* remote.c (remote_start_remote): If the solib list is global,
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::plongest ((long) gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double". These bit/format pairs should eventually be combined into
368 # a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same". For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
383 #
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386 # as well.
387 #
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392 #
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
395 #
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 # serious shakedown.
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402 #
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405 #
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
412
413 # GDB's standard (or well known) register numbers. These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
415 # all (-1).
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
490 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
492 v:CORE_ADDR:decr_pc_after_break:::0:::0
493
494 # A function can be addressed by either it's "pointer" (possibly a
495 # descriptor address) or "entry point" (first executable instruction).
496 # The method "convert_from_func_ptr_addr" converting the former to the
497 # latter. gdbarch_deprecated_function_start_offset is being used to implement
498 # a simplified subset of that functionality - the function's address
499 # corresponds to the "function pointer" and the function's start
500 # corresponds to the "function entry point" - and hence is redundant.
501
502 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
503
504 # Return the remote protocol register number associated with this
505 # register. Normally the identity mapping.
506 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
507
508 # Fetch the target specific address used to represent a load module.
509 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
510 #
511 v:CORE_ADDR:frame_args_skip:::0:::0
512 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
514 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515 # frame-base. Enable frame-base before frame-unwind.
516 F:int:frame_num_args:struct frame_info *frame:frame
517 #
518 M:CORE_ADDR:frame_align:CORE_ADDR address:address
519 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520 v:int:frame_red_zone_size
521 #
522 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
523 # On some machines there are bits in addresses which are not really
524 # part of the address, but are used by the kernel, the hardware, etc.
525 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
526 # we get a "real" address such as one would find in a symbol table.
527 # This is used only for addresses of instructions, and even then I'm
528 # not sure it's used in all contexts. It exists to deal with there
529 # being a few stray bits in the PC which would mislead us, not as some
530 # sort of generic thing to handle alignment or segmentation (it's
531 # possible it should be in TARGET_READ_PC instead).
532 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
533 # It is not at all clear why gdbarch_smash_text_address is not folded into
534 # gdbarch_addr_bits_remove.
535 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
536
537 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
538 # indicates if the target needs software single step. An ISA method to
539 # implement it.
540 #
541 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542 # breakpoints using the breakpoint system instead of blatting memory directly
543 # (as with rs6000).
544 #
545 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546 # target can single step. If not, then implement single step using breakpoints.
547 #
548 # A return value of 1 means that the software_single_step breakpoints
549 # were inserted; 0 means they were not.
550 F:int:software_single_step:struct frame_info *frame:frame
551
552 # Return non-zero if the processor is executing a delay slot and a
553 # further single-step is needed before the instruction finishes.
554 M:int:single_step_through_delay:struct frame_info *frame:frame
555 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
556 # disassembler. Perhaps objdump can handle it?
557 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
559
560
561 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
562 # evaluates non-zero, this is the address where the debugger will place
563 # a step-resume breakpoint to get us past the dynamic linker.
564 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
565 # Some systems also have trampoline code for returning from shared libs.
566 f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
567
568 # A target might have problems with watchpoints as soon as the stack
569 # frame of the current function has been destroyed. This mostly happens
570 # as the first action in a funtion's epilogue. in_function_epilogue_p()
571 # is defined to return a non-zero value if either the given addr is one
572 # instruction after the stack destroying instruction up to the trailing
573 # return instruction or if we can figure out that the stack frame has
574 # already been invalidated regardless of the value of addr. Targets
575 # which don't suffer from that problem could just let this functionality
576 # untouched.
577 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
578 # Given a vector of command-line arguments, return a newly allocated
579 # string which, when passed to the create_inferior function, will be
580 # parsed (on Unix systems, by the shell) to yield the same vector.
581 # This function should call error() if the argument vector is not
582 # representable for this target or if this target does not support
583 # command-line arguments.
584 # ARGC is the number of elements in the vector.
585 # ARGV is an array of strings, one per argument.
586 m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
587 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
588 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
589 v:int:cannot_step_breakpoint:::0:0::0
590 v:int:have_nonsteppable_watchpoint:::0:0::0
591 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
592 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
593 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
594 # Is a register in a group
595 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
596 # Fetch the pointer to the ith function argument.
597 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
598
599 # Return the appropriate register set for a core file section with
600 # name SECT_NAME and size SECT_SIZE.
601 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
602
603 # Supported register notes in a core file.
604 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
605
606 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
607 # core file into buffer READBUF with length LEN.
608 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
609
610 # If the elements of C++ vtables are in-place function descriptors rather
611 # than normal function pointers (which may point to code or a descriptor),
612 # set this to one.
613 v:int:vtable_function_descriptors:::0:0::0
614
615 # Set if the least significant bit of the delta is used instead of the least
616 # significant bit of the pfn for pointers to virtual member functions.
617 v:int:vbit_in_delta:::0:0::0
618
619 # Advance PC to next instruction in order to skip a permanent breakpoint.
620 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
621
622 # The maximum length of an instruction on this architecture.
623 V:ULONGEST:max_insn_length:::0:0
624
625 # Copy the instruction at FROM to TO, and make any adjustments
626 # necessary to single-step it at that address.
627 #
628 # REGS holds the state the thread's registers will have before
629 # executing the copied instruction; the PC in REGS will refer to FROM,
630 # not the copy at TO. The caller should update it to point at TO later.
631 #
632 # Return a pointer to data of the architecture's choice to be passed
633 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
634 # the instruction's effects have been completely simulated, with the
635 # resulting state written back to REGS.
636 #
637 # For a general explanation of displaced stepping and how GDB uses it,
638 # see the comments in infrun.c.
639 #
640 # The TO area is only guaranteed to have space for
641 # gdbarch_max_insn_length (arch) bytes, so this function must not
642 # write more bytes than that to that area.
643 #
644 # If you do not provide this function, GDB assumes that the
645 # architecture does not support displaced stepping.
646 #
647 # If your architecture doesn't need to adjust instructions before
648 # single-stepping them, consider using simple_displaced_step_copy_insn
649 # here.
650 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
651
652 # Fix up the state resulting from successfully single-stepping a
653 # displaced instruction, to give the result we would have gotten from
654 # stepping the instruction in its original location.
655 #
656 # REGS is the register state resulting from single-stepping the
657 # displaced instruction.
658 #
659 # CLOSURE is the result from the matching call to
660 # gdbarch_displaced_step_copy_insn.
661 #
662 # If you provide gdbarch_displaced_step_copy_insn.but not this
663 # function, then GDB assumes that no fixup is needed after
664 # single-stepping the instruction.
665 #
666 # For a general explanation of displaced stepping and how GDB uses it,
667 # see the comments in infrun.c.
668 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
669
670 # Free a closure returned by gdbarch_displaced_step_copy_insn.
671 #
672 # If you provide gdbarch_displaced_step_copy_insn, you must provide
673 # this function as well.
674 #
675 # If your architecture uses closures that don't need to be freed, then
676 # you can use simple_displaced_step_free_closure here.
677 #
678 # For a general explanation of displaced stepping and how GDB uses it,
679 # see the comments in infrun.c.
680 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
681
682 # Return the address of an appropriate place to put displaced
683 # instructions while we step over them. There need only be one such
684 # place, since we're only stepping one thread over a breakpoint at a
685 # time.
686 #
687 # For a general explanation of displaced stepping and how GDB uses it,
688 # see the comments in infrun.c.
689 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
690
691 # Refresh overlay mapped state for section OSECT.
692 F:void:overlay_update:struct obj_section *osect:osect
693
694 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
695
696 # Handle special encoding of static variables in stabs debug info.
697 F:char *:static_transform_name:char *name:name
698 # Set if the address in N_SO or N_FUN stabs may be zero.
699 v:int:sofun_address_maybe_missing:::0:0::0
700
701 # Signal translation: translate inferior's signal (host's) number into
702 # GDB's representation.
703 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
704 # Signal translation: translate GDB's signal number into inferior's host
705 # signal number.
706 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
707
708 # Record architecture-specific information from the symbol table.
709 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
710
711 # True if the list of shared libraries is one and only for all
712 # processes, as opposed to a list of shared libraries per inferior.
713 v:int:has_global_solist:::0:0::0
714 EOF
715 }
716
717 #
718 # The .log file
719 #
720 exec > new-gdbarch.log
721 function_list | while do_read
722 do
723 cat <<EOF
724 ${class} ${returntype} ${function} ($formal)
725 EOF
726 for r in ${read}
727 do
728 eval echo \"\ \ \ \ ${r}=\${${r}}\"
729 done
730 if class_is_predicate_p && fallback_default_p
731 then
732 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
733 kill $$
734 exit 1
735 fi
736 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
737 then
738 echo "Error: postdefault is useless when invalid_p=0" 1>&2
739 kill $$
740 exit 1
741 fi
742 if class_is_multiarch_p
743 then
744 if class_is_predicate_p ; then :
745 elif test "x${predefault}" = "x"
746 then
747 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
748 kill $$
749 exit 1
750 fi
751 fi
752 echo ""
753 done
754
755 exec 1>&2
756 compare_new gdbarch.log
757
758
759 copyright ()
760 {
761 cat <<EOF
762 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
763
764 /* Dynamic architecture support for GDB, the GNU debugger.
765
766 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
767 Free Software Foundation, Inc.
768
769 This file is part of GDB.
770
771 This program is free software; you can redistribute it and/or modify
772 it under the terms of the GNU General Public License as published by
773 the Free Software Foundation; either version 3 of the License, or
774 (at your option) any later version.
775
776 This program is distributed in the hope that it will be useful,
777 but WITHOUT ANY WARRANTY; without even the implied warranty of
778 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
779 GNU General Public License for more details.
780
781 You should have received a copy of the GNU General Public License
782 along with this program. If not, see <http://www.gnu.org/licenses/>. */
783
784 /* This file was created with the aid of \`\`gdbarch.sh''.
785
786 The Bourne shell script \`\`gdbarch.sh'' creates the files
787 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
788 against the existing \`\`gdbarch.[hc]''. Any differences found
789 being reported.
790
791 If editing this file, please also run gdbarch.sh and merge any
792 changes into that script. Conversely, when making sweeping changes
793 to this file, modifying gdbarch.sh and using its output may prove
794 easier. */
795
796 EOF
797 }
798
799 #
800 # The .h file
801 #
802
803 exec > new-gdbarch.h
804 copyright
805 cat <<EOF
806 #ifndef GDBARCH_H
807 #define GDBARCH_H
808
809 struct floatformat;
810 struct ui_file;
811 struct frame_info;
812 struct value;
813 struct objfile;
814 struct obj_section;
815 struct minimal_symbol;
816 struct regcache;
817 struct reggroup;
818 struct regset;
819 struct disassemble_info;
820 struct target_ops;
821 struct obstack;
822 struct bp_target_info;
823 struct target_desc;
824 struct displaced_step_closure;
825 struct core_regset_section;
826
827 extern struct gdbarch *current_gdbarch;
828 extern struct gdbarch *target_gdbarch;
829 EOF
830
831 # function typedef's
832 printf "\n"
833 printf "\n"
834 printf "/* The following are pre-initialized by GDBARCH. */\n"
835 function_list | while do_read
836 do
837 if class_is_info_p
838 then
839 printf "\n"
840 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
841 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
842 fi
843 done
844
845 # function typedef's
846 printf "\n"
847 printf "\n"
848 printf "/* The following are initialized by the target dependent code. */\n"
849 function_list | while do_read
850 do
851 if [ -n "${comment}" ]
852 then
853 echo "${comment}" | sed \
854 -e '2 s,#,/*,' \
855 -e '3,$ s,#, ,' \
856 -e '$ s,$, */,'
857 fi
858
859 if class_is_predicate_p
860 then
861 printf "\n"
862 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
863 fi
864 if class_is_variable_p
865 then
866 printf "\n"
867 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
868 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
869 fi
870 if class_is_function_p
871 then
872 printf "\n"
873 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
874 then
875 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
876 elif class_is_multiarch_p
877 then
878 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
879 else
880 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
881 fi
882 if [ "x${formal}" = "xvoid" ]
883 then
884 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
885 else
886 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
887 fi
888 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
889 fi
890 done
891
892 # close it off
893 cat <<EOF
894
895 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
896
897
898 /* Mechanism for co-ordinating the selection of a specific
899 architecture.
900
901 GDB targets (*-tdep.c) can register an interest in a specific
902 architecture. Other GDB components can register a need to maintain
903 per-architecture data.
904
905 The mechanisms below ensures that there is only a loose connection
906 between the set-architecture command and the various GDB
907 components. Each component can independently register their need
908 to maintain architecture specific data with gdbarch.
909
910 Pragmatics:
911
912 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
913 didn't scale.
914
915 The more traditional mega-struct containing architecture specific
916 data for all the various GDB components was also considered. Since
917 GDB is built from a variable number of (fairly independent)
918 components it was determined that the global aproach was not
919 applicable. */
920
921
922 /* Register a new architectural family with GDB.
923
924 Register support for the specified ARCHITECTURE with GDB. When
925 gdbarch determines that the specified architecture has been
926 selected, the corresponding INIT function is called.
927
928 --
929
930 The INIT function takes two parameters: INFO which contains the
931 information available to gdbarch about the (possibly new)
932 architecture; ARCHES which is a list of the previously created
933 \`\`struct gdbarch'' for this architecture.
934
935 The INFO parameter is, as far as possible, be pre-initialized with
936 information obtained from INFO.ABFD or the global defaults.
937
938 The ARCHES parameter is a linked list (sorted most recently used)
939 of all the previously created architures for this architecture
940 family. The (possibly NULL) ARCHES->gdbarch can used to access
941 values from the previously selected architecture for this
942 architecture family. The global \`\`current_gdbarch'' shall not be
943 used.
944
945 The INIT function shall return any of: NULL - indicating that it
946 doesn't recognize the selected architecture; an existing \`\`struct
947 gdbarch'' from the ARCHES list - indicating that the new
948 architecture is just a synonym for an earlier architecture (see
949 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
950 - that describes the selected architecture (see gdbarch_alloc()).
951
952 The DUMP_TDEP function shall print out all target specific values.
953 Care should be taken to ensure that the function works in both the
954 multi-arch and non- multi-arch cases. */
955
956 struct gdbarch_list
957 {
958 struct gdbarch *gdbarch;
959 struct gdbarch_list *next;
960 };
961
962 struct gdbarch_info
963 {
964 /* Use default: NULL (ZERO). */
965 const struct bfd_arch_info *bfd_arch_info;
966
967 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
968 int byte_order;
969
970 int byte_order_for_code;
971
972 /* Use default: NULL (ZERO). */
973 bfd *abfd;
974
975 /* Use default: NULL (ZERO). */
976 struct gdbarch_tdep_info *tdep_info;
977
978 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
979 enum gdb_osabi osabi;
980
981 /* Use default: NULL (ZERO). */
982 const struct target_desc *target_desc;
983 };
984
985 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
986 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
987
988 /* DEPRECATED - use gdbarch_register() */
989 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
990
991 extern void gdbarch_register (enum bfd_architecture architecture,
992 gdbarch_init_ftype *,
993 gdbarch_dump_tdep_ftype *);
994
995
996 /* Return a freshly allocated, NULL terminated, array of the valid
997 architecture names. Since architectures are registered during the
998 _initialize phase this function only returns useful information
999 once initialization has been completed. */
1000
1001 extern const char **gdbarch_printable_names (void);
1002
1003
1004 /* Helper function. Search the list of ARCHES for a GDBARCH that
1005 matches the information provided by INFO. */
1006
1007 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1008
1009
1010 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1011 basic initialization using values obtained from the INFO and TDEP
1012 parameters. set_gdbarch_*() functions are called to complete the
1013 initialization of the object. */
1014
1015 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1016
1017
1018 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1019 It is assumed that the caller freeds the \`\`struct
1020 gdbarch_tdep''. */
1021
1022 extern void gdbarch_free (struct gdbarch *);
1023
1024
1025 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1026 obstack. The memory is freed when the corresponding architecture
1027 is also freed. */
1028
1029 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1030 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1031 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1032
1033
1034 /* Helper function. Force an update of the current architecture.
1035
1036 The actual architecture selected is determined by INFO, \`\`(gdb) set
1037 architecture'' et.al., the existing architecture and BFD's default
1038 architecture. INFO should be initialized to zero and then selected
1039 fields should be updated.
1040
1041 Returns non-zero if the update succeeds */
1042
1043 extern int gdbarch_update_p (struct gdbarch_info info);
1044
1045
1046 /* Helper function. Find an architecture matching info.
1047
1048 INFO should be initialized using gdbarch_info_init, relevant fields
1049 set, and then finished using gdbarch_info_fill.
1050
1051 Returns the corresponding architecture, or NULL if no matching
1052 architecture was found. "current_gdbarch" is not updated. */
1053
1054 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1055
1056
1057 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1058
1059 FIXME: kettenis/20031124: Of the functions that follow, only
1060 gdbarch_from_bfd is supposed to survive. The others will
1061 dissappear since in the future GDB will (hopefully) be truly
1062 multi-arch. However, for now we're still stuck with the concept of
1063 a single active architecture. */
1064
1065 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1066
1067
1068 /* Register per-architecture data-pointer.
1069
1070 Reserve space for a per-architecture data-pointer. An identifier
1071 for the reserved data-pointer is returned. That identifer should
1072 be saved in a local static variable.
1073
1074 Memory for the per-architecture data shall be allocated using
1075 gdbarch_obstack_zalloc. That memory will be deleted when the
1076 corresponding architecture object is deleted.
1077
1078 When a previously created architecture is re-selected, the
1079 per-architecture data-pointer for that previous architecture is
1080 restored. INIT() is not re-called.
1081
1082 Multiple registrarants for any architecture are allowed (and
1083 strongly encouraged). */
1084
1085 struct gdbarch_data;
1086
1087 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1088 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1089 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1090 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1091 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1092 struct gdbarch_data *data,
1093 void *pointer);
1094
1095 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1096
1097
1098 /* Set the dynamic target-system-dependent parameters (architecture,
1099 byte-order, ...) using information found in the BFD */
1100
1101 extern void set_gdbarch_from_file (bfd *);
1102
1103
1104 /* Initialize the current architecture to the "first" one we find on
1105 our list. */
1106
1107 extern void initialize_current_architecture (void);
1108
1109 /* gdbarch trace variable */
1110 extern int gdbarch_debug;
1111
1112 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1113
1114 #endif
1115 EOF
1116 exec 1>&2
1117 #../move-if-change new-gdbarch.h gdbarch.h
1118 compare_new gdbarch.h
1119
1120
1121 #
1122 # C file
1123 #
1124
1125 exec > new-gdbarch.c
1126 copyright
1127 cat <<EOF
1128
1129 #include "defs.h"
1130 #include "arch-utils.h"
1131
1132 #include "gdbcmd.h"
1133 #include "inferior.h"
1134 #include "symcat.h"
1135
1136 #include "floatformat.h"
1137
1138 #include "gdb_assert.h"
1139 #include "gdb_string.h"
1140 #include "reggroups.h"
1141 #include "osabi.h"
1142 #include "gdb_obstack.h"
1143 #include "observer.h"
1144 #include "regcache.h"
1145
1146 /* Static function declarations */
1147
1148 static void alloc_gdbarch_data (struct gdbarch *);
1149
1150 /* Non-zero if we want to trace architecture code. */
1151
1152 #ifndef GDBARCH_DEBUG
1153 #define GDBARCH_DEBUG 0
1154 #endif
1155 int gdbarch_debug = GDBARCH_DEBUG;
1156 static void
1157 show_gdbarch_debug (struct ui_file *file, int from_tty,
1158 struct cmd_list_element *c, const char *value)
1159 {
1160 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1161 }
1162
1163 static const char *
1164 pformat (const struct floatformat **format)
1165 {
1166 if (format == NULL)
1167 return "(null)";
1168 else
1169 /* Just print out one of them - this is only for diagnostics. */
1170 return format[0]->name;
1171 }
1172
1173 EOF
1174
1175 # gdbarch open the gdbarch object
1176 printf "\n"
1177 printf "/* Maintain the struct gdbarch object */\n"
1178 printf "\n"
1179 printf "struct gdbarch\n"
1180 printf "{\n"
1181 printf " /* Has this architecture been fully initialized? */\n"
1182 printf " int initialized_p;\n"
1183 printf "\n"
1184 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1185 printf " struct obstack *obstack;\n"
1186 printf "\n"
1187 printf " /* basic architectural information */\n"
1188 function_list | while do_read
1189 do
1190 if class_is_info_p
1191 then
1192 printf " ${returntype} ${function};\n"
1193 fi
1194 done
1195 printf "\n"
1196 printf " /* target specific vector. */\n"
1197 printf " struct gdbarch_tdep *tdep;\n"
1198 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1199 printf "\n"
1200 printf " /* per-architecture data-pointers */\n"
1201 printf " unsigned nr_data;\n"
1202 printf " void **data;\n"
1203 printf "\n"
1204 printf " /* per-architecture swap-regions */\n"
1205 printf " struct gdbarch_swap *swap;\n"
1206 printf "\n"
1207 cat <<EOF
1208 /* Multi-arch values.
1209
1210 When extending this structure you must:
1211
1212 Add the field below.
1213
1214 Declare set/get functions and define the corresponding
1215 macro in gdbarch.h.
1216
1217 gdbarch_alloc(): If zero/NULL is not a suitable default,
1218 initialize the new field.
1219
1220 verify_gdbarch(): Confirm that the target updated the field
1221 correctly.
1222
1223 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1224 field is dumped out
1225
1226 \`\`startup_gdbarch()'': Append an initial value to the static
1227 variable (base values on the host's c-type system).
1228
1229 get_gdbarch(): Implement the set/get functions (probably using
1230 the macro's as shortcuts).
1231
1232 */
1233
1234 EOF
1235 function_list | while do_read
1236 do
1237 if class_is_variable_p
1238 then
1239 printf " ${returntype} ${function};\n"
1240 elif class_is_function_p
1241 then
1242 printf " gdbarch_${function}_ftype *${function};\n"
1243 fi
1244 done
1245 printf "};\n"
1246
1247 # A pre-initialized vector
1248 printf "\n"
1249 printf "\n"
1250 cat <<EOF
1251 /* The default architecture uses host values (for want of a better
1252 choice). */
1253 EOF
1254 printf "\n"
1255 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1256 printf "\n"
1257 printf "struct gdbarch startup_gdbarch =\n"
1258 printf "{\n"
1259 printf " 1, /* Always initialized. */\n"
1260 printf " NULL, /* The obstack. */\n"
1261 printf " /* basic architecture information */\n"
1262 function_list | while do_read
1263 do
1264 if class_is_info_p
1265 then
1266 printf " ${staticdefault}, /* ${function} */\n"
1267 fi
1268 done
1269 cat <<EOF
1270 /* target specific vector and its dump routine */
1271 NULL, NULL,
1272 /*per-architecture data-pointers and swap regions */
1273 0, NULL, NULL,
1274 /* Multi-arch values */
1275 EOF
1276 function_list | while do_read
1277 do
1278 if class_is_function_p || class_is_variable_p
1279 then
1280 printf " ${staticdefault}, /* ${function} */\n"
1281 fi
1282 done
1283 cat <<EOF
1284 /* startup_gdbarch() */
1285 };
1286
1287 struct gdbarch *current_gdbarch = &startup_gdbarch;
1288 struct gdbarch *target_gdbarch = &startup_gdbarch;
1289 EOF
1290
1291 # Create a new gdbarch struct
1292 cat <<EOF
1293
1294 /* Create a new \`\`struct gdbarch'' based on information provided by
1295 \`\`struct gdbarch_info''. */
1296 EOF
1297 printf "\n"
1298 cat <<EOF
1299 struct gdbarch *
1300 gdbarch_alloc (const struct gdbarch_info *info,
1301 struct gdbarch_tdep *tdep)
1302 {
1303 struct gdbarch *gdbarch;
1304
1305 /* Create an obstack for allocating all the per-architecture memory,
1306 then use that to allocate the architecture vector. */
1307 struct obstack *obstack = XMALLOC (struct obstack);
1308 obstack_init (obstack);
1309 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1310 memset (gdbarch, 0, sizeof (*gdbarch));
1311 gdbarch->obstack = obstack;
1312
1313 alloc_gdbarch_data (gdbarch);
1314
1315 gdbarch->tdep = tdep;
1316 EOF
1317 printf "\n"
1318 function_list | while do_read
1319 do
1320 if class_is_info_p
1321 then
1322 printf " gdbarch->${function} = info->${function};\n"
1323 fi
1324 done
1325 printf "\n"
1326 printf " /* Force the explicit initialization of these. */\n"
1327 function_list | while do_read
1328 do
1329 if class_is_function_p || class_is_variable_p
1330 then
1331 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1332 then
1333 printf " gdbarch->${function} = ${predefault};\n"
1334 fi
1335 fi
1336 done
1337 cat <<EOF
1338 /* gdbarch_alloc() */
1339
1340 return gdbarch;
1341 }
1342 EOF
1343
1344 # Free a gdbarch struct.
1345 printf "\n"
1346 printf "\n"
1347 cat <<EOF
1348 /* Allocate extra space using the per-architecture obstack. */
1349
1350 void *
1351 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1352 {
1353 void *data = obstack_alloc (arch->obstack, size);
1354 memset (data, 0, size);
1355 return data;
1356 }
1357
1358
1359 /* Free a gdbarch struct. This should never happen in normal
1360 operation --- once you've created a gdbarch, you keep it around.
1361 However, if an architecture's init function encounters an error
1362 building the structure, it may need to clean up a partially
1363 constructed gdbarch. */
1364
1365 void
1366 gdbarch_free (struct gdbarch *arch)
1367 {
1368 struct obstack *obstack;
1369 gdb_assert (arch != NULL);
1370 gdb_assert (!arch->initialized_p);
1371 obstack = arch->obstack;
1372 obstack_free (obstack, 0); /* Includes the ARCH. */
1373 xfree (obstack);
1374 }
1375 EOF
1376
1377 # verify a new architecture
1378 cat <<EOF
1379
1380
1381 /* Ensure that all values in a GDBARCH are reasonable. */
1382
1383 static void
1384 verify_gdbarch (struct gdbarch *gdbarch)
1385 {
1386 struct ui_file *log;
1387 struct cleanup *cleanups;
1388 long dummy;
1389 char *buf;
1390 log = mem_fileopen ();
1391 cleanups = make_cleanup_ui_file_delete (log);
1392 /* fundamental */
1393 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1394 fprintf_unfiltered (log, "\n\tbyte-order");
1395 if (gdbarch->bfd_arch_info == NULL)
1396 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1397 /* Check those that need to be defined for the given multi-arch level. */
1398 EOF
1399 function_list | while do_read
1400 do
1401 if class_is_function_p || class_is_variable_p
1402 then
1403 if [ "x${invalid_p}" = "x0" ]
1404 then
1405 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1406 elif class_is_predicate_p
1407 then
1408 printf " /* Skip verify of ${function}, has predicate */\n"
1409 # FIXME: See do_read for potential simplification
1410 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1411 then
1412 printf " if (${invalid_p})\n"
1413 printf " gdbarch->${function} = ${postdefault};\n"
1414 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1415 then
1416 printf " if (gdbarch->${function} == ${predefault})\n"
1417 printf " gdbarch->${function} = ${postdefault};\n"
1418 elif [ -n "${postdefault}" ]
1419 then
1420 printf " if (gdbarch->${function} == 0)\n"
1421 printf " gdbarch->${function} = ${postdefault};\n"
1422 elif [ -n "${invalid_p}" ]
1423 then
1424 printf " if (${invalid_p})\n"
1425 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1426 elif [ -n "${predefault}" ]
1427 then
1428 printf " if (gdbarch->${function} == ${predefault})\n"
1429 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1430 fi
1431 fi
1432 done
1433 cat <<EOF
1434 buf = ui_file_xstrdup (log, &dummy);
1435 make_cleanup (xfree, buf);
1436 if (strlen (buf) > 0)
1437 internal_error (__FILE__, __LINE__,
1438 _("verify_gdbarch: the following are invalid ...%s"),
1439 buf);
1440 do_cleanups (cleanups);
1441 }
1442 EOF
1443
1444 # dump the structure
1445 printf "\n"
1446 printf "\n"
1447 cat <<EOF
1448 /* Print out the details of the current architecture. */
1449
1450 void
1451 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1452 {
1453 const char *gdb_nm_file = "<not-defined>";
1454 #if defined (GDB_NM_FILE)
1455 gdb_nm_file = GDB_NM_FILE;
1456 #endif
1457 fprintf_unfiltered (file,
1458 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1459 gdb_nm_file);
1460 EOF
1461 function_list | sort -t: -k 3 | while do_read
1462 do
1463 # First the predicate
1464 if class_is_predicate_p
1465 then
1466 printf " fprintf_unfiltered (file,\n"
1467 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1468 printf " gdbarch_${function}_p (gdbarch));\n"
1469 fi
1470 # Print the corresponding value.
1471 if class_is_function_p
1472 then
1473 printf " fprintf_unfiltered (file,\n"
1474 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1475 printf " (long) gdbarch->${function});\n"
1476 else
1477 # It is a variable
1478 case "${print}:${returntype}" in
1479 :CORE_ADDR )
1480 fmt="%s"
1481 print="core_addr_to_string_nz (gdbarch->${function})"
1482 ;;
1483 :* )
1484 fmt="%s"
1485 print="plongest (gdbarch->${function})"
1486 ;;
1487 * )
1488 fmt="%s"
1489 ;;
1490 esac
1491 printf " fprintf_unfiltered (file,\n"
1492 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1493 printf " ${print});\n"
1494 fi
1495 done
1496 cat <<EOF
1497 if (gdbarch->dump_tdep != NULL)
1498 gdbarch->dump_tdep (gdbarch, file);
1499 }
1500 EOF
1501
1502
1503 # GET/SET
1504 printf "\n"
1505 cat <<EOF
1506 struct gdbarch_tdep *
1507 gdbarch_tdep (struct gdbarch *gdbarch)
1508 {
1509 if (gdbarch_debug >= 2)
1510 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1511 return gdbarch->tdep;
1512 }
1513 EOF
1514 printf "\n"
1515 function_list | while do_read
1516 do
1517 if class_is_predicate_p
1518 then
1519 printf "\n"
1520 printf "int\n"
1521 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1522 printf "{\n"
1523 printf " gdb_assert (gdbarch != NULL);\n"
1524 printf " return ${predicate};\n"
1525 printf "}\n"
1526 fi
1527 if class_is_function_p
1528 then
1529 printf "\n"
1530 printf "${returntype}\n"
1531 if [ "x${formal}" = "xvoid" ]
1532 then
1533 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1534 else
1535 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1536 fi
1537 printf "{\n"
1538 printf " gdb_assert (gdbarch != NULL);\n"
1539 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1540 if class_is_predicate_p && test -n "${predefault}"
1541 then
1542 # Allow a call to a function with a predicate.
1543 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1544 fi
1545 printf " if (gdbarch_debug >= 2)\n"
1546 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1547 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1548 then
1549 if class_is_multiarch_p
1550 then
1551 params="gdbarch"
1552 else
1553 params=""
1554 fi
1555 else
1556 if class_is_multiarch_p
1557 then
1558 params="gdbarch, ${actual}"
1559 else
1560 params="${actual}"
1561 fi
1562 fi
1563 if [ "x${returntype}" = "xvoid" ]
1564 then
1565 printf " gdbarch->${function} (${params});\n"
1566 else
1567 printf " return gdbarch->${function} (${params});\n"
1568 fi
1569 printf "}\n"
1570 printf "\n"
1571 printf "void\n"
1572 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1573 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1574 printf "{\n"
1575 printf " gdbarch->${function} = ${function};\n"
1576 printf "}\n"
1577 elif class_is_variable_p
1578 then
1579 printf "\n"
1580 printf "${returntype}\n"
1581 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1582 printf "{\n"
1583 printf " gdb_assert (gdbarch != NULL);\n"
1584 if [ "x${invalid_p}" = "x0" ]
1585 then
1586 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1587 elif [ -n "${invalid_p}" ]
1588 then
1589 printf " /* Check variable is valid. */\n"
1590 printf " gdb_assert (!(${invalid_p}));\n"
1591 elif [ -n "${predefault}" ]
1592 then
1593 printf " /* Check variable changed from pre-default. */\n"
1594 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1595 fi
1596 printf " if (gdbarch_debug >= 2)\n"
1597 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1598 printf " return gdbarch->${function};\n"
1599 printf "}\n"
1600 printf "\n"
1601 printf "void\n"
1602 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1603 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1604 printf "{\n"
1605 printf " gdbarch->${function} = ${function};\n"
1606 printf "}\n"
1607 elif class_is_info_p
1608 then
1609 printf "\n"
1610 printf "${returntype}\n"
1611 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1612 printf "{\n"
1613 printf " gdb_assert (gdbarch != NULL);\n"
1614 printf " if (gdbarch_debug >= 2)\n"
1615 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1616 printf " return gdbarch->${function};\n"
1617 printf "}\n"
1618 fi
1619 done
1620
1621 # All the trailing guff
1622 cat <<EOF
1623
1624
1625 /* Keep a registry of per-architecture data-pointers required by GDB
1626 modules. */
1627
1628 struct gdbarch_data
1629 {
1630 unsigned index;
1631 int init_p;
1632 gdbarch_data_pre_init_ftype *pre_init;
1633 gdbarch_data_post_init_ftype *post_init;
1634 };
1635
1636 struct gdbarch_data_registration
1637 {
1638 struct gdbarch_data *data;
1639 struct gdbarch_data_registration *next;
1640 };
1641
1642 struct gdbarch_data_registry
1643 {
1644 unsigned nr;
1645 struct gdbarch_data_registration *registrations;
1646 };
1647
1648 struct gdbarch_data_registry gdbarch_data_registry =
1649 {
1650 0, NULL,
1651 };
1652
1653 static struct gdbarch_data *
1654 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1655 gdbarch_data_post_init_ftype *post_init)
1656 {
1657 struct gdbarch_data_registration **curr;
1658 /* Append the new registraration. */
1659 for (curr = &gdbarch_data_registry.registrations;
1660 (*curr) != NULL;
1661 curr = &(*curr)->next);
1662 (*curr) = XMALLOC (struct gdbarch_data_registration);
1663 (*curr)->next = NULL;
1664 (*curr)->data = XMALLOC (struct gdbarch_data);
1665 (*curr)->data->index = gdbarch_data_registry.nr++;
1666 (*curr)->data->pre_init = pre_init;
1667 (*curr)->data->post_init = post_init;
1668 (*curr)->data->init_p = 1;
1669 return (*curr)->data;
1670 }
1671
1672 struct gdbarch_data *
1673 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1674 {
1675 return gdbarch_data_register (pre_init, NULL);
1676 }
1677
1678 struct gdbarch_data *
1679 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1680 {
1681 return gdbarch_data_register (NULL, post_init);
1682 }
1683
1684 /* Create/delete the gdbarch data vector. */
1685
1686 static void
1687 alloc_gdbarch_data (struct gdbarch *gdbarch)
1688 {
1689 gdb_assert (gdbarch->data == NULL);
1690 gdbarch->nr_data = gdbarch_data_registry.nr;
1691 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1692 }
1693
1694 /* Initialize the current value of the specified per-architecture
1695 data-pointer. */
1696
1697 void
1698 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1699 struct gdbarch_data *data,
1700 void *pointer)
1701 {
1702 gdb_assert (data->index < gdbarch->nr_data);
1703 gdb_assert (gdbarch->data[data->index] == NULL);
1704 gdb_assert (data->pre_init == NULL);
1705 gdbarch->data[data->index] = pointer;
1706 }
1707
1708 /* Return the current value of the specified per-architecture
1709 data-pointer. */
1710
1711 void *
1712 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1713 {
1714 gdb_assert (data->index < gdbarch->nr_data);
1715 if (gdbarch->data[data->index] == NULL)
1716 {
1717 /* The data-pointer isn't initialized, call init() to get a
1718 value. */
1719 if (data->pre_init != NULL)
1720 /* Mid architecture creation: pass just the obstack, and not
1721 the entire architecture, as that way it isn't possible for
1722 pre-init code to refer to undefined architecture
1723 fields. */
1724 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1725 else if (gdbarch->initialized_p
1726 && data->post_init != NULL)
1727 /* Post architecture creation: pass the entire architecture
1728 (as all fields are valid), but be careful to also detect
1729 recursive references. */
1730 {
1731 gdb_assert (data->init_p);
1732 data->init_p = 0;
1733 gdbarch->data[data->index] = data->post_init (gdbarch);
1734 data->init_p = 1;
1735 }
1736 else
1737 /* The architecture initialization hasn't completed - punt -
1738 hope that the caller knows what they are doing. Once
1739 deprecated_set_gdbarch_data has been initialized, this can be
1740 changed to an internal error. */
1741 return NULL;
1742 gdb_assert (gdbarch->data[data->index] != NULL);
1743 }
1744 return gdbarch->data[data->index];
1745 }
1746
1747
1748 /* Keep a registry of the architectures known by GDB. */
1749
1750 struct gdbarch_registration
1751 {
1752 enum bfd_architecture bfd_architecture;
1753 gdbarch_init_ftype *init;
1754 gdbarch_dump_tdep_ftype *dump_tdep;
1755 struct gdbarch_list *arches;
1756 struct gdbarch_registration *next;
1757 };
1758
1759 static struct gdbarch_registration *gdbarch_registry = NULL;
1760
1761 static void
1762 append_name (const char ***buf, int *nr, const char *name)
1763 {
1764 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1765 (*buf)[*nr] = name;
1766 *nr += 1;
1767 }
1768
1769 const char **
1770 gdbarch_printable_names (void)
1771 {
1772 /* Accumulate a list of names based on the registed list of
1773 architectures. */
1774 enum bfd_architecture a;
1775 int nr_arches = 0;
1776 const char **arches = NULL;
1777 struct gdbarch_registration *rego;
1778 for (rego = gdbarch_registry;
1779 rego != NULL;
1780 rego = rego->next)
1781 {
1782 const struct bfd_arch_info *ap;
1783 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1784 if (ap == NULL)
1785 internal_error (__FILE__, __LINE__,
1786 _("gdbarch_architecture_names: multi-arch unknown"));
1787 do
1788 {
1789 append_name (&arches, &nr_arches, ap->printable_name);
1790 ap = ap->next;
1791 }
1792 while (ap != NULL);
1793 }
1794 append_name (&arches, &nr_arches, NULL);
1795 return arches;
1796 }
1797
1798
1799 void
1800 gdbarch_register (enum bfd_architecture bfd_architecture,
1801 gdbarch_init_ftype *init,
1802 gdbarch_dump_tdep_ftype *dump_tdep)
1803 {
1804 struct gdbarch_registration **curr;
1805 const struct bfd_arch_info *bfd_arch_info;
1806 /* Check that BFD recognizes this architecture */
1807 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1808 if (bfd_arch_info == NULL)
1809 {
1810 internal_error (__FILE__, __LINE__,
1811 _("gdbarch: Attempt to register unknown architecture (%d)"),
1812 bfd_architecture);
1813 }
1814 /* Check that we haven't seen this architecture before */
1815 for (curr = &gdbarch_registry;
1816 (*curr) != NULL;
1817 curr = &(*curr)->next)
1818 {
1819 if (bfd_architecture == (*curr)->bfd_architecture)
1820 internal_error (__FILE__, __LINE__,
1821 _("gdbarch: Duplicate registraration of architecture (%s)"),
1822 bfd_arch_info->printable_name);
1823 }
1824 /* log it */
1825 if (gdbarch_debug)
1826 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1827 bfd_arch_info->printable_name,
1828 (long) init);
1829 /* Append it */
1830 (*curr) = XMALLOC (struct gdbarch_registration);
1831 (*curr)->bfd_architecture = bfd_architecture;
1832 (*curr)->init = init;
1833 (*curr)->dump_tdep = dump_tdep;
1834 (*curr)->arches = NULL;
1835 (*curr)->next = NULL;
1836 }
1837
1838 void
1839 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1840 gdbarch_init_ftype *init)
1841 {
1842 gdbarch_register (bfd_architecture, init, NULL);
1843 }
1844
1845
1846 /* Look for an architecture using gdbarch_info. */
1847
1848 struct gdbarch_list *
1849 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1850 const struct gdbarch_info *info)
1851 {
1852 for (; arches != NULL; arches = arches->next)
1853 {
1854 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1855 continue;
1856 if (info->byte_order != arches->gdbarch->byte_order)
1857 continue;
1858 if (info->osabi != arches->gdbarch->osabi)
1859 continue;
1860 if (info->target_desc != arches->gdbarch->target_desc)
1861 continue;
1862 return arches;
1863 }
1864 return NULL;
1865 }
1866
1867
1868 /* Find an architecture that matches the specified INFO. Create a new
1869 architecture if needed. Return that new architecture. Assumes
1870 that there is no current architecture. */
1871
1872 static struct gdbarch *
1873 find_arch_by_info (struct gdbarch_info info)
1874 {
1875 struct gdbarch *new_gdbarch;
1876 struct gdbarch_registration *rego;
1877
1878 /* The existing architecture has been swapped out - all this code
1879 works from a clean slate. */
1880 gdb_assert (current_gdbarch == NULL);
1881
1882 /* Fill in missing parts of the INFO struct using a number of
1883 sources: "set ..."; INFOabfd supplied; and the global
1884 defaults. */
1885 gdbarch_info_fill (&info);
1886
1887 /* Must have found some sort of architecture. */
1888 gdb_assert (info.bfd_arch_info != NULL);
1889
1890 if (gdbarch_debug)
1891 {
1892 fprintf_unfiltered (gdb_stdlog,
1893 "find_arch_by_info: info.bfd_arch_info %s\n",
1894 (info.bfd_arch_info != NULL
1895 ? info.bfd_arch_info->printable_name
1896 : "(null)"));
1897 fprintf_unfiltered (gdb_stdlog,
1898 "find_arch_by_info: info.byte_order %d (%s)\n",
1899 info.byte_order,
1900 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1901 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1902 : "default"));
1903 fprintf_unfiltered (gdb_stdlog,
1904 "find_arch_by_info: info.osabi %d (%s)\n",
1905 info.osabi, gdbarch_osabi_name (info.osabi));
1906 fprintf_unfiltered (gdb_stdlog,
1907 "find_arch_by_info: info.abfd 0x%lx\n",
1908 (long) info.abfd);
1909 fprintf_unfiltered (gdb_stdlog,
1910 "find_arch_by_info: info.tdep_info 0x%lx\n",
1911 (long) info.tdep_info);
1912 }
1913
1914 /* Find the tdep code that knows about this architecture. */
1915 for (rego = gdbarch_registry;
1916 rego != NULL;
1917 rego = rego->next)
1918 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1919 break;
1920 if (rego == NULL)
1921 {
1922 if (gdbarch_debug)
1923 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1924 "No matching architecture\n");
1925 return 0;
1926 }
1927
1928 /* Ask the tdep code for an architecture that matches "info". */
1929 new_gdbarch = rego->init (info, rego->arches);
1930
1931 /* Did the tdep code like it? No. Reject the change and revert to
1932 the old architecture. */
1933 if (new_gdbarch == NULL)
1934 {
1935 if (gdbarch_debug)
1936 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1937 "Target rejected architecture\n");
1938 return NULL;
1939 }
1940
1941 /* Is this a pre-existing architecture (as determined by already
1942 being initialized)? Move it to the front of the architecture
1943 list (keeping the list sorted Most Recently Used). */
1944 if (new_gdbarch->initialized_p)
1945 {
1946 struct gdbarch_list **list;
1947 struct gdbarch_list *this;
1948 if (gdbarch_debug)
1949 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1950 "Previous architecture 0x%08lx (%s) selected\n",
1951 (long) new_gdbarch,
1952 new_gdbarch->bfd_arch_info->printable_name);
1953 /* Find the existing arch in the list. */
1954 for (list = &rego->arches;
1955 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1956 list = &(*list)->next);
1957 /* It had better be in the list of architectures. */
1958 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1959 /* Unlink THIS. */
1960 this = (*list);
1961 (*list) = this->next;
1962 /* Insert THIS at the front. */
1963 this->next = rego->arches;
1964 rego->arches = this;
1965 /* Return it. */
1966 return new_gdbarch;
1967 }
1968
1969 /* It's a new architecture. */
1970 if (gdbarch_debug)
1971 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1972 "New architecture 0x%08lx (%s) selected\n",
1973 (long) new_gdbarch,
1974 new_gdbarch->bfd_arch_info->printable_name);
1975
1976 /* Insert the new architecture into the front of the architecture
1977 list (keep the list sorted Most Recently Used). */
1978 {
1979 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1980 this->next = rego->arches;
1981 this->gdbarch = new_gdbarch;
1982 rego->arches = this;
1983 }
1984
1985 /* Check that the newly installed architecture is valid. Plug in
1986 any post init values. */
1987 new_gdbarch->dump_tdep = rego->dump_tdep;
1988 verify_gdbarch (new_gdbarch);
1989 new_gdbarch->initialized_p = 1;
1990
1991 if (gdbarch_debug)
1992 gdbarch_dump (new_gdbarch, gdb_stdlog);
1993
1994 return new_gdbarch;
1995 }
1996
1997 struct gdbarch *
1998 gdbarch_find_by_info (struct gdbarch_info info)
1999 {
2000 struct gdbarch *new_gdbarch;
2001
2002 /* Save the previously selected architecture, setting the global to
2003 NULL. This stops things like gdbarch->init() trying to use the
2004 previous architecture's configuration. The previous architecture
2005 may not even be of the same architecture family. The most recent
2006 architecture of the same family is found at the head of the
2007 rego->arches list. */
2008 struct gdbarch *old_gdbarch = current_gdbarch;
2009 current_gdbarch = NULL;
2010
2011 /* Find the specified architecture. */
2012 new_gdbarch = find_arch_by_info (info);
2013
2014 /* Restore the existing architecture. */
2015 gdb_assert (current_gdbarch == NULL);
2016 current_gdbarch = old_gdbarch;
2017
2018 return new_gdbarch;
2019 }
2020
2021 /* Make the specified architecture current. */
2022
2023 void
2024 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2025 {
2026 gdb_assert (new_gdbarch != NULL);
2027 gdb_assert (current_gdbarch != NULL);
2028 gdb_assert (new_gdbarch->initialized_p);
2029 current_gdbarch = new_gdbarch;
2030 target_gdbarch = new_gdbarch;
2031 observer_notify_architecture_changed (new_gdbarch);
2032 registers_changed ();
2033 }
2034
2035 extern void _initialize_gdbarch (void);
2036
2037 void
2038 _initialize_gdbarch (void)
2039 {
2040 struct cmd_list_element *c;
2041
2042 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2043 Set architecture debugging."), _("\\
2044 Show architecture debugging."), _("\\
2045 When non-zero, architecture debugging is enabled."),
2046 NULL,
2047 show_gdbarch_debug,
2048 &setdebuglist, &showdebuglist);
2049 }
2050 EOF
2051
2052 # close things off
2053 exec 1>&2
2054 #../move-if-change new-gdbarch.c gdbarch.c
2055 compare_new gdbarch.c