2003-04-08 Andrew Cagney <cagney@redhat.com>
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 f:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 f:2:TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
432 f:2:TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
433 # The dummy call frame SP should be set by push_dummy_call.
434 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
435 # Function for getting target's idea of a frame pointer. FIXME: GDB's
436 # whole scheme for dealing with "frames" and "frame pointers" needs a
437 # serious shakedown.
438 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
439 #
440 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
441 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
442 #
443 v:2:NUM_REGS:int:num_regs::::0:-1
444 # This macro gives the number of pseudo-registers that live in the
445 # register namespace but do not get fetched or stored on the target.
446 # These pseudo-registers may be aliases for other registers,
447 # combinations of other registers, or they may be computed by GDB.
448 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
449
450 # GDB's standard (or well known) register numbers. These can map onto
451 # a real register or a pseudo (computed) register or not be defined at
452 # all (-1).
453 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
454 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
455 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
456 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
457 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
458 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
459 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
460 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
461 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
462 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
464 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
465 # Convert from an sdb register number to an internal gdb register number.
466 # This should be defined in tm.h, if REGISTER_NAMES is not set up
467 # to map one to one onto the sdb register numbers.
468 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
469 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
470 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
471 v:2:REGISTER_SIZE:int:register_size::::0:-1
472 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
473 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
474 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
475 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
476 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
477 # by REGISTER_TYPE.
478 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
479 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
480 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
481 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
482 # by REGISTER_TYPE.
483 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
484 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
485 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
486 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
487 # by REGISTER_TYPE.
488 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
489 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
490 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
491 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
492 # by REGISTER_TYPE.
493 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
494 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
495 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
496 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE have all being replaced
497 # by REGISTER_TYPE.
498 F:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
499 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
500 #
501 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
502 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
503 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
504 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
505 # MAP a GDB RAW register number onto a simulator register number. See
506 # also include/...-sim.h.
507 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
508 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
509 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
510 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
511 # setjmp/longjmp support.
512 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
513 #
514 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
515 # much better but at least they are vaguely consistent). The headers
516 # and body contain convoluted #if/#else sequences for determine how
517 # things should be compiled. Instead of trying to mimic that
518 # behaviour here (and hence entrench it further) gdbarch simply
519 # reqires that these methods be set up from the word go. This also
520 # avoids any potential problems with moving beyond multi-arch partial.
521 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
522 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
523 f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0
524 v::CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset
525 v::CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset
526 v::CALL_DUMMY_LENGTH:int:call_dummy_length
527 # NOTE: cagney/2002-11-24: This function with predicate has a valid
528 # (callable) initial value. As a consequence, even when the predicate
529 # is false, the corresponding function works. This simplifies the
530 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
531 # doesn't need to be modified.
532 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
533 v::CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
534 v::SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
535 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust::::0
536 F::FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
537 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
538 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
539 #
540 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
541 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
542 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
543 #
544 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
545 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
546 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
547 #
548 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
549 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
550 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
551 #
552 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
553 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
554 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
555 #
556 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
557 # Replaced by PUSH_DUMMY_CALL
558 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
559 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:struct regcache *regcache, CORE_ADDR dummy_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:regcache, dummy_addr, nargs, args, sp, struct_return, struct_addr
560 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
561 # NOTE: This can be handled directly in push_dummy_call.
562 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
563 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-:::0
564 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
565 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
566 #
567 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
568 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
569 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
570 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
571 #
572 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
573 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
574 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
575 #
576 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame:::0
577 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
578 #
579 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
580 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
581 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
582 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
583 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
584 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
585 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
586 f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
587 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
588 #
589 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
590 #
591 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
592 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
593 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame::0:0
594 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
595 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
596 # note, per UNWIND_PC's doco, that while the two have similar
597 # interfaces they have very different underlying implementations.
598 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi::0:0
599 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame:
600 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
601 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
602 F::SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame
603 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
604 #
605 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
606 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
607 # NOTE: cagney/2003-03-24: This is better handled by PUSH_ARGUMENTS.
608 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
609 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
610 # FIXME: kettenis/2003-03-08: This should be replaced by a function
611 # parametrized with (at least) the regcache.
612 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
613 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info::0:0
614 v:2:PARM_BOUNDARY:int:parm_boundary
615 #
616 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
617 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
618 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
619 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
620 # On some machines there are bits in addresses which are not really
621 # part of the address, but are used by the kernel, the hardware, etc.
622 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
623 # we get a "real" address such as one would find in a symbol table.
624 # This is used only for addresses of instructions, and even then I'm
625 # not sure it's used in all contexts. It exists to deal with there
626 # being a few stray bits in the PC which would mislead us, not as some
627 # sort of generic thing to handle alignment or segmentation (it's
628 # possible it should be in TARGET_READ_PC instead).
629 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
630 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
631 # ADDR_BITS_REMOVE.
632 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
633 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
634 # the target needs software single step. An ISA method to implement it.
635 #
636 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
637 # using the breakpoint system instead of blatting memory directly (as with rs6000).
638 #
639 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
640 # single step. If not, then implement single step using breakpoints.
641 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
642 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
643 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
644
645
646 # For SVR4 shared libraries, each call goes through a small piece of
647 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
648 # to nonzero if we are currently stopped in one of these.
649 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
650
651 # Some systems also have trampoline code for returning from shared libs.
652 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
653
654 # Sigtramp is a routine that the kernel calls (which then calls the
655 # signal handler). On most machines it is a library routine that is
656 # linked into the executable.
657 #
658 # This macro, given a program counter value and the name of the
659 # function in which that PC resides (which can be null if the name is
660 # not known), returns nonzero if the PC and name show that we are in
661 # sigtramp.
662 #
663 # On most machines just see if the name is sigtramp (and if we have
664 # no name, assume we are not in sigtramp).
665 #
666 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
667 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
668 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
669 # own local NAME lookup.
670 #
671 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
672 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
673 # does not.
674 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
675 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
676 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
677 # A target might have problems with watchpoints as soon as the stack
678 # frame of the current function has been destroyed. This mostly happens
679 # as the first action in a funtion's epilogue. in_function_epilogue_p()
680 # is defined to return a non-zero value if either the given addr is one
681 # instruction after the stack destroying instruction up to the trailing
682 # return instruction or if we can figure out that the stack frame has
683 # already been invalidated regardless of the value of addr. Targets
684 # which don't suffer from that problem could just let this functionality
685 # untouched.
686 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
687 # Given a vector of command-line arguments, return a newly allocated
688 # string which, when passed to the create_inferior function, will be
689 # parsed (on Unix systems, by the shell) to yield the same vector.
690 # This function should call error() if the argument vector is not
691 # representable for this target or if this target does not support
692 # command-line arguments.
693 # ARGC is the number of elements in the vector.
694 # ARGV is an array of strings, one per argument.
695 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
696 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
697 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
698 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
699 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
700 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
701 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
702 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
703 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
704 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
705 # Is a register in a group
706 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
707 EOF
708 }
709
710 #
711 # The .log file
712 #
713 exec > new-gdbarch.log
714 function_list | while do_read
715 do
716 cat <<EOF
717 ${class} ${macro}(${actual})
718 ${returntype} ${function} ($formal)${attrib}
719 EOF
720 for r in ${read}
721 do
722 eval echo \"\ \ \ \ ${r}=\${${r}}\"
723 done
724 if class_is_predicate_p && fallback_default_p
725 then
726 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
727 kill $$
728 exit 1
729 fi
730 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
731 then
732 echo "Error: postdefault is useless when invalid_p=0" 1>&2
733 kill $$
734 exit 1
735 fi
736 if class_is_multiarch_p
737 then
738 if class_is_predicate_p ; then :
739 elif test "x${predefault}" = "x"
740 then
741 echo "Error: pure multi-arch function must have a predefault" 1>&2
742 kill $$
743 exit 1
744 fi
745 fi
746 echo ""
747 done
748
749 exec 1>&2
750 compare_new gdbarch.log
751
752
753 copyright ()
754 {
755 cat <<EOF
756 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
757
758 /* Dynamic architecture support for GDB, the GNU debugger.
759 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
760
761 This file is part of GDB.
762
763 This program is free software; you can redistribute it and/or modify
764 it under the terms of the GNU General Public License as published by
765 the Free Software Foundation; either version 2 of the License, or
766 (at your option) any later version.
767
768 This program is distributed in the hope that it will be useful,
769 but WITHOUT ANY WARRANTY; without even the implied warranty of
770 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
771 GNU General Public License for more details.
772
773 You should have received a copy of the GNU General Public License
774 along with this program; if not, write to the Free Software
775 Foundation, Inc., 59 Temple Place - Suite 330,
776 Boston, MA 02111-1307, USA. */
777
778 /* This file was created with the aid of \`\`gdbarch.sh''.
779
780 The Bourne shell script \`\`gdbarch.sh'' creates the files
781 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
782 against the existing \`\`gdbarch.[hc]''. Any differences found
783 being reported.
784
785 If editing this file, please also run gdbarch.sh and merge any
786 changes into that script. Conversely, when making sweeping changes
787 to this file, modifying gdbarch.sh and using its output may prove
788 easier. */
789
790 EOF
791 }
792
793 #
794 # The .h file
795 #
796
797 exec > new-gdbarch.h
798 copyright
799 cat <<EOF
800 #ifndef GDBARCH_H
801 #define GDBARCH_H
802
803 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
804 #if !GDB_MULTI_ARCH
805 /* Pull in function declarations refered to, indirectly, via macros. */
806 #include "inferior.h" /* For unsigned_address_to_pointer(). */
807 #include "symfile.h" /* For entry_point_address(). */
808 #endif
809
810 struct frame_info;
811 struct value;
812 struct objfile;
813 struct minimal_symbol;
814 struct regcache;
815 struct reggroup;
816
817 extern struct gdbarch *current_gdbarch;
818
819
820 /* If any of the following are defined, the target wasn't correctly
821 converted. */
822
823 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
824 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
825 #endif
826 EOF
827
828 # function typedef's
829 printf "\n"
830 printf "\n"
831 printf "/* The following are pre-initialized by GDBARCH. */\n"
832 function_list | while do_read
833 do
834 if class_is_info_p
835 then
836 printf "\n"
837 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
838 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
839 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
840 printf "#error \"Non multi-arch definition of ${macro}\"\n"
841 printf "#endif\n"
842 printf "#if GDB_MULTI_ARCH\n"
843 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
844 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
845 printf "#endif\n"
846 printf "#endif\n"
847 fi
848 done
849
850 # function typedef's
851 printf "\n"
852 printf "\n"
853 printf "/* The following are initialized by the target dependent code. */\n"
854 function_list | while do_read
855 do
856 if [ -n "${comment}" ]
857 then
858 echo "${comment}" | sed \
859 -e '2 s,#,/*,' \
860 -e '3,$ s,#, ,' \
861 -e '$ s,$, */,'
862 fi
863 if class_is_multiarch_p
864 then
865 if class_is_predicate_p
866 then
867 printf "\n"
868 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
869 fi
870 else
871 if class_is_predicate_p
872 then
873 printf "\n"
874 printf "#if defined (${macro})\n"
875 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
876 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
877 printf "#if !defined (${macro}_P)\n"
878 printf "#define ${macro}_P() (1)\n"
879 printf "#endif\n"
880 printf "#endif\n"
881 printf "\n"
882 printf "/* Default predicate for non- multi-arch targets. */\n"
883 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
884 printf "#define ${macro}_P() (0)\n"
885 printf "#endif\n"
886 printf "\n"
887 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
888 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
889 printf "#error \"Non multi-arch definition of ${macro}\"\n"
890 printf "#endif\n"
891 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
892 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
893 printf "#endif\n"
894 fi
895 fi
896 if class_is_variable_p
897 then
898 if fallback_default_p || class_is_predicate_p
899 then
900 printf "\n"
901 printf "/* Default (value) for non- multi-arch platforms. */\n"
902 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
903 echo "#define ${macro} (${fallbackdefault})" \
904 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
905 printf "#endif\n"
906 fi
907 printf "\n"
908 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
909 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
910 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
911 printf "#error \"Non multi-arch definition of ${macro}\"\n"
912 printf "#endif\n"
913 if test "${level}" = ""
914 then
915 printf "#if !defined (${macro})\n"
916 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
917 printf "#endif\n"
918 else
919 printf "#if GDB_MULTI_ARCH\n"
920 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
921 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
922 printf "#endif\n"
923 printf "#endif\n"
924 fi
925 fi
926 if class_is_function_p
927 then
928 if class_is_multiarch_p ; then :
929 elif fallback_default_p || class_is_predicate_p
930 then
931 printf "\n"
932 printf "/* Default (function) for non- multi-arch platforms. */\n"
933 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
934 if [ "x${fallbackdefault}" = "x0" ]
935 then
936 if [ "x${actual}" = "x-" ]
937 then
938 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
939 else
940 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
941 fi
942 else
943 # FIXME: Should be passing current_gdbarch through!
944 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
945 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
946 fi
947 printf "#endif\n"
948 fi
949 printf "\n"
950 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
951 then
952 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
953 elif class_is_multiarch_p
954 then
955 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
956 else
957 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
958 fi
959 if [ "x${formal}" = "xvoid" ]
960 then
961 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
962 else
963 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
964 fi
965 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
966 if class_is_multiarch_p ; then :
967 else
968 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
969 printf "#error \"Non multi-arch definition of ${macro}\"\n"
970 printf "#endif\n"
971 printf "#if GDB_MULTI_ARCH\n"
972 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
973 if [ "x${actual}" = "x" ]
974 then
975 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
976 elif [ "x${actual}" = "x-" ]
977 then
978 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
979 else
980 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
981 fi
982 printf "#endif\n"
983 printf "#endif\n"
984 fi
985 fi
986 done
987
988 # close it off
989 cat <<EOF
990
991 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
992
993
994 /* Mechanism for co-ordinating the selection of a specific
995 architecture.
996
997 GDB targets (*-tdep.c) can register an interest in a specific
998 architecture. Other GDB components can register a need to maintain
999 per-architecture data.
1000
1001 The mechanisms below ensures that there is only a loose connection
1002 between the set-architecture command and the various GDB
1003 components. Each component can independently register their need
1004 to maintain architecture specific data with gdbarch.
1005
1006 Pragmatics:
1007
1008 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1009 didn't scale.
1010
1011 The more traditional mega-struct containing architecture specific
1012 data for all the various GDB components was also considered. Since
1013 GDB is built from a variable number of (fairly independent)
1014 components it was determined that the global aproach was not
1015 applicable. */
1016
1017
1018 /* Register a new architectural family with GDB.
1019
1020 Register support for the specified ARCHITECTURE with GDB. When
1021 gdbarch determines that the specified architecture has been
1022 selected, the corresponding INIT function is called.
1023
1024 --
1025
1026 The INIT function takes two parameters: INFO which contains the
1027 information available to gdbarch about the (possibly new)
1028 architecture; ARCHES which is a list of the previously created
1029 \`\`struct gdbarch'' for this architecture.
1030
1031 The INFO parameter is, as far as possible, be pre-initialized with
1032 information obtained from INFO.ABFD or the previously selected
1033 architecture.
1034
1035 The ARCHES parameter is a linked list (sorted most recently used)
1036 of all the previously created architures for this architecture
1037 family. The (possibly NULL) ARCHES->gdbarch can used to access
1038 values from the previously selected architecture for this
1039 architecture family. The global \`\`current_gdbarch'' shall not be
1040 used.
1041
1042 The INIT function shall return any of: NULL - indicating that it
1043 doesn't recognize the selected architecture; an existing \`\`struct
1044 gdbarch'' from the ARCHES list - indicating that the new
1045 architecture is just a synonym for an earlier architecture (see
1046 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1047 - that describes the selected architecture (see gdbarch_alloc()).
1048
1049 The DUMP_TDEP function shall print out all target specific values.
1050 Care should be taken to ensure that the function works in both the
1051 multi-arch and non- multi-arch cases. */
1052
1053 struct gdbarch_list
1054 {
1055 struct gdbarch *gdbarch;
1056 struct gdbarch_list *next;
1057 };
1058
1059 struct gdbarch_info
1060 {
1061 /* Use default: NULL (ZERO). */
1062 const struct bfd_arch_info *bfd_arch_info;
1063
1064 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1065 int byte_order;
1066
1067 /* Use default: NULL (ZERO). */
1068 bfd *abfd;
1069
1070 /* Use default: NULL (ZERO). */
1071 struct gdbarch_tdep_info *tdep_info;
1072
1073 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1074 enum gdb_osabi osabi;
1075 };
1076
1077 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1078 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1079
1080 /* DEPRECATED - use gdbarch_register() */
1081 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1082
1083 extern void gdbarch_register (enum bfd_architecture architecture,
1084 gdbarch_init_ftype *,
1085 gdbarch_dump_tdep_ftype *);
1086
1087
1088 /* Return a freshly allocated, NULL terminated, array of the valid
1089 architecture names. Since architectures are registered during the
1090 _initialize phase this function only returns useful information
1091 once initialization has been completed. */
1092
1093 extern const char **gdbarch_printable_names (void);
1094
1095
1096 /* Helper function. Search the list of ARCHES for a GDBARCH that
1097 matches the information provided by INFO. */
1098
1099 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1100
1101
1102 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1103 basic initialization using values obtained from the INFO andTDEP
1104 parameters. set_gdbarch_*() functions are called to complete the
1105 initialization of the object. */
1106
1107 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1108
1109
1110 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1111 It is assumed that the caller freeds the \`\`struct
1112 gdbarch_tdep''. */
1113
1114 extern void gdbarch_free (struct gdbarch *);
1115
1116
1117 /* Helper function. Force an update of the current architecture.
1118
1119 The actual architecture selected is determined by INFO, \`\`(gdb) set
1120 architecture'' et.al., the existing architecture and BFD's default
1121 architecture. INFO should be initialized to zero and then selected
1122 fields should be updated.
1123
1124 Returns non-zero if the update succeeds */
1125
1126 extern int gdbarch_update_p (struct gdbarch_info info);
1127
1128
1129
1130 /* Register per-architecture data-pointer.
1131
1132 Reserve space for a per-architecture data-pointer. An identifier
1133 for the reserved data-pointer is returned. That identifer should
1134 be saved in a local static variable.
1135
1136 The per-architecture data-pointer is either initialized explicitly
1137 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1138 gdbarch_data()). FREE() is called to delete either an existing
1139 data-pointer overridden by set_gdbarch_data() or when the
1140 architecture object is being deleted.
1141
1142 When a previously created architecture is re-selected, the
1143 per-architecture data-pointer for that previous architecture is
1144 restored. INIT() is not re-called.
1145
1146 Multiple registrarants for any architecture are allowed (and
1147 strongly encouraged). */
1148
1149 struct gdbarch_data;
1150
1151 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1152 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1153 void *pointer);
1154 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1155 gdbarch_data_free_ftype *free);
1156 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1157 struct gdbarch_data *data,
1158 void *pointer);
1159
1160 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1161
1162
1163 /* Register per-architecture memory region.
1164
1165 Provide a memory-region swap mechanism. Per-architecture memory
1166 region are created. These memory regions are swapped whenever the
1167 architecture is changed. For a new architecture, the memory region
1168 is initialized with zero (0) and the INIT function is called.
1169
1170 Memory regions are swapped / initialized in the order that they are
1171 registered. NULL DATA and/or INIT values can be specified.
1172
1173 New code should use register_gdbarch_data(). */
1174
1175 typedef void (gdbarch_swap_ftype) (void);
1176 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1177 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1178
1179
1180
1181 /* The target-system-dependent byte order is dynamic */
1182
1183 extern int target_byte_order;
1184 #ifndef TARGET_BYTE_ORDER
1185 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1186 #endif
1187
1188 extern int target_byte_order_auto;
1189 #ifndef TARGET_BYTE_ORDER_AUTO
1190 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1191 #endif
1192
1193
1194
1195 /* The target-system-dependent BFD architecture is dynamic */
1196
1197 extern int target_architecture_auto;
1198 #ifndef TARGET_ARCHITECTURE_AUTO
1199 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1200 #endif
1201
1202 extern const struct bfd_arch_info *target_architecture;
1203 #ifndef TARGET_ARCHITECTURE
1204 #define TARGET_ARCHITECTURE (target_architecture + 0)
1205 #endif
1206
1207
1208 /* The target-system-dependent disassembler is semi-dynamic */
1209
1210 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1211 unsigned int len, disassemble_info *info);
1212
1213 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1214 disassemble_info *info);
1215
1216 extern void dis_asm_print_address (bfd_vma addr,
1217 disassemble_info *info);
1218
1219 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1220 extern disassemble_info tm_print_insn_info;
1221 #ifndef TARGET_PRINT_INSN_INFO
1222 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1223 #endif
1224
1225
1226
1227 /* Set the dynamic target-system-dependent parameters (architecture,
1228 byte-order, ...) using information found in the BFD */
1229
1230 extern void set_gdbarch_from_file (bfd *);
1231
1232
1233 /* Initialize the current architecture to the "first" one we find on
1234 our list. */
1235
1236 extern void initialize_current_architecture (void);
1237
1238 /* For non-multiarched targets, do any initialization of the default
1239 gdbarch object necessary after the _initialize_MODULE functions
1240 have run. */
1241 extern void initialize_non_multiarch (void);
1242
1243 /* gdbarch trace variable */
1244 extern int gdbarch_debug;
1245
1246 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1247
1248 #endif
1249 EOF
1250 exec 1>&2
1251 #../move-if-change new-gdbarch.h gdbarch.h
1252 compare_new gdbarch.h
1253
1254
1255 #
1256 # C file
1257 #
1258
1259 exec > new-gdbarch.c
1260 copyright
1261 cat <<EOF
1262
1263 #include "defs.h"
1264 #include "arch-utils.h"
1265
1266 #if GDB_MULTI_ARCH
1267 #include "gdbcmd.h"
1268 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1269 #else
1270 /* Just include everything in sight so that the every old definition
1271 of macro is visible. */
1272 #include "gdb_string.h"
1273 #include <ctype.h>
1274 #include "symtab.h"
1275 #include "frame.h"
1276 #include "inferior.h"
1277 #include "breakpoint.h"
1278 #include "gdb_wait.h"
1279 #include "gdbcore.h"
1280 #include "gdbcmd.h"
1281 #include "target.h"
1282 #include "gdbthread.h"
1283 #include "annotate.h"
1284 #include "symfile.h" /* for overlay functions */
1285 #include "value.h" /* For old tm.h/nm.h macros. */
1286 #endif
1287 #include "symcat.h"
1288
1289 #include "floatformat.h"
1290
1291 #include "gdb_assert.h"
1292 #include "gdb_string.h"
1293 #include "gdb-events.h"
1294 #include "reggroups.h"
1295 #include "osabi.h"
1296 #include "symfile.h" /* For entry_point_address. */
1297
1298 /* Static function declarations */
1299
1300 static void verify_gdbarch (struct gdbarch *gdbarch);
1301 static void alloc_gdbarch_data (struct gdbarch *);
1302 static void free_gdbarch_data (struct gdbarch *);
1303 static void init_gdbarch_swap (struct gdbarch *);
1304 static void clear_gdbarch_swap (struct gdbarch *);
1305 static void swapout_gdbarch_swap (struct gdbarch *);
1306 static void swapin_gdbarch_swap (struct gdbarch *);
1307
1308 /* Non-zero if we want to trace architecture code. */
1309
1310 #ifndef GDBARCH_DEBUG
1311 #define GDBARCH_DEBUG 0
1312 #endif
1313 int gdbarch_debug = GDBARCH_DEBUG;
1314
1315 EOF
1316
1317 # gdbarch open the gdbarch object
1318 printf "\n"
1319 printf "/* Maintain the struct gdbarch object */\n"
1320 printf "\n"
1321 printf "struct gdbarch\n"
1322 printf "{\n"
1323 printf " /* Has this architecture been fully initialized? */\n"
1324 printf " int initialized_p;\n"
1325 printf " /* basic architectural information */\n"
1326 function_list | while do_read
1327 do
1328 if class_is_info_p
1329 then
1330 printf " ${returntype} ${function};\n"
1331 fi
1332 done
1333 printf "\n"
1334 printf " /* target specific vector. */\n"
1335 printf " struct gdbarch_tdep *tdep;\n"
1336 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1337 printf "\n"
1338 printf " /* per-architecture data-pointers */\n"
1339 printf " unsigned nr_data;\n"
1340 printf " void **data;\n"
1341 printf "\n"
1342 printf " /* per-architecture swap-regions */\n"
1343 printf " struct gdbarch_swap *swap;\n"
1344 printf "\n"
1345 cat <<EOF
1346 /* Multi-arch values.
1347
1348 When extending this structure you must:
1349
1350 Add the field below.
1351
1352 Declare set/get functions and define the corresponding
1353 macro in gdbarch.h.
1354
1355 gdbarch_alloc(): If zero/NULL is not a suitable default,
1356 initialize the new field.
1357
1358 verify_gdbarch(): Confirm that the target updated the field
1359 correctly.
1360
1361 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1362 field is dumped out
1363
1364 \`\`startup_gdbarch()'': Append an initial value to the static
1365 variable (base values on the host's c-type system).
1366
1367 get_gdbarch(): Implement the set/get functions (probably using
1368 the macro's as shortcuts).
1369
1370 */
1371
1372 EOF
1373 function_list | while do_read
1374 do
1375 if class_is_variable_p
1376 then
1377 printf " ${returntype} ${function};\n"
1378 elif class_is_function_p
1379 then
1380 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1381 fi
1382 done
1383 printf "};\n"
1384
1385 # A pre-initialized vector
1386 printf "\n"
1387 printf "\n"
1388 cat <<EOF
1389 /* The default architecture uses host values (for want of a better
1390 choice). */
1391 EOF
1392 printf "\n"
1393 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1394 printf "\n"
1395 printf "struct gdbarch startup_gdbarch =\n"
1396 printf "{\n"
1397 printf " 1, /* Always initialized. */\n"
1398 printf " /* basic architecture information */\n"
1399 function_list | while do_read
1400 do
1401 if class_is_info_p
1402 then
1403 printf " ${staticdefault},\n"
1404 fi
1405 done
1406 cat <<EOF
1407 /* target specific vector and its dump routine */
1408 NULL, NULL,
1409 /*per-architecture data-pointers and swap regions */
1410 0, NULL, NULL,
1411 /* Multi-arch values */
1412 EOF
1413 function_list | while do_read
1414 do
1415 if class_is_function_p || class_is_variable_p
1416 then
1417 printf " ${staticdefault},\n"
1418 fi
1419 done
1420 cat <<EOF
1421 /* startup_gdbarch() */
1422 };
1423
1424 struct gdbarch *current_gdbarch = &startup_gdbarch;
1425
1426 /* Do any initialization needed for a non-multiarch configuration
1427 after the _initialize_MODULE functions have been run. */
1428 void
1429 initialize_non_multiarch (void)
1430 {
1431 alloc_gdbarch_data (&startup_gdbarch);
1432 /* Ensure that all swap areas are zeroed so that they again think
1433 they are starting from scratch. */
1434 clear_gdbarch_swap (&startup_gdbarch);
1435 init_gdbarch_swap (&startup_gdbarch);
1436 }
1437 EOF
1438
1439 # Create a new gdbarch struct
1440 printf "\n"
1441 printf "\n"
1442 cat <<EOF
1443 /* Create a new \`\`struct gdbarch'' based on information provided by
1444 \`\`struct gdbarch_info''. */
1445 EOF
1446 printf "\n"
1447 cat <<EOF
1448 struct gdbarch *
1449 gdbarch_alloc (const struct gdbarch_info *info,
1450 struct gdbarch_tdep *tdep)
1451 {
1452 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1453 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1454 the current local architecture and not the previous global
1455 architecture. This ensures that the new architectures initial
1456 values are not influenced by the previous architecture. Once
1457 everything is parameterised with gdbarch, this will go away. */
1458 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1459 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1460
1461 alloc_gdbarch_data (current_gdbarch);
1462
1463 current_gdbarch->tdep = tdep;
1464 EOF
1465 printf "\n"
1466 function_list | while do_read
1467 do
1468 if class_is_info_p
1469 then
1470 printf " current_gdbarch->${function} = info->${function};\n"
1471 fi
1472 done
1473 printf "\n"
1474 printf " /* Force the explicit initialization of these. */\n"
1475 function_list | while do_read
1476 do
1477 if class_is_function_p || class_is_variable_p
1478 then
1479 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1480 then
1481 printf " current_gdbarch->${function} = ${predefault};\n"
1482 fi
1483 fi
1484 done
1485 cat <<EOF
1486 /* gdbarch_alloc() */
1487
1488 return current_gdbarch;
1489 }
1490 EOF
1491
1492 # Free a gdbarch struct.
1493 printf "\n"
1494 printf "\n"
1495 cat <<EOF
1496 /* Free a gdbarch struct. This should never happen in normal
1497 operation --- once you've created a gdbarch, you keep it around.
1498 However, if an architecture's init function encounters an error
1499 building the structure, it may need to clean up a partially
1500 constructed gdbarch. */
1501
1502 void
1503 gdbarch_free (struct gdbarch *arch)
1504 {
1505 gdb_assert (arch != NULL);
1506 free_gdbarch_data (arch);
1507 xfree (arch);
1508 }
1509 EOF
1510
1511 # verify a new architecture
1512 printf "\n"
1513 printf "\n"
1514 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1515 printf "\n"
1516 cat <<EOF
1517 static void
1518 verify_gdbarch (struct gdbarch *gdbarch)
1519 {
1520 struct ui_file *log;
1521 struct cleanup *cleanups;
1522 long dummy;
1523 char *buf;
1524 /* Only perform sanity checks on a multi-arch target. */
1525 if (!GDB_MULTI_ARCH)
1526 return;
1527 log = mem_fileopen ();
1528 cleanups = make_cleanup_ui_file_delete (log);
1529 /* fundamental */
1530 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1531 fprintf_unfiltered (log, "\n\tbyte-order");
1532 if (gdbarch->bfd_arch_info == NULL)
1533 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1534 /* Check those that need to be defined for the given multi-arch level. */
1535 EOF
1536 function_list | while do_read
1537 do
1538 if class_is_function_p || class_is_variable_p
1539 then
1540 if [ "x${invalid_p}" = "x0" ]
1541 then
1542 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1543 elif class_is_predicate_p
1544 then
1545 printf " /* Skip verify of ${function}, has predicate */\n"
1546 # FIXME: See do_read for potential simplification
1547 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1548 then
1549 printf " if (${invalid_p})\n"
1550 printf " gdbarch->${function} = ${postdefault};\n"
1551 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1552 then
1553 printf " if (gdbarch->${function} == ${predefault})\n"
1554 printf " gdbarch->${function} = ${postdefault};\n"
1555 elif [ -n "${postdefault}" ]
1556 then
1557 printf " if (gdbarch->${function} == 0)\n"
1558 printf " gdbarch->${function} = ${postdefault};\n"
1559 elif [ -n "${invalid_p}" ]
1560 then
1561 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1562 printf " && (${invalid_p}))\n"
1563 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1564 elif [ -n "${predefault}" ]
1565 then
1566 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1567 printf " && (gdbarch->${function} == ${predefault}))\n"
1568 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1569 fi
1570 fi
1571 done
1572 cat <<EOF
1573 buf = ui_file_xstrdup (log, &dummy);
1574 make_cleanup (xfree, buf);
1575 if (strlen (buf) > 0)
1576 internal_error (__FILE__, __LINE__,
1577 "verify_gdbarch: the following are invalid ...%s",
1578 buf);
1579 do_cleanups (cleanups);
1580 }
1581 EOF
1582
1583 # dump the structure
1584 printf "\n"
1585 printf "\n"
1586 cat <<EOF
1587 /* Print out the details of the current architecture. */
1588
1589 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1590 just happens to match the global variable \`\`current_gdbarch''. That
1591 way macros refering to that variable get the local and not the global
1592 version - ulgh. Once everything is parameterised with gdbarch, this
1593 will go away. */
1594
1595 void
1596 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1597 {
1598 fprintf_unfiltered (file,
1599 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1600 GDB_MULTI_ARCH);
1601 EOF
1602 function_list | sort -t: -k 3 | while do_read
1603 do
1604 # First the predicate
1605 if class_is_predicate_p
1606 then
1607 if class_is_multiarch_p
1608 then
1609 printf " if (GDB_MULTI_ARCH)\n"
1610 printf " fprintf_unfiltered (file,\n"
1611 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1612 printf " gdbarch_${function}_p (current_gdbarch));\n"
1613 else
1614 printf "#ifdef ${macro}_P\n"
1615 printf " fprintf_unfiltered (file,\n"
1616 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1617 printf " \"${macro}_P()\",\n"
1618 printf " XSTRING (${macro}_P ()));\n"
1619 printf " fprintf_unfiltered (file,\n"
1620 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1621 printf " ${macro}_P ());\n"
1622 printf "#endif\n"
1623 fi
1624 fi
1625 # multiarch functions don't have macros.
1626 if class_is_multiarch_p
1627 then
1628 printf " if (GDB_MULTI_ARCH)\n"
1629 printf " fprintf_unfiltered (file,\n"
1630 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1631 printf " (long) current_gdbarch->${function});\n"
1632 continue
1633 fi
1634 # Print the macro definition.
1635 printf "#ifdef ${macro}\n"
1636 if [ "x${returntype}" = "xvoid" ]
1637 then
1638 printf "#if GDB_MULTI_ARCH\n"
1639 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1640 fi
1641 if class_is_function_p
1642 then
1643 printf " fprintf_unfiltered (file,\n"
1644 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1645 printf " \"${macro}(${actual})\",\n"
1646 printf " XSTRING (${macro} (${actual})));\n"
1647 else
1648 printf " fprintf_unfiltered (file,\n"
1649 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1650 printf " XSTRING (${macro}));\n"
1651 fi
1652 # Print the architecture vector value
1653 if [ "x${returntype}" = "xvoid" ]
1654 then
1655 printf "#endif\n"
1656 fi
1657 if [ "x${print_p}" = "x()" ]
1658 then
1659 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1660 elif [ "x${print_p}" = "x0" ]
1661 then
1662 printf " /* skip print of ${macro}, print_p == 0. */\n"
1663 elif [ -n "${print_p}" ]
1664 then
1665 printf " if (${print_p})\n"
1666 printf " fprintf_unfiltered (file,\n"
1667 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1668 printf " ${print});\n"
1669 elif class_is_function_p
1670 then
1671 printf " if (GDB_MULTI_ARCH)\n"
1672 printf " fprintf_unfiltered (file,\n"
1673 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1674 printf " (long) current_gdbarch->${function}\n"
1675 printf " /*${macro} ()*/);\n"
1676 else
1677 printf " fprintf_unfiltered (file,\n"
1678 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1679 printf " ${print});\n"
1680 fi
1681 printf "#endif\n"
1682 done
1683 cat <<EOF
1684 if (current_gdbarch->dump_tdep != NULL)
1685 current_gdbarch->dump_tdep (current_gdbarch, file);
1686 }
1687 EOF
1688
1689
1690 # GET/SET
1691 printf "\n"
1692 cat <<EOF
1693 struct gdbarch_tdep *
1694 gdbarch_tdep (struct gdbarch *gdbarch)
1695 {
1696 if (gdbarch_debug >= 2)
1697 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1698 return gdbarch->tdep;
1699 }
1700 EOF
1701 printf "\n"
1702 function_list | while do_read
1703 do
1704 if class_is_predicate_p
1705 then
1706 printf "\n"
1707 printf "int\n"
1708 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1709 printf "{\n"
1710 printf " gdb_assert (gdbarch != NULL);\n"
1711 if [ -n "${predicate}" ]
1712 then
1713 printf " return ${predicate};\n"
1714 else
1715 printf " return gdbarch->${function} != 0;\n"
1716 fi
1717 printf "}\n"
1718 fi
1719 if class_is_function_p
1720 then
1721 printf "\n"
1722 printf "${returntype}\n"
1723 if [ "x${formal}" = "xvoid" ]
1724 then
1725 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1726 else
1727 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1728 fi
1729 printf "{\n"
1730 printf " gdb_assert (gdbarch != NULL);\n"
1731 printf " if (gdbarch->${function} == 0)\n"
1732 printf " internal_error (__FILE__, __LINE__,\n"
1733 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1734 if class_is_predicate_p && test -n "${predicate}"
1735 then
1736 # Allow a call to a function with a predicate.
1737 printf " /* Ignore predicate (${predicate}). */\n"
1738 fi
1739 printf " if (gdbarch_debug >= 2)\n"
1740 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1741 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1742 then
1743 if class_is_multiarch_p
1744 then
1745 params="gdbarch"
1746 else
1747 params=""
1748 fi
1749 else
1750 if class_is_multiarch_p
1751 then
1752 params="gdbarch, ${actual}"
1753 else
1754 params="${actual}"
1755 fi
1756 fi
1757 if [ "x${returntype}" = "xvoid" ]
1758 then
1759 printf " gdbarch->${function} (${params});\n"
1760 else
1761 printf " return gdbarch->${function} (${params});\n"
1762 fi
1763 printf "}\n"
1764 printf "\n"
1765 printf "void\n"
1766 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1767 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1768 printf "{\n"
1769 printf " gdbarch->${function} = ${function};\n"
1770 printf "}\n"
1771 elif class_is_variable_p
1772 then
1773 printf "\n"
1774 printf "${returntype}\n"
1775 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1776 printf "{\n"
1777 printf " gdb_assert (gdbarch != NULL);\n"
1778 if [ "x${invalid_p}" = "x0" ]
1779 then
1780 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1781 elif [ -n "${invalid_p}" ]
1782 then
1783 printf " if (${invalid_p})\n"
1784 printf " internal_error (__FILE__, __LINE__,\n"
1785 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1786 elif [ -n "${predefault}" ]
1787 then
1788 printf " if (gdbarch->${function} == ${predefault})\n"
1789 printf " internal_error (__FILE__, __LINE__,\n"
1790 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1791 fi
1792 printf " if (gdbarch_debug >= 2)\n"
1793 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1794 printf " return gdbarch->${function};\n"
1795 printf "}\n"
1796 printf "\n"
1797 printf "void\n"
1798 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1799 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1800 printf "{\n"
1801 printf " gdbarch->${function} = ${function};\n"
1802 printf "}\n"
1803 elif class_is_info_p
1804 then
1805 printf "\n"
1806 printf "${returntype}\n"
1807 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1808 printf "{\n"
1809 printf " gdb_assert (gdbarch != NULL);\n"
1810 printf " if (gdbarch_debug >= 2)\n"
1811 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1812 printf " return gdbarch->${function};\n"
1813 printf "}\n"
1814 fi
1815 done
1816
1817 # All the trailing guff
1818 cat <<EOF
1819
1820
1821 /* Keep a registry of per-architecture data-pointers required by GDB
1822 modules. */
1823
1824 struct gdbarch_data
1825 {
1826 unsigned index;
1827 int init_p;
1828 gdbarch_data_init_ftype *init;
1829 gdbarch_data_free_ftype *free;
1830 };
1831
1832 struct gdbarch_data_registration
1833 {
1834 struct gdbarch_data *data;
1835 struct gdbarch_data_registration *next;
1836 };
1837
1838 struct gdbarch_data_registry
1839 {
1840 unsigned nr;
1841 struct gdbarch_data_registration *registrations;
1842 };
1843
1844 struct gdbarch_data_registry gdbarch_data_registry =
1845 {
1846 0, NULL,
1847 };
1848
1849 struct gdbarch_data *
1850 register_gdbarch_data (gdbarch_data_init_ftype *init,
1851 gdbarch_data_free_ftype *free)
1852 {
1853 struct gdbarch_data_registration **curr;
1854 /* Append the new registraration. */
1855 for (curr = &gdbarch_data_registry.registrations;
1856 (*curr) != NULL;
1857 curr = &(*curr)->next);
1858 (*curr) = XMALLOC (struct gdbarch_data_registration);
1859 (*curr)->next = NULL;
1860 (*curr)->data = XMALLOC (struct gdbarch_data);
1861 (*curr)->data->index = gdbarch_data_registry.nr++;
1862 (*curr)->data->init = init;
1863 (*curr)->data->init_p = 1;
1864 (*curr)->data->free = free;
1865 return (*curr)->data;
1866 }
1867
1868
1869 /* Create/delete the gdbarch data vector. */
1870
1871 static void
1872 alloc_gdbarch_data (struct gdbarch *gdbarch)
1873 {
1874 gdb_assert (gdbarch->data == NULL);
1875 gdbarch->nr_data = gdbarch_data_registry.nr;
1876 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1877 }
1878
1879 static void
1880 free_gdbarch_data (struct gdbarch *gdbarch)
1881 {
1882 struct gdbarch_data_registration *rego;
1883 gdb_assert (gdbarch->data != NULL);
1884 for (rego = gdbarch_data_registry.registrations;
1885 rego != NULL;
1886 rego = rego->next)
1887 {
1888 struct gdbarch_data *data = rego->data;
1889 gdb_assert (data->index < gdbarch->nr_data);
1890 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1891 {
1892 data->free (gdbarch, gdbarch->data[data->index]);
1893 gdbarch->data[data->index] = NULL;
1894 }
1895 }
1896 xfree (gdbarch->data);
1897 gdbarch->data = NULL;
1898 }
1899
1900
1901 /* Initialize the current value of the specified per-architecture
1902 data-pointer. */
1903
1904 void
1905 set_gdbarch_data (struct gdbarch *gdbarch,
1906 struct gdbarch_data *data,
1907 void *pointer)
1908 {
1909 gdb_assert (data->index < gdbarch->nr_data);
1910 if (gdbarch->data[data->index] != NULL)
1911 {
1912 gdb_assert (data->free != NULL);
1913 data->free (gdbarch, gdbarch->data[data->index]);
1914 }
1915 gdbarch->data[data->index] = pointer;
1916 }
1917
1918 /* Return the current value of the specified per-architecture
1919 data-pointer. */
1920
1921 void *
1922 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1923 {
1924 gdb_assert (data->index < gdbarch->nr_data);
1925 /* The data-pointer isn't initialized, call init() to get a value but
1926 only if the architecture initializaiton has completed. Otherwise
1927 punt - hope that the caller knows what they are doing. */
1928 if (gdbarch->data[data->index] == NULL
1929 && gdbarch->initialized_p)
1930 {
1931 /* Be careful to detect an initialization cycle. */
1932 gdb_assert (data->init_p);
1933 data->init_p = 0;
1934 gdb_assert (data->init != NULL);
1935 gdbarch->data[data->index] = data->init (gdbarch);
1936 data->init_p = 1;
1937 gdb_assert (gdbarch->data[data->index] != NULL);
1938 }
1939 return gdbarch->data[data->index];
1940 }
1941
1942
1943
1944 /* Keep a registry of swapped data required by GDB modules. */
1945
1946 struct gdbarch_swap
1947 {
1948 void *swap;
1949 struct gdbarch_swap_registration *source;
1950 struct gdbarch_swap *next;
1951 };
1952
1953 struct gdbarch_swap_registration
1954 {
1955 void *data;
1956 unsigned long sizeof_data;
1957 gdbarch_swap_ftype *init;
1958 struct gdbarch_swap_registration *next;
1959 };
1960
1961 struct gdbarch_swap_registry
1962 {
1963 int nr;
1964 struct gdbarch_swap_registration *registrations;
1965 };
1966
1967 struct gdbarch_swap_registry gdbarch_swap_registry =
1968 {
1969 0, NULL,
1970 };
1971
1972 void
1973 register_gdbarch_swap (void *data,
1974 unsigned long sizeof_data,
1975 gdbarch_swap_ftype *init)
1976 {
1977 struct gdbarch_swap_registration **rego;
1978 for (rego = &gdbarch_swap_registry.registrations;
1979 (*rego) != NULL;
1980 rego = &(*rego)->next);
1981 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1982 (*rego)->next = NULL;
1983 (*rego)->init = init;
1984 (*rego)->data = data;
1985 (*rego)->sizeof_data = sizeof_data;
1986 }
1987
1988 static void
1989 clear_gdbarch_swap (struct gdbarch *gdbarch)
1990 {
1991 struct gdbarch_swap *curr;
1992 for (curr = gdbarch->swap;
1993 curr != NULL;
1994 curr = curr->next)
1995 {
1996 memset (curr->source->data, 0, curr->source->sizeof_data);
1997 }
1998 }
1999
2000 static void
2001 init_gdbarch_swap (struct gdbarch *gdbarch)
2002 {
2003 struct gdbarch_swap_registration *rego;
2004 struct gdbarch_swap **curr = &gdbarch->swap;
2005 for (rego = gdbarch_swap_registry.registrations;
2006 rego != NULL;
2007 rego = rego->next)
2008 {
2009 if (rego->data != NULL)
2010 {
2011 (*curr) = XMALLOC (struct gdbarch_swap);
2012 (*curr)->source = rego;
2013 (*curr)->swap = xmalloc (rego->sizeof_data);
2014 (*curr)->next = NULL;
2015 curr = &(*curr)->next;
2016 }
2017 if (rego->init != NULL)
2018 rego->init ();
2019 }
2020 }
2021
2022 static void
2023 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2024 {
2025 struct gdbarch_swap *curr;
2026 for (curr = gdbarch->swap;
2027 curr != NULL;
2028 curr = curr->next)
2029 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2030 }
2031
2032 static void
2033 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2034 {
2035 struct gdbarch_swap *curr;
2036 for (curr = gdbarch->swap;
2037 curr != NULL;
2038 curr = curr->next)
2039 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2040 }
2041
2042
2043 /* Keep a registry of the architectures known by GDB. */
2044
2045 struct gdbarch_registration
2046 {
2047 enum bfd_architecture bfd_architecture;
2048 gdbarch_init_ftype *init;
2049 gdbarch_dump_tdep_ftype *dump_tdep;
2050 struct gdbarch_list *arches;
2051 struct gdbarch_registration *next;
2052 };
2053
2054 static struct gdbarch_registration *gdbarch_registry = NULL;
2055
2056 static void
2057 append_name (const char ***buf, int *nr, const char *name)
2058 {
2059 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2060 (*buf)[*nr] = name;
2061 *nr += 1;
2062 }
2063
2064 const char **
2065 gdbarch_printable_names (void)
2066 {
2067 if (GDB_MULTI_ARCH)
2068 {
2069 /* Accumulate a list of names based on the registed list of
2070 architectures. */
2071 enum bfd_architecture a;
2072 int nr_arches = 0;
2073 const char **arches = NULL;
2074 struct gdbarch_registration *rego;
2075 for (rego = gdbarch_registry;
2076 rego != NULL;
2077 rego = rego->next)
2078 {
2079 const struct bfd_arch_info *ap;
2080 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2081 if (ap == NULL)
2082 internal_error (__FILE__, __LINE__,
2083 "gdbarch_architecture_names: multi-arch unknown");
2084 do
2085 {
2086 append_name (&arches, &nr_arches, ap->printable_name);
2087 ap = ap->next;
2088 }
2089 while (ap != NULL);
2090 }
2091 append_name (&arches, &nr_arches, NULL);
2092 return arches;
2093 }
2094 else
2095 /* Just return all the architectures that BFD knows. Assume that
2096 the legacy architecture framework supports them. */
2097 return bfd_arch_list ();
2098 }
2099
2100
2101 void
2102 gdbarch_register (enum bfd_architecture bfd_architecture,
2103 gdbarch_init_ftype *init,
2104 gdbarch_dump_tdep_ftype *dump_tdep)
2105 {
2106 struct gdbarch_registration **curr;
2107 const struct bfd_arch_info *bfd_arch_info;
2108 /* Check that BFD recognizes this architecture */
2109 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2110 if (bfd_arch_info == NULL)
2111 {
2112 internal_error (__FILE__, __LINE__,
2113 "gdbarch: Attempt to register unknown architecture (%d)",
2114 bfd_architecture);
2115 }
2116 /* Check that we haven't seen this architecture before */
2117 for (curr = &gdbarch_registry;
2118 (*curr) != NULL;
2119 curr = &(*curr)->next)
2120 {
2121 if (bfd_architecture == (*curr)->bfd_architecture)
2122 internal_error (__FILE__, __LINE__,
2123 "gdbarch: Duplicate registraration of architecture (%s)",
2124 bfd_arch_info->printable_name);
2125 }
2126 /* log it */
2127 if (gdbarch_debug)
2128 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2129 bfd_arch_info->printable_name,
2130 (long) init);
2131 /* Append it */
2132 (*curr) = XMALLOC (struct gdbarch_registration);
2133 (*curr)->bfd_architecture = bfd_architecture;
2134 (*curr)->init = init;
2135 (*curr)->dump_tdep = dump_tdep;
2136 (*curr)->arches = NULL;
2137 (*curr)->next = NULL;
2138 /* When non- multi-arch, install whatever target dump routine we've
2139 been provided - hopefully that routine has been written correctly
2140 and works regardless of multi-arch. */
2141 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2142 && startup_gdbarch.dump_tdep == NULL)
2143 startup_gdbarch.dump_tdep = dump_tdep;
2144 }
2145
2146 void
2147 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2148 gdbarch_init_ftype *init)
2149 {
2150 gdbarch_register (bfd_architecture, init, NULL);
2151 }
2152
2153
2154 /* Look for an architecture using gdbarch_info. Base search on only
2155 BFD_ARCH_INFO and BYTE_ORDER. */
2156
2157 struct gdbarch_list *
2158 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2159 const struct gdbarch_info *info)
2160 {
2161 for (; arches != NULL; arches = arches->next)
2162 {
2163 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2164 continue;
2165 if (info->byte_order != arches->gdbarch->byte_order)
2166 continue;
2167 if (info->osabi != arches->gdbarch->osabi)
2168 continue;
2169 return arches;
2170 }
2171 return NULL;
2172 }
2173
2174
2175 /* Update the current architecture. Return ZERO if the update request
2176 failed. */
2177
2178 int
2179 gdbarch_update_p (struct gdbarch_info info)
2180 {
2181 struct gdbarch *new_gdbarch;
2182 struct gdbarch *old_gdbarch;
2183 struct gdbarch_registration *rego;
2184
2185 /* Fill in missing parts of the INFO struct using a number of
2186 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2187
2188 /* \`\`(gdb) set architecture ...'' */
2189 if (info.bfd_arch_info == NULL
2190 && !TARGET_ARCHITECTURE_AUTO)
2191 info.bfd_arch_info = TARGET_ARCHITECTURE;
2192 if (info.bfd_arch_info == NULL
2193 && info.abfd != NULL
2194 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2195 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2196 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2197 if (info.bfd_arch_info == NULL)
2198 info.bfd_arch_info = TARGET_ARCHITECTURE;
2199
2200 /* \`\`(gdb) set byte-order ...'' */
2201 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2202 && !TARGET_BYTE_ORDER_AUTO)
2203 info.byte_order = TARGET_BYTE_ORDER;
2204 /* From the INFO struct. */
2205 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2206 && info.abfd != NULL)
2207 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2208 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2209 : BFD_ENDIAN_UNKNOWN);
2210 /* From the current target. */
2211 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2212 info.byte_order = TARGET_BYTE_ORDER;
2213
2214 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2215 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2216 info.osabi = gdbarch_lookup_osabi (info.abfd);
2217 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2218 info.osabi = current_gdbarch->osabi;
2219
2220 /* Must have found some sort of architecture. */
2221 gdb_assert (info.bfd_arch_info != NULL);
2222
2223 if (gdbarch_debug)
2224 {
2225 fprintf_unfiltered (gdb_stdlog,
2226 "gdbarch_update: info.bfd_arch_info %s\n",
2227 (info.bfd_arch_info != NULL
2228 ? info.bfd_arch_info->printable_name
2229 : "(null)"));
2230 fprintf_unfiltered (gdb_stdlog,
2231 "gdbarch_update: info.byte_order %d (%s)\n",
2232 info.byte_order,
2233 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2234 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2235 : "default"));
2236 fprintf_unfiltered (gdb_stdlog,
2237 "gdbarch_update: info.osabi %d (%s)\n",
2238 info.osabi, gdbarch_osabi_name (info.osabi));
2239 fprintf_unfiltered (gdb_stdlog,
2240 "gdbarch_update: info.abfd 0x%lx\n",
2241 (long) info.abfd);
2242 fprintf_unfiltered (gdb_stdlog,
2243 "gdbarch_update: info.tdep_info 0x%lx\n",
2244 (long) info.tdep_info);
2245 }
2246
2247 /* Find the target that knows about this architecture. */
2248 for (rego = gdbarch_registry;
2249 rego != NULL;
2250 rego = rego->next)
2251 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2252 break;
2253 if (rego == NULL)
2254 {
2255 if (gdbarch_debug)
2256 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2257 return 0;
2258 }
2259
2260 /* Swap the data belonging to the old target out setting the
2261 installed data to zero. This stops the ->init() function trying
2262 to refer to the previous architecture's global data structures. */
2263 swapout_gdbarch_swap (current_gdbarch);
2264 clear_gdbarch_swap (current_gdbarch);
2265
2266 /* Save the previously selected architecture, setting the global to
2267 NULL. This stops ->init() trying to use the previous
2268 architecture's configuration. The previous architecture may not
2269 even be of the same architecture family. The most recent
2270 architecture of the same family is found at the head of the
2271 rego->arches list. */
2272 old_gdbarch = current_gdbarch;
2273 current_gdbarch = NULL;
2274
2275 /* Ask the target for a replacement architecture. */
2276 new_gdbarch = rego->init (info, rego->arches);
2277
2278 /* Did the target like it? No. Reject the change and revert to the
2279 old architecture. */
2280 if (new_gdbarch == NULL)
2281 {
2282 if (gdbarch_debug)
2283 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2284 swapin_gdbarch_swap (old_gdbarch);
2285 current_gdbarch = old_gdbarch;
2286 return 0;
2287 }
2288
2289 /* Did the architecture change? No. Oops, put the old architecture
2290 back. */
2291 if (old_gdbarch == new_gdbarch)
2292 {
2293 if (gdbarch_debug)
2294 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2295 (long) new_gdbarch,
2296 new_gdbarch->bfd_arch_info->printable_name);
2297 swapin_gdbarch_swap (old_gdbarch);
2298 current_gdbarch = old_gdbarch;
2299 return 1;
2300 }
2301
2302 /* Is this a pre-existing architecture? Yes. Move it to the front
2303 of the list of architectures (keeping the list sorted Most
2304 Recently Used) and then copy it in. */
2305 {
2306 struct gdbarch_list **list;
2307 for (list = &rego->arches;
2308 (*list) != NULL;
2309 list = &(*list)->next)
2310 {
2311 if ((*list)->gdbarch == new_gdbarch)
2312 {
2313 struct gdbarch_list *this;
2314 if (gdbarch_debug)
2315 fprintf_unfiltered (gdb_stdlog,
2316 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2317 (long) new_gdbarch,
2318 new_gdbarch->bfd_arch_info->printable_name);
2319 /* Unlink this. */
2320 this = (*list);
2321 (*list) = this->next;
2322 /* Insert in the front. */
2323 this->next = rego->arches;
2324 rego->arches = this;
2325 /* Copy the new architecture in. */
2326 current_gdbarch = new_gdbarch;
2327 swapin_gdbarch_swap (new_gdbarch);
2328 architecture_changed_event ();
2329 return 1;
2330 }
2331 }
2332 }
2333
2334 /* Prepend this new architecture to the architecture list (keep the
2335 list sorted Most Recently Used). */
2336 {
2337 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2338 this->next = rego->arches;
2339 this->gdbarch = new_gdbarch;
2340 rego->arches = this;
2341 }
2342
2343 /* Switch to this new architecture marking it initialized. */
2344 current_gdbarch = new_gdbarch;
2345 current_gdbarch->initialized_p = 1;
2346 if (gdbarch_debug)
2347 {
2348 fprintf_unfiltered (gdb_stdlog,
2349 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2350 (long) new_gdbarch,
2351 new_gdbarch->bfd_arch_info->printable_name);
2352 }
2353
2354 /* Check that the newly installed architecture is valid. Plug in
2355 any post init values. */
2356 new_gdbarch->dump_tdep = rego->dump_tdep;
2357 verify_gdbarch (new_gdbarch);
2358
2359 /* Initialize the per-architecture memory (swap) areas.
2360 CURRENT_GDBARCH must be update before these modules are
2361 called. */
2362 init_gdbarch_swap (new_gdbarch);
2363
2364 /* Initialize the per-architecture data. CURRENT_GDBARCH
2365 must be updated before these modules are called. */
2366 architecture_changed_event ();
2367
2368 if (gdbarch_debug)
2369 gdbarch_dump (current_gdbarch, gdb_stdlog);
2370
2371 return 1;
2372 }
2373
2374
2375 /* Disassembler */
2376
2377 /* Pointer to the target-dependent disassembly function. */
2378 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2379 disassemble_info tm_print_insn_info;
2380
2381
2382 extern void _initialize_gdbarch (void);
2383
2384 void
2385 _initialize_gdbarch (void)
2386 {
2387 struct cmd_list_element *c;
2388
2389 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2390 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2391 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2392 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2393 tm_print_insn_info.print_address_func = dis_asm_print_address;
2394
2395 add_show_from_set (add_set_cmd ("arch",
2396 class_maintenance,
2397 var_zinteger,
2398 (char *)&gdbarch_debug,
2399 "Set architecture debugging.\\n\\
2400 When non-zero, architecture debugging is enabled.", &setdebuglist),
2401 &showdebuglist);
2402 c = add_set_cmd ("archdebug",
2403 class_maintenance,
2404 var_zinteger,
2405 (char *)&gdbarch_debug,
2406 "Set architecture debugging.\\n\\
2407 When non-zero, architecture debugging is enabled.", &setlist);
2408
2409 deprecate_cmd (c, "set debug arch");
2410 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2411 }
2412 EOF
2413
2414 # close things off
2415 exec 1>&2
2416 #../move-if-change new-gdbarch.c gdbarch.c
2417 compare_new gdbarch.c