* gdbarch.sh (make_corefile_notes): New architecture callback.
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2012 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 if test -n "${garbage_at_eol}"
76 then
77 echo "Garbage at end-of-line in ${line}" 1>&2
78 kill $$
79 exit 1
80 fi
81
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
84 for r in ${read}
85 do
86 if eval test \"\${${r}}\" = \"\ \"
87 then
88 eval ${r}=""
89 fi
90 done
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 case "${class}" in
99 F | V | M )
100 case "${invalid_p}" in
101 "" )
102 if test -n "${predefault}"
103 then
104 #invalid_p="gdbarch->${function} == ${predefault}"
105 predicate="gdbarch->${function} != ${predefault}"
106 elif class_is_variable_p
107 then
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
110 then
111 predicate="gdbarch->${function} != NULL"
112 fi
113 ;;
114 * )
115 echo "Predicate function ${function} with invalid_p." 1>&2
116 kill $$
117 exit 1
118 ;;
119 esac
120 esac
121
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
128
129 if [ -n "${postdefault}" ]
130 then
131 fallbackdefault="${postdefault}"
132 elif [ -n "${predefault}" ]
133 then
134 fallbackdefault="${predefault}"
135 else
136 fallbackdefault="0"
137 fi
138
139 #NOT YET: See gdbarch.log for basic verification of
140 # database
141
142 break
143 fi
144 done
145 if [ -n "${class}" ]
146 then
147 true
148 else
149 false
150 fi
151 }
152
153
154 fallback_default_p ()
155 {
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
158 }
159
160 class_is_variable_p ()
161 {
162 case "${class}" in
163 *v* | *V* ) true ;;
164 * ) false ;;
165 esac
166 }
167
168 class_is_function_p ()
169 {
170 case "${class}" in
171 *f* | *F* | *m* | *M* ) true ;;
172 * ) false ;;
173 esac
174 }
175
176 class_is_multiarch_p ()
177 {
178 case "${class}" in
179 *m* | *M* ) true ;;
180 * ) false ;;
181 esac
182 }
183
184 class_is_predicate_p ()
185 {
186 case "${class}" in
187 *F* | *V* | *M* ) true ;;
188 * ) false ;;
189 esac
190 }
191
192 class_is_info_p ()
193 {
194 case "${class}" in
195 *i* ) true ;;
196 * ) false ;;
197 esac
198 }
199
200
201 # dump out/verify the doco
202 for field in ${read}
203 do
204 case ${field} in
205
206 class ) : ;;
207
208 # # -> line disable
209 # f -> function
210 # hiding a function
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
213 # v -> variable
214 # hiding a variable
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
217 # i -> set from info
218 # hiding something from the ``struct info'' object
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
223
224 returntype ) : ;;
225
226 # For functions, the return type; for variables, the data type
227
228 function ) : ;;
229
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
233
234 formal ) : ;;
235
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
240
241 actual ) : ;;
242
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
246
247 staticdefault ) : ;;
248
249 # To help with the GDB startup a static gdbarch object is
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
253
254 # If STATICDEFAULT is empty, zero is used.
255
256 predefault ) : ;;
257
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
262
263 # If PREDEFAULT is empty, zero is used.
264
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
268
269 # A zero PREDEFAULT function will force the fallback to call
270 # internal_error().
271
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
274
275 postdefault ) : ;;
276
277 # A value to assign to MEMBER of the new gdbarch object should
278 # the target architecture code fail to change the PREDEFAULT
279 # value.
280
281 # If POSTDEFAULT is empty, no post update is performed.
282
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
286
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
290 # PREDEFAULT).
291
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
293
294 # Variable declarations can refer to ``gdbarch'' which
295 # will contain the current architecture. Care should be
296 # taken.
297
298 invalid_p ) : ;;
299
300 # A predicate equation that validates MEMBER. Non-zero is
301 # returned if the code creating the new architecture failed to
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
305 # is called.
306
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
309
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
312
313 # See also PREDEFAULT and POSTDEFAULT.
314
315 print ) : ;;
316
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
319
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
322
323 garbage_at_eol ) : ;;
324
325 # Catches stray fields.
326
327 *)
328 echo "Bad field ${field}"
329 exit 1;;
330 esac
331 done
332
333
334 function_list ()
335 {
336 # See below (DOCO) for description of each field
337 cat <<EOF
338 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
339 #
340 i:int:byte_order:::BFD_ENDIAN_BIG
341 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
342 #
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344 #
345 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
346
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
354 #
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
362 # machine.
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364 # Alignment of a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367
368 # The ABI default bit-size and format for "half", "float", "double", and
369 # "long double". These bit/format pairs should eventually be combined
370 # into a single object. For the moment, just initialize them as a pair.
371 # Each format describes both the big and little endian layouts (if
372 # useful).
373
374 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
376 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
378 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
380 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
381 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
382
383 # For most targets, a pointer on the target and its representation as an
384 # address in GDB have the same size and "look the same". For such a
385 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
386 # / addr_bit will be set from it.
387 #
388 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
389 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390 # gdbarch_address_to_pointer as well.
391 #
392 # ptr_bit is the size of a pointer on the target
393 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
394 # addr_bit is the size of a target address as represented in gdb
395 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
396 #
397 # dwarf2_addr_size is the target address size as used in the Dwarf debug
398 # info. For .debug_frame FDEs, this is supposed to be the target address
399 # size from the associated CU header, and which is equivalent to the
400 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401 # Unfortunately there is no good way to determine this value. Therefore
402 # dwarf2_addr_size simply defaults to the target pointer size.
403 #
404 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405 # defined using the target's pointer size so far.
406 #
407 # Note that dwarf2_addr_size only needs to be redefined by a target if the
408 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409 # and if Dwarf versions < 4 need to be supported.
410 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
411 #
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v:int:char_signed:::1:-1:1
414 #
415 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
417 # Function for getting target's idea of a frame pointer. FIXME: GDB's
418 # whole scheme for dealing with "frames" and "frame pointers" needs a
419 # serious shakedown.
420 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
421 #
422 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
423 # Read a register into a new struct value. If the register is wholly
424 # or partly unavailable, this should call mark_value_bytes_unavailable
425 # as appropriate. If this is defined, then pseudo_register_read will
426 # never be called.
427 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
428 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
429 #
430 v:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:int:num_pseudo_regs:::0:0::0
436
437 # Assemble agent expression bytecode to collect pseudo-register REG.
438 # Return -1 if something goes wrong, 0 otherwise.
439 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
440
441 # Assemble agent expression bytecode to push the value of pseudo-register
442 # REG on the interpreter stack.
443 # Return -1 if something goes wrong, 0 otherwise.
444 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
445
446 # GDB's standard (or well known) register numbers. These can map onto
447 # a real register or a pseudo (computed) register or not be defined at
448 # all (-1).
449 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
450 v:int:sp_regnum:::-1:-1::0
451 v:int:pc_regnum:::-1:-1::0
452 v:int:ps_regnum:::-1:-1::0
453 v:int:fp0_regnum:::0:-1::0
454 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
455 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
456 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
457 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
458 # Convert from an sdb register number to an internal gdb register number.
459 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
460 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
461 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
462 m:const char *:register_name:int regnr:regnr::0
463
464 # Return the type of a register specified by the architecture. Only
465 # the register cache should call this function directly; others should
466 # use "register_type".
467 M:struct type *:register_type:int reg_nr:reg_nr
468
469 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
470 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
472 # deprecated_fp_regnum.
473 v:int:deprecated_fp_regnum:::-1:-1::0
474
475 # See gdbint.texinfo. See infcall.c.
476 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477 v:int:call_dummy_location::::AT_ENTRY_POINT::0
478 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
479
480 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
486 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
488 # setjmp/longjmp support.
489 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
490 #
491 v:int:believe_pcc_promotion:::::::
492 #
493 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
494 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
495 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
496 # Construct a value representing the contents of register REGNUM in
497 # frame FRAME, interpreted as type TYPE. The routine needs to
498 # allocate and return a struct value with all value attributes
499 # (but not the value contents) filled in.
500 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
501 #
502 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
504 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
505
506 # Return the return-value convention that will be used by FUNCTYPE
507 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
508 # case the return convention is computed based only on VALTYPE.
509 #
510 # If READBUF is not NULL, extract the return value and save it in this buffer.
511 #
512 # If WRITEBUF is not NULL, it contains a return value which will be
513 # stored into the appropriate register. This can be used when we want
514 # to force the value returned by a function (see the "return" command
515 # for instance).
516 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
517
518 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
519 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
520 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
521 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
522 # Return the adjusted address and kind to use for Z0/Z1 packets.
523 # KIND is usually the memory length of the breakpoint, but may have a
524 # different target-specific meaning.
525 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
526 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
527 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
528 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
529 v:CORE_ADDR:decr_pc_after_break:::0:::0
530
531 # A function can be addressed by either it's "pointer" (possibly a
532 # descriptor address) or "entry point" (first executable instruction).
533 # The method "convert_from_func_ptr_addr" converting the former to the
534 # latter. gdbarch_deprecated_function_start_offset is being used to implement
535 # a simplified subset of that functionality - the function's address
536 # corresponds to the "function pointer" and the function's start
537 # corresponds to the "function entry point" - and hence is redundant.
538
539 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
540
541 # Return the remote protocol register number associated with this
542 # register. Normally the identity mapping.
543 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
544
545 # Fetch the target specific address used to represent a load module.
546 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
547 #
548 v:CORE_ADDR:frame_args_skip:::0:::0
549 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
550 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
551 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
552 # frame-base. Enable frame-base before frame-unwind.
553 F:int:frame_num_args:struct frame_info *frame:frame
554 #
555 M:CORE_ADDR:frame_align:CORE_ADDR address:address
556 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
557 v:int:frame_red_zone_size
558 #
559 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
560 # On some machines there are bits in addresses which are not really
561 # part of the address, but are used by the kernel, the hardware, etc.
562 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
563 # we get a "real" address such as one would find in a symbol table.
564 # This is used only for addresses of instructions, and even then I'm
565 # not sure it's used in all contexts. It exists to deal with there
566 # being a few stray bits in the PC which would mislead us, not as some
567 # sort of generic thing to handle alignment or segmentation (it's
568 # possible it should be in TARGET_READ_PC instead).
569 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
570 # It is not at all clear why gdbarch_smash_text_address is not folded into
571 # gdbarch_addr_bits_remove.
572 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
573
574 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
575 # indicates if the target needs software single step. An ISA method to
576 # implement it.
577 #
578 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
579 # breakpoints using the breakpoint system instead of blatting memory directly
580 # (as with rs6000).
581 #
582 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
583 # target can single step. If not, then implement single step using breakpoints.
584 #
585 # A return value of 1 means that the software_single_step breakpoints
586 # were inserted; 0 means they were not.
587 F:int:software_single_step:struct frame_info *frame:frame
588
589 # Return non-zero if the processor is executing a delay slot and a
590 # further single-step is needed before the instruction finishes.
591 M:int:single_step_through_delay:struct frame_info *frame:frame
592 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
593 # disassembler. Perhaps objdump can handle it?
594 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
595 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
596
597
598 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
599 # evaluates non-zero, this is the address where the debugger will place
600 # a step-resume breakpoint to get us past the dynamic linker.
601 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
602 # Some systems also have trampoline code for returning from shared libs.
603 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
604
605 # A target might have problems with watchpoints as soon as the stack
606 # frame of the current function has been destroyed. This mostly happens
607 # as the first action in a funtion's epilogue. in_function_epilogue_p()
608 # is defined to return a non-zero value if either the given addr is one
609 # instruction after the stack destroying instruction up to the trailing
610 # return instruction or if we can figure out that the stack frame has
611 # already been invalidated regardless of the value of addr. Targets
612 # which don't suffer from that problem could just let this functionality
613 # untouched.
614 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
615 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
616 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
617 v:int:cannot_step_breakpoint:::0:0::0
618 v:int:have_nonsteppable_watchpoint:::0:0::0
619 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
620 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
621 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
622 # Is a register in a group
623 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
624 # Fetch the pointer to the ith function argument.
625 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
626
627 # Return the appropriate register set for a core file section with
628 # name SECT_NAME and size SECT_SIZE.
629 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
630
631 # Supported register notes in a core file.
632 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
633
634 # Create core file notes
635 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
636
637 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
638 # core file into buffer READBUF with length LEN.
639 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
640
641 # How the core target converts a PTID from a core file to a string.
642 M:char *:core_pid_to_str:ptid_t ptid:ptid
643
644 # BFD target to use when generating a core file.
645 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
646
647 # If the elements of C++ vtables are in-place function descriptors rather
648 # than normal function pointers (which may point to code or a descriptor),
649 # set this to one.
650 v:int:vtable_function_descriptors:::0:0::0
651
652 # Set if the least significant bit of the delta is used instead of the least
653 # significant bit of the pfn for pointers to virtual member functions.
654 v:int:vbit_in_delta:::0:0::0
655
656 # Advance PC to next instruction in order to skip a permanent breakpoint.
657 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
658
659 # The maximum length of an instruction on this architecture in bytes.
660 V:ULONGEST:max_insn_length:::0:0
661
662 # Copy the instruction at FROM to TO, and make any adjustments
663 # necessary to single-step it at that address.
664 #
665 # REGS holds the state the thread's registers will have before
666 # executing the copied instruction; the PC in REGS will refer to FROM,
667 # not the copy at TO. The caller should update it to point at TO later.
668 #
669 # Return a pointer to data of the architecture's choice to be passed
670 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
671 # the instruction's effects have been completely simulated, with the
672 # resulting state written back to REGS.
673 #
674 # For a general explanation of displaced stepping and how GDB uses it,
675 # see the comments in infrun.c.
676 #
677 # The TO area is only guaranteed to have space for
678 # gdbarch_max_insn_length (arch) bytes, so this function must not
679 # write more bytes than that to that area.
680 #
681 # If you do not provide this function, GDB assumes that the
682 # architecture does not support displaced stepping.
683 #
684 # If your architecture doesn't need to adjust instructions before
685 # single-stepping them, consider using simple_displaced_step_copy_insn
686 # here.
687 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
688
689 # Return true if GDB should use hardware single-stepping to execute
690 # the displaced instruction identified by CLOSURE. If false,
691 # GDB will simply restart execution at the displaced instruction
692 # location, and it is up to the target to ensure GDB will receive
693 # control again (e.g. by placing a software breakpoint instruction
694 # into the displaced instruction buffer).
695 #
696 # The default implementation returns false on all targets that
697 # provide a gdbarch_software_single_step routine, and true otherwise.
698 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
699
700 # Fix up the state resulting from successfully single-stepping a
701 # displaced instruction, to give the result we would have gotten from
702 # stepping the instruction in its original location.
703 #
704 # REGS is the register state resulting from single-stepping the
705 # displaced instruction.
706 #
707 # CLOSURE is the result from the matching call to
708 # gdbarch_displaced_step_copy_insn.
709 #
710 # If you provide gdbarch_displaced_step_copy_insn.but not this
711 # function, then GDB assumes that no fixup is needed after
712 # single-stepping the instruction.
713 #
714 # For a general explanation of displaced stepping and how GDB uses it,
715 # see the comments in infrun.c.
716 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
717
718 # Free a closure returned by gdbarch_displaced_step_copy_insn.
719 #
720 # If you provide gdbarch_displaced_step_copy_insn, you must provide
721 # this function as well.
722 #
723 # If your architecture uses closures that don't need to be freed, then
724 # you can use simple_displaced_step_free_closure here.
725 #
726 # For a general explanation of displaced stepping and how GDB uses it,
727 # see the comments in infrun.c.
728 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
729
730 # Return the address of an appropriate place to put displaced
731 # instructions while we step over them. There need only be one such
732 # place, since we're only stepping one thread over a breakpoint at a
733 # time.
734 #
735 # For a general explanation of displaced stepping and how GDB uses it,
736 # see the comments in infrun.c.
737 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
738
739 # Relocate an instruction to execute at a different address. OLDLOC
740 # is the address in the inferior memory where the instruction to
741 # relocate is currently at. On input, TO points to the destination
742 # where we want the instruction to be copied (and possibly adjusted)
743 # to. On output, it points to one past the end of the resulting
744 # instruction(s). The effect of executing the instruction at TO shall
745 # be the same as if executing it at FROM. For example, call
746 # instructions that implicitly push the return address on the stack
747 # should be adjusted to return to the instruction after OLDLOC;
748 # relative branches, and other PC-relative instructions need the
749 # offset adjusted; etc.
750 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
751
752 # Refresh overlay mapped state for section OSECT.
753 F:void:overlay_update:struct obj_section *osect:osect
754
755 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
756
757 # Handle special encoding of static variables in stabs debug info.
758 F:char *:static_transform_name:char *name:name
759 # Set if the address in N_SO or N_FUN stabs may be zero.
760 v:int:sofun_address_maybe_missing:::0:0::0
761
762 # Parse the instruction at ADDR storing in the record execution log
763 # the registers REGCACHE and memory ranges that will be affected when
764 # the instruction executes, along with their current values.
765 # Return -1 if something goes wrong, 0 otherwise.
766 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
767
768 # Save process state after a signal.
769 # Return -1 if something goes wrong, 0 otherwise.
770 M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
771
772 # Signal translation: translate inferior's signal (host's) number into
773 # GDB's representation.
774 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
775 # Signal translation: translate GDB's signal number into inferior's host
776 # signal number.
777 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
778
779 # Extra signal info inspection.
780 #
781 # Return a type suitable to inspect extra signal information.
782 M:struct type *:get_siginfo_type:void:
783
784 # Record architecture-specific information from the symbol table.
785 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
786
787 # Function for the 'catch syscall' feature.
788
789 # Get architecture-specific system calls information from registers.
790 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
791
792 # True if the list of shared libraries is one and only for all
793 # processes, as opposed to a list of shared libraries per inferior.
794 # This usually means that all processes, although may or may not share
795 # an address space, will see the same set of symbols at the same
796 # addresses.
797 v:int:has_global_solist:::0:0::0
798
799 # On some targets, even though each inferior has its own private
800 # address space, the debug interface takes care of making breakpoints
801 # visible to all address spaces automatically. For such cases,
802 # this property should be set to true.
803 v:int:has_global_breakpoints:::0:0::0
804
805 # True if inferiors share an address space (e.g., uClinux).
806 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
807
808 # True if a fast tracepoint can be set at an address.
809 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
810
811 # Return the "auto" target charset.
812 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
813 # Return the "auto" target wide charset.
814 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
815
816 # If non-empty, this is a file extension that will be opened in place
817 # of the file extension reported by the shared library list.
818 #
819 # This is most useful for toolchains that use a post-linker tool,
820 # where the names of the files run on the target differ in extension
821 # compared to the names of the files GDB should load for debug info.
822 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
823
824 # If true, the target OS has DOS-based file system semantics. That
825 # is, absolute paths include a drive name, and the backslash is
826 # considered a directory separator.
827 v:int:has_dos_based_file_system:::0:0::0
828
829 # Generate bytecodes to collect the return address in a frame.
830 # Since the bytecodes run on the target, possibly with GDB not even
831 # connected, the full unwinding machinery is not available, and
832 # typically this function will issue bytecodes for one or more likely
833 # places that the return address may be found.
834 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
835
836 # Implement the "info proc" command.
837 M:void:info_proc:char *args, enum info_proc_what what:args, what
838
839 EOF
840 }
841
842 #
843 # The .log file
844 #
845 exec > new-gdbarch.log
846 function_list | while do_read
847 do
848 cat <<EOF
849 ${class} ${returntype} ${function} ($formal)
850 EOF
851 for r in ${read}
852 do
853 eval echo \"\ \ \ \ ${r}=\${${r}}\"
854 done
855 if class_is_predicate_p && fallback_default_p
856 then
857 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
858 kill $$
859 exit 1
860 fi
861 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
862 then
863 echo "Error: postdefault is useless when invalid_p=0" 1>&2
864 kill $$
865 exit 1
866 fi
867 if class_is_multiarch_p
868 then
869 if class_is_predicate_p ; then :
870 elif test "x${predefault}" = "x"
871 then
872 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
873 kill $$
874 exit 1
875 fi
876 fi
877 echo ""
878 done
879
880 exec 1>&2
881 compare_new gdbarch.log
882
883
884 copyright ()
885 {
886 cat <<EOF
887 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
888
889 /* Dynamic architecture support for GDB, the GNU debugger.
890
891 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
892 2007, 2008, 2009 Free Software Foundation, Inc.
893
894 This file is part of GDB.
895
896 This program is free software; you can redistribute it and/or modify
897 it under the terms of the GNU General Public License as published by
898 the Free Software Foundation; either version 3 of the License, or
899 (at your option) any later version.
900
901 This program is distributed in the hope that it will be useful,
902 but WITHOUT ANY WARRANTY; without even the implied warranty of
903 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
904 GNU General Public License for more details.
905
906 You should have received a copy of the GNU General Public License
907 along with this program. If not, see <http://www.gnu.org/licenses/>. */
908
909 /* This file was created with the aid of \`\`gdbarch.sh''.
910
911 The Bourne shell script \`\`gdbarch.sh'' creates the files
912 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
913 against the existing \`\`gdbarch.[hc]''. Any differences found
914 being reported.
915
916 If editing this file, please also run gdbarch.sh and merge any
917 changes into that script. Conversely, when making sweeping changes
918 to this file, modifying gdbarch.sh and using its output may prove
919 easier. */
920
921 EOF
922 }
923
924 #
925 # The .h file
926 #
927
928 exec > new-gdbarch.h
929 copyright
930 cat <<EOF
931 #ifndef GDBARCH_H
932 #define GDBARCH_H
933
934 struct floatformat;
935 struct ui_file;
936 struct frame_info;
937 struct value;
938 struct objfile;
939 struct obj_section;
940 struct minimal_symbol;
941 struct regcache;
942 struct reggroup;
943 struct regset;
944 struct disassemble_info;
945 struct target_ops;
946 struct obstack;
947 struct bp_target_info;
948 struct target_desc;
949 struct displaced_step_closure;
950 struct core_regset_section;
951 struct syscall;
952 struct agent_expr;
953 struct axs_value;
954
955 /* The architecture associated with the connection to the target.
956
957 The architecture vector provides some information that is really
958 a property of the target: The layout of certain packets, for instance;
959 or the solib_ops vector. Etc. To differentiate architecture accesses
960 to per-target properties from per-thread/per-frame/per-objfile properties,
961 accesses to per-target properties should be made through target_gdbarch.
962
963 Eventually, when support for multiple targets is implemented in
964 GDB, this global should be made target-specific. */
965 extern struct gdbarch *target_gdbarch;
966 EOF
967
968 # function typedef's
969 printf "\n"
970 printf "\n"
971 printf "/* The following are pre-initialized by GDBARCH. */\n"
972 function_list | while do_read
973 do
974 if class_is_info_p
975 then
976 printf "\n"
977 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
978 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
979 fi
980 done
981
982 # function typedef's
983 printf "\n"
984 printf "\n"
985 printf "/* The following are initialized by the target dependent code. */\n"
986 function_list | while do_read
987 do
988 if [ -n "${comment}" ]
989 then
990 echo "${comment}" | sed \
991 -e '2 s,#,/*,' \
992 -e '3,$ s,#, ,' \
993 -e '$ s,$, */,'
994 fi
995
996 if class_is_predicate_p
997 then
998 printf "\n"
999 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1000 fi
1001 if class_is_variable_p
1002 then
1003 printf "\n"
1004 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1005 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1006 fi
1007 if class_is_function_p
1008 then
1009 printf "\n"
1010 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1011 then
1012 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1013 elif class_is_multiarch_p
1014 then
1015 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1016 else
1017 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1018 fi
1019 if [ "x${formal}" = "xvoid" ]
1020 then
1021 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1022 else
1023 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1024 fi
1025 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1026 fi
1027 done
1028
1029 # close it off
1030 cat <<EOF
1031
1032 /* Definition for an unknown syscall, used basically in error-cases. */
1033 #define UNKNOWN_SYSCALL (-1)
1034
1035 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1036
1037
1038 /* Mechanism for co-ordinating the selection of a specific
1039 architecture.
1040
1041 GDB targets (*-tdep.c) can register an interest in a specific
1042 architecture. Other GDB components can register a need to maintain
1043 per-architecture data.
1044
1045 The mechanisms below ensures that there is only a loose connection
1046 between the set-architecture command and the various GDB
1047 components. Each component can independently register their need
1048 to maintain architecture specific data with gdbarch.
1049
1050 Pragmatics:
1051
1052 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1053 didn't scale.
1054
1055 The more traditional mega-struct containing architecture specific
1056 data for all the various GDB components was also considered. Since
1057 GDB is built from a variable number of (fairly independent)
1058 components it was determined that the global aproach was not
1059 applicable. */
1060
1061
1062 /* Register a new architectural family with GDB.
1063
1064 Register support for the specified ARCHITECTURE with GDB. When
1065 gdbarch determines that the specified architecture has been
1066 selected, the corresponding INIT function is called.
1067
1068 --
1069
1070 The INIT function takes two parameters: INFO which contains the
1071 information available to gdbarch about the (possibly new)
1072 architecture; ARCHES which is a list of the previously created
1073 \`\`struct gdbarch'' for this architecture.
1074
1075 The INFO parameter is, as far as possible, be pre-initialized with
1076 information obtained from INFO.ABFD or the global defaults.
1077
1078 The ARCHES parameter is a linked list (sorted most recently used)
1079 of all the previously created architures for this architecture
1080 family. The (possibly NULL) ARCHES->gdbarch can used to access
1081 values from the previously selected architecture for this
1082 architecture family.
1083
1084 The INIT function shall return any of: NULL - indicating that it
1085 doesn't recognize the selected architecture; an existing \`\`struct
1086 gdbarch'' from the ARCHES list - indicating that the new
1087 architecture is just a synonym for an earlier architecture (see
1088 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1089 - that describes the selected architecture (see gdbarch_alloc()).
1090
1091 The DUMP_TDEP function shall print out all target specific values.
1092 Care should be taken to ensure that the function works in both the
1093 multi-arch and non- multi-arch cases. */
1094
1095 struct gdbarch_list
1096 {
1097 struct gdbarch *gdbarch;
1098 struct gdbarch_list *next;
1099 };
1100
1101 struct gdbarch_info
1102 {
1103 /* Use default: NULL (ZERO). */
1104 const struct bfd_arch_info *bfd_arch_info;
1105
1106 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1107 int byte_order;
1108
1109 int byte_order_for_code;
1110
1111 /* Use default: NULL (ZERO). */
1112 bfd *abfd;
1113
1114 /* Use default: NULL (ZERO). */
1115 struct gdbarch_tdep_info *tdep_info;
1116
1117 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1118 enum gdb_osabi osabi;
1119
1120 /* Use default: NULL (ZERO). */
1121 const struct target_desc *target_desc;
1122 };
1123
1124 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1125 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1126
1127 /* DEPRECATED - use gdbarch_register() */
1128 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1129
1130 extern void gdbarch_register (enum bfd_architecture architecture,
1131 gdbarch_init_ftype *,
1132 gdbarch_dump_tdep_ftype *);
1133
1134
1135 /* Return a freshly allocated, NULL terminated, array of the valid
1136 architecture names. Since architectures are registered during the
1137 _initialize phase this function only returns useful information
1138 once initialization has been completed. */
1139
1140 extern const char **gdbarch_printable_names (void);
1141
1142
1143 /* Helper function. Search the list of ARCHES for a GDBARCH that
1144 matches the information provided by INFO. */
1145
1146 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1147
1148
1149 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1150 basic initialization using values obtained from the INFO and TDEP
1151 parameters. set_gdbarch_*() functions are called to complete the
1152 initialization of the object. */
1153
1154 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1155
1156
1157 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1158 It is assumed that the caller freeds the \`\`struct
1159 gdbarch_tdep''. */
1160
1161 extern void gdbarch_free (struct gdbarch *);
1162
1163
1164 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1165 obstack. The memory is freed when the corresponding architecture
1166 is also freed. */
1167
1168 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1169 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1170 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1171
1172
1173 /* Helper function. Force an update of the current architecture.
1174
1175 The actual architecture selected is determined by INFO, \`\`(gdb) set
1176 architecture'' et.al., the existing architecture and BFD's default
1177 architecture. INFO should be initialized to zero and then selected
1178 fields should be updated.
1179
1180 Returns non-zero if the update succeeds. */
1181
1182 extern int gdbarch_update_p (struct gdbarch_info info);
1183
1184
1185 /* Helper function. Find an architecture matching info.
1186
1187 INFO should be initialized using gdbarch_info_init, relevant fields
1188 set, and then finished using gdbarch_info_fill.
1189
1190 Returns the corresponding architecture, or NULL if no matching
1191 architecture was found. */
1192
1193 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1194
1195
1196 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1197
1198 FIXME: kettenis/20031124: Of the functions that follow, only
1199 gdbarch_from_bfd is supposed to survive. The others will
1200 dissappear since in the future GDB will (hopefully) be truly
1201 multi-arch. However, for now we're still stuck with the concept of
1202 a single active architecture. */
1203
1204 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1205
1206
1207 /* Register per-architecture data-pointer.
1208
1209 Reserve space for a per-architecture data-pointer. An identifier
1210 for the reserved data-pointer is returned. That identifer should
1211 be saved in a local static variable.
1212
1213 Memory for the per-architecture data shall be allocated using
1214 gdbarch_obstack_zalloc. That memory will be deleted when the
1215 corresponding architecture object is deleted.
1216
1217 When a previously created architecture is re-selected, the
1218 per-architecture data-pointer for that previous architecture is
1219 restored. INIT() is not re-called.
1220
1221 Multiple registrarants for any architecture are allowed (and
1222 strongly encouraged). */
1223
1224 struct gdbarch_data;
1225
1226 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1227 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1228 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1229 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1230 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1231 struct gdbarch_data *data,
1232 void *pointer);
1233
1234 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1235
1236
1237 /* Set the dynamic target-system-dependent parameters (architecture,
1238 byte-order, ...) using information found in the BFD. */
1239
1240 extern void set_gdbarch_from_file (bfd *);
1241
1242
1243 /* Initialize the current architecture to the "first" one we find on
1244 our list. */
1245
1246 extern void initialize_current_architecture (void);
1247
1248 /* gdbarch trace variable */
1249 extern int gdbarch_debug;
1250
1251 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1252
1253 #endif
1254 EOF
1255 exec 1>&2
1256 #../move-if-change new-gdbarch.h gdbarch.h
1257 compare_new gdbarch.h
1258
1259
1260 #
1261 # C file
1262 #
1263
1264 exec > new-gdbarch.c
1265 copyright
1266 cat <<EOF
1267
1268 #include "defs.h"
1269 #include "arch-utils.h"
1270
1271 #include "gdbcmd.h"
1272 #include "inferior.h"
1273 #include "symcat.h"
1274
1275 #include "floatformat.h"
1276
1277 #include "gdb_assert.h"
1278 #include "gdb_string.h"
1279 #include "reggroups.h"
1280 #include "osabi.h"
1281 #include "gdb_obstack.h"
1282 #include "observer.h"
1283 #include "regcache.h"
1284
1285 /* Static function declarations */
1286
1287 static void alloc_gdbarch_data (struct gdbarch *);
1288
1289 /* Non-zero if we want to trace architecture code. */
1290
1291 #ifndef GDBARCH_DEBUG
1292 #define GDBARCH_DEBUG 0
1293 #endif
1294 int gdbarch_debug = GDBARCH_DEBUG;
1295 static void
1296 show_gdbarch_debug (struct ui_file *file, int from_tty,
1297 struct cmd_list_element *c, const char *value)
1298 {
1299 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1300 }
1301
1302 static const char *
1303 pformat (const struct floatformat **format)
1304 {
1305 if (format == NULL)
1306 return "(null)";
1307 else
1308 /* Just print out one of them - this is only for diagnostics. */
1309 return format[0]->name;
1310 }
1311
1312 static const char *
1313 pstring (const char *string)
1314 {
1315 if (string == NULL)
1316 return "(null)";
1317 return string;
1318 }
1319
1320 EOF
1321
1322 # gdbarch open the gdbarch object
1323 printf "\n"
1324 printf "/* Maintain the struct gdbarch object. */\n"
1325 printf "\n"
1326 printf "struct gdbarch\n"
1327 printf "{\n"
1328 printf " /* Has this architecture been fully initialized? */\n"
1329 printf " int initialized_p;\n"
1330 printf "\n"
1331 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1332 printf " struct obstack *obstack;\n"
1333 printf "\n"
1334 printf " /* basic architectural information. */\n"
1335 function_list | while do_read
1336 do
1337 if class_is_info_p
1338 then
1339 printf " ${returntype} ${function};\n"
1340 fi
1341 done
1342 printf "\n"
1343 printf " /* target specific vector. */\n"
1344 printf " struct gdbarch_tdep *tdep;\n"
1345 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1346 printf "\n"
1347 printf " /* per-architecture data-pointers. */\n"
1348 printf " unsigned nr_data;\n"
1349 printf " void **data;\n"
1350 printf "\n"
1351 printf " /* per-architecture swap-regions. */\n"
1352 printf " struct gdbarch_swap *swap;\n"
1353 printf "\n"
1354 cat <<EOF
1355 /* Multi-arch values.
1356
1357 When extending this structure you must:
1358
1359 Add the field below.
1360
1361 Declare set/get functions and define the corresponding
1362 macro in gdbarch.h.
1363
1364 gdbarch_alloc(): If zero/NULL is not a suitable default,
1365 initialize the new field.
1366
1367 verify_gdbarch(): Confirm that the target updated the field
1368 correctly.
1369
1370 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1371 field is dumped out
1372
1373 \`\`startup_gdbarch()'': Append an initial value to the static
1374 variable (base values on the host's c-type system).
1375
1376 get_gdbarch(): Implement the set/get functions (probably using
1377 the macro's as shortcuts).
1378
1379 */
1380
1381 EOF
1382 function_list | while do_read
1383 do
1384 if class_is_variable_p
1385 then
1386 printf " ${returntype} ${function};\n"
1387 elif class_is_function_p
1388 then
1389 printf " gdbarch_${function}_ftype *${function};\n"
1390 fi
1391 done
1392 printf "};\n"
1393
1394 # A pre-initialized vector
1395 printf "\n"
1396 printf "\n"
1397 cat <<EOF
1398 /* The default architecture uses host values (for want of a better
1399 choice). */
1400 EOF
1401 printf "\n"
1402 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1403 printf "\n"
1404 printf "struct gdbarch startup_gdbarch =\n"
1405 printf "{\n"
1406 printf " 1, /* Always initialized. */\n"
1407 printf " NULL, /* The obstack. */\n"
1408 printf " /* basic architecture information. */\n"
1409 function_list | while do_read
1410 do
1411 if class_is_info_p
1412 then
1413 printf " ${staticdefault}, /* ${function} */\n"
1414 fi
1415 done
1416 cat <<EOF
1417 /* target specific vector and its dump routine. */
1418 NULL, NULL,
1419 /*per-architecture data-pointers and swap regions. */
1420 0, NULL, NULL,
1421 /* Multi-arch values */
1422 EOF
1423 function_list | while do_read
1424 do
1425 if class_is_function_p || class_is_variable_p
1426 then
1427 printf " ${staticdefault}, /* ${function} */\n"
1428 fi
1429 done
1430 cat <<EOF
1431 /* startup_gdbarch() */
1432 };
1433
1434 struct gdbarch *target_gdbarch = &startup_gdbarch;
1435 EOF
1436
1437 # Create a new gdbarch struct
1438 cat <<EOF
1439
1440 /* Create a new \`\`struct gdbarch'' based on information provided by
1441 \`\`struct gdbarch_info''. */
1442 EOF
1443 printf "\n"
1444 cat <<EOF
1445 struct gdbarch *
1446 gdbarch_alloc (const struct gdbarch_info *info,
1447 struct gdbarch_tdep *tdep)
1448 {
1449 struct gdbarch *gdbarch;
1450
1451 /* Create an obstack for allocating all the per-architecture memory,
1452 then use that to allocate the architecture vector. */
1453 struct obstack *obstack = XMALLOC (struct obstack);
1454 obstack_init (obstack);
1455 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1456 memset (gdbarch, 0, sizeof (*gdbarch));
1457 gdbarch->obstack = obstack;
1458
1459 alloc_gdbarch_data (gdbarch);
1460
1461 gdbarch->tdep = tdep;
1462 EOF
1463 printf "\n"
1464 function_list | while do_read
1465 do
1466 if class_is_info_p
1467 then
1468 printf " gdbarch->${function} = info->${function};\n"
1469 fi
1470 done
1471 printf "\n"
1472 printf " /* Force the explicit initialization of these. */\n"
1473 function_list | while do_read
1474 do
1475 if class_is_function_p || class_is_variable_p
1476 then
1477 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1478 then
1479 printf " gdbarch->${function} = ${predefault};\n"
1480 fi
1481 fi
1482 done
1483 cat <<EOF
1484 /* gdbarch_alloc() */
1485
1486 return gdbarch;
1487 }
1488 EOF
1489
1490 # Free a gdbarch struct.
1491 printf "\n"
1492 printf "\n"
1493 cat <<EOF
1494 /* Allocate extra space using the per-architecture obstack. */
1495
1496 void *
1497 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1498 {
1499 void *data = obstack_alloc (arch->obstack, size);
1500
1501 memset (data, 0, size);
1502 return data;
1503 }
1504
1505
1506 /* Free a gdbarch struct. This should never happen in normal
1507 operation --- once you've created a gdbarch, you keep it around.
1508 However, if an architecture's init function encounters an error
1509 building the structure, it may need to clean up a partially
1510 constructed gdbarch. */
1511
1512 void
1513 gdbarch_free (struct gdbarch *arch)
1514 {
1515 struct obstack *obstack;
1516
1517 gdb_assert (arch != NULL);
1518 gdb_assert (!arch->initialized_p);
1519 obstack = arch->obstack;
1520 obstack_free (obstack, 0); /* Includes the ARCH. */
1521 xfree (obstack);
1522 }
1523 EOF
1524
1525 # verify a new architecture
1526 cat <<EOF
1527
1528
1529 /* Ensure that all values in a GDBARCH are reasonable. */
1530
1531 static void
1532 verify_gdbarch (struct gdbarch *gdbarch)
1533 {
1534 struct ui_file *log;
1535 struct cleanup *cleanups;
1536 long length;
1537 char *buf;
1538
1539 log = mem_fileopen ();
1540 cleanups = make_cleanup_ui_file_delete (log);
1541 /* fundamental */
1542 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1543 fprintf_unfiltered (log, "\n\tbyte-order");
1544 if (gdbarch->bfd_arch_info == NULL)
1545 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1546 /* Check those that need to be defined for the given multi-arch level. */
1547 EOF
1548 function_list | while do_read
1549 do
1550 if class_is_function_p || class_is_variable_p
1551 then
1552 if [ "x${invalid_p}" = "x0" ]
1553 then
1554 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1555 elif class_is_predicate_p
1556 then
1557 printf " /* Skip verify of ${function}, has predicate. */\n"
1558 # FIXME: See do_read for potential simplification
1559 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1560 then
1561 printf " if (${invalid_p})\n"
1562 printf " gdbarch->${function} = ${postdefault};\n"
1563 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1564 then
1565 printf " if (gdbarch->${function} == ${predefault})\n"
1566 printf " gdbarch->${function} = ${postdefault};\n"
1567 elif [ -n "${postdefault}" ]
1568 then
1569 printf " if (gdbarch->${function} == 0)\n"
1570 printf " gdbarch->${function} = ${postdefault};\n"
1571 elif [ -n "${invalid_p}" ]
1572 then
1573 printf " if (${invalid_p})\n"
1574 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1575 elif [ -n "${predefault}" ]
1576 then
1577 printf " if (gdbarch->${function} == ${predefault})\n"
1578 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1579 fi
1580 fi
1581 done
1582 cat <<EOF
1583 buf = ui_file_xstrdup (log, &length);
1584 make_cleanup (xfree, buf);
1585 if (length > 0)
1586 internal_error (__FILE__, __LINE__,
1587 _("verify_gdbarch: the following are invalid ...%s"),
1588 buf);
1589 do_cleanups (cleanups);
1590 }
1591 EOF
1592
1593 # dump the structure
1594 printf "\n"
1595 printf "\n"
1596 cat <<EOF
1597 /* Print out the details of the current architecture. */
1598
1599 void
1600 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1601 {
1602 const char *gdb_nm_file = "<not-defined>";
1603
1604 #if defined (GDB_NM_FILE)
1605 gdb_nm_file = GDB_NM_FILE;
1606 #endif
1607 fprintf_unfiltered (file,
1608 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1609 gdb_nm_file);
1610 EOF
1611 function_list | sort -t: -k 3 | while do_read
1612 do
1613 # First the predicate
1614 if class_is_predicate_p
1615 then
1616 printf " fprintf_unfiltered (file,\n"
1617 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1618 printf " gdbarch_${function}_p (gdbarch));\n"
1619 fi
1620 # Print the corresponding value.
1621 if class_is_function_p
1622 then
1623 printf " fprintf_unfiltered (file,\n"
1624 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1625 printf " host_address_to_string (gdbarch->${function}));\n"
1626 else
1627 # It is a variable
1628 case "${print}:${returntype}" in
1629 :CORE_ADDR )
1630 fmt="%s"
1631 print="core_addr_to_string_nz (gdbarch->${function})"
1632 ;;
1633 :* )
1634 fmt="%s"
1635 print="plongest (gdbarch->${function})"
1636 ;;
1637 * )
1638 fmt="%s"
1639 ;;
1640 esac
1641 printf " fprintf_unfiltered (file,\n"
1642 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1643 printf " ${print});\n"
1644 fi
1645 done
1646 cat <<EOF
1647 if (gdbarch->dump_tdep != NULL)
1648 gdbarch->dump_tdep (gdbarch, file);
1649 }
1650 EOF
1651
1652
1653 # GET/SET
1654 printf "\n"
1655 cat <<EOF
1656 struct gdbarch_tdep *
1657 gdbarch_tdep (struct gdbarch *gdbarch)
1658 {
1659 if (gdbarch_debug >= 2)
1660 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1661 return gdbarch->tdep;
1662 }
1663 EOF
1664 printf "\n"
1665 function_list | while do_read
1666 do
1667 if class_is_predicate_p
1668 then
1669 printf "\n"
1670 printf "int\n"
1671 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1672 printf "{\n"
1673 printf " gdb_assert (gdbarch != NULL);\n"
1674 printf " return ${predicate};\n"
1675 printf "}\n"
1676 fi
1677 if class_is_function_p
1678 then
1679 printf "\n"
1680 printf "${returntype}\n"
1681 if [ "x${formal}" = "xvoid" ]
1682 then
1683 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1684 else
1685 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1686 fi
1687 printf "{\n"
1688 printf " gdb_assert (gdbarch != NULL);\n"
1689 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1690 if class_is_predicate_p && test -n "${predefault}"
1691 then
1692 # Allow a call to a function with a predicate.
1693 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1694 fi
1695 printf " if (gdbarch_debug >= 2)\n"
1696 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1697 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1698 then
1699 if class_is_multiarch_p
1700 then
1701 params="gdbarch"
1702 else
1703 params=""
1704 fi
1705 else
1706 if class_is_multiarch_p
1707 then
1708 params="gdbarch, ${actual}"
1709 else
1710 params="${actual}"
1711 fi
1712 fi
1713 if [ "x${returntype}" = "xvoid" ]
1714 then
1715 printf " gdbarch->${function} (${params});\n"
1716 else
1717 printf " return gdbarch->${function} (${params});\n"
1718 fi
1719 printf "}\n"
1720 printf "\n"
1721 printf "void\n"
1722 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1723 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1724 printf "{\n"
1725 printf " gdbarch->${function} = ${function};\n"
1726 printf "}\n"
1727 elif class_is_variable_p
1728 then
1729 printf "\n"
1730 printf "${returntype}\n"
1731 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1732 printf "{\n"
1733 printf " gdb_assert (gdbarch != NULL);\n"
1734 if [ "x${invalid_p}" = "x0" ]
1735 then
1736 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1737 elif [ -n "${invalid_p}" ]
1738 then
1739 printf " /* Check variable is valid. */\n"
1740 printf " gdb_assert (!(${invalid_p}));\n"
1741 elif [ -n "${predefault}" ]
1742 then
1743 printf " /* Check variable changed from pre-default. */\n"
1744 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1745 fi
1746 printf " if (gdbarch_debug >= 2)\n"
1747 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1748 printf " return gdbarch->${function};\n"
1749 printf "}\n"
1750 printf "\n"
1751 printf "void\n"
1752 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1753 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1754 printf "{\n"
1755 printf " gdbarch->${function} = ${function};\n"
1756 printf "}\n"
1757 elif class_is_info_p
1758 then
1759 printf "\n"
1760 printf "${returntype}\n"
1761 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1762 printf "{\n"
1763 printf " gdb_assert (gdbarch != NULL);\n"
1764 printf " if (gdbarch_debug >= 2)\n"
1765 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1766 printf " return gdbarch->${function};\n"
1767 printf "}\n"
1768 fi
1769 done
1770
1771 # All the trailing guff
1772 cat <<EOF
1773
1774
1775 /* Keep a registry of per-architecture data-pointers required by GDB
1776 modules. */
1777
1778 struct gdbarch_data
1779 {
1780 unsigned index;
1781 int init_p;
1782 gdbarch_data_pre_init_ftype *pre_init;
1783 gdbarch_data_post_init_ftype *post_init;
1784 };
1785
1786 struct gdbarch_data_registration
1787 {
1788 struct gdbarch_data *data;
1789 struct gdbarch_data_registration *next;
1790 };
1791
1792 struct gdbarch_data_registry
1793 {
1794 unsigned nr;
1795 struct gdbarch_data_registration *registrations;
1796 };
1797
1798 struct gdbarch_data_registry gdbarch_data_registry =
1799 {
1800 0, NULL,
1801 };
1802
1803 static struct gdbarch_data *
1804 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1805 gdbarch_data_post_init_ftype *post_init)
1806 {
1807 struct gdbarch_data_registration **curr;
1808
1809 /* Append the new registration. */
1810 for (curr = &gdbarch_data_registry.registrations;
1811 (*curr) != NULL;
1812 curr = &(*curr)->next);
1813 (*curr) = XMALLOC (struct gdbarch_data_registration);
1814 (*curr)->next = NULL;
1815 (*curr)->data = XMALLOC (struct gdbarch_data);
1816 (*curr)->data->index = gdbarch_data_registry.nr++;
1817 (*curr)->data->pre_init = pre_init;
1818 (*curr)->data->post_init = post_init;
1819 (*curr)->data->init_p = 1;
1820 return (*curr)->data;
1821 }
1822
1823 struct gdbarch_data *
1824 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1825 {
1826 return gdbarch_data_register (pre_init, NULL);
1827 }
1828
1829 struct gdbarch_data *
1830 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1831 {
1832 return gdbarch_data_register (NULL, post_init);
1833 }
1834
1835 /* Create/delete the gdbarch data vector. */
1836
1837 static void
1838 alloc_gdbarch_data (struct gdbarch *gdbarch)
1839 {
1840 gdb_assert (gdbarch->data == NULL);
1841 gdbarch->nr_data = gdbarch_data_registry.nr;
1842 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1843 }
1844
1845 /* Initialize the current value of the specified per-architecture
1846 data-pointer. */
1847
1848 void
1849 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1850 struct gdbarch_data *data,
1851 void *pointer)
1852 {
1853 gdb_assert (data->index < gdbarch->nr_data);
1854 gdb_assert (gdbarch->data[data->index] == NULL);
1855 gdb_assert (data->pre_init == NULL);
1856 gdbarch->data[data->index] = pointer;
1857 }
1858
1859 /* Return the current value of the specified per-architecture
1860 data-pointer. */
1861
1862 void *
1863 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1864 {
1865 gdb_assert (data->index < gdbarch->nr_data);
1866 if (gdbarch->data[data->index] == NULL)
1867 {
1868 /* The data-pointer isn't initialized, call init() to get a
1869 value. */
1870 if (data->pre_init != NULL)
1871 /* Mid architecture creation: pass just the obstack, and not
1872 the entire architecture, as that way it isn't possible for
1873 pre-init code to refer to undefined architecture
1874 fields. */
1875 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1876 else if (gdbarch->initialized_p
1877 && data->post_init != NULL)
1878 /* Post architecture creation: pass the entire architecture
1879 (as all fields are valid), but be careful to also detect
1880 recursive references. */
1881 {
1882 gdb_assert (data->init_p);
1883 data->init_p = 0;
1884 gdbarch->data[data->index] = data->post_init (gdbarch);
1885 data->init_p = 1;
1886 }
1887 else
1888 /* The architecture initialization hasn't completed - punt -
1889 hope that the caller knows what they are doing. Once
1890 deprecated_set_gdbarch_data has been initialized, this can be
1891 changed to an internal error. */
1892 return NULL;
1893 gdb_assert (gdbarch->data[data->index] != NULL);
1894 }
1895 return gdbarch->data[data->index];
1896 }
1897
1898
1899 /* Keep a registry of the architectures known by GDB. */
1900
1901 struct gdbarch_registration
1902 {
1903 enum bfd_architecture bfd_architecture;
1904 gdbarch_init_ftype *init;
1905 gdbarch_dump_tdep_ftype *dump_tdep;
1906 struct gdbarch_list *arches;
1907 struct gdbarch_registration *next;
1908 };
1909
1910 static struct gdbarch_registration *gdbarch_registry = NULL;
1911
1912 static void
1913 append_name (const char ***buf, int *nr, const char *name)
1914 {
1915 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1916 (*buf)[*nr] = name;
1917 *nr += 1;
1918 }
1919
1920 const char **
1921 gdbarch_printable_names (void)
1922 {
1923 /* Accumulate a list of names based on the registed list of
1924 architectures. */
1925 int nr_arches = 0;
1926 const char **arches = NULL;
1927 struct gdbarch_registration *rego;
1928
1929 for (rego = gdbarch_registry;
1930 rego != NULL;
1931 rego = rego->next)
1932 {
1933 const struct bfd_arch_info *ap;
1934 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1935 if (ap == NULL)
1936 internal_error (__FILE__, __LINE__,
1937 _("gdbarch_architecture_names: multi-arch unknown"));
1938 do
1939 {
1940 append_name (&arches, &nr_arches, ap->printable_name);
1941 ap = ap->next;
1942 }
1943 while (ap != NULL);
1944 }
1945 append_name (&arches, &nr_arches, NULL);
1946 return arches;
1947 }
1948
1949
1950 void
1951 gdbarch_register (enum bfd_architecture bfd_architecture,
1952 gdbarch_init_ftype *init,
1953 gdbarch_dump_tdep_ftype *dump_tdep)
1954 {
1955 struct gdbarch_registration **curr;
1956 const struct bfd_arch_info *bfd_arch_info;
1957
1958 /* Check that BFD recognizes this architecture */
1959 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1960 if (bfd_arch_info == NULL)
1961 {
1962 internal_error (__FILE__, __LINE__,
1963 _("gdbarch: Attempt to register "
1964 "unknown architecture (%d)"),
1965 bfd_architecture);
1966 }
1967 /* Check that we haven't seen this architecture before. */
1968 for (curr = &gdbarch_registry;
1969 (*curr) != NULL;
1970 curr = &(*curr)->next)
1971 {
1972 if (bfd_architecture == (*curr)->bfd_architecture)
1973 internal_error (__FILE__, __LINE__,
1974 _("gdbarch: Duplicate registration "
1975 "of architecture (%s)"),
1976 bfd_arch_info->printable_name);
1977 }
1978 /* log it */
1979 if (gdbarch_debug)
1980 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1981 bfd_arch_info->printable_name,
1982 host_address_to_string (init));
1983 /* Append it */
1984 (*curr) = XMALLOC (struct gdbarch_registration);
1985 (*curr)->bfd_architecture = bfd_architecture;
1986 (*curr)->init = init;
1987 (*curr)->dump_tdep = dump_tdep;
1988 (*curr)->arches = NULL;
1989 (*curr)->next = NULL;
1990 }
1991
1992 void
1993 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1994 gdbarch_init_ftype *init)
1995 {
1996 gdbarch_register (bfd_architecture, init, NULL);
1997 }
1998
1999
2000 /* Look for an architecture using gdbarch_info. */
2001
2002 struct gdbarch_list *
2003 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2004 const struct gdbarch_info *info)
2005 {
2006 for (; arches != NULL; arches = arches->next)
2007 {
2008 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2009 continue;
2010 if (info->byte_order != arches->gdbarch->byte_order)
2011 continue;
2012 if (info->osabi != arches->gdbarch->osabi)
2013 continue;
2014 if (info->target_desc != arches->gdbarch->target_desc)
2015 continue;
2016 return arches;
2017 }
2018 return NULL;
2019 }
2020
2021
2022 /* Find an architecture that matches the specified INFO. Create a new
2023 architecture if needed. Return that new architecture. */
2024
2025 struct gdbarch *
2026 gdbarch_find_by_info (struct gdbarch_info info)
2027 {
2028 struct gdbarch *new_gdbarch;
2029 struct gdbarch_registration *rego;
2030
2031 /* Fill in missing parts of the INFO struct using a number of
2032 sources: "set ..."; INFOabfd supplied; and the global
2033 defaults. */
2034 gdbarch_info_fill (&info);
2035
2036 /* Must have found some sort of architecture. */
2037 gdb_assert (info.bfd_arch_info != NULL);
2038
2039 if (gdbarch_debug)
2040 {
2041 fprintf_unfiltered (gdb_stdlog,
2042 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2043 (info.bfd_arch_info != NULL
2044 ? info.bfd_arch_info->printable_name
2045 : "(null)"));
2046 fprintf_unfiltered (gdb_stdlog,
2047 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2048 info.byte_order,
2049 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2050 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2051 : "default"));
2052 fprintf_unfiltered (gdb_stdlog,
2053 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2054 info.osabi, gdbarch_osabi_name (info.osabi));
2055 fprintf_unfiltered (gdb_stdlog,
2056 "gdbarch_find_by_info: info.abfd %s\n",
2057 host_address_to_string (info.abfd));
2058 fprintf_unfiltered (gdb_stdlog,
2059 "gdbarch_find_by_info: info.tdep_info %s\n",
2060 host_address_to_string (info.tdep_info));
2061 }
2062
2063 /* Find the tdep code that knows about this architecture. */
2064 for (rego = gdbarch_registry;
2065 rego != NULL;
2066 rego = rego->next)
2067 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2068 break;
2069 if (rego == NULL)
2070 {
2071 if (gdbarch_debug)
2072 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2073 "No matching architecture\n");
2074 return 0;
2075 }
2076
2077 /* Ask the tdep code for an architecture that matches "info". */
2078 new_gdbarch = rego->init (info, rego->arches);
2079
2080 /* Did the tdep code like it? No. Reject the change and revert to
2081 the old architecture. */
2082 if (new_gdbarch == NULL)
2083 {
2084 if (gdbarch_debug)
2085 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2086 "Target rejected architecture\n");
2087 return NULL;
2088 }
2089
2090 /* Is this a pre-existing architecture (as determined by already
2091 being initialized)? Move it to the front of the architecture
2092 list (keeping the list sorted Most Recently Used). */
2093 if (new_gdbarch->initialized_p)
2094 {
2095 struct gdbarch_list **list;
2096 struct gdbarch_list *this;
2097 if (gdbarch_debug)
2098 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2099 "Previous architecture %s (%s) selected\n",
2100 host_address_to_string (new_gdbarch),
2101 new_gdbarch->bfd_arch_info->printable_name);
2102 /* Find the existing arch in the list. */
2103 for (list = &rego->arches;
2104 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2105 list = &(*list)->next);
2106 /* It had better be in the list of architectures. */
2107 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2108 /* Unlink THIS. */
2109 this = (*list);
2110 (*list) = this->next;
2111 /* Insert THIS at the front. */
2112 this->next = rego->arches;
2113 rego->arches = this;
2114 /* Return it. */
2115 return new_gdbarch;
2116 }
2117
2118 /* It's a new architecture. */
2119 if (gdbarch_debug)
2120 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2121 "New architecture %s (%s) selected\n",
2122 host_address_to_string (new_gdbarch),
2123 new_gdbarch->bfd_arch_info->printable_name);
2124
2125 /* Insert the new architecture into the front of the architecture
2126 list (keep the list sorted Most Recently Used). */
2127 {
2128 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2129 this->next = rego->arches;
2130 this->gdbarch = new_gdbarch;
2131 rego->arches = this;
2132 }
2133
2134 /* Check that the newly installed architecture is valid. Plug in
2135 any post init values. */
2136 new_gdbarch->dump_tdep = rego->dump_tdep;
2137 verify_gdbarch (new_gdbarch);
2138 new_gdbarch->initialized_p = 1;
2139
2140 if (gdbarch_debug)
2141 gdbarch_dump (new_gdbarch, gdb_stdlog);
2142
2143 return new_gdbarch;
2144 }
2145
2146 /* Make the specified architecture current. */
2147
2148 void
2149 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2150 {
2151 gdb_assert (new_gdbarch != NULL);
2152 gdb_assert (new_gdbarch->initialized_p);
2153 target_gdbarch = new_gdbarch;
2154 observer_notify_architecture_changed (new_gdbarch);
2155 registers_changed ();
2156 }
2157
2158 extern void _initialize_gdbarch (void);
2159
2160 void
2161 _initialize_gdbarch (void)
2162 {
2163 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2164 Set architecture debugging."), _("\\
2165 Show architecture debugging."), _("\\
2166 When non-zero, architecture debugging is enabled."),
2167 NULL,
2168 show_gdbarch_debug,
2169 &setdebuglist, &showdebuglist);
2170 }
2171 EOF
2172
2173 # close things off
2174 exec 1>&2
2175 #../move-if-change new-gdbarch.c gdbarch.c
2176 compare_new gdbarch.c