893 gdbarch_dump_tdep_ftype *dump_tdep;
1894 struct gdbarch_list *arches;
1895 struct gdbarch_registration *next;
1896 };
1897
1898 static struct gdbarch_registration *gdbarch_registry = NULL;
1899
1900 static void
1901 append_name (const char ***buf, int *nr, const char *name)
1902 {
1903 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1904 (*buf)[*nr] = name;
1905 *nr += 1;
1906 }
1907
1908 const char **
1909 gdbarch_printable_names (void)
1910 {
1911 if (GDB_MULTI_ARCH)
1912 {
1913 /* Accumulate a list of names based on the registed list of
1914 architectures. */
1915 enum bfd_architecture a;
1916 int nr_arches = 0;
1917 const char **arches = NULL;
1918 struct gdbarch_registration *rego;
1919 for (rego = gdbarch_registry;
1920 rego != NULL;
1921 rego = rego->next)
1922 {
1923 const struct bfd_arch_info *ap;
1924 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1925 if (ap == NULL)
1926 internal_error (__FILE__, __LINE__,
1927 "gdbarch_architecture_names: multi-arch unknown");
1928 do
1929 {
1930 append_name (&arches, &nr_arches, ap->printable_name);
1931 ap = ap->next;
1932 }
1933 while (ap != NULL);
1934 }
1935 append_name (&arches, &nr_arches, NULL);
1936 return arches;
1937 }
1938 else
1939 /* Just return all the architectures that BFD knows. Assume that
1940 the legacy architecture framework supports them. */
1941 return bfd_arch_list ();
1942 }
1943
1944
1945 void
1946 gdbarch_register (enum bfd_architecture bfd_architecture,
1947 gdbarch_init_ftype *init,
1948 gdbarch_dump_tdep_ftype *dump_tdep)
1949 {
1950 struct gdbarch_registration **curr;
1951 const struct bfd_arch_info *bfd_arch_info;
1952 /* Check that BFD recognizes this architecture */
1953 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1954 if (bfd_arch_info == NULL)
1955 {
1956 internal_error (__FILE__, __LINE__,
1957 "gdbarch: Attempt to register unknown architecture (%d)",
1958 bfd_architecture);
1959 }
1960 /* Check that we haven't seen this architecture before */
1961 for (curr = &gdbarch_registry;
1962 (*curr) != NULL;
1963 curr = &(*curr)->next)
1964 {
1965 if (bfd_architecture == (*curr)->bfd_architecture)
1966 internal_error (__FILE__, __LINE__,
1967 "gdbarch: Duplicate registraration of architecture (%s)",
1968 bfd_arch_info->printable_name);
1969 }
1970 /* log it */
1971 if (gdbarch_debug)
1972 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1973 bfd_arch_info->printable_name,
1974 (long) init);
1975 /* Append it */
1976 (*curr) = XMALLOC (struct gdbarch_registration);
1977 (*curr)->bfd_architecture = bfd_architecture;
1978 (*curr)->init = init;
1979 (*curr)->dump_tdep = dump_tdep;
1980 (*curr)->arches = NULL;
1981 (*curr)->next = NULL;
1982 /* When non- multi-arch, install whatever target dump routine we've
1983 been provided - hopefully that routine has been written correctly
1984 and works regardless of multi-arch. */
1985 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1986 && startup_gdbarch.dump_tdep == NULL)
1987 startup_gdbarch.dump_tdep = dump_tdep;
1988 }
1989
1990 void
1991 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1992 gdbarch_init_ftype *init)
1993 {
1994 gdbarch_register (bfd_architecture, init, NULL);
1995 }
1996
1997
1998 /* Look for an architecture using gdbarch_info. Base search on only
1999 BFD_ARCH_INFO and BYTE_ORDER. */
2000
2001 struct gdbarch_list *
2002 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2003 const struct gdbarch_info *info)
2004 {
2005 for (; arches != NULL; arches = arches->next)
2006 {
2007 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2008 continue;
2009 if (info->byte_order != arches->gdbarch->byte_order)
2010 continue;
2011 return arches;
2012 }
2013 return NULL;
2014 }
2015
2016
2017 /* Update the current architecture. Return ZERO if the update request
2018 failed. */
2019
2020 int
2021 gdbarch_update_p (struct gdbarch_info info)
2022 {
2023 struct gdbarch *new_gdbarch;
2024 struct gdbarch_list **list;
2025 struct gdbarch_registration *rego;
2026
2027 /* Fill in missing parts of the INFO struct using a number of
2028 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2029
2030 /* \`\`(gdb) set architecture ...'' */
2031 if (info.bfd_arch_info == NULL
2032 && !TARGET_ARCHITECTURE_AUTO)
2033 info.bfd_arch_info = TARGET_ARCHITECTURE;
2034 if (info.bfd_arch_info == NULL
2035 && info.abfd != NULL
2036 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2037 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2038 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2039 if (info.bfd_arch_info == NULL)
2040 info.bfd_arch_info = TARGET_ARCHITECTURE;
2041
2042 /* \`\`(gdb) set byte-order ...'' */
2043 if (info.byte_order == 0
2044 && !TARGET_BYTE_ORDER_AUTO)
2045 info.byte_order = TARGET_BYTE_ORDER;
2046 /* From the INFO struct. */
2047 if (info.byte_order == 0
2048 && info.abfd != NULL)
2049 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
2050 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2051 : 0);
2052 /* From the current target. */
2053 if (info.byte_order == 0)
2054 info.byte_order = TARGET_BYTE_ORDER;
2055
2056 /* Must have found some sort of architecture. */
2057 gdb_assert (info.bfd_arch_info != NULL);
2058
2059 if (gdbarch_debug)
2060 {
2061 fprintf_unfiltered (gdb_stdlog,
2062 "gdbarch_update: info.bfd_arch_info %s\n",
2063 (info.bfd_arch_info != NULL
2064 ? info.bfd_arch_info->printable_name
2065 : "(null)"));
2066 fprintf_unfiltered (gdb_stdlog,
2067 "gdbarch_update: info.byte_order %d (%s)\n",
2068 info.byte_order,
2069 (info.byte_order == BIG_ENDIAN ? "big"
2070 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2071 : "default"));
2072 fprintf_unfiltered (gdb_stdlog,
2073 "gdbarch_update: info.abfd 0x%lx\n",
2074 (long) info.abfd);
2075 fprintf_unfiltered (gdb_stdlog,
2076 "gdbarch_update: info.tdep_info 0x%lx\n",
2077 (long) info.tdep_info);
2078 }
2079
2080 /* Find the target that knows about this architecture. */
2081 for (rego = gdbarch_registry;
2082 rego != NULL;
2083 rego = rego->next)
2084 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2085 break;
2086 if (rego == NULL)
2087 {
2088 if (gdbarch_debug)
2089 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2090 return 0;
2091 }
2092
2093 /* Ask the target for a replacement architecture. */
2094 new_gdbarch = rego->init (info, rego->arches);
2095
2096 /* Did the target like it? No. Reject the change. */
2097 if (new_gdbarch == NULL)
2098 {
2099 if (gdbarch_debug)
2100 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2101 return 0;
2102 }
2103
2104 /* Did the architecture change? No. Do nothing. */
2105 if (current_gdbarch == new_gdbarch)
2106 {
2107 if (gdbarch_debug)
2108 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2109 (long) new_gdbarch,
2110 new_gdbarch->bfd_arch_info->printable_name);
2111 return 1;
2112 }
2113
2114 /* Swap all data belonging to the old target out */
2115 swapout_gdbarch_swap (current_gdbarch);
2116
2117 /* Is this a pre-existing architecture? Yes. Swap it in. */
2118 for (list = &rego->arches;
2119 (*list) != NULL;
2120 list = &(*list)->next)
2121 {
2122 if ((*list)->gdbarch == new_gdbarch)
2123 {
2124 if (gdbarch_debug)
2125 fprintf_unfiltered (gdb_stdlog,
2126 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2127 (long) new_gdbarch,
2128 new_gdbarch->bfd_arch_info->printable_name);
2129 current_gdbarch = new_gdbarch;
2130 swapin_gdbarch_swap (new_gdbarch);
2131 architecture_changed_event ();
2132 return 1;
2133 }
2134 }
2135
2136 /* Append this new architecture to this targets list. */
2137 (*list) = XMALLOC (struct gdbarch_list);
2138 (*list)->next = NULL;
2139 (*list)->gdbarch = new_gdbarch;
2140
2141 /* Switch to this new architecture. Dump it out. */
2142 current_gdbarch = new_gdbarch;
2143 if (gdbarch_debug)
2144 {
2145 fprintf_unfiltered (gdb_stdlog,
2146 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2147 (long) new_gdbarch,
2148 new_gdbarch->bfd_arch_info->printable_name);
2149 }
2150
2151 /* Check that the newly installed architecture is valid. Plug in
2152 any post init values. */
2153 new_gdbarch->dump_tdep = rego->dump_tdep;
2154 verify_gdbarch (new_gdbarch);
2155
2156 /* Initialize the per-architecture memory (swap) areas.
2157 CURRENT_GDBARCH must be update before these modules are
2158 called. */
2159 init_gdbarch_swap (new_gdbarch);
2160
2161 /* Initialize the per-architecture data-pointer of all parties that
2162 registered an interest in this architecture. CURRENT_GDBARCH
2163 must be updated before these modules are called. */
2164 init_gdbarch_data (new_gdbarch);
2165 architecture_changed_event ();
2166
2167 if (gdbarch_debug)
2168 gdbarch_dump (current_gdbarch, gdb_stdlog);
2169
2170 return 1;
2171 }
2172
2173
2174 /* Disassembler */
2175
2176 /* Pointer to the target-dependent disassembly function. */
2177 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2178 disassemble_info tm_print_insn_info;
2179
2180
2181 extern void _initialize_gdbarch (void);
2182
2183 void
2184 _initialize_gdbarch (void)
2185 {
2186 struct cmd_list_element *c;
2187
2188 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2189 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2190 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2191 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2192 tm_print_insn_info.print_address_func = dis_asm_print_address;
2193
2194 add_show_from_set (add_set_cmd ("arch",
2195 class_maintenance,
2196 var_zinteger,
2197 (char *)&gdbarch_debug,
2198 "Set architecture debugging.\\n\\
2199 When non-zero, architecture debugging is enabled.", &setdebuglist),
2200 &showdebuglist);
2201 c = add_set_cmd ("archdebug",
2202 class_maintenance,
2203 var_zinteger,
2204 (char *)&gdbarch_debug,
2205 "Set architecture debugging.\\n\\
2206 When non-zero, architecture debugging is enabled.", &setlist);
2207
2208 deprecate_cmd (c, "set debug arch");
2209 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2210 }
2211 EOF
2212
2213 # close things off
2214 exec 1>&2
2215 #../move-if-change new-gdbarch.c gdbarch.c
2216 compare_new gdbarch.c