gdb
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2012 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:int:byte_order:::BFD_ENDIAN_BIG
344 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
473 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
474 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
475 # deprecated_fp_regnum.
476 v:int:deprecated_fp_regnum:::-1:-1::0
477
478 # See gdbint.texinfo. See infcall.c.
479 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
480 v:int:call_dummy_location::::AT_ENTRY_POINT::0
481 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
482
483 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
484 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
486 # MAP a GDB RAW register number onto a simulator register number. See
487 # also include/...-sim.h.
488 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
489 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
490 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
491 # setjmp/longjmp support.
492 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
493 #
494 v:int:believe_pcc_promotion:::::::
495 #
496 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
497 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
498 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
499 # Construct a value representing the contents of register REGNUM in
500 # frame FRAME, interpreted as type TYPE. The routine needs to
501 # allocate and return a struct value with all value attributes
502 # (but not the value contents) filled in.
503 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
504 #
505 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
506 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
507 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
508
509 # Return the return-value convention that will be used by FUNCTION
510 # to return a value of type VALTYPE. FUNCTION may be NULL in which
511 # case the return convention is computed based only on VALTYPE.
512 #
513 # If READBUF is not NULL, extract the return value and save it in this buffer.
514 #
515 # If WRITEBUF is not NULL, it contains a return value which will be
516 # stored into the appropriate register. This can be used when we want
517 # to force the value returned by a function (see the "return" command
518 # for instance).
519 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
520
521 # Return true if the return value of function is stored in the first hidden
522 # parameter. In theory, this feature should be language-dependent, specified
523 # by language and its ABI, such as C++. Unfortunately, compiler may
524 # implement it to a target-dependent feature. So that we need such hook here
525 # to be aware of this in GDB.
526 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
527
528 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
529 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
530 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
531 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
532 # Return the adjusted address and kind to use for Z0/Z1 packets.
533 # KIND is usually the memory length of the breakpoint, but may have a
534 # different target-specific meaning.
535 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
536 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
537 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
538 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
539 v:CORE_ADDR:decr_pc_after_break:::0:::0
540
541 # A function can be addressed by either it's "pointer" (possibly a
542 # descriptor address) or "entry point" (first executable instruction).
543 # The method "convert_from_func_ptr_addr" converting the former to the
544 # latter. gdbarch_deprecated_function_start_offset is being used to implement
545 # a simplified subset of that functionality - the function's address
546 # corresponds to the "function pointer" and the function's start
547 # corresponds to the "function entry point" - and hence is redundant.
548
549 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
550
551 # Return the remote protocol register number associated with this
552 # register. Normally the identity mapping.
553 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
554
555 # Fetch the target specific address used to represent a load module.
556 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
557 #
558 v:CORE_ADDR:frame_args_skip:::0:::0
559 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
560 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
561 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
562 # frame-base. Enable frame-base before frame-unwind.
563 F:int:frame_num_args:struct frame_info *frame:frame
564 #
565 M:CORE_ADDR:frame_align:CORE_ADDR address:address
566 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
567 v:int:frame_red_zone_size
568 #
569 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
570 # On some machines there are bits in addresses which are not really
571 # part of the address, but are used by the kernel, the hardware, etc.
572 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
573 # we get a "real" address such as one would find in a symbol table.
574 # This is used only for addresses of instructions, and even then I'm
575 # not sure it's used in all contexts. It exists to deal with there
576 # being a few stray bits in the PC which would mislead us, not as some
577 # sort of generic thing to handle alignment or segmentation (it's
578 # possible it should be in TARGET_READ_PC instead).
579 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
580
581 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
582 # indicates if the target needs software single step. An ISA method to
583 # implement it.
584 #
585 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
586 # breakpoints using the breakpoint system instead of blatting memory directly
587 # (as with rs6000).
588 #
589 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
590 # target can single step. If not, then implement single step using breakpoints.
591 #
592 # A return value of 1 means that the software_single_step breakpoints
593 # were inserted; 0 means they were not.
594 F:int:software_single_step:struct frame_info *frame:frame
595
596 # Return non-zero if the processor is executing a delay slot and a
597 # further single-step is needed before the instruction finishes.
598 M:int:single_step_through_delay:struct frame_info *frame:frame
599 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
600 # disassembler. Perhaps objdump can handle it?
601 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
602 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
603
604
605 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
606 # evaluates non-zero, this is the address where the debugger will place
607 # a step-resume breakpoint to get us past the dynamic linker.
608 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
609 # Some systems also have trampoline code for returning from shared libs.
610 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
611
612 # A target might have problems with watchpoints as soon as the stack
613 # frame of the current function has been destroyed. This mostly happens
614 # as the first action in a funtion's epilogue. in_function_epilogue_p()
615 # is defined to return a non-zero value if either the given addr is one
616 # instruction after the stack destroying instruction up to the trailing
617 # return instruction or if we can figure out that the stack frame has
618 # already been invalidated regardless of the value of addr. Targets
619 # which don't suffer from that problem could just let this functionality
620 # untouched.
621 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
622 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
623 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
624 v:int:cannot_step_breakpoint:::0:0::0
625 v:int:have_nonsteppable_watchpoint:::0:0::0
626 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
627 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
628 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
629 # Is a register in a group
630 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
631 # Fetch the pointer to the ith function argument.
632 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
633
634 # Return the appropriate register set for a core file section with
635 # name SECT_NAME and size SECT_SIZE.
636 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
637
638 # Supported register notes in a core file.
639 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
640
641 # Create core file notes
642 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
643
644 # Find core file memory regions
645 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
646
647 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
648 # core file into buffer READBUF with length LEN.
649 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
650
651 # How the core target converts a PTID from a core file to a string.
652 M:char *:core_pid_to_str:ptid_t ptid:ptid
653
654 # BFD target to use when generating a core file.
655 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
656
657 # If the elements of C++ vtables are in-place function descriptors rather
658 # than normal function pointers (which may point to code or a descriptor),
659 # set this to one.
660 v:int:vtable_function_descriptors:::0:0::0
661
662 # Set if the least significant bit of the delta is used instead of the least
663 # significant bit of the pfn for pointers to virtual member functions.
664 v:int:vbit_in_delta:::0:0::0
665
666 # Advance PC to next instruction in order to skip a permanent breakpoint.
667 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
668
669 # The maximum length of an instruction on this architecture in bytes.
670 V:ULONGEST:max_insn_length:::0:0
671
672 # Copy the instruction at FROM to TO, and make any adjustments
673 # necessary to single-step it at that address.
674 #
675 # REGS holds the state the thread's registers will have before
676 # executing the copied instruction; the PC in REGS will refer to FROM,
677 # not the copy at TO. The caller should update it to point at TO later.
678 #
679 # Return a pointer to data of the architecture's choice to be passed
680 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
681 # the instruction's effects have been completely simulated, with the
682 # resulting state written back to REGS.
683 #
684 # For a general explanation of displaced stepping and how GDB uses it,
685 # see the comments in infrun.c.
686 #
687 # The TO area is only guaranteed to have space for
688 # gdbarch_max_insn_length (arch) bytes, so this function must not
689 # write more bytes than that to that area.
690 #
691 # If you do not provide this function, GDB assumes that the
692 # architecture does not support displaced stepping.
693 #
694 # If your architecture doesn't need to adjust instructions before
695 # single-stepping them, consider using simple_displaced_step_copy_insn
696 # here.
697 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
698
699 # Return true if GDB should use hardware single-stepping to execute
700 # the displaced instruction identified by CLOSURE. If false,
701 # GDB will simply restart execution at the displaced instruction
702 # location, and it is up to the target to ensure GDB will receive
703 # control again (e.g. by placing a software breakpoint instruction
704 # into the displaced instruction buffer).
705 #
706 # The default implementation returns false on all targets that
707 # provide a gdbarch_software_single_step routine, and true otherwise.
708 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
709
710 # Fix up the state resulting from successfully single-stepping a
711 # displaced instruction, to give the result we would have gotten from
712 # stepping the instruction in its original location.
713 #
714 # REGS is the register state resulting from single-stepping the
715 # displaced instruction.
716 #
717 # CLOSURE is the result from the matching call to
718 # gdbarch_displaced_step_copy_insn.
719 #
720 # If you provide gdbarch_displaced_step_copy_insn.but not this
721 # function, then GDB assumes that no fixup is needed after
722 # single-stepping the instruction.
723 #
724 # For a general explanation of displaced stepping and how GDB uses it,
725 # see the comments in infrun.c.
726 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
727
728 # Free a closure returned by gdbarch_displaced_step_copy_insn.
729 #
730 # If you provide gdbarch_displaced_step_copy_insn, you must provide
731 # this function as well.
732 #
733 # If your architecture uses closures that don't need to be freed, then
734 # you can use simple_displaced_step_free_closure here.
735 #
736 # For a general explanation of displaced stepping and how GDB uses it,
737 # see the comments in infrun.c.
738 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
739
740 # Return the address of an appropriate place to put displaced
741 # instructions while we step over them. There need only be one such
742 # place, since we're only stepping one thread over a breakpoint at a
743 # time.
744 #
745 # For a general explanation of displaced stepping and how GDB uses it,
746 # see the comments in infrun.c.
747 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
748
749 # Relocate an instruction to execute at a different address. OLDLOC
750 # is the address in the inferior memory where the instruction to
751 # relocate is currently at. On input, TO points to the destination
752 # where we want the instruction to be copied (and possibly adjusted)
753 # to. On output, it points to one past the end of the resulting
754 # instruction(s). The effect of executing the instruction at TO shall
755 # be the same as if executing it at FROM. For example, call
756 # instructions that implicitly push the return address on the stack
757 # should be adjusted to return to the instruction after OLDLOC;
758 # relative branches, and other PC-relative instructions need the
759 # offset adjusted; etc.
760 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
761
762 # Refresh overlay mapped state for section OSECT.
763 F:void:overlay_update:struct obj_section *osect:osect
764
765 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
766
767 # Handle special encoding of static variables in stabs debug info.
768 F:const char *:static_transform_name:const char *name:name
769 # Set if the address in N_SO or N_FUN stabs may be zero.
770 v:int:sofun_address_maybe_missing:::0:0::0
771
772 # Parse the instruction at ADDR storing in the record execution log
773 # the registers REGCACHE and memory ranges that will be affected when
774 # the instruction executes, along with their current values.
775 # Return -1 if something goes wrong, 0 otherwise.
776 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
777
778 # Save process state after a signal.
779 # Return -1 if something goes wrong, 0 otherwise.
780 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
781
782 # Signal translation: translate inferior's signal (target's) number
783 # into GDB's representation. The implementation of this method must
784 # be host independent. IOW, don't rely on symbols of the NAT_FILE
785 # header (the nm-*.h files), the host <signal.h> header, or similar
786 # headers. This is mainly used when cross-debugging core files ---
787 # "Live" targets hide the translation behind the target interface
788 # (target_wait, target_resume, etc.).
789 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
790
791 # Extra signal info inspection.
792 #
793 # Return a type suitable to inspect extra signal information.
794 M:struct type *:get_siginfo_type:void:
795
796 # Record architecture-specific information from the symbol table.
797 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
798
799 # Function for the 'catch syscall' feature.
800
801 # Get architecture-specific system calls information from registers.
802 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
803
804 # SystemTap related fields and functions.
805
806 # Prefix used to mark an integer constant on the architecture's assembly
807 # For example, on x86 integer constants are written as:
808 #
809 # \$10 ;; integer constant 10
810 #
811 # in this case, this prefix would be the character \`\$\'.
812 v:const char *:stap_integer_prefix:::0:0::0:pstring (gdbarch->stap_integer_prefix)
813
814 # Suffix used to mark an integer constant on the architecture's assembly.
815 v:const char *:stap_integer_suffix:::0:0::0:pstring (gdbarch->stap_integer_suffix)
816
817 # Prefix used to mark a register name on the architecture's assembly.
818 # For example, on x86 the register name is written as:
819 #
820 # \%eax ;; register eax
821 #
822 # in this case, this prefix would be the character \`\%\'.
823 v:const char *:stap_register_prefix:::0:0::0:pstring (gdbarch->stap_register_prefix)
824
825 # Suffix used to mark a register name on the architecture's assembly
826 v:const char *:stap_register_suffix:::0:0::0:pstring (gdbarch->stap_register_suffix)
827
828 # Prefix used to mark a register indirection on the architecture's assembly.
829 # For example, on x86 the register indirection is written as:
830 #
831 # \(\%eax\) ;; indirecting eax
832 #
833 # in this case, this prefix would be the charater \`\(\'.
834 #
835 # Please note that we use the indirection prefix also for register
836 # displacement, e.g., \`4\(\%eax\)\' on x86.
837 v:const char *:stap_register_indirection_prefix:::0:0::0:pstring (gdbarch->stap_register_indirection_prefix)
838
839 # Suffix used to mark a register indirection on the architecture's assembly.
840 # For example, on x86 the register indirection is written as:
841 #
842 # \(\%eax\) ;; indirecting eax
843 #
844 # in this case, this prefix would be the charater \`\)\'.
845 #
846 # Please note that we use the indirection suffix also for register
847 # displacement, e.g., \`4\(\%eax\)\' on x86.
848 v:const char *:stap_register_indirection_suffix:::0:0::0:pstring (gdbarch->stap_register_indirection_suffix)
849
850 # Prefix used to name a register using GDB's nomenclature.
851 #
852 # For example, on PPC a register is represented by a number in the assembly
853 # language (e.g., \`10\' is the 10th general-purpose register). However,
854 # inside GDB this same register has an \`r\' appended to its name, so the 10th
855 # register would be represented as \`r10\' internally.
856 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
857
858 # Suffix used to name a register using GDB's nomenclature.
859 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
860
861 # Check if S is a single operand.
862 #
863 # Single operands can be:
864 # \- Literal integers, e.g. \`\$10\' on x86
865 # \- Register access, e.g. \`\%eax\' on x86
866 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
867 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
868 #
869 # This function should check for these patterns on the string
870 # and return 1 if some were found, or zero otherwise. Please try to match
871 # as much info as you can from the string, i.e., if you have to match
872 # something like \`\(\%\', do not match just the \`\(\'.
873 M:int:stap_is_single_operand:const char *s:s
874
875 # Function used to handle a "special case" in the parser.
876 #
877 # A "special case" is considered to be an unknown token, i.e., a token
878 # that the parser does not know how to parse. A good example of special
879 # case would be ARM's register displacement syntax:
880 #
881 # [R0, #4] ;; displacing R0 by 4
882 #
883 # Since the parser assumes that a register displacement is of the form:
884 #
885 # <number> <indirection_prefix> <register_name> <indirection_suffix>
886 #
887 # it means that it will not be able to recognize and parse this odd syntax.
888 # Therefore, we should add a special case function that will handle this token.
889 #
890 # This function should generate the proper expression form of the expression
891 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
892 # and so on). It should also return 1 if the parsing was successful, or zero
893 # if the token was not recognized as a special token (in this case, returning
894 # zero means that the special parser is deferring the parsing to the generic
895 # parser), and should advance the buffer pointer (p->arg).
896 M:int:stap_parse_special_token:struct stap_parse_info *p:p
897
898
899 # True if the list of shared libraries is one and only for all
900 # processes, as opposed to a list of shared libraries per inferior.
901 # This usually means that all processes, although may or may not share
902 # an address space, will see the same set of symbols at the same
903 # addresses.
904 v:int:has_global_solist:::0:0::0
905
906 # On some targets, even though each inferior has its own private
907 # address space, the debug interface takes care of making breakpoints
908 # visible to all address spaces automatically. For such cases,
909 # this property should be set to true.
910 v:int:has_global_breakpoints:::0:0::0
911
912 # True if inferiors share an address space (e.g., uClinux).
913 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
914
915 # True if a fast tracepoint can be set at an address.
916 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
917
918 # Return the "auto" target charset.
919 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
920 # Return the "auto" target wide charset.
921 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
922
923 # If non-empty, this is a file extension that will be opened in place
924 # of the file extension reported by the shared library list.
925 #
926 # This is most useful for toolchains that use a post-linker tool,
927 # where the names of the files run on the target differ in extension
928 # compared to the names of the files GDB should load for debug info.
929 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
930
931 # If true, the target OS has DOS-based file system semantics. That
932 # is, absolute paths include a drive name, and the backslash is
933 # considered a directory separator.
934 v:int:has_dos_based_file_system:::0:0::0
935
936 # Generate bytecodes to collect the return address in a frame.
937 # Since the bytecodes run on the target, possibly with GDB not even
938 # connected, the full unwinding machinery is not available, and
939 # typically this function will issue bytecodes for one or more likely
940 # places that the return address may be found.
941 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
942
943 # Implement the "info proc" command.
944 M:void:info_proc:char *args, enum info_proc_what what:args, what
945
946 # Implement the "info proc" command for core files. Noe that there
947 # are two "info_proc"-like methods on gdbarch -- one for core files,
948 # one for live targets.
949 M:void:core_info_proc:char *args, enum info_proc_what what:args, what
950
951 # Iterate over all objfiles in the order that makes the most sense
952 # for the architecture to make global symbol searches.
953 #
954 # CB is a callback function where OBJFILE is the objfile to be searched,
955 # and CB_DATA a pointer to user-defined data (the same data that is passed
956 # when calling this gdbarch method). The iteration stops if this function
957 # returns nonzero.
958 #
959 # CB_DATA is a pointer to some user-defined data to be passed to
960 # the callback.
961 #
962 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
963 # inspected when the symbol search was requested.
964 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
965
966 EOF
967 }
968
969 #
970 # The .log file
971 #
972 exec > new-gdbarch.log
973 function_list | while do_read
974 do
975 cat <<EOF
976 ${class} ${returntype} ${function} ($formal)
977 EOF
978 for r in ${read}
979 do
980 eval echo \"\ \ \ \ ${r}=\${${r}}\"
981 done
982 if class_is_predicate_p && fallback_default_p
983 then
984 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
985 kill $$
986 exit 1
987 fi
988 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
989 then
990 echo "Error: postdefault is useless when invalid_p=0" 1>&2
991 kill $$
992 exit 1
993 fi
994 if class_is_multiarch_p
995 then
996 if class_is_predicate_p ; then :
997 elif test "x${predefault}" = "x"
998 then
999 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1000 kill $$
1001 exit 1
1002 fi
1003 fi
1004 echo ""
1005 done
1006
1007 exec 1>&2
1008 compare_new gdbarch.log
1009
1010
1011 copyright ()
1012 {
1013 cat <<EOF
1014 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1015 /* vi:set ro: */
1016
1017 /* Dynamic architecture support for GDB, the GNU debugger.
1018
1019 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
1020 2007, 2008, 2009 Free Software Foundation, Inc.
1021
1022 This file is part of GDB.
1023
1024 This program is free software; you can redistribute it and/or modify
1025 it under the terms of the GNU General Public License as published by
1026 the Free Software Foundation; either version 3 of the License, or
1027 (at your option) any later version.
1028
1029 This program is distributed in the hope that it will be useful,
1030 but WITHOUT ANY WARRANTY; without even the implied warranty of
1031 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1032 GNU General Public License for more details.
1033
1034 You should have received a copy of the GNU General Public License
1035 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1036
1037 /* This file was created with the aid of \`\`gdbarch.sh''.
1038
1039 The Bourne shell script \`\`gdbarch.sh'' creates the files
1040 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1041 against the existing \`\`gdbarch.[hc]''. Any differences found
1042 being reported.
1043
1044 If editing this file, please also run gdbarch.sh and merge any
1045 changes into that script. Conversely, when making sweeping changes
1046 to this file, modifying gdbarch.sh and using its output may prove
1047 easier. */
1048
1049 EOF
1050 }
1051
1052 #
1053 # The .h file
1054 #
1055
1056 exec > new-gdbarch.h
1057 copyright
1058 cat <<EOF
1059 #ifndef GDBARCH_H
1060 #define GDBARCH_H
1061
1062 struct floatformat;
1063 struct ui_file;
1064 struct frame_info;
1065 struct value;
1066 struct objfile;
1067 struct obj_section;
1068 struct minimal_symbol;
1069 struct regcache;
1070 struct reggroup;
1071 struct regset;
1072 struct disassemble_info;
1073 struct target_ops;
1074 struct obstack;
1075 struct bp_target_info;
1076 struct target_desc;
1077 struct displaced_step_closure;
1078 struct core_regset_section;
1079 struct syscall;
1080 struct agent_expr;
1081 struct axs_value;
1082 struct stap_parse_info;
1083
1084 /* The architecture associated with the inferior through the
1085 connection to the target.
1086
1087 The architecture vector provides some information that is really a
1088 property of the inferior, accessed through a particular target:
1089 ptrace operations; the layout of certain RSP packets; the solib_ops
1090 vector; etc. To differentiate architecture accesses to
1091 per-inferior/target properties from
1092 per-thread/per-frame/per-objfile properties, accesses to
1093 per-inferior/target properties should be made through this
1094 gdbarch. */
1095
1096 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1097 extern struct gdbarch *target_gdbarch (void);
1098
1099 /* The initial, default architecture. It uses host values (for want of a better
1100 choice). */
1101 extern struct gdbarch startup_gdbarch;
1102
1103
1104 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1105 gdbarch method. */
1106
1107 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1108 (struct objfile *objfile, void *cb_data);
1109 EOF
1110
1111 # function typedef's
1112 printf "\n"
1113 printf "\n"
1114 printf "/* The following are pre-initialized by GDBARCH. */\n"
1115 function_list | while do_read
1116 do
1117 if class_is_info_p
1118 then
1119 printf "\n"
1120 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1121 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1122 fi
1123 done
1124
1125 # function typedef's
1126 printf "\n"
1127 printf "\n"
1128 printf "/* The following are initialized by the target dependent code. */\n"
1129 function_list | while do_read
1130 do
1131 if [ -n "${comment}" ]
1132 then
1133 echo "${comment}" | sed \
1134 -e '2 s,#,/*,' \
1135 -e '3,$ s,#, ,' \
1136 -e '$ s,$, */,'
1137 fi
1138
1139 if class_is_predicate_p
1140 then
1141 printf "\n"
1142 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1143 fi
1144 if class_is_variable_p
1145 then
1146 printf "\n"
1147 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1148 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1149 fi
1150 if class_is_function_p
1151 then
1152 printf "\n"
1153 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1154 then
1155 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1156 elif class_is_multiarch_p
1157 then
1158 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1159 else
1160 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1161 fi
1162 if [ "x${formal}" = "xvoid" ]
1163 then
1164 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1165 else
1166 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1167 fi
1168 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1169 fi
1170 done
1171
1172 # close it off
1173 cat <<EOF
1174
1175 /* Definition for an unknown syscall, used basically in error-cases. */
1176 #define UNKNOWN_SYSCALL (-1)
1177
1178 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1179
1180
1181 /* Mechanism for co-ordinating the selection of a specific
1182 architecture.
1183
1184 GDB targets (*-tdep.c) can register an interest in a specific
1185 architecture. Other GDB components can register a need to maintain
1186 per-architecture data.
1187
1188 The mechanisms below ensures that there is only a loose connection
1189 between the set-architecture command and the various GDB
1190 components. Each component can independently register their need
1191 to maintain architecture specific data with gdbarch.
1192
1193 Pragmatics:
1194
1195 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1196 didn't scale.
1197
1198 The more traditional mega-struct containing architecture specific
1199 data for all the various GDB components was also considered. Since
1200 GDB is built from a variable number of (fairly independent)
1201 components it was determined that the global aproach was not
1202 applicable. */
1203
1204
1205 /* Register a new architectural family with GDB.
1206
1207 Register support for the specified ARCHITECTURE with GDB. When
1208 gdbarch determines that the specified architecture has been
1209 selected, the corresponding INIT function is called.
1210
1211 --
1212
1213 The INIT function takes two parameters: INFO which contains the
1214 information available to gdbarch about the (possibly new)
1215 architecture; ARCHES which is a list of the previously created
1216 \`\`struct gdbarch'' for this architecture.
1217
1218 The INFO parameter is, as far as possible, be pre-initialized with
1219 information obtained from INFO.ABFD or the global defaults.
1220
1221 The ARCHES parameter is a linked list (sorted most recently used)
1222 of all the previously created architures for this architecture
1223 family. The (possibly NULL) ARCHES->gdbarch can used to access
1224 values from the previously selected architecture for this
1225 architecture family.
1226
1227 The INIT function shall return any of: NULL - indicating that it
1228 doesn't recognize the selected architecture; an existing \`\`struct
1229 gdbarch'' from the ARCHES list - indicating that the new
1230 architecture is just a synonym for an earlier architecture (see
1231 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1232 - that describes the selected architecture (see gdbarch_alloc()).
1233
1234 The DUMP_TDEP function shall print out all target specific values.
1235 Care should be taken to ensure that the function works in both the
1236 multi-arch and non- multi-arch cases. */
1237
1238 struct gdbarch_list
1239 {
1240 struct gdbarch *gdbarch;
1241 struct gdbarch_list *next;
1242 };
1243
1244 struct gdbarch_info
1245 {
1246 /* Use default: NULL (ZERO). */
1247 const struct bfd_arch_info *bfd_arch_info;
1248
1249 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1250 int byte_order;
1251
1252 int byte_order_for_code;
1253
1254 /* Use default: NULL (ZERO). */
1255 bfd *abfd;
1256
1257 /* Use default: NULL (ZERO). */
1258 struct gdbarch_tdep_info *tdep_info;
1259
1260 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1261 enum gdb_osabi osabi;
1262
1263 /* Use default: NULL (ZERO). */
1264 const struct target_desc *target_desc;
1265 };
1266
1267 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1268 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1269
1270 /* DEPRECATED - use gdbarch_register() */
1271 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1272
1273 extern void gdbarch_register (enum bfd_architecture architecture,
1274 gdbarch_init_ftype *,
1275 gdbarch_dump_tdep_ftype *);
1276
1277
1278 /* Return a freshly allocated, NULL terminated, array of the valid
1279 architecture names. Since architectures are registered during the
1280 _initialize phase this function only returns useful information
1281 once initialization has been completed. */
1282
1283 extern const char **gdbarch_printable_names (void);
1284
1285
1286 /* Helper function. Search the list of ARCHES for a GDBARCH that
1287 matches the information provided by INFO. */
1288
1289 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1290
1291
1292 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1293 basic initialization using values obtained from the INFO and TDEP
1294 parameters. set_gdbarch_*() functions are called to complete the
1295 initialization of the object. */
1296
1297 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1298
1299
1300 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1301 It is assumed that the caller freeds the \`\`struct
1302 gdbarch_tdep''. */
1303
1304 extern void gdbarch_free (struct gdbarch *);
1305
1306
1307 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1308 obstack. The memory is freed when the corresponding architecture
1309 is also freed. */
1310
1311 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1312 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1313 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1314
1315
1316 /* Helper function. Force an update of the current architecture.
1317
1318 The actual architecture selected is determined by INFO, \`\`(gdb) set
1319 architecture'' et.al., the existing architecture and BFD's default
1320 architecture. INFO should be initialized to zero and then selected
1321 fields should be updated.
1322
1323 Returns non-zero if the update succeeds. */
1324
1325 extern int gdbarch_update_p (struct gdbarch_info info);
1326
1327
1328 /* Helper function. Find an architecture matching info.
1329
1330 INFO should be initialized using gdbarch_info_init, relevant fields
1331 set, and then finished using gdbarch_info_fill.
1332
1333 Returns the corresponding architecture, or NULL if no matching
1334 architecture was found. */
1335
1336 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1337
1338
1339 /* Helper function. Set the target gdbarch to "gdbarch". */
1340
1341 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1342
1343
1344 /* Register per-architecture data-pointer.
1345
1346 Reserve space for a per-architecture data-pointer. An identifier
1347 for the reserved data-pointer is returned. That identifer should
1348 be saved in a local static variable.
1349
1350 Memory for the per-architecture data shall be allocated using
1351 gdbarch_obstack_zalloc. That memory will be deleted when the
1352 corresponding architecture object is deleted.
1353
1354 When a previously created architecture is re-selected, the
1355 per-architecture data-pointer for that previous architecture is
1356 restored. INIT() is not re-called.
1357
1358 Multiple registrarants for any architecture are allowed (and
1359 strongly encouraged). */
1360
1361 struct gdbarch_data;
1362
1363 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1364 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1365 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1366 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1367 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1368 struct gdbarch_data *data,
1369 void *pointer);
1370
1371 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1372
1373
1374 /* Set the dynamic target-system-dependent parameters (architecture,
1375 byte-order, ...) using information found in the BFD. */
1376
1377 extern void set_gdbarch_from_file (bfd *);
1378
1379
1380 /* Initialize the current architecture to the "first" one we find on
1381 our list. */
1382
1383 extern void initialize_current_architecture (void);
1384
1385 /* gdbarch trace variable */
1386 extern unsigned int gdbarch_debug;
1387
1388 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1389
1390 #endif
1391 EOF
1392 exec 1>&2
1393 #../move-if-change new-gdbarch.h gdbarch.h
1394 compare_new gdbarch.h
1395
1396
1397 #
1398 # C file
1399 #
1400
1401 exec > new-gdbarch.c
1402 copyright
1403 cat <<EOF
1404
1405 #include "defs.h"
1406 #include "arch-utils.h"
1407
1408 #include "gdbcmd.h"
1409 #include "inferior.h"
1410 #include "symcat.h"
1411
1412 #include "floatformat.h"
1413
1414 #include "gdb_assert.h"
1415 #include "gdb_string.h"
1416 #include "reggroups.h"
1417 #include "osabi.h"
1418 #include "gdb_obstack.h"
1419 #include "observer.h"
1420 #include "regcache.h"
1421 #include "objfiles.h"
1422
1423 /* Static function declarations */
1424
1425 static void alloc_gdbarch_data (struct gdbarch *);
1426
1427 /* Non-zero if we want to trace architecture code. */
1428
1429 #ifndef GDBARCH_DEBUG
1430 #define GDBARCH_DEBUG 0
1431 #endif
1432 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1433 static void
1434 show_gdbarch_debug (struct ui_file *file, int from_tty,
1435 struct cmd_list_element *c, const char *value)
1436 {
1437 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1438 }
1439
1440 static const char *
1441 pformat (const struct floatformat **format)
1442 {
1443 if (format == NULL)
1444 return "(null)";
1445 else
1446 /* Just print out one of them - this is only for diagnostics. */
1447 return format[0]->name;
1448 }
1449
1450 static const char *
1451 pstring (const char *string)
1452 {
1453 if (string == NULL)
1454 return "(null)";
1455 return string;
1456 }
1457
1458 EOF
1459
1460 # gdbarch open the gdbarch object
1461 printf "\n"
1462 printf "/* Maintain the struct gdbarch object. */\n"
1463 printf "\n"
1464 printf "struct gdbarch\n"
1465 printf "{\n"
1466 printf " /* Has this architecture been fully initialized? */\n"
1467 printf " int initialized_p;\n"
1468 printf "\n"
1469 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1470 printf " struct obstack *obstack;\n"
1471 printf "\n"
1472 printf " /* basic architectural information. */\n"
1473 function_list | while do_read
1474 do
1475 if class_is_info_p
1476 then
1477 printf " ${returntype} ${function};\n"
1478 fi
1479 done
1480 printf "\n"
1481 printf " /* target specific vector. */\n"
1482 printf " struct gdbarch_tdep *tdep;\n"
1483 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1484 printf "\n"
1485 printf " /* per-architecture data-pointers. */\n"
1486 printf " unsigned nr_data;\n"
1487 printf " void **data;\n"
1488 printf "\n"
1489 cat <<EOF
1490 /* Multi-arch values.
1491
1492 When extending this structure you must:
1493
1494 Add the field below.
1495
1496 Declare set/get functions and define the corresponding
1497 macro in gdbarch.h.
1498
1499 gdbarch_alloc(): If zero/NULL is not a suitable default,
1500 initialize the new field.
1501
1502 verify_gdbarch(): Confirm that the target updated the field
1503 correctly.
1504
1505 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1506 field is dumped out
1507
1508 \`\`startup_gdbarch()'': Append an initial value to the static
1509 variable (base values on the host's c-type system).
1510
1511 get_gdbarch(): Implement the set/get functions (probably using
1512 the macro's as shortcuts).
1513
1514 */
1515
1516 EOF
1517 function_list | while do_read
1518 do
1519 if class_is_variable_p
1520 then
1521 printf " ${returntype} ${function};\n"
1522 elif class_is_function_p
1523 then
1524 printf " gdbarch_${function}_ftype *${function};\n"
1525 fi
1526 done
1527 printf "};\n"
1528
1529 # A pre-initialized vector
1530 printf "\n"
1531 printf "\n"
1532 cat <<EOF
1533 /* The default architecture uses host values (for want of a better
1534 choice). */
1535 EOF
1536 printf "\n"
1537 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1538 printf "\n"
1539 printf "struct gdbarch startup_gdbarch =\n"
1540 printf "{\n"
1541 printf " 1, /* Always initialized. */\n"
1542 printf " NULL, /* The obstack. */\n"
1543 printf " /* basic architecture information. */\n"
1544 function_list | while do_read
1545 do
1546 if class_is_info_p
1547 then
1548 printf " ${staticdefault}, /* ${function} */\n"
1549 fi
1550 done
1551 cat <<EOF
1552 /* target specific vector and its dump routine. */
1553 NULL, NULL,
1554 /*per-architecture data-pointers. */
1555 0, NULL,
1556 /* Multi-arch values */
1557 EOF
1558 function_list | while do_read
1559 do
1560 if class_is_function_p || class_is_variable_p
1561 then
1562 printf " ${staticdefault}, /* ${function} */\n"
1563 fi
1564 done
1565 cat <<EOF
1566 /* startup_gdbarch() */
1567 };
1568
1569 EOF
1570
1571 # Create a new gdbarch struct
1572 cat <<EOF
1573
1574 /* Create a new \`\`struct gdbarch'' based on information provided by
1575 \`\`struct gdbarch_info''. */
1576 EOF
1577 printf "\n"
1578 cat <<EOF
1579 struct gdbarch *
1580 gdbarch_alloc (const struct gdbarch_info *info,
1581 struct gdbarch_tdep *tdep)
1582 {
1583 struct gdbarch *gdbarch;
1584
1585 /* Create an obstack for allocating all the per-architecture memory,
1586 then use that to allocate the architecture vector. */
1587 struct obstack *obstack = XMALLOC (struct obstack);
1588 obstack_init (obstack);
1589 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1590 memset (gdbarch, 0, sizeof (*gdbarch));
1591 gdbarch->obstack = obstack;
1592
1593 alloc_gdbarch_data (gdbarch);
1594
1595 gdbarch->tdep = tdep;
1596 EOF
1597 printf "\n"
1598 function_list | while do_read
1599 do
1600 if class_is_info_p
1601 then
1602 printf " gdbarch->${function} = info->${function};\n"
1603 fi
1604 done
1605 printf "\n"
1606 printf " /* Force the explicit initialization of these. */\n"
1607 function_list | while do_read
1608 do
1609 if class_is_function_p || class_is_variable_p
1610 then
1611 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1612 then
1613 printf " gdbarch->${function} = ${predefault};\n"
1614 fi
1615 fi
1616 done
1617 cat <<EOF
1618 /* gdbarch_alloc() */
1619
1620 return gdbarch;
1621 }
1622 EOF
1623
1624 # Free a gdbarch struct.
1625 printf "\n"
1626 printf "\n"
1627 cat <<EOF
1628 /* Allocate extra space using the per-architecture obstack. */
1629
1630 void *
1631 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1632 {
1633 void *data = obstack_alloc (arch->obstack, size);
1634
1635 memset (data, 0, size);
1636 return data;
1637 }
1638
1639
1640 /* Free a gdbarch struct. This should never happen in normal
1641 operation --- once you've created a gdbarch, you keep it around.
1642 However, if an architecture's init function encounters an error
1643 building the structure, it may need to clean up a partially
1644 constructed gdbarch. */
1645
1646 void
1647 gdbarch_free (struct gdbarch *arch)
1648 {
1649 struct obstack *obstack;
1650
1651 gdb_assert (arch != NULL);
1652 gdb_assert (!arch->initialized_p);
1653 obstack = arch->obstack;
1654 obstack_free (obstack, 0); /* Includes the ARCH. */
1655 xfree (obstack);
1656 }
1657 EOF
1658
1659 # verify a new architecture
1660 cat <<EOF
1661
1662
1663 /* Ensure that all values in a GDBARCH are reasonable. */
1664
1665 static void
1666 verify_gdbarch (struct gdbarch *gdbarch)
1667 {
1668 struct ui_file *log;
1669 struct cleanup *cleanups;
1670 long length;
1671 char *buf;
1672
1673 log = mem_fileopen ();
1674 cleanups = make_cleanup_ui_file_delete (log);
1675 /* fundamental */
1676 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1677 fprintf_unfiltered (log, "\n\tbyte-order");
1678 if (gdbarch->bfd_arch_info == NULL)
1679 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1680 /* Check those that need to be defined for the given multi-arch level. */
1681 EOF
1682 function_list | while do_read
1683 do
1684 if class_is_function_p || class_is_variable_p
1685 then
1686 if [ "x${invalid_p}" = "x0" ]
1687 then
1688 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1689 elif class_is_predicate_p
1690 then
1691 printf " /* Skip verify of ${function}, has predicate. */\n"
1692 # FIXME: See do_read for potential simplification
1693 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1694 then
1695 printf " if (${invalid_p})\n"
1696 printf " gdbarch->${function} = ${postdefault};\n"
1697 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1698 then
1699 printf " if (gdbarch->${function} == ${predefault})\n"
1700 printf " gdbarch->${function} = ${postdefault};\n"
1701 elif [ -n "${postdefault}" ]
1702 then
1703 printf " if (gdbarch->${function} == 0)\n"
1704 printf " gdbarch->${function} = ${postdefault};\n"
1705 elif [ -n "${invalid_p}" ]
1706 then
1707 printf " if (${invalid_p})\n"
1708 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1709 elif [ -n "${predefault}" ]
1710 then
1711 printf " if (gdbarch->${function} == ${predefault})\n"
1712 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1713 fi
1714 fi
1715 done
1716 cat <<EOF
1717 buf = ui_file_xstrdup (log, &length);
1718 make_cleanup (xfree, buf);
1719 if (length > 0)
1720 internal_error (__FILE__, __LINE__,
1721 _("verify_gdbarch: the following are invalid ...%s"),
1722 buf);
1723 do_cleanups (cleanups);
1724 }
1725 EOF
1726
1727 # dump the structure
1728 printf "\n"
1729 printf "\n"
1730 cat <<EOF
1731 /* Print out the details of the current architecture. */
1732
1733 void
1734 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1735 {
1736 const char *gdb_nm_file = "<not-defined>";
1737
1738 #if defined (GDB_NM_FILE)
1739 gdb_nm_file = GDB_NM_FILE;
1740 #endif
1741 fprintf_unfiltered (file,
1742 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1743 gdb_nm_file);
1744 EOF
1745 function_list | sort -t: -k 3 | while do_read
1746 do
1747 # First the predicate
1748 if class_is_predicate_p
1749 then
1750 printf " fprintf_unfiltered (file,\n"
1751 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1752 printf " gdbarch_${function}_p (gdbarch));\n"
1753 fi
1754 # Print the corresponding value.
1755 if class_is_function_p
1756 then
1757 printf " fprintf_unfiltered (file,\n"
1758 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1759 printf " host_address_to_string (gdbarch->${function}));\n"
1760 else
1761 # It is a variable
1762 case "${print}:${returntype}" in
1763 :CORE_ADDR )
1764 fmt="%s"
1765 print="core_addr_to_string_nz (gdbarch->${function})"
1766 ;;
1767 :* )
1768 fmt="%s"
1769 print="plongest (gdbarch->${function})"
1770 ;;
1771 * )
1772 fmt="%s"
1773 ;;
1774 esac
1775 printf " fprintf_unfiltered (file,\n"
1776 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1777 printf " ${print});\n"
1778 fi
1779 done
1780 cat <<EOF
1781 if (gdbarch->dump_tdep != NULL)
1782 gdbarch->dump_tdep (gdbarch, file);
1783 }
1784 EOF
1785
1786
1787 # GET/SET
1788 printf "\n"
1789 cat <<EOF
1790 struct gdbarch_tdep *
1791 gdbarch_tdep (struct gdbarch *gdbarch)
1792 {
1793 if (gdbarch_debug >= 2)
1794 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1795 return gdbarch->tdep;
1796 }
1797 EOF
1798 printf "\n"
1799 function_list | while do_read
1800 do
1801 if class_is_predicate_p
1802 then
1803 printf "\n"
1804 printf "int\n"
1805 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1806 printf "{\n"
1807 printf " gdb_assert (gdbarch != NULL);\n"
1808 printf " return ${predicate};\n"
1809 printf "}\n"
1810 fi
1811 if class_is_function_p
1812 then
1813 printf "\n"
1814 printf "${returntype}\n"
1815 if [ "x${formal}" = "xvoid" ]
1816 then
1817 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1818 else
1819 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1820 fi
1821 printf "{\n"
1822 printf " gdb_assert (gdbarch != NULL);\n"
1823 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1824 if class_is_predicate_p && test -n "${predefault}"
1825 then
1826 # Allow a call to a function with a predicate.
1827 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1828 fi
1829 printf " if (gdbarch_debug >= 2)\n"
1830 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1831 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1832 then
1833 if class_is_multiarch_p
1834 then
1835 params="gdbarch"
1836 else
1837 params=""
1838 fi
1839 else
1840 if class_is_multiarch_p
1841 then
1842 params="gdbarch, ${actual}"
1843 else
1844 params="${actual}"
1845 fi
1846 fi
1847 if [ "x${returntype}" = "xvoid" ]
1848 then
1849 printf " gdbarch->${function} (${params});\n"
1850 else
1851 printf " return gdbarch->${function} (${params});\n"
1852 fi
1853 printf "}\n"
1854 printf "\n"
1855 printf "void\n"
1856 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1857 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1858 printf "{\n"
1859 printf " gdbarch->${function} = ${function};\n"
1860 printf "}\n"
1861 elif class_is_variable_p
1862 then
1863 printf "\n"
1864 printf "${returntype}\n"
1865 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1866 printf "{\n"
1867 printf " gdb_assert (gdbarch != NULL);\n"
1868 if [ "x${invalid_p}" = "x0" ]
1869 then
1870 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1871 elif [ -n "${invalid_p}" ]
1872 then
1873 printf " /* Check variable is valid. */\n"
1874 printf " gdb_assert (!(${invalid_p}));\n"
1875 elif [ -n "${predefault}" ]
1876 then
1877 printf " /* Check variable changed from pre-default. */\n"
1878 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1879 fi
1880 printf " if (gdbarch_debug >= 2)\n"
1881 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1882 printf " return gdbarch->${function};\n"
1883 printf "}\n"
1884 printf "\n"
1885 printf "void\n"
1886 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1887 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1888 printf "{\n"
1889 printf " gdbarch->${function} = ${function};\n"
1890 printf "}\n"
1891 elif class_is_info_p
1892 then
1893 printf "\n"
1894 printf "${returntype}\n"
1895 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1896 printf "{\n"
1897 printf " gdb_assert (gdbarch != NULL);\n"
1898 printf " if (gdbarch_debug >= 2)\n"
1899 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1900 printf " return gdbarch->${function};\n"
1901 printf "}\n"
1902 fi
1903 done
1904
1905 # All the trailing guff
1906 cat <<EOF
1907
1908
1909 /* Keep a registry of per-architecture data-pointers required by GDB
1910 modules. */
1911
1912 struct gdbarch_data
1913 {
1914 unsigned index;
1915 int init_p;
1916 gdbarch_data_pre_init_ftype *pre_init;
1917 gdbarch_data_post_init_ftype *post_init;
1918 };
1919
1920 struct gdbarch_data_registration
1921 {
1922 struct gdbarch_data *data;
1923 struct gdbarch_data_registration *next;
1924 };
1925
1926 struct gdbarch_data_registry
1927 {
1928 unsigned nr;
1929 struct gdbarch_data_registration *registrations;
1930 };
1931
1932 struct gdbarch_data_registry gdbarch_data_registry =
1933 {
1934 0, NULL,
1935 };
1936
1937 static struct gdbarch_data *
1938 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1939 gdbarch_data_post_init_ftype *post_init)
1940 {
1941 struct gdbarch_data_registration **curr;
1942
1943 /* Append the new registration. */
1944 for (curr = &gdbarch_data_registry.registrations;
1945 (*curr) != NULL;
1946 curr = &(*curr)->next);
1947 (*curr) = XMALLOC (struct gdbarch_data_registration);
1948 (*curr)->next = NULL;
1949 (*curr)->data = XMALLOC (struct gdbarch_data);
1950 (*curr)->data->index = gdbarch_data_registry.nr++;
1951 (*curr)->data->pre_init = pre_init;
1952 (*curr)->data->post_init = post_init;
1953 (*curr)->data->init_p = 1;
1954 return (*curr)->data;
1955 }
1956
1957 struct gdbarch_data *
1958 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1959 {
1960 return gdbarch_data_register (pre_init, NULL);
1961 }
1962
1963 struct gdbarch_data *
1964 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1965 {
1966 return gdbarch_data_register (NULL, post_init);
1967 }
1968
1969 /* Create/delete the gdbarch data vector. */
1970
1971 static void
1972 alloc_gdbarch_data (struct gdbarch *gdbarch)
1973 {
1974 gdb_assert (gdbarch->data == NULL);
1975 gdbarch->nr_data = gdbarch_data_registry.nr;
1976 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1977 }
1978
1979 /* Initialize the current value of the specified per-architecture
1980 data-pointer. */
1981
1982 void
1983 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1984 struct gdbarch_data *data,
1985 void *pointer)
1986 {
1987 gdb_assert (data->index < gdbarch->nr_data);
1988 gdb_assert (gdbarch->data[data->index] == NULL);
1989 gdb_assert (data->pre_init == NULL);
1990 gdbarch->data[data->index] = pointer;
1991 }
1992
1993 /* Return the current value of the specified per-architecture
1994 data-pointer. */
1995
1996 void *
1997 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1998 {
1999 gdb_assert (data->index < gdbarch->nr_data);
2000 if (gdbarch->data[data->index] == NULL)
2001 {
2002 /* The data-pointer isn't initialized, call init() to get a
2003 value. */
2004 if (data->pre_init != NULL)
2005 /* Mid architecture creation: pass just the obstack, and not
2006 the entire architecture, as that way it isn't possible for
2007 pre-init code to refer to undefined architecture
2008 fields. */
2009 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2010 else if (gdbarch->initialized_p
2011 && data->post_init != NULL)
2012 /* Post architecture creation: pass the entire architecture
2013 (as all fields are valid), but be careful to also detect
2014 recursive references. */
2015 {
2016 gdb_assert (data->init_p);
2017 data->init_p = 0;
2018 gdbarch->data[data->index] = data->post_init (gdbarch);
2019 data->init_p = 1;
2020 }
2021 else
2022 /* The architecture initialization hasn't completed - punt -
2023 hope that the caller knows what they are doing. Once
2024 deprecated_set_gdbarch_data has been initialized, this can be
2025 changed to an internal error. */
2026 return NULL;
2027 gdb_assert (gdbarch->data[data->index] != NULL);
2028 }
2029 return gdbarch->data[data->index];
2030 }
2031
2032
2033 /* Keep a registry of the architectures known by GDB. */
2034
2035 struct gdbarch_registration
2036 {
2037 enum bfd_architecture bfd_architecture;
2038 gdbarch_init_ftype *init;
2039 gdbarch_dump_tdep_ftype *dump_tdep;
2040 struct gdbarch_list *arches;
2041 struct gdbarch_registration *next;
2042 };
2043
2044 static struct gdbarch_registration *gdbarch_registry = NULL;
2045
2046 static void
2047 append_name (const char ***buf, int *nr, const char *name)
2048 {
2049 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2050 (*buf)[*nr] = name;
2051 *nr += 1;
2052 }
2053
2054 const char **
2055 gdbarch_printable_names (void)
2056 {
2057 /* Accumulate a list of names based on the registed list of
2058 architectures. */
2059 int nr_arches = 0;
2060 const char **arches = NULL;
2061 struct gdbarch_registration *rego;
2062
2063 for (rego = gdbarch_registry;
2064 rego != NULL;
2065 rego = rego->next)
2066 {
2067 const struct bfd_arch_info *ap;
2068 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2069 if (ap == NULL)
2070 internal_error (__FILE__, __LINE__,
2071 _("gdbarch_architecture_names: multi-arch unknown"));
2072 do
2073 {
2074 append_name (&arches, &nr_arches, ap->printable_name);
2075 ap = ap->next;
2076 }
2077 while (ap != NULL);
2078 }
2079 append_name (&arches, &nr_arches, NULL);
2080 return arches;
2081 }
2082
2083
2084 void
2085 gdbarch_register (enum bfd_architecture bfd_architecture,
2086 gdbarch_init_ftype *init,
2087 gdbarch_dump_tdep_ftype *dump_tdep)
2088 {
2089 struct gdbarch_registration **curr;
2090 const struct bfd_arch_info *bfd_arch_info;
2091
2092 /* Check that BFD recognizes this architecture */
2093 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2094 if (bfd_arch_info == NULL)
2095 {
2096 internal_error (__FILE__, __LINE__,
2097 _("gdbarch: Attempt to register "
2098 "unknown architecture (%d)"),
2099 bfd_architecture);
2100 }
2101 /* Check that we haven't seen this architecture before. */
2102 for (curr = &gdbarch_registry;
2103 (*curr) != NULL;
2104 curr = &(*curr)->next)
2105 {
2106 if (bfd_architecture == (*curr)->bfd_architecture)
2107 internal_error (__FILE__, __LINE__,
2108 _("gdbarch: Duplicate registration "
2109 "of architecture (%s)"),
2110 bfd_arch_info->printable_name);
2111 }
2112 /* log it */
2113 if (gdbarch_debug)
2114 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2115 bfd_arch_info->printable_name,
2116 host_address_to_string (init));
2117 /* Append it */
2118 (*curr) = XMALLOC (struct gdbarch_registration);
2119 (*curr)->bfd_architecture = bfd_architecture;
2120 (*curr)->init = init;
2121 (*curr)->dump_tdep = dump_tdep;
2122 (*curr)->arches = NULL;
2123 (*curr)->next = NULL;
2124 }
2125
2126 void
2127 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2128 gdbarch_init_ftype *init)
2129 {
2130 gdbarch_register (bfd_architecture, init, NULL);
2131 }
2132
2133
2134 /* Look for an architecture using gdbarch_info. */
2135
2136 struct gdbarch_list *
2137 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2138 const struct gdbarch_info *info)
2139 {
2140 for (; arches != NULL; arches = arches->next)
2141 {
2142 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2143 continue;
2144 if (info->byte_order != arches->gdbarch->byte_order)
2145 continue;
2146 if (info->osabi != arches->gdbarch->osabi)
2147 continue;
2148 if (info->target_desc != arches->gdbarch->target_desc)
2149 continue;
2150 return arches;
2151 }
2152 return NULL;
2153 }
2154
2155
2156 /* Find an architecture that matches the specified INFO. Create a new
2157 architecture if needed. Return that new architecture. */
2158
2159 struct gdbarch *
2160 gdbarch_find_by_info (struct gdbarch_info info)
2161 {
2162 struct gdbarch *new_gdbarch;
2163 struct gdbarch_registration *rego;
2164
2165 /* Fill in missing parts of the INFO struct using a number of
2166 sources: "set ..."; INFOabfd supplied; and the global
2167 defaults. */
2168 gdbarch_info_fill (&info);
2169
2170 /* Must have found some sort of architecture. */
2171 gdb_assert (info.bfd_arch_info != NULL);
2172
2173 if (gdbarch_debug)
2174 {
2175 fprintf_unfiltered (gdb_stdlog,
2176 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2177 (info.bfd_arch_info != NULL
2178 ? info.bfd_arch_info->printable_name
2179 : "(null)"));
2180 fprintf_unfiltered (gdb_stdlog,
2181 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2182 info.byte_order,
2183 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2184 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2185 : "default"));
2186 fprintf_unfiltered (gdb_stdlog,
2187 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2188 info.osabi, gdbarch_osabi_name (info.osabi));
2189 fprintf_unfiltered (gdb_stdlog,
2190 "gdbarch_find_by_info: info.abfd %s\n",
2191 host_address_to_string (info.abfd));
2192 fprintf_unfiltered (gdb_stdlog,
2193 "gdbarch_find_by_info: info.tdep_info %s\n",
2194 host_address_to_string (info.tdep_info));
2195 }
2196
2197 /* Find the tdep code that knows about this architecture. */
2198 for (rego = gdbarch_registry;
2199 rego != NULL;
2200 rego = rego->next)
2201 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2202 break;
2203 if (rego == NULL)
2204 {
2205 if (gdbarch_debug)
2206 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2207 "No matching architecture\n");
2208 return 0;
2209 }
2210
2211 /* Ask the tdep code for an architecture that matches "info". */
2212 new_gdbarch = rego->init (info, rego->arches);
2213
2214 /* Did the tdep code like it? No. Reject the change and revert to
2215 the old architecture. */
2216 if (new_gdbarch == NULL)
2217 {
2218 if (gdbarch_debug)
2219 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2220 "Target rejected architecture\n");
2221 return NULL;
2222 }
2223
2224 /* Is this a pre-existing architecture (as determined by already
2225 being initialized)? Move it to the front of the architecture
2226 list (keeping the list sorted Most Recently Used). */
2227 if (new_gdbarch->initialized_p)
2228 {
2229 struct gdbarch_list **list;
2230 struct gdbarch_list *this;
2231 if (gdbarch_debug)
2232 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2233 "Previous architecture %s (%s) selected\n",
2234 host_address_to_string (new_gdbarch),
2235 new_gdbarch->bfd_arch_info->printable_name);
2236 /* Find the existing arch in the list. */
2237 for (list = &rego->arches;
2238 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2239 list = &(*list)->next);
2240 /* It had better be in the list of architectures. */
2241 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2242 /* Unlink THIS. */
2243 this = (*list);
2244 (*list) = this->next;
2245 /* Insert THIS at the front. */
2246 this->next = rego->arches;
2247 rego->arches = this;
2248 /* Return it. */
2249 return new_gdbarch;
2250 }
2251
2252 /* It's a new architecture. */
2253 if (gdbarch_debug)
2254 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2255 "New architecture %s (%s) selected\n",
2256 host_address_to_string (new_gdbarch),
2257 new_gdbarch->bfd_arch_info->printable_name);
2258
2259 /* Insert the new architecture into the front of the architecture
2260 list (keep the list sorted Most Recently Used). */
2261 {
2262 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2263 this->next = rego->arches;
2264 this->gdbarch = new_gdbarch;
2265 rego->arches = this;
2266 }
2267
2268 /* Check that the newly installed architecture is valid. Plug in
2269 any post init values. */
2270 new_gdbarch->dump_tdep = rego->dump_tdep;
2271 verify_gdbarch (new_gdbarch);
2272 new_gdbarch->initialized_p = 1;
2273
2274 if (gdbarch_debug)
2275 gdbarch_dump (new_gdbarch, gdb_stdlog);
2276
2277 return new_gdbarch;
2278 }
2279
2280 /* Make the specified architecture current. */
2281
2282 void
2283 set_target_gdbarch (struct gdbarch *new_gdbarch)
2284 {
2285 gdb_assert (new_gdbarch != NULL);
2286 gdb_assert (new_gdbarch->initialized_p);
2287 current_inferior ()->gdbarch = new_gdbarch;
2288 observer_notify_architecture_changed (new_gdbarch);
2289 registers_changed ();
2290 }
2291
2292 /* Return the current inferior's arch. */
2293
2294 struct gdbarch *
2295 target_gdbarch (void)
2296 {
2297 return current_inferior ()->gdbarch;
2298 }
2299
2300 extern void _initialize_gdbarch (void);
2301
2302 void
2303 _initialize_gdbarch (void)
2304 {
2305 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2306 Set architecture debugging."), _("\\
2307 Show architecture debugging."), _("\\
2308 When non-zero, architecture debugging is enabled."),
2309 NULL,
2310 show_gdbarch_debug,
2311 &setdebuglist, &showdebuglist);
2312 }
2313 EOF
2314
2315 # close things off
2316 exec 1>&2
2317 #../move-if-change new-gdbarch.c gdbarch.c
2318 compare_new gdbarch.c