gdb
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=C ; export LANG
26 LC_ALL=C ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "half", "float", "double", and
367 # "long double". These bit/format pairs should eventually be combined
368 # into a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
374 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
376 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
378 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
380
381 # For most targets, a pointer on the target and its representation as an
382 # address in GDB have the same size and "look the same". For such a
383 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
384 # / addr_bit will be set from it.
385 #
386 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
387 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
388 # gdbarch_address_to_pointer as well.
389 #
390 # ptr_bit is the size of a pointer on the target
391 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
392 # addr_bit is the size of a target address as represented in gdb
393 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
394 #
395 # dwarf2_addr_size is the target address size as used in the Dwarf debug
396 # info. For .debug_frame FDEs, this is supposed to be the target address
397 # size from the associated CU header, and which is equivalent to the
398 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
399 # Unfortunately there is no good way to determine this value. Therefore
400 # dwarf2_addr_size simply defaults to the target pointer size.
401 #
402 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
403 # defined using the target's pointer size so far.
404 #
405 # Note that dwarf2_addr_size only needs to be redefined by a target if the
406 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
407 # and if Dwarf versions < 4 need to be supported.
408 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
409 #
410 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
411 v:int:char_signed:::1:-1:1
412 #
413 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
414 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
415 # Function for getting target's idea of a frame pointer. FIXME: GDB's
416 # whole scheme for dealing with "frames" and "frame pointers" needs a
417 # serious shakedown.
418 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
419 #
420 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
421 # Read a register into a new struct value. If the register is wholly
422 # or partly unavailable, this should call mark_value_bytes_unavailable
423 # as appropriate. If this is defined, then pseudo_register_read will
424 # never be called.
425 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
426 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
427 #
428 v:int:num_regs:::0:-1
429 # This macro gives the number of pseudo-registers that live in the
430 # register namespace but do not get fetched or stored on the target.
431 # These pseudo-registers may be aliases for other registers,
432 # combinations of other registers, or they may be computed by GDB.
433 v:int:num_pseudo_regs:::0:0::0
434
435 # Assemble agent expression bytecode to collect pseudo-register REG.
436 # Return -1 if something goes wrong, 0 otherwise.
437 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
438
439 # Assemble agent expression bytecode to push the value of pseudo-register
440 # REG on the interpreter stack.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
443
444 # GDB's standard (or well known) register numbers. These can map onto
445 # a real register or a pseudo (computed) register or not be defined at
446 # all (-1).
447 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
448 v:int:sp_regnum:::-1:-1::0
449 v:int:pc_regnum:::-1:-1::0
450 v:int:ps_regnum:::-1:-1::0
451 v:int:fp0_regnum:::0:-1::0
452 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
453 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
454 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
455 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
456 # Convert from an sdb register number to an internal gdb register number.
457 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
458 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
459 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
460 m:const char *:register_name:int regnr:regnr::0
461
462 # Return the type of a register specified by the architecture. Only
463 # the register cache should call this function directly; others should
464 # use "register_type".
465 M:struct type *:register_type:int reg_nr:reg_nr
466
467 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
468 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
469 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
470 # deprecated_fp_regnum.
471 v:int:deprecated_fp_regnum:::-1:-1::0
472
473 # See gdbint.texinfo. See infcall.c.
474 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
475 v:int:call_dummy_location::::AT_ENTRY_POINT::0
476 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
477
478 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
479 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
480 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
481 # MAP a GDB RAW register number onto a simulator register number. See
482 # also include/...-sim.h.
483 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
484 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
485 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
486 # setjmp/longjmp support.
487 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
488 #
489 v:int:believe_pcc_promotion:::::::
490 #
491 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
492 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
493 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
494 # Construct a value representing the contents of register REGNUM in
495 # frame FRAME, interpreted as type TYPE. The routine needs to
496 # allocate and return a struct value with all value attributes
497 # (but not the value contents) filled in.
498 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
499 #
500 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
501 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
502 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
503
504 # Return the return-value convention that will be used by FUNCTYPE
505 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
506 # case the return convention is computed based only on VALTYPE.
507 #
508 # If READBUF is not NULL, extract the return value and save it in this buffer.
509 #
510 # If WRITEBUF is not NULL, it contains a return value which will be
511 # stored into the appropriate register. This can be used when we want
512 # to force the value returned by a function (see the "return" command
513 # for instance).
514 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
515
516 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
517 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
518 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
519 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
520 # Return the adjusted address and kind to use for Z0/Z1 packets.
521 # KIND is usually the memory length of the breakpoint, but may have a
522 # different target-specific meaning.
523 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
524 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
525 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
526 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
527 v:CORE_ADDR:decr_pc_after_break:::0:::0
528
529 # A function can be addressed by either it's "pointer" (possibly a
530 # descriptor address) or "entry point" (first executable instruction).
531 # The method "convert_from_func_ptr_addr" converting the former to the
532 # latter. gdbarch_deprecated_function_start_offset is being used to implement
533 # a simplified subset of that functionality - the function's address
534 # corresponds to the "function pointer" and the function's start
535 # corresponds to the "function entry point" - and hence is redundant.
536
537 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
538
539 # Return the remote protocol register number associated with this
540 # register. Normally the identity mapping.
541 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
542
543 # Fetch the target specific address used to represent a load module.
544 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
545 #
546 v:CORE_ADDR:frame_args_skip:::0:::0
547 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
548 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
549 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
550 # frame-base. Enable frame-base before frame-unwind.
551 F:int:frame_num_args:struct frame_info *frame:frame
552 #
553 M:CORE_ADDR:frame_align:CORE_ADDR address:address
554 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
555 v:int:frame_red_zone_size
556 #
557 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
558 # On some machines there are bits in addresses which are not really
559 # part of the address, but are used by the kernel, the hardware, etc.
560 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
561 # we get a "real" address such as one would find in a symbol table.
562 # This is used only for addresses of instructions, and even then I'm
563 # not sure it's used in all contexts. It exists to deal with there
564 # being a few stray bits in the PC which would mislead us, not as some
565 # sort of generic thing to handle alignment or segmentation (it's
566 # possible it should be in TARGET_READ_PC instead).
567 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
568 # It is not at all clear why gdbarch_smash_text_address is not folded into
569 # gdbarch_addr_bits_remove.
570 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
571
572 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
573 # indicates if the target needs software single step. An ISA method to
574 # implement it.
575 #
576 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
577 # breakpoints using the breakpoint system instead of blatting memory directly
578 # (as with rs6000).
579 #
580 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
581 # target can single step. If not, then implement single step using breakpoints.
582 #
583 # A return value of 1 means that the software_single_step breakpoints
584 # were inserted; 0 means they were not.
585 F:int:software_single_step:struct frame_info *frame:frame
586
587 # Return non-zero if the processor is executing a delay slot and a
588 # further single-step is needed before the instruction finishes.
589 M:int:single_step_through_delay:struct frame_info *frame:frame
590 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
591 # disassembler. Perhaps objdump can handle it?
592 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
593 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
594
595
596 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
597 # evaluates non-zero, this is the address where the debugger will place
598 # a step-resume breakpoint to get us past the dynamic linker.
599 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
600 # Some systems also have trampoline code for returning from shared libs.
601 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
602
603 # A target might have problems with watchpoints as soon as the stack
604 # frame of the current function has been destroyed. This mostly happens
605 # as the first action in a funtion's epilogue. in_function_epilogue_p()
606 # is defined to return a non-zero value if either the given addr is one
607 # instruction after the stack destroying instruction up to the trailing
608 # return instruction or if we can figure out that the stack frame has
609 # already been invalidated regardless of the value of addr. Targets
610 # which don't suffer from that problem could just let this functionality
611 # untouched.
612 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
613 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
614 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
615 v:int:cannot_step_breakpoint:::0:0::0
616 v:int:have_nonsteppable_watchpoint:::0:0::0
617 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
618 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
619 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
620 # Is a register in a group
621 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
622 # Fetch the pointer to the ith function argument.
623 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
624
625 # Return the appropriate register set for a core file section with
626 # name SECT_NAME and size SECT_SIZE.
627 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
628
629 # Supported register notes in a core file.
630 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
631
632 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
633 # core file into buffer READBUF with length LEN.
634 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
635
636 # How the core target converts a PTID from a core file to a string.
637 M:char *:core_pid_to_str:ptid_t ptid:ptid
638
639 # BFD target to use when generating a core file.
640 V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
641
642 # If the elements of C++ vtables are in-place function descriptors rather
643 # than normal function pointers (which may point to code or a descriptor),
644 # set this to one.
645 v:int:vtable_function_descriptors:::0:0::0
646
647 # Set if the least significant bit of the delta is used instead of the least
648 # significant bit of the pfn for pointers to virtual member functions.
649 v:int:vbit_in_delta:::0:0::0
650
651 # Advance PC to next instruction in order to skip a permanent breakpoint.
652 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
653
654 # The maximum length of an instruction on this architecture.
655 V:ULONGEST:max_insn_length:::0:0
656
657 # Copy the instruction at FROM to TO, and make any adjustments
658 # necessary to single-step it at that address.
659 #
660 # REGS holds the state the thread's registers will have before
661 # executing the copied instruction; the PC in REGS will refer to FROM,
662 # not the copy at TO. The caller should update it to point at TO later.
663 #
664 # Return a pointer to data of the architecture's choice to be passed
665 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
666 # the instruction's effects have been completely simulated, with the
667 # resulting state written back to REGS.
668 #
669 # For a general explanation of displaced stepping and how GDB uses it,
670 # see the comments in infrun.c.
671 #
672 # The TO area is only guaranteed to have space for
673 # gdbarch_max_insn_length (arch) bytes, so this function must not
674 # write more bytes than that to that area.
675 #
676 # If you do not provide this function, GDB assumes that the
677 # architecture does not support displaced stepping.
678 #
679 # If your architecture doesn't need to adjust instructions before
680 # single-stepping them, consider using simple_displaced_step_copy_insn
681 # here.
682 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
683
684 # Return true if GDB should use hardware single-stepping to execute
685 # the displaced instruction identified by CLOSURE. If false,
686 # GDB will simply restart execution at the displaced instruction
687 # location, and it is up to the target to ensure GDB will receive
688 # control again (e.g. by placing a software breakpoint instruction
689 # into the displaced instruction buffer).
690 #
691 # The default implementation returns false on all targets that
692 # provide a gdbarch_software_single_step routine, and true otherwise.
693 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
694
695 # Fix up the state resulting from successfully single-stepping a
696 # displaced instruction, to give the result we would have gotten from
697 # stepping the instruction in its original location.
698 #
699 # REGS is the register state resulting from single-stepping the
700 # displaced instruction.
701 #
702 # CLOSURE is the result from the matching call to
703 # gdbarch_displaced_step_copy_insn.
704 #
705 # If you provide gdbarch_displaced_step_copy_insn.but not this
706 # function, then GDB assumes that no fixup is needed after
707 # single-stepping the instruction.
708 #
709 # For a general explanation of displaced stepping and how GDB uses it,
710 # see the comments in infrun.c.
711 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
712
713 # Free a closure returned by gdbarch_displaced_step_copy_insn.
714 #
715 # If you provide gdbarch_displaced_step_copy_insn, you must provide
716 # this function as well.
717 #
718 # If your architecture uses closures that don't need to be freed, then
719 # you can use simple_displaced_step_free_closure here.
720 #
721 # For a general explanation of displaced stepping and how GDB uses it,
722 # see the comments in infrun.c.
723 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
724
725 # Return the address of an appropriate place to put displaced
726 # instructions while we step over them. There need only be one such
727 # place, since we're only stepping one thread over a breakpoint at a
728 # time.
729 #
730 # For a general explanation of displaced stepping and how GDB uses it,
731 # see the comments in infrun.c.
732 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
733
734 # Relocate an instruction to execute at a different address. OLDLOC
735 # is the address in the inferior memory where the instruction to
736 # relocate is currently at. On input, TO points to the destination
737 # where we want the instruction to be copied (and possibly adjusted)
738 # to. On output, it points to one past the end of the resulting
739 # instruction(s). The effect of executing the instruction at TO shall
740 # be the same as if executing it at FROM. For example, call
741 # instructions that implicitly push the return address on the stack
742 # should be adjusted to return to the instruction after OLDLOC;
743 # relative branches, and other PC-relative instructions need the
744 # offset adjusted; etc.
745 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
746
747 # Refresh overlay mapped state for section OSECT.
748 F:void:overlay_update:struct obj_section *osect:osect
749
750 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
751
752 # Handle special encoding of static variables in stabs debug info.
753 F:char *:static_transform_name:char *name:name
754 # Set if the address in N_SO or N_FUN stabs may be zero.
755 v:int:sofun_address_maybe_missing:::0:0::0
756
757 # Parse the instruction at ADDR storing in the record execution log
758 # the registers REGCACHE and memory ranges that will be affected when
759 # the instruction executes, along with their current values.
760 # Return -1 if something goes wrong, 0 otherwise.
761 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
762
763 # Save process state after a signal.
764 # Return -1 if something goes wrong, 0 otherwise.
765 M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
766
767 # Signal translation: translate inferior's signal (host's) number into
768 # GDB's representation.
769 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
770 # Signal translation: translate GDB's signal number into inferior's host
771 # signal number.
772 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
773
774 # Extra signal info inspection.
775 #
776 # Return a type suitable to inspect extra signal information.
777 M:struct type *:get_siginfo_type:void:
778
779 # Record architecture-specific information from the symbol table.
780 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
781
782 # Function for the 'catch syscall' feature.
783
784 # Get architecture-specific system calls information from registers.
785 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
786
787 # True if the list of shared libraries is one and only for all
788 # processes, as opposed to a list of shared libraries per inferior.
789 # This usually means that all processes, although may or may not share
790 # an address space, will see the same set of symbols at the same
791 # addresses.
792 v:int:has_global_solist:::0:0::0
793
794 # On some targets, even though each inferior has its own private
795 # address space, the debug interface takes care of making breakpoints
796 # visible to all address spaces automatically. For such cases,
797 # this property should be set to true.
798 v:int:has_global_breakpoints:::0:0::0
799
800 # True if inferiors share an address space (e.g., uClinux).
801 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
802
803 # True if a fast tracepoint can be set at an address.
804 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
805
806 # Return the "auto" target charset.
807 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
808 # Return the "auto" target wide charset.
809 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
810
811 # If non-empty, this is a file extension that will be opened in place
812 # of the file extension reported by the shared library list.
813 #
814 # This is most useful for toolchains that use a post-linker tool,
815 # where the names of the files run on the target differ in extension
816 # compared to the names of the files GDB should load for debug info.
817 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
818
819 # If true, the target OS has DOS-based file system semantics. That
820 # is, absolute paths include a drive name, and the backslash is
821 # considered a directory separator.
822 v:int:has_dos_based_file_system:::0:0::0
823 EOF
824 }
825
826 #
827 # The .log file
828 #
829 exec > new-gdbarch.log
830 function_list | while do_read
831 do
832 cat <<EOF
833 ${class} ${returntype} ${function} ($formal)
834 EOF
835 for r in ${read}
836 do
837 eval echo \"\ \ \ \ ${r}=\${${r}}\"
838 done
839 if class_is_predicate_p && fallback_default_p
840 then
841 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
842 kill $$
843 exit 1
844 fi
845 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
846 then
847 echo "Error: postdefault is useless when invalid_p=0" 1>&2
848 kill $$
849 exit 1
850 fi
851 if class_is_multiarch_p
852 then
853 if class_is_predicate_p ; then :
854 elif test "x${predefault}" = "x"
855 then
856 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
857 kill $$
858 exit 1
859 fi
860 fi
861 echo ""
862 done
863
864 exec 1>&2
865 compare_new gdbarch.log
866
867
868 copyright ()
869 {
870 cat <<EOF
871 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
872
873 /* Dynamic architecture support for GDB, the GNU debugger.
874
875 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
876 2007, 2008, 2009 Free Software Foundation, Inc.
877
878 This file is part of GDB.
879
880 This program is free software; you can redistribute it and/or modify
881 it under the terms of the GNU General Public License as published by
882 the Free Software Foundation; either version 3 of the License, or
883 (at your option) any later version.
884
885 This program is distributed in the hope that it will be useful,
886 but WITHOUT ANY WARRANTY; without even the implied warranty of
887 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
888 GNU General Public License for more details.
889
890 You should have received a copy of the GNU General Public License
891 along with this program. If not, see <http://www.gnu.org/licenses/>. */
892
893 /* This file was created with the aid of \`\`gdbarch.sh''.
894
895 The Bourne shell script \`\`gdbarch.sh'' creates the files
896 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
897 against the existing \`\`gdbarch.[hc]''. Any differences found
898 being reported.
899
900 If editing this file, please also run gdbarch.sh and merge any
901 changes into that script. Conversely, when making sweeping changes
902 to this file, modifying gdbarch.sh and using its output may prove
903 easier. */
904
905 EOF
906 }
907
908 #
909 # The .h file
910 #
911
912 exec > new-gdbarch.h
913 copyright
914 cat <<EOF
915 #ifndef GDBARCH_H
916 #define GDBARCH_H
917
918 struct floatformat;
919 struct ui_file;
920 struct frame_info;
921 struct value;
922 struct objfile;
923 struct obj_section;
924 struct minimal_symbol;
925 struct regcache;
926 struct reggroup;
927 struct regset;
928 struct disassemble_info;
929 struct target_ops;
930 struct obstack;
931 struct bp_target_info;
932 struct target_desc;
933 struct displaced_step_closure;
934 struct core_regset_section;
935 struct syscall;
936 struct agent_expr;
937
938 /* The architecture associated with the connection to the target.
939
940 The architecture vector provides some information that is really
941 a property of the target: The layout of certain packets, for instance;
942 or the solib_ops vector. Etc. To differentiate architecture accesses
943 to per-target properties from per-thread/per-frame/per-objfile properties,
944 accesses to per-target properties should be made through target_gdbarch.
945
946 Eventually, when support for multiple targets is implemented in
947 GDB, this global should be made target-specific. */
948 extern struct gdbarch *target_gdbarch;
949 EOF
950
951 # function typedef's
952 printf "\n"
953 printf "\n"
954 printf "/* The following are pre-initialized by GDBARCH. */\n"
955 function_list | while do_read
956 do
957 if class_is_info_p
958 then
959 printf "\n"
960 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
961 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
962 fi
963 done
964
965 # function typedef's
966 printf "\n"
967 printf "\n"
968 printf "/* The following are initialized by the target dependent code. */\n"
969 function_list | while do_read
970 do
971 if [ -n "${comment}" ]
972 then
973 echo "${comment}" | sed \
974 -e '2 s,#,/*,' \
975 -e '3,$ s,#, ,' \
976 -e '$ s,$, */,'
977 fi
978
979 if class_is_predicate_p
980 then
981 printf "\n"
982 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
983 fi
984 if class_is_variable_p
985 then
986 printf "\n"
987 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
988 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
989 fi
990 if class_is_function_p
991 then
992 printf "\n"
993 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
994 then
995 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
996 elif class_is_multiarch_p
997 then
998 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
999 else
1000 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1001 fi
1002 if [ "x${formal}" = "xvoid" ]
1003 then
1004 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1005 else
1006 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1007 fi
1008 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1009 fi
1010 done
1011
1012 # close it off
1013 cat <<EOF
1014
1015 /* Definition for an unknown syscall, used basically in error-cases. */
1016 #define UNKNOWN_SYSCALL (-1)
1017
1018 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1019
1020
1021 /* Mechanism for co-ordinating the selection of a specific
1022 architecture.
1023
1024 GDB targets (*-tdep.c) can register an interest in a specific
1025 architecture. Other GDB components can register a need to maintain
1026 per-architecture data.
1027
1028 The mechanisms below ensures that there is only a loose connection
1029 between the set-architecture command and the various GDB
1030 components. Each component can independently register their need
1031 to maintain architecture specific data with gdbarch.
1032
1033 Pragmatics:
1034
1035 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1036 didn't scale.
1037
1038 The more traditional mega-struct containing architecture specific
1039 data for all the various GDB components was also considered. Since
1040 GDB is built from a variable number of (fairly independent)
1041 components it was determined that the global aproach was not
1042 applicable. */
1043
1044
1045 /* Register a new architectural family with GDB.
1046
1047 Register support for the specified ARCHITECTURE with GDB. When
1048 gdbarch determines that the specified architecture has been
1049 selected, the corresponding INIT function is called.
1050
1051 --
1052
1053 The INIT function takes two parameters: INFO which contains the
1054 information available to gdbarch about the (possibly new)
1055 architecture; ARCHES which is a list of the previously created
1056 \`\`struct gdbarch'' for this architecture.
1057
1058 The INFO parameter is, as far as possible, be pre-initialized with
1059 information obtained from INFO.ABFD or the global defaults.
1060
1061 The ARCHES parameter is a linked list (sorted most recently used)
1062 of all the previously created architures for this architecture
1063 family. The (possibly NULL) ARCHES->gdbarch can used to access
1064 values from the previously selected architecture for this
1065 architecture family.
1066
1067 The INIT function shall return any of: NULL - indicating that it
1068 doesn't recognize the selected architecture; an existing \`\`struct
1069 gdbarch'' from the ARCHES list - indicating that the new
1070 architecture is just a synonym for an earlier architecture (see
1071 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1072 - that describes the selected architecture (see gdbarch_alloc()).
1073
1074 The DUMP_TDEP function shall print out all target specific values.
1075 Care should be taken to ensure that the function works in both the
1076 multi-arch and non- multi-arch cases. */
1077
1078 struct gdbarch_list
1079 {
1080 struct gdbarch *gdbarch;
1081 struct gdbarch_list *next;
1082 };
1083
1084 struct gdbarch_info
1085 {
1086 /* Use default: NULL (ZERO). */
1087 const struct bfd_arch_info *bfd_arch_info;
1088
1089 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1090 int byte_order;
1091
1092 int byte_order_for_code;
1093
1094 /* Use default: NULL (ZERO). */
1095 bfd *abfd;
1096
1097 /* Use default: NULL (ZERO). */
1098 struct gdbarch_tdep_info *tdep_info;
1099
1100 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1101 enum gdb_osabi osabi;
1102
1103 /* Use default: NULL (ZERO). */
1104 const struct target_desc *target_desc;
1105 };
1106
1107 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1108 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1109
1110 /* DEPRECATED - use gdbarch_register() */
1111 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1112
1113 extern void gdbarch_register (enum bfd_architecture architecture,
1114 gdbarch_init_ftype *,
1115 gdbarch_dump_tdep_ftype *);
1116
1117
1118 /* Return a freshly allocated, NULL terminated, array of the valid
1119 architecture names. Since architectures are registered during the
1120 _initialize phase this function only returns useful information
1121 once initialization has been completed. */
1122
1123 extern const char **gdbarch_printable_names (void);
1124
1125
1126 /* Helper function. Search the list of ARCHES for a GDBARCH that
1127 matches the information provided by INFO. */
1128
1129 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1130
1131
1132 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1133 basic initialization using values obtained from the INFO and TDEP
1134 parameters. set_gdbarch_*() functions are called to complete the
1135 initialization of the object. */
1136
1137 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1138
1139
1140 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1141 It is assumed that the caller freeds the \`\`struct
1142 gdbarch_tdep''. */
1143
1144 extern void gdbarch_free (struct gdbarch *);
1145
1146
1147 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1148 obstack. The memory is freed when the corresponding architecture
1149 is also freed. */
1150
1151 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1152 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1153 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1154
1155
1156 /* Helper function. Force an update of the current architecture.
1157
1158 The actual architecture selected is determined by INFO, \`\`(gdb) set
1159 architecture'' et.al., the existing architecture and BFD's default
1160 architecture. INFO should be initialized to zero and then selected
1161 fields should be updated.
1162
1163 Returns non-zero if the update succeeds. */
1164
1165 extern int gdbarch_update_p (struct gdbarch_info info);
1166
1167
1168 /* Helper function. Find an architecture matching info.
1169
1170 INFO should be initialized using gdbarch_info_init, relevant fields
1171 set, and then finished using gdbarch_info_fill.
1172
1173 Returns the corresponding architecture, or NULL if no matching
1174 architecture was found. */
1175
1176 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1177
1178
1179 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1180
1181 FIXME: kettenis/20031124: Of the functions that follow, only
1182 gdbarch_from_bfd is supposed to survive. The others will
1183 dissappear since in the future GDB will (hopefully) be truly
1184 multi-arch. However, for now we're still stuck with the concept of
1185 a single active architecture. */
1186
1187 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1188
1189
1190 /* Register per-architecture data-pointer.
1191
1192 Reserve space for a per-architecture data-pointer. An identifier
1193 for the reserved data-pointer is returned. That identifer should
1194 be saved in a local static variable.
1195
1196 Memory for the per-architecture data shall be allocated using
1197 gdbarch_obstack_zalloc. That memory will be deleted when the
1198 corresponding architecture object is deleted.
1199
1200 When a previously created architecture is re-selected, the
1201 per-architecture data-pointer for that previous architecture is
1202 restored. INIT() is not re-called.
1203
1204 Multiple registrarants for any architecture are allowed (and
1205 strongly encouraged). */
1206
1207 struct gdbarch_data;
1208
1209 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1210 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1211 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1212 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1213 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1214 struct gdbarch_data *data,
1215 void *pointer);
1216
1217 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1218
1219
1220 /* Set the dynamic target-system-dependent parameters (architecture,
1221 byte-order, ...) using information found in the BFD. */
1222
1223 extern void set_gdbarch_from_file (bfd *);
1224
1225
1226 /* Initialize the current architecture to the "first" one we find on
1227 our list. */
1228
1229 extern void initialize_current_architecture (void);
1230
1231 /* gdbarch trace variable */
1232 extern int gdbarch_debug;
1233
1234 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1235
1236 #endif
1237 EOF
1238 exec 1>&2
1239 #../move-if-change new-gdbarch.h gdbarch.h
1240 compare_new gdbarch.h
1241
1242
1243 #
1244 # C file
1245 #
1246
1247 exec > new-gdbarch.c
1248 copyright
1249 cat <<EOF
1250
1251 #include "defs.h"
1252 #include "arch-utils.h"
1253
1254 #include "gdbcmd.h"
1255 #include "inferior.h"
1256 #include "symcat.h"
1257
1258 #include "floatformat.h"
1259
1260 #include "gdb_assert.h"
1261 #include "gdb_string.h"
1262 #include "reggroups.h"
1263 #include "osabi.h"
1264 #include "gdb_obstack.h"
1265 #include "observer.h"
1266 #include "regcache.h"
1267
1268 /* Static function declarations */
1269
1270 static void alloc_gdbarch_data (struct gdbarch *);
1271
1272 /* Non-zero if we want to trace architecture code. */
1273
1274 #ifndef GDBARCH_DEBUG
1275 #define GDBARCH_DEBUG 0
1276 #endif
1277 int gdbarch_debug = GDBARCH_DEBUG;
1278 static void
1279 show_gdbarch_debug (struct ui_file *file, int from_tty,
1280 struct cmd_list_element *c, const char *value)
1281 {
1282 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1283 }
1284
1285 static const char *
1286 pformat (const struct floatformat **format)
1287 {
1288 if (format == NULL)
1289 return "(null)";
1290 else
1291 /* Just print out one of them - this is only for diagnostics. */
1292 return format[0]->name;
1293 }
1294
1295 static const char *
1296 pstring (const char *string)
1297 {
1298 if (string == NULL)
1299 return "(null)";
1300 return string;
1301 }
1302
1303 EOF
1304
1305 # gdbarch open the gdbarch object
1306 printf "\n"
1307 printf "/* Maintain the struct gdbarch object. */\n"
1308 printf "\n"
1309 printf "struct gdbarch\n"
1310 printf "{\n"
1311 printf " /* Has this architecture been fully initialized? */\n"
1312 printf " int initialized_p;\n"
1313 printf "\n"
1314 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1315 printf " struct obstack *obstack;\n"
1316 printf "\n"
1317 printf " /* basic architectural information. */\n"
1318 function_list | while do_read
1319 do
1320 if class_is_info_p
1321 then
1322 printf " ${returntype} ${function};\n"
1323 fi
1324 done
1325 printf "\n"
1326 printf " /* target specific vector. */\n"
1327 printf " struct gdbarch_tdep *tdep;\n"
1328 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1329 printf "\n"
1330 printf " /* per-architecture data-pointers. */\n"
1331 printf " unsigned nr_data;\n"
1332 printf " void **data;\n"
1333 printf "\n"
1334 printf " /* per-architecture swap-regions. */\n"
1335 printf " struct gdbarch_swap *swap;\n"
1336 printf "\n"
1337 cat <<EOF
1338 /* Multi-arch values.
1339
1340 When extending this structure you must:
1341
1342 Add the field below.
1343
1344 Declare set/get functions and define the corresponding
1345 macro in gdbarch.h.
1346
1347 gdbarch_alloc(): If zero/NULL is not a suitable default,
1348 initialize the new field.
1349
1350 verify_gdbarch(): Confirm that the target updated the field
1351 correctly.
1352
1353 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1354 field is dumped out
1355
1356 \`\`startup_gdbarch()'': Append an initial value to the static
1357 variable (base values on the host's c-type system).
1358
1359 get_gdbarch(): Implement the set/get functions (probably using
1360 the macro's as shortcuts).
1361
1362 */
1363
1364 EOF
1365 function_list | while do_read
1366 do
1367 if class_is_variable_p
1368 then
1369 printf " ${returntype} ${function};\n"
1370 elif class_is_function_p
1371 then
1372 printf " gdbarch_${function}_ftype *${function};\n"
1373 fi
1374 done
1375 printf "};\n"
1376
1377 # A pre-initialized vector
1378 printf "\n"
1379 printf "\n"
1380 cat <<EOF
1381 /* The default architecture uses host values (for want of a better
1382 choice). */
1383 EOF
1384 printf "\n"
1385 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1386 printf "\n"
1387 printf "struct gdbarch startup_gdbarch =\n"
1388 printf "{\n"
1389 printf " 1, /* Always initialized. */\n"
1390 printf " NULL, /* The obstack. */\n"
1391 printf " /* basic architecture information. */\n"
1392 function_list | while do_read
1393 do
1394 if class_is_info_p
1395 then
1396 printf " ${staticdefault}, /* ${function} */\n"
1397 fi
1398 done
1399 cat <<EOF
1400 /* target specific vector and its dump routine. */
1401 NULL, NULL,
1402 /*per-architecture data-pointers and swap regions. */
1403 0, NULL, NULL,
1404 /* Multi-arch values */
1405 EOF
1406 function_list | while do_read
1407 do
1408 if class_is_function_p || class_is_variable_p
1409 then
1410 printf " ${staticdefault}, /* ${function} */\n"
1411 fi
1412 done
1413 cat <<EOF
1414 /* startup_gdbarch() */
1415 };
1416
1417 struct gdbarch *target_gdbarch = &startup_gdbarch;
1418 EOF
1419
1420 # Create a new gdbarch struct
1421 cat <<EOF
1422
1423 /* Create a new \`\`struct gdbarch'' based on information provided by
1424 \`\`struct gdbarch_info''. */
1425 EOF
1426 printf "\n"
1427 cat <<EOF
1428 struct gdbarch *
1429 gdbarch_alloc (const struct gdbarch_info *info,
1430 struct gdbarch_tdep *tdep)
1431 {
1432 struct gdbarch *gdbarch;
1433
1434 /* Create an obstack for allocating all the per-architecture memory,
1435 then use that to allocate the architecture vector. */
1436 struct obstack *obstack = XMALLOC (struct obstack);
1437 obstack_init (obstack);
1438 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1439 memset (gdbarch, 0, sizeof (*gdbarch));
1440 gdbarch->obstack = obstack;
1441
1442 alloc_gdbarch_data (gdbarch);
1443
1444 gdbarch->tdep = tdep;
1445 EOF
1446 printf "\n"
1447 function_list | while do_read
1448 do
1449 if class_is_info_p
1450 then
1451 printf " gdbarch->${function} = info->${function};\n"
1452 fi
1453 done
1454 printf "\n"
1455 printf " /* Force the explicit initialization of these. */\n"
1456 function_list | while do_read
1457 do
1458 if class_is_function_p || class_is_variable_p
1459 then
1460 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1461 then
1462 printf " gdbarch->${function} = ${predefault};\n"
1463 fi
1464 fi
1465 done
1466 cat <<EOF
1467 /* gdbarch_alloc() */
1468
1469 return gdbarch;
1470 }
1471 EOF
1472
1473 # Free a gdbarch struct.
1474 printf "\n"
1475 printf "\n"
1476 cat <<EOF
1477 /* Allocate extra space using the per-architecture obstack. */
1478
1479 void *
1480 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1481 {
1482 void *data = obstack_alloc (arch->obstack, size);
1483
1484 memset (data, 0, size);
1485 return data;
1486 }
1487
1488
1489 /* Free a gdbarch struct. This should never happen in normal
1490 operation --- once you've created a gdbarch, you keep it around.
1491 However, if an architecture's init function encounters an error
1492 building the structure, it may need to clean up a partially
1493 constructed gdbarch. */
1494
1495 void
1496 gdbarch_free (struct gdbarch *arch)
1497 {
1498 struct obstack *obstack;
1499
1500 gdb_assert (arch != NULL);
1501 gdb_assert (!arch->initialized_p);
1502 obstack = arch->obstack;
1503 obstack_free (obstack, 0); /* Includes the ARCH. */
1504 xfree (obstack);
1505 }
1506 EOF
1507
1508 # verify a new architecture
1509 cat <<EOF
1510
1511
1512 /* Ensure that all values in a GDBARCH are reasonable. */
1513
1514 static void
1515 verify_gdbarch (struct gdbarch *gdbarch)
1516 {
1517 struct ui_file *log;
1518 struct cleanup *cleanups;
1519 long length;
1520 char *buf;
1521
1522 log = mem_fileopen ();
1523 cleanups = make_cleanup_ui_file_delete (log);
1524 /* fundamental */
1525 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1526 fprintf_unfiltered (log, "\n\tbyte-order");
1527 if (gdbarch->bfd_arch_info == NULL)
1528 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1529 /* Check those that need to be defined for the given multi-arch level. */
1530 EOF
1531 function_list | while do_read
1532 do
1533 if class_is_function_p || class_is_variable_p
1534 then
1535 if [ "x${invalid_p}" = "x0" ]
1536 then
1537 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1538 elif class_is_predicate_p
1539 then
1540 printf " /* Skip verify of ${function}, has predicate. */\n"
1541 # FIXME: See do_read for potential simplification
1542 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1543 then
1544 printf " if (${invalid_p})\n"
1545 printf " gdbarch->${function} = ${postdefault};\n"
1546 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1547 then
1548 printf " if (gdbarch->${function} == ${predefault})\n"
1549 printf " gdbarch->${function} = ${postdefault};\n"
1550 elif [ -n "${postdefault}" ]
1551 then
1552 printf " if (gdbarch->${function} == 0)\n"
1553 printf " gdbarch->${function} = ${postdefault};\n"
1554 elif [ -n "${invalid_p}" ]
1555 then
1556 printf " if (${invalid_p})\n"
1557 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1558 elif [ -n "${predefault}" ]
1559 then
1560 printf " if (gdbarch->${function} == ${predefault})\n"
1561 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1562 fi
1563 fi
1564 done
1565 cat <<EOF
1566 buf = ui_file_xstrdup (log, &length);
1567 make_cleanup (xfree, buf);
1568 if (length > 0)
1569 internal_error (__FILE__, __LINE__,
1570 _("verify_gdbarch: the following are invalid ...%s"),
1571 buf);
1572 do_cleanups (cleanups);
1573 }
1574 EOF
1575
1576 # dump the structure
1577 printf "\n"
1578 printf "\n"
1579 cat <<EOF
1580 /* Print out the details of the current architecture. */
1581
1582 void
1583 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1584 {
1585 const char *gdb_nm_file = "<not-defined>";
1586
1587 #if defined (GDB_NM_FILE)
1588 gdb_nm_file = GDB_NM_FILE;
1589 #endif
1590 fprintf_unfiltered (file,
1591 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1592 gdb_nm_file);
1593 EOF
1594 function_list | sort -t: -k 3 | while do_read
1595 do
1596 # First the predicate
1597 if class_is_predicate_p
1598 then
1599 printf " fprintf_unfiltered (file,\n"
1600 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1601 printf " gdbarch_${function}_p (gdbarch));\n"
1602 fi
1603 # Print the corresponding value.
1604 if class_is_function_p
1605 then
1606 printf " fprintf_unfiltered (file,\n"
1607 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1608 printf " host_address_to_string (gdbarch->${function}));\n"
1609 else
1610 # It is a variable
1611 case "${print}:${returntype}" in
1612 :CORE_ADDR )
1613 fmt="%s"
1614 print="core_addr_to_string_nz (gdbarch->${function})"
1615 ;;
1616 :* )
1617 fmt="%s"
1618 print="plongest (gdbarch->${function})"
1619 ;;
1620 * )
1621 fmt="%s"
1622 ;;
1623 esac
1624 printf " fprintf_unfiltered (file,\n"
1625 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1626 printf " ${print});\n"
1627 fi
1628 done
1629 cat <<EOF
1630 if (gdbarch->dump_tdep != NULL)
1631 gdbarch->dump_tdep (gdbarch, file);
1632 }
1633 EOF
1634
1635
1636 # GET/SET
1637 printf "\n"
1638 cat <<EOF
1639 struct gdbarch_tdep *
1640 gdbarch_tdep (struct gdbarch *gdbarch)
1641 {
1642 if (gdbarch_debug >= 2)
1643 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1644 return gdbarch->tdep;
1645 }
1646 EOF
1647 printf "\n"
1648 function_list | while do_read
1649 do
1650 if class_is_predicate_p
1651 then
1652 printf "\n"
1653 printf "int\n"
1654 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1655 printf "{\n"
1656 printf " gdb_assert (gdbarch != NULL);\n"
1657 printf " return ${predicate};\n"
1658 printf "}\n"
1659 fi
1660 if class_is_function_p
1661 then
1662 printf "\n"
1663 printf "${returntype}\n"
1664 if [ "x${formal}" = "xvoid" ]
1665 then
1666 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1667 else
1668 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1669 fi
1670 printf "{\n"
1671 printf " gdb_assert (gdbarch != NULL);\n"
1672 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1673 if class_is_predicate_p && test -n "${predefault}"
1674 then
1675 # Allow a call to a function with a predicate.
1676 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1677 fi
1678 printf " if (gdbarch_debug >= 2)\n"
1679 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1680 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1681 then
1682 if class_is_multiarch_p
1683 then
1684 params="gdbarch"
1685 else
1686 params=""
1687 fi
1688 else
1689 if class_is_multiarch_p
1690 then
1691 params="gdbarch, ${actual}"
1692 else
1693 params="${actual}"
1694 fi
1695 fi
1696 if [ "x${returntype}" = "xvoid" ]
1697 then
1698 printf " gdbarch->${function} (${params});\n"
1699 else
1700 printf " return gdbarch->${function} (${params});\n"
1701 fi
1702 printf "}\n"
1703 printf "\n"
1704 printf "void\n"
1705 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1706 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1707 printf "{\n"
1708 printf " gdbarch->${function} = ${function};\n"
1709 printf "}\n"
1710 elif class_is_variable_p
1711 then
1712 printf "\n"
1713 printf "${returntype}\n"
1714 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1715 printf "{\n"
1716 printf " gdb_assert (gdbarch != NULL);\n"
1717 if [ "x${invalid_p}" = "x0" ]
1718 then
1719 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1720 elif [ -n "${invalid_p}" ]
1721 then
1722 printf " /* Check variable is valid. */\n"
1723 printf " gdb_assert (!(${invalid_p}));\n"
1724 elif [ -n "${predefault}" ]
1725 then
1726 printf " /* Check variable changed from pre-default. */\n"
1727 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1728 fi
1729 printf " if (gdbarch_debug >= 2)\n"
1730 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1731 printf " return gdbarch->${function};\n"
1732 printf "}\n"
1733 printf "\n"
1734 printf "void\n"
1735 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1736 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1737 printf "{\n"
1738 printf " gdbarch->${function} = ${function};\n"
1739 printf "}\n"
1740 elif class_is_info_p
1741 then
1742 printf "\n"
1743 printf "${returntype}\n"
1744 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1745 printf "{\n"
1746 printf " gdb_assert (gdbarch != NULL);\n"
1747 printf " if (gdbarch_debug >= 2)\n"
1748 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1749 printf " return gdbarch->${function};\n"
1750 printf "}\n"
1751 fi
1752 done
1753
1754 # All the trailing guff
1755 cat <<EOF
1756
1757
1758 /* Keep a registry of per-architecture data-pointers required by GDB
1759 modules. */
1760
1761 struct gdbarch_data
1762 {
1763 unsigned index;
1764 int init_p;
1765 gdbarch_data_pre_init_ftype *pre_init;
1766 gdbarch_data_post_init_ftype *post_init;
1767 };
1768
1769 struct gdbarch_data_registration
1770 {
1771 struct gdbarch_data *data;
1772 struct gdbarch_data_registration *next;
1773 };
1774
1775 struct gdbarch_data_registry
1776 {
1777 unsigned nr;
1778 struct gdbarch_data_registration *registrations;
1779 };
1780
1781 struct gdbarch_data_registry gdbarch_data_registry =
1782 {
1783 0, NULL,
1784 };
1785
1786 static struct gdbarch_data *
1787 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1788 gdbarch_data_post_init_ftype *post_init)
1789 {
1790 struct gdbarch_data_registration **curr;
1791
1792 /* Append the new registration. */
1793 for (curr = &gdbarch_data_registry.registrations;
1794 (*curr) != NULL;
1795 curr = &(*curr)->next);
1796 (*curr) = XMALLOC (struct gdbarch_data_registration);
1797 (*curr)->next = NULL;
1798 (*curr)->data = XMALLOC (struct gdbarch_data);
1799 (*curr)->data->index = gdbarch_data_registry.nr++;
1800 (*curr)->data->pre_init = pre_init;
1801 (*curr)->data->post_init = post_init;
1802 (*curr)->data->init_p = 1;
1803 return (*curr)->data;
1804 }
1805
1806 struct gdbarch_data *
1807 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1808 {
1809 return gdbarch_data_register (pre_init, NULL);
1810 }
1811
1812 struct gdbarch_data *
1813 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1814 {
1815 return gdbarch_data_register (NULL, post_init);
1816 }
1817
1818 /* Create/delete the gdbarch data vector. */
1819
1820 static void
1821 alloc_gdbarch_data (struct gdbarch *gdbarch)
1822 {
1823 gdb_assert (gdbarch->data == NULL);
1824 gdbarch->nr_data = gdbarch_data_registry.nr;
1825 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1826 }
1827
1828 /* Initialize the current value of the specified per-architecture
1829 data-pointer. */
1830
1831 void
1832 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1833 struct gdbarch_data *data,
1834 void *pointer)
1835 {
1836 gdb_assert (data->index < gdbarch->nr_data);
1837 gdb_assert (gdbarch->data[data->index] == NULL);
1838 gdb_assert (data->pre_init == NULL);
1839 gdbarch->data[data->index] = pointer;
1840 }
1841
1842 /* Return the current value of the specified per-architecture
1843 data-pointer. */
1844
1845 void *
1846 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1847 {
1848 gdb_assert (data->index < gdbarch->nr_data);
1849 if (gdbarch->data[data->index] == NULL)
1850 {
1851 /* The data-pointer isn't initialized, call init() to get a
1852 value. */
1853 if (data->pre_init != NULL)
1854 /* Mid architecture creation: pass just the obstack, and not
1855 the entire architecture, as that way it isn't possible for
1856 pre-init code to refer to undefined architecture
1857 fields. */
1858 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1859 else if (gdbarch->initialized_p
1860 && data->post_init != NULL)
1861 /* Post architecture creation: pass the entire architecture
1862 (as all fields are valid), but be careful to also detect
1863 recursive references. */
1864 {
1865 gdb_assert (data->init_p);
1866 data->init_p = 0;
1867 gdbarch->data[data->index] = data->post_init (gdbarch);
1868 data->init_p = 1;
1869 }
1870 else
1871 /* The architecture initialization hasn't completed - punt -
1872 hope that the caller knows what they are doing. Once
1873 deprecated_set_gdbarch_data has been initialized, this can be
1874 changed to an internal error. */
1875 return NULL;
1876 gdb_assert (gdbarch->data[data->index] != NULL);
1877 }
1878 return gdbarch->data[data->index];
1879 }
1880
1881
1882 /* Keep a registry of the architectures known by GDB. */
1883
1884 struct gdbarch_registration
1885 {
1886 enum bfd_architecture bfd_architecture;
1887 gdbarch_init_ftype *init;
1888 gdbarch_dump_tdep_ftype *dump_tdep;
1889 struct gdbarch_list *arches;
1890 struct gdbarch_registration *next;
1891 };
1892
1893 static struct gdbarch_registration *gdbarch_registry = NULL;
1894
1895 static void
1896 append_name (const char ***buf, int *nr, const char *name)
1897 {
1898 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1899 (*buf)[*nr] = name;
1900 *nr += 1;
1901 }
1902
1903 const char **
1904 gdbarch_printable_names (void)
1905 {
1906 /* Accumulate a list of names based on the registed list of
1907 architectures. */
1908 int nr_arches = 0;
1909 const char **arches = NULL;
1910 struct gdbarch_registration *rego;
1911
1912 for (rego = gdbarch_registry;
1913 rego != NULL;
1914 rego = rego->next)
1915 {
1916 const struct bfd_arch_info *ap;
1917 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1918 if (ap == NULL)
1919 internal_error (__FILE__, __LINE__,
1920 _("gdbarch_architecture_names: multi-arch unknown"));
1921 do
1922 {
1923 append_name (&arches, &nr_arches, ap->printable_name);
1924 ap = ap->next;
1925 }
1926 while (ap != NULL);
1927 }
1928 append_name (&arches, &nr_arches, NULL);
1929 return arches;
1930 }
1931
1932
1933 void
1934 gdbarch_register (enum bfd_architecture bfd_architecture,
1935 gdbarch_init_ftype *init,
1936 gdbarch_dump_tdep_ftype *dump_tdep)
1937 {
1938 struct gdbarch_registration **curr;
1939 const struct bfd_arch_info *bfd_arch_info;
1940
1941 /* Check that BFD recognizes this architecture */
1942 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1943 if (bfd_arch_info == NULL)
1944 {
1945 internal_error (__FILE__, __LINE__,
1946 _("gdbarch: Attempt to register "
1947 "unknown architecture (%d)"),
1948 bfd_architecture);
1949 }
1950 /* Check that we haven't seen this architecture before. */
1951 for (curr = &gdbarch_registry;
1952 (*curr) != NULL;
1953 curr = &(*curr)->next)
1954 {
1955 if (bfd_architecture == (*curr)->bfd_architecture)
1956 internal_error (__FILE__, __LINE__,
1957 _("gdbarch: Duplicate registration "
1958 "of architecture (%s)"),
1959 bfd_arch_info->printable_name);
1960 }
1961 /* log it */
1962 if (gdbarch_debug)
1963 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1964 bfd_arch_info->printable_name,
1965 host_address_to_string (init));
1966 /* Append it */
1967 (*curr) = XMALLOC (struct gdbarch_registration);
1968 (*curr)->bfd_architecture = bfd_architecture;
1969 (*curr)->init = init;
1970 (*curr)->dump_tdep = dump_tdep;
1971 (*curr)->arches = NULL;
1972 (*curr)->next = NULL;
1973 }
1974
1975 void
1976 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1977 gdbarch_init_ftype *init)
1978 {
1979 gdbarch_register (bfd_architecture, init, NULL);
1980 }
1981
1982
1983 /* Look for an architecture using gdbarch_info. */
1984
1985 struct gdbarch_list *
1986 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1987 const struct gdbarch_info *info)
1988 {
1989 for (; arches != NULL; arches = arches->next)
1990 {
1991 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1992 continue;
1993 if (info->byte_order != arches->gdbarch->byte_order)
1994 continue;
1995 if (info->osabi != arches->gdbarch->osabi)
1996 continue;
1997 if (info->target_desc != arches->gdbarch->target_desc)
1998 continue;
1999 return arches;
2000 }
2001 return NULL;
2002 }
2003
2004
2005 /* Find an architecture that matches the specified INFO. Create a new
2006 architecture if needed. Return that new architecture. */
2007
2008 struct gdbarch *
2009 gdbarch_find_by_info (struct gdbarch_info info)
2010 {
2011 struct gdbarch *new_gdbarch;
2012 struct gdbarch_registration *rego;
2013
2014 /* Fill in missing parts of the INFO struct using a number of
2015 sources: "set ..."; INFOabfd supplied; and the global
2016 defaults. */
2017 gdbarch_info_fill (&info);
2018
2019 /* Must have found some sort of architecture. */
2020 gdb_assert (info.bfd_arch_info != NULL);
2021
2022 if (gdbarch_debug)
2023 {
2024 fprintf_unfiltered (gdb_stdlog,
2025 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2026 (info.bfd_arch_info != NULL
2027 ? info.bfd_arch_info->printable_name
2028 : "(null)"));
2029 fprintf_unfiltered (gdb_stdlog,
2030 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2031 info.byte_order,
2032 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2033 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2034 : "default"));
2035 fprintf_unfiltered (gdb_stdlog,
2036 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2037 info.osabi, gdbarch_osabi_name (info.osabi));
2038 fprintf_unfiltered (gdb_stdlog,
2039 "gdbarch_find_by_info: info.abfd %s\n",
2040 host_address_to_string (info.abfd));
2041 fprintf_unfiltered (gdb_stdlog,
2042 "gdbarch_find_by_info: info.tdep_info %s\n",
2043 host_address_to_string (info.tdep_info));
2044 }
2045
2046 /* Find the tdep code that knows about this architecture. */
2047 for (rego = gdbarch_registry;
2048 rego != NULL;
2049 rego = rego->next)
2050 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2051 break;
2052 if (rego == NULL)
2053 {
2054 if (gdbarch_debug)
2055 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2056 "No matching architecture\n");
2057 return 0;
2058 }
2059
2060 /* Ask the tdep code for an architecture that matches "info". */
2061 new_gdbarch = rego->init (info, rego->arches);
2062
2063 /* Did the tdep code like it? No. Reject the change and revert to
2064 the old architecture. */
2065 if (new_gdbarch == NULL)
2066 {
2067 if (gdbarch_debug)
2068 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2069 "Target rejected architecture\n");
2070 return NULL;
2071 }
2072
2073 /* Is this a pre-existing architecture (as determined by already
2074 being initialized)? Move it to the front of the architecture
2075 list (keeping the list sorted Most Recently Used). */
2076 if (new_gdbarch->initialized_p)
2077 {
2078 struct gdbarch_list **list;
2079 struct gdbarch_list *this;
2080 if (gdbarch_debug)
2081 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2082 "Previous architecture %s (%s) selected\n",
2083 host_address_to_string (new_gdbarch),
2084 new_gdbarch->bfd_arch_info->printable_name);
2085 /* Find the existing arch in the list. */
2086 for (list = &rego->arches;
2087 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2088 list = &(*list)->next);
2089 /* It had better be in the list of architectures. */
2090 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2091 /* Unlink THIS. */
2092 this = (*list);
2093 (*list) = this->next;
2094 /* Insert THIS at the front. */
2095 this->next = rego->arches;
2096 rego->arches = this;
2097 /* Return it. */
2098 return new_gdbarch;
2099 }
2100
2101 /* It's a new architecture. */
2102 if (gdbarch_debug)
2103 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2104 "New architecture %s (%s) selected\n",
2105 host_address_to_string (new_gdbarch),
2106 new_gdbarch->bfd_arch_info->printable_name);
2107
2108 /* Insert the new architecture into the front of the architecture
2109 list (keep the list sorted Most Recently Used). */
2110 {
2111 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2112 this->next = rego->arches;
2113 this->gdbarch = new_gdbarch;
2114 rego->arches = this;
2115 }
2116
2117 /* Check that the newly installed architecture is valid. Plug in
2118 any post init values. */
2119 new_gdbarch->dump_tdep = rego->dump_tdep;
2120 verify_gdbarch (new_gdbarch);
2121 new_gdbarch->initialized_p = 1;
2122
2123 if (gdbarch_debug)
2124 gdbarch_dump (new_gdbarch, gdb_stdlog);
2125
2126 return new_gdbarch;
2127 }
2128
2129 /* Make the specified architecture current. */
2130
2131 void
2132 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2133 {
2134 gdb_assert (new_gdbarch != NULL);
2135 gdb_assert (new_gdbarch->initialized_p);
2136 target_gdbarch = new_gdbarch;
2137 observer_notify_architecture_changed (new_gdbarch);
2138 registers_changed ();
2139 }
2140
2141 extern void _initialize_gdbarch (void);
2142
2143 void
2144 _initialize_gdbarch (void)
2145 {
2146 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2147 Set architecture debugging."), _("\\
2148 Show architecture debugging."), _("\\
2149 When non-zero, architecture debugging is enabled."),
2150 NULL,
2151 show_gdbarch_debug,
2152 &setdebuglist, &showdebuglist);
2153 }
2154 EOF
2155
2156 # close things off
2157 exec 1>&2
2158 #../move-if-change new-gdbarch.c gdbarch.c
2159 compare_new gdbarch.c