Add return address collection for tracepoints.
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=C ; export LANG
26 LC_ALL=C ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "half", "float", "double", and
367 # "long double". These bit/format pairs should eventually be combined
368 # into a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
374 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
376 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
378 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
380
381 # For most targets, a pointer on the target and its representation as an
382 # address in GDB have the same size and "look the same". For such a
383 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
384 # / addr_bit will be set from it.
385 #
386 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
387 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
388 # gdbarch_address_to_pointer as well.
389 #
390 # ptr_bit is the size of a pointer on the target
391 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
392 # addr_bit is the size of a target address as represented in gdb
393 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
394 #
395 # dwarf2_addr_size is the target address size as used in the Dwarf debug
396 # info. For .debug_frame FDEs, this is supposed to be the target address
397 # size from the associated CU header, and which is equivalent to the
398 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
399 # Unfortunately there is no good way to determine this value. Therefore
400 # dwarf2_addr_size simply defaults to the target pointer size.
401 #
402 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
403 # defined using the target's pointer size so far.
404 #
405 # Note that dwarf2_addr_size only needs to be redefined by a target if the
406 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
407 # and if Dwarf versions < 4 need to be supported.
408 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
409 #
410 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
411 v:int:char_signed:::1:-1:1
412 #
413 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
414 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
415 # Function for getting target's idea of a frame pointer. FIXME: GDB's
416 # whole scheme for dealing with "frames" and "frame pointers" needs a
417 # serious shakedown.
418 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
419 #
420 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
421 # Read a register into a new struct value. If the register is wholly
422 # or partly unavailable, this should call mark_value_bytes_unavailable
423 # as appropriate. If this is defined, then pseudo_register_read will
424 # never be called.
425 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
426 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
427 #
428 v:int:num_regs:::0:-1
429 # This macro gives the number of pseudo-registers that live in the
430 # register namespace but do not get fetched or stored on the target.
431 # These pseudo-registers may be aliases for other registers,
432 # combinations of other registers, or they may be computed by GDB.
433 v:int:num_pseudo_regs:::0:0::0
434
435 # Assemble agent expression bytecode to collect pseudo-register REG.
436 # Return -1 if something goes wrong, 0 otherwise.
437 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
438
439 # Assemble agent expression bytecode to push the value of pseudo-register
440 # REG on the interpreter stack.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
443
444 # GDB's standard (or well known) register numbers. These can map onto
445 # a real register or a pseudo (computed) register or not be defined at
446 # all (-1).
447 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
448 v:int:sp_regnum:::-1:-1::0
449 v:int:pc_regnum:::-1:-1::0
450 v:int:ps_regnum:::-1:-1::0
451 v:int:fp0_regnum:::0:-1::0
452 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
453 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
454 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
455 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
456 # Convert from an sdb register number to an internal gdb register number.
457 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
458 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
459 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
460 m:const char *:register_name:int regnr:regnr::0
461
462 # Return the type of a register specified by the architecture. Only
463 # the register cache should call this function directly; others should
464 # use "register_type".
465 M:struct type *:register_type:int reg_nr:reg_nr
466
467 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
468 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
469 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
470 # deprecated_fp_regnum.
471 v:int:deprecated_fp_regnum:::-1:-1::0
472
473 # See gdbint.texinfo. See infcall.c.
474 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
475 v:int:call_dummy_location::::AT_ENTRY_POINT::0
476 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
477
478 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
479 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
480 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
481 # MAP a GDB RAW register number onto a simulator register number. See
482 # also include/...-sim.h.
483 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
484 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
485 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
486 # setjmp/longjmp support.
487 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
488 #
489 v:int:believe_pcc_promotion:::::::
490 #
491 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
492 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
493 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
494 # Construct a value representing the contents of register REGNUM in
495 # frame FRAME, interpreted as type TYPE. The routine needs to
496 # allocate and return a struct value with all value attributes
497 # (but not the value contents) filled in.
498 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
499 #
500 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
501 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
502 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
503
504 # Return the return-value convention that will be used by FUNCTYPE
505 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
506 # case the return convention is computed based only on VALTYPE.
507 #
508 # If READBUF is not NULL, extract the return value and save it in this buffer.
509 #
510 # If WRITEBUF is not NULL, it contains a return value which will be
511 # stored into the appropriate register. This can be used when we want
512 # to force the value returned by a function (see the "return" command
513 # for instance).
514 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
515
516 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
517 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
518 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
519 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
520 # Return the adjusted address and kind to use for Z0/Z1 packets.
521 # KIND is usually the memory length of the breakpoint, but may have a
522 # different target-specific meaning.
523 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
524 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
525 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
526 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
527 v:CORE_ADDR:decr_pc_after_break:::0:::0
528
529 # A function can be addressed by either it's "pointer" (possibly a
530 # descriptor address) or "entry point" (first executable instruction).
531 # The method "convert_from_func_ptr_addr" converting the former to the
532 # latter. gdbarch_deprecated_function_start_offset is being used to implement
533 # a simplified subset of that functionality - the function's address
534 # corresponds to the "function pointer" and the function's start
535 # corresponds to the "function entry point" - and hence is redundant.
536
537 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
538
539 # Return the remote protocol register number associated with this
540 # register. Normally the identity mapping.
541 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
542
543 # Fetch the target specific address used to represent a load module.
544 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
545 #
546 v:CORE_ADDR:frame_args_skip:::0:::0
547 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
548 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
549 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
550 # frame-base. Enable frame-base before frame-unwind.
551 F:int:frame_num_args:struct frame_info *frame:frame
552 #
553 M:CORE_ADDR:frame_align:CORE_ADDR address:address
554 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
555 v:int:frame_red_zone_size
556 #
557 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
558 # On some machines there are bits in addresses which are not really
559 # part of the address, but are used by the kernel, the hardware, etc.
560 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
561 # we get a "real" address such as one would find in a symbol table.
562 # This is used only for addresses of instructions, and even then I'm
563 # not sure it's used in all contexts. It exists to deal with there
564 # being a few stray bits in the PC which would mislead us, not as some
565 # sort of generic thing to handle alignment or segmentation (it's
566 # possible it should be in TARGET_READ_PC instead).
567 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
568 # It is not at all clear why gdbarch_smash_text_address is not folded into
569 # gdbarch_addr_bits_remove.
570 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
571
572 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
573 # indicates if the target needs software single step. An ISA method to
574 # implement it.
575 #
576 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
577 # breakpoints using the breakpoint system instead of blatting memory directly
578 # (as with rs6000).
579 #
580 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
581 # target can single step. If not, then implement single step using breakpoints.
582 #
583 # A return value of 1 means that the software_single_step breakpoints
584 # were inserted; 0 means they were not.
585 F:int:software_single_step:struct frame_info *frame:frame
586
587 # Return non-zero if the processor is executing a delay slot and a
588 # further single-step is needed before the instruction finishes.
589 M:int:single_step_through_delay:struct frame_info *frame:frame
590 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
591 # disassembler. Perhaps objdump can handle it?
592 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
593 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
594
595
596 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
597 # evaluates non-zero, this is the address where the debugger will place
598 # a step-resume breakpoint to get us past the dynamic linker.
599 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
600 # Some systems also have trampoline code for returning from shared libs.
601 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
602
603 # A target might have problems with watchpoints as soon as the stack
604 # frame of the current function has been destroyed. This mostly happens
605 # as the first action in a funtion's epilogue. in_function_epilogue_p()
606 # is defined to return a non-zero value if either the given addr is one
607 # instruction after the stack destroying instruction up to the trailing
608 # return instruction or if we can figure out that the stack frame has
609 # already been invalidated regardless of the value of addr. Targets
610 # which don't suffer from that problem could just let this functionality
611 # untouched.
612 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
613 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
614 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
615 v:int:cannot_step_breakpoint:::0:0::0
616 v:int:have_nonsteppable_watchpoint:::0:0::0
617 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
618 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
619 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
620 # Is a register in a group
621 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
622 # Fetch the pointer to the ith function argument.
623 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
624
625 # Return the appropriate register set for a core file section with
626 # name SECT_NAME and size SECT_SIZE.
627 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
628
629 # Supported register notes in a core file.
630 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
631
632 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
633 # core file into buffer READBUF with length LEN.
634 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
635
636 # How the core target converts a PTID from a core file to a string.
637 M:char *:core_pid_to_str:ptid_t ptid:ptid
638
639 # BFD target to use when generating a core file.
640 V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
641
642 # If the elements of C++ vtables are in-place function descriptors rather
643 # than normal function pointers (which may point to code or a descriptor),
644 # set this to one.
645 v:int:vtable_function_descriptors:::0:0::0
646
647 # Set if the least significant bit of the delta is used instead of the least
648 # significant bit of the pfn for pointers to virtual member functions.
649 v:int:vbit_in_delta:::0:0::0
650
651 # Advance PC to next instruction in order to skip a permanent breakpoint.
652 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
653
654 # The maximum length of an instruction on this architecture.
655 V:ULONGEST:max_insn_length:::0:0
656
657 # Copy the instruction at FROM to TO, and make any adjustments
658 # necessary to single-step it at that address.
659 #
660 # REGS holds the state the thread's registers will have before
661 # executing the copied instruction; the PC in REGS will refer to FROM,
662 # not the copy at TO. The caller should update it to point at TO later.
663 #
664 # Return a pointer to data of the architecture's choice to be passed
665 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
666 # the instruction's effects have been completely simulated, with the
667 # resulting state written back to REGS.
668 #
669 # For a general explanation of displaced stepping and how GDB uses it,
670 # see the comments in infrun.c.
671 #
672 # The TO area is only guaranteed to have space for
673 # gdbarch_max_insn_length (arch) bytes, so this function must not
674 # write more bytes than that to that area.
675 #
676 # If you do not provide this function, GDB assumes that the
677 # architecture does not support displaced stepping.
678 #
679 # If your architecture doesn't need to adjust instructions before
680 # single-stepping them, consider using simple_displaced_step_copy_insn
681 # here.
682 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
683
684 # Return true if GDB should use hardware single-stepping to execute
685 # the displaced instruction identified by CLOSURE. If false,
686 # GDB will simply restart execution at the displaced instruction
687 # location, and it is up to the target to ensure GDB will receive
688 # control again (e.g. by placing a software breakpoint instruction
689 # into the displaced instruction buffer).
690 #
691 # The default implementation returns false on all targets that
692 # provide a gdbarch_software_single_step routine, and true otherwise.
693 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
694
695 # Fix up the state resulting from successfully single-stepping a
696 # displaced instruction, to give the result we would have gotten from
697 # stepping the instruction in its original location.
698 #
699 # REGS is the register state resulting from single-stepping the
700 # displaced instruction.
701 #
702 # CLOSURE is the result from the matching call to
703 # gdbarch_displaced_step_copy_insn.
704 #
705 # If you provide gdbarch_displaced_step_copy_insn.but not this
706 # function, then GDB assumes that no fixup is needed after
707 # single-stepping the instruction.
708 #
709 # For a general explanation of displaced stepping and how GDB uses it,
710 # see the comments in infrun.c.
711 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
712
713 # Free a closure returned by gdbarch_displaced_step_copy_insn.
714 #
715 # If you provide gdbarch_displaced_step_copy_insn, you must provide
716 # this function as well.
717 #
718 # If your architecture uses closures that don't need to be freed, then
719 # you can use simple_displaced_step_free_closure here.
720 #
721 # For a general explanation of displaced stepping and how GDB uses it,
722 # see the comments in infrun.c.
723 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
724
725 # Return the address of an appropriate place to put displaced
726 # instructions while we step over them. There need only be one such
727 # place, since we're only stepping one thread over a breakpoint at a
728 # time.
729 #
730 # For a general explanation of displaced stepping and how GDB uses it,
731 # see the comments in infrun.c.
732 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
733
734 # Relocate an instruction to execute at a different address. OLDLOC
735 # is the address in the inferior memory where the instruction to
736 # relocate is currently at. On input, TO points to the destination
737 # where we want the instruction to be copied (and possibly adjusted)
738 # to. On output, it points to one past the end of the resulting
739 # instruction(s). The effect of executing the instruction at TO shall
740 # be the same as if executing it at FROM. For example, call
741 # instructions that implicitly push the return address on the stack
742 # should be adjusted to return to the instruction after OLDLOC;
743 # relative branches, and other PC-relative instructions need the
744 # offset adjusted; etc.
745 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
746
747 # Refresh overlay mapped state for section OSECT.
748 F:void:overlay_update:struct obj_section *osect:osect
749
750 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
751
752 # Handle special encoding of static variables in stabs debug info.
753 F:char *:static_transform_name:char *name:name
754 # Set if the address in N_SO or N_FUN stabs may be zero.
755 v:int:sofun_address_maybe_missing:::0:0::0
756
757 # Parse the instruction at ADDR storing in the record execution log
758 # the registers REGCACHE and memory ranges that will be affected when
759 # the instruction executes, along with their current values.
760 # Return -1 if something goes wrong, 0 otherwise.
761 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
762
763 # Save process state after a signal.
764 # Return -1 if something goes wrong, 0 otherwise.
765 M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
766
767 # Signal translation: translate inferior's signal (host's) number into
768 # GDB's representation.
769 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
770 # Signal translation: translate GDB's signal number into inferior's host
771 # signal number.
772 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
773
774 # Extra signal info inspection.
775 #
776 # Return a type suitable to inspect extra signal information.
777 M:struct type *:get_siginfo_type:void:
778
779 # Record architecture-specific information from the symbol table.
780 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
781
782 # Function for the 'catch syscall' feature.
783
784 # Get architecture-specific system calls information from registers.
785 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
786
787 # True if the list of shared libraries is one and only for all
788 # processes, as opposed to a list of shared libraries per inferior.
789 # This usually means that all processes, although may or may not share
790 # an address space, will see the same set of symbols at the same
791 # addresses.
792 v:int:has_global_solist:::0:0::0
793
794 # On some targets, even though each inferior has its own private
795 # address space, the debug interface takes care of making breakpoints
796 # visible to all address spaces automatically. For such cases,
797 # this property should be set to true.
798 v:int:has_global_breakpoints:::0:0::0
799
800 # True if inferiors share an address space (e.g., uClinux).
801 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
802
803 # True if a fast tracepoint can be set at an address.
804 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
805
806 # Return the "auto" target charset.
807 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
808 # Return the "auto" target wide charset.
809 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
810
811 # If non-empty, this is a file extension that will be opened in place
812 # of the file extension reported by the shared library list.
813 #
814 # This is most useful for toolchains that use a post-linker tool,
815 # where the names of the files run on the target differ in extension
816 # compared to the names of the files GDB should load for debug info.
817 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
818
819 # If true, the target OS has DOS-based file system semantics. That
820 # is, absolute paths include a drive name, and the backslash is
821 # considered a directory separator.
822 v:int:has_dos_based_file_system:::0:0::0
823
824 # Generate bytecodes to collect the return address in a frame.
825 # Since the bytecodes run on the target, possibly with GDB not even
826 # connected, the full unwinding machinery is not available, and
827 # typically this function will issue bytecodes for one or more likely
828 # places that the return address may be found.
829 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
830
831 EOF
832 }
833
834 #
835 # The .log file
836 #
837 exec > new-gdbarch.log
838 function_list | while do_read
839 do
840 cat <<EOF
841 ${class} ${returntype} ${function} ($formal)
842 EOF
843 for r in ${read}
844 do
845 eval echo \"\ \ \ \ ${r}=\${${r}}\"
846 done
847 if class_is_predicate_p && fallback_default_p
848 then
849 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
850 kill $$
851 exit 1
852 fi
853 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
854 then
855 echo "Error: postdefault is useless when invalid_p=0" 1>&2
856 kill $$
857 exit 1
858 fi
859 if class_is_multiarch_p
860 then
861 if class_is_predicate_p ; then :
862 elif test "x${predefault}" = "x"
863 then
864 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
865 kill $$
866 exit 1
867 fi
868 fi
869 echo ""
870 done
871
872 exec 1>&2
873 compare_new gdbarch.log
874
875
876 copyright ()
877 {
878 cat <<EOF
879 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
880
881 /* Dynamic architecture support for GDB, the GNU debugger.
882
883 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
884 2007, 2008, 2009 Free Software Foundation, Inc.
885
886 This file is part of GDB.
887
888 This program is free software; you can redistribute it and/or modify
889 it under the terms of the GNU General Public License as published by
890 the Free Software Foundation; either version 3 of the License, or
891 (at your option) any later version.
892
893 This program is distributed in the hope that it will be useful,
894 but WITHOUT ANY WARRANTY; without even the implied warranty of
895 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
896 GNU General Public License for more details.
897
898 You should have received a copy of the GNU General Public License
899 along with this program. If not, see <http://www.gnu.org/licenses/>. */
900
901 /* This file was created with the aid of \`\`gdbarch.sh''.
902
903 The Bourne shell script \`\`gdbarch.sh'' creates the files
904 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
905 against the existing \`\`gdbarch.[hc]''. Any differences found
906 being reported.
907
908 If editing this file, please also run gdbarch.sh and merge any
909 changes into that script. Conversely, when making sweeping changes
910 to this file, modifying gdbarch.sh and using its output may prove
911 easier. */
912
913 EOF
914 }
915
916 #
917 # The .h file
918 #
919
920 exec > new-gdbarch.h
921 copyright
922 cat <<EOF
923 #ifndef GDBARCH_H
924 #define GDBARCH_H
925
926 struct floatformat;
927 struct ui_file;
928 struct frame_info;
929 struct value;
930 struct objfile;
931 struct obj_section;
932 struct minimal_symbol;
933 struct regcache;
934 struct reggroup;
935 struct regset;
936 struct disassemble_info;
937 struct target_ops;
938 struct obstack;
939 struct bp_target_info;
940 struct target_desc;
941 struct displaced_step_closure;
942 struct core_regset_section;
943 struct syscall;
944 struct agent_expr;
945 struct axs_value;
946
947 /* The architecture associated with the connection to the target.
948
949 The architecture vector provides some information that is really
950 a property of the target: The layout of certain packets, for instance;
951 or the solib_ops vector. Etc. To differentiate architecture accesses
952 to per-target properties from per-thread/per-frame/per-objfile properties,
953 accesses to per-target properties should be made through target_gdbarch.
954
955 Eventually, when support for multiple targets is implemented in
956 GDB, this global should be made target-specific. */
957 extern struct gdbarch *target_gdbarch;
958 EOF
959
960 # function typedef's
961 printf "\n"
962 printf "\n"
963 printf "/* The following are pre-initialized by GDBARCH. */\n"
964 function_list | while do_read
965 do
966 if class_is_info_p
967 then
968 printf "\n"
969 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
970 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
971 fi
972 done
973
974 # function typedef's
975 printf "\n"
976 printf "\n"
977 printf "/* The following are initialized by the target dependent code. */\n"
978 function_list | while do_read
979 do
980 if [ -n "${comment}" ]
981 then
982 echo "${comment}" | sed \
983 -e '2 s,#,/*,' \
984 -e '3,$ s,#, ,' \
985 -e '$ s,$, */,'
986 fi
987
988 if class_is_predicate_p
989 then
990 printf "\n"
991 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
992 fi
993 if class_is_variable_p
994 then
995 printf "\n"
996 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
997 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
998 fi
999 if class_is_function_p
1000 then
1001 printf "\n"
1002 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1003 then
1004 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1005 elif class_is_multiarch_p
1006 then
1007 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1008 else
1009 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1010 fi
1011 if [ "x${formal}" = "xvoid" ]
1012 then
1013 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1014 else
1015 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1016 fi
1017 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1018 fi
1019 done
1020
1021 # close it off
1022 cat <<EOF
1023
1024 /* Definition for an unknown syscall, used basically in error-cases. */
1025 #define UNKNOWN_SYSCALL (-1)
1026
1027 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1028
1029
1030 /* Mechanism for co-ordinating the selection of a specific
1031 architecture.
1032
1033 GDB targets (*-tdep.c) can register an interest in a specific
1034 architecture. Other GDB components can register a need to maintain
1035 per-architecture data.
1036
1037 The mechanisms below ensures that there is only a loose connection
1038 between the set-architecture command and the various GDB
1039 components. Each component can independently register their need
1040 to maintain architecture specific data with gdbarch.
1041
1042 Pragmatics:
1043
1044 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1045 didn't scale.
1046
1047 The more traditional mega-struct containing architecture specific
1048 data for all the various GDB components was also considered. Since
1049 GDB is built from a variable number of (fairly independent)
1050 components it was determined that the global aproach was not
1051 applicable. */
1052
1053
1054 /* Register a new architectural family with GDB.
1055
1056 Register support for the specified ARCHITECTURE with GDB. When
1057 gdbarch determines that the specified architecture has been
1058 selected, the corresponding INIT function is called.
1059
1060 --
1061
1062 The INIT function takes two parameters: INFO which contains the
1063 information available to gdbarch about the (possibly new)
1064 architecture; ARCHES which is a list of the previously created
1065 \`\`struct gdbarch'' for this architecture.
1066
1067 The INFO parameter is, as far as possible, be pre-initialized with
1068 information obtained from INFO.ABFD or the global defaults.
1069
1070 The ARCHES parameter is a linked list (sorted most recently used)
1071 of all the previously created architures for this architecture
1072 family. The (possibly NULL) ARCHES->gdbarch can used to access
1073 values from the previously selected architecture for this
1074 architecture family.
1075
1076 The INIT function shall return any of: NULL - indicating that it
1077 doesn't recognize the selected architecture; an existing \`\`struct
1078 gdbarch'' from the ARCHES list - indicating that the new
1079 architecture is just a synonym for an earlier architecture (see
1080 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1081 - that describes the selected architecture (see gdbarch_alloc()).
1082
1083 The DUMP_TDEP function shall print out all target specific values.
1084 Care should be taken to ensure that the function works in both the
1085 multi-arch and non- multi-arch cases. */
1086
1087 struct gdbarch_list
1088 {
1089 struct gdbarch *gdbarch;
1090 struct gdbarch_list *next;
1091 };
1092
1093 struct gdbarch_info
1094 {
1095 /* Use default: NULL (ZERO). */
1096 const struct bfd_arch_info *bfd_arch_info;
1097
1098 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1099 int byte_order;
1100
1101 int byte_order_for_code;
1102
1103 /* Use default: NULL (ZERO). */
1104 bfd *abfd;
1105
1106 /* Use default: NULL (ZERO). */
1107 struct gdbarch_tdep_info *tdep_info;
1108
1109 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1110 enum gdb_osabi osabi;
1111
1112 /* Use default: NULL (ZERO). */
1113 const struct target_desc *target_desc;
1114 };
1115
1116 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1117 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1118
1119 /* DEPRECATED - use gdbarch_register() */
1120 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1121
1122 extern void gdbarch_register (enum bfd_architecture architecture,
1123 gdbarch_init_ftype *,
1124 gdbarch_dump_tdep_ftype *);
1125
1126
1127 /* Return a freshly allocated, NULL terminated, array of the valid
1128 architecture names. Since architectures are registered during the
1129 _initialize phase this function only returns useful information
1130 once initialization has been completed. */
1131
1132 extern const char **gdbarch_printable_names (void);
1133
1134
1135 /* Helper function. Search the list of ARCHES for a GDBARCH that
1136 matches the information provided by INFO. */
1137
1138 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1139
1140
1141 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1142 basic initialization using values obtained from the INFO and TDEP
1143 parameters. set_gdbarch_*() functions are called to complete the
1144 initialization of the object. */
1145
1146 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1147
1148
1149 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1150 It is assumed that the caller freeds the \`\`struct
1151 gdbarch_tdep''. */
1152
1153 extern void gdbarch_free (struct gdbarch *);
1154
1155
1156 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1157 obstack. The memory is freed when the corresponding architecture
1158 is also freed. */
1159
1160 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1161 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1162 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1163
1164
1165 /* Helper function. Force an update of the current architecture.
1166
1167 The actual architecture selected is determined by INFO, \`\`(gdb) set
1168 architecture'' et.al., the existing architecture and BFD's default
1169 architecture. INFO should be initialized to zero and then selected
1170 fields should be updated.
1171
1172 Returns non-zero if the update succeeds. */
1173
1174 extern int gdbarch_update_p (struct gdbarch_info info);
1175
1176
1177 /* Helper function. Find an architecture matching info.
1178
1179 INFO should be initialized using gdbarch_info_init, relevant fields
1180 set, and then finished using gdbarch_info_fill.
1181
1182 Returns the corresponding architecture, or NULL if no matching
1183 architecture was found. */
1184
1185 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1186
1187
1188 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1189
1190 FIXME: kettenis/20031124: Of the functions that follow, only
1191 gdbarch_from_bfd is supposed to survive. The others will
1192 dissappear since in the future GDB will (hopefully) be truly
1193 multi-arch. However, for now we're still stuck with the concept of
1194 a single active architecture. */
1195
1196 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1197
1198
1199 /* Register per-architecture data-pointer.
1200
1201 Reserve space for a per-architecture data-pointer. An identifier
1202 for the reserved data-pointer is returned. That identifer should
1203 be saved in a local static variable.
1204
1205 Memory for the per-architecture data shall be allocated using
1206 gdbarch_obstack_zalloc. That memory will be deleted when the
1207 corresponding architecture object is deleted.
1208
1209 When a previously created architecture is re-selected, the
1210 per-architecture data-pointer for that previous architecture is
1211 restored. INIT() is not re-called.
1212
1213 Multiple registrarants for any architecture are allowed (and
1214 strongly encouraged). */
1215
1216 struct gdbarch_data;
1217
1218 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1219 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1220 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1221 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1222 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1223 struct gdbarch_data *data,
1224 void *pointer);
1225
1226 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1227
1228
1229 /* Set the dynamic target-system-dependent parameters (architecture,
1230 byte-order, ...) using information found in the BFD. */
1231
1232 extern void set_gdbarch_from_file (bfd *);
1233
1234
1235 /* Initialize the current architecture to the "first" one we find on
1236 our list. */
1237
1238 extern void initialize_current_architecture (void);
1239
1240 /* gdbarch trace variable */
1241 extern int gdbarch_debug;
1242
1243 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1244
1245 #endif
1246 EOF
1247 exec 1>&2
1248 #../move-if-change new-gdbarch.h gdbarch.h
1249 compare_new gdbarch.h
1250
1251
1252 #
1253 # C file
1254 #
1255
1256 exec > new-gdbarch.c
1257 copyright
1258 cat <<EOF
1259
1260 #include "defs.h"
1261 #include "arch-utils.h"
1262
1263 #include "gdbcmd.h"
1264 #include "inferior.h"
1265 #include "symcat.h"
1266
1267 #include "floatformat.h"
1268
1269 #include "gdb_assert.h"
1270 #include "gdb_string.h"
1271 #include "reggroups.h"
1272 #include "osabi.h"
1273 #include "gdb_obstack.h"
1274 #include "observer.h"
1275 #include "regcache.h"
1276
1277 /* Static function declarations */
1278
1279 static void alloc_gdbarch_data (struct gdbarch *);
1280
1281 /* Non-zero if we want to trace architecture code. */
1282
1283 #ifndef GDBARCH_DEBUG
1284 #define GDBARCH_DEBUG 0
1285 #endif
1286 int gdbarch_debug = GDBARCH_DEBUG;
1287 static void
1288 show_gdbarch_debug (struct ui_file *file, int from_tty,
1289 struct cmd_list_element *c, const char *value)
1290 {
1291 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1292 }
1293
1294 static const char *
1295 pformat (const struct floatformat **format)
1296 {
1297 if (format == NULL)
1298 return "(null)";
1299 else
1300 /* Just print out one of them - this is only for diagnostics. */
1301 return format[0]->name;
1302 }
1303
1304 static const char *
1305 pstring (const char *string)
1306 {
1307 if (string == NULL)
1308 return "(null)";
1309 return string;
1310 }
1311
1312 EOF
1313
1314 # gdbarch open the gdbarch object
1315 printf "\n"
1316 printf "/* Maintain the struct gdbarch object. */\n"
1317 printf "\n"
1318 printf "struct gdbarch\n"
1319 printf "{\n"
1320 printf " /* Has this architecture been fully initialized? */\n"
1321 printf " int initialized_p;\n"
1322 printf "\n"
1323 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1324 printf " struct obstack *obstack;\n"
1325 printf "\n"
1326 printf " /* basic architectural information. */\n"
1327 function_list | while do_read
1328 do
1329 if class_is_info_p
1330 then
1331 printf " ${returntype} ${function};\n"
1332 fi
1333 done
1334 printf "\n"
1335 printf " /* target specific vector. */\n"
1336 printf " struct gdbarch_tdep *tdep;\n"
1337 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1338 printf "\n"
1339 printf " /* per-architecture data-pointers. */\n"
1340 printf " unsigned nr_data;\n"
1341 printf " void **data;\n"
1342 printf "\n"
1343 printf " /* per-architecture swap-regions. */\n"
1344 printf " struct gdbarch_swap *swap;\n"
1345 printf "\n"
1346 cat <<EOF
1347 /* Multi-arch values.
1348
1349 When extending this structure you must:
1350
1351 Add the field below.
1352
1353 Declare set/get functions and define the corresponding
1354 macro in gdbarch.h.
1355
1356 gdbarch_alloc(): If zero/NULL is not a suitable default,
1357 initialize the new field.
1358
1359 verify_gdbarch(): Confirm that the target updated the field
1360 correctly.
1361
1362 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1363 field is dumped out
1364
1365 \`\`startup_gdbarch()'': Append an initial value to the static
1366 variable (base values on the host's c-type system).
1367
1368 get_gdbarch(): Implement the set/get functions (probably using
1369 the macro's as shortcuts).
1370
1371 */
1372
1373 EOF
1374 function_list | while do_read
1375 do
1376 if class_is_variable_p
1377 then
1378 printf " ${returntype} ${function};\n"
1379 elif class_is_function_p
1380 then
1381 printf " gdbarch_${function}_ftype *${function};\n"
1382 fi
1383 done
1384 printf "};\n"
1385
1386 # A pre-initialized vector
1387 printf "\n"
1388 printf "\n"
1389 cat <<EOF
1390 /* The default architecture uses host values (for want of a better
1391 choice). */
1392 EOF
1393 printf "\n"
1394 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1395 printf "\n"
1396 printf "struct gdbarch startup_gdbarch =\n"
1397 printf "{\n"
1398 printf " 1, /* Always initialized. */\n"
1399 printf " NULL, /* The obstack. */\n"
1400 printf " /* basic architecture information. */\n"
1401 function_list | while do_read
1402 do
1403 if class_is_info_p
1404 then
1405 printf " ${staticdefault}, /* ${function} */\n"
1406 fi
1407 done
1408 cat <<EOF
1409 /* target specific vector and its dump routine. */
1410 NULL, NULL,
1411 /*per-architecture data-pointers and swap regions. */
1412 0, NULL, NULL,
1413 /* Multi-arch values */
1414 EOF
1415 function_list | while do_read
1416 do
1417 if class_is_function_p || class_is_variable_p
1418 then
1419 printf " ${staticdefault}, /* ${function} */\n"
1420 fi
1421 done
1422 cat <<EOF
1423 /* startup_gdbarch() */
1424 };
1425
1426 struct gdbarch *target_gdbarch = &startup_gdbarch;
1427 EOF
1428
1429 # Create a new gdbarch struct
1430 cat <<EOF
1431
1432 /* Create a new \`\`struct gdbarch'' based on information provided by
1433 \`\`struct gdbarch_info''. */
1434 EOF
1435 printf "\n"
1436 cat <<EOF
1437 struct gdbarch *
1438 gdbarch_alloc (const struct gdbarch_info *info,
1439 struct gdbarch_tdep *tdep)
1440 {
1441 struct gdbarch *gdbarch;
1442
1443 /* Create an obstack for allocating all the per-architecture memory,
1444 then use that to allocate the architecture vector. */
1445 struct obstack *obstack = XMALLOC (struct obstack);
1446 obstack_init (obstack);
1447 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1448 memset (gdbarch, 0, sizeof (*gdbarch));
1449 gdbarch->obstack = obstack;
1450
1451 alloc_gdbarch_data (gdbarch);
1452
1453 gdbarch->tdep = tdep;
1454 EOF
1455 printf "\n"
1456 function_list | while do_read
1457 do
1458 if class_is_info_p
1459 then
1460 printf " gdbarch->${function} = info->${function};\n"
1461 fi
1462 done
1463 printf "\n"
1464 printf " /* Force the explicit initialization of these. */\n"
1465 function_list | while do_read
1466 do
1467 if class_is_function_p || class_is_variable_p
1468 then
1469 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1470 then
1471 printf " gdbarch->${function} = ${predefault};\n"
1472 fi
1473 fi
1474 done
1475 cat <<EOF
1476 /* gdbarch_alloc() */
1477
1478 return gdbarch;
1479 }
1480 EOF
1481
1482 # Free a gdbarch struct.
1483 printf "\n"
1484 printf "\n"
1485 cat <<EOF
1486 /* Allocate extra space using the per-architecture obstack. */
1487
1488 void *
1489 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1490 {
1491 void *data = obstack_alloc (arch->obstack, size);
1492
1493 memset (data, 0, size);
1494 return data;
1495 }
1496
1497
1498 /* Free a gdbarch struct. This should never happen in normal
1499 operation --- once you've created a gdbarch, you keep it around.
1500 However, if an architecture's init function encounters an error
1501 building the structure, it may need to clean up a partially
1502 constructed gdbarch. */
1503
1504 void
1505 gdbarch_free (struct gdbarch *arch)
1506 {
1507 struct obstack *obstack;
1508
1509 gdb_assert (arch != NULL);
1510 gdb_assert (!arch->initialized_p);
1511 obstack = arch->obstack;
1512 obstack_free (obstack, 0); /* Includes the ARCH. */
1513 xfree (obstack);
1514 }
1515 EOF
1516
1517 # verify a new architecture
1518 cat <<EOF
1519
1520
1521 /* Ensure that all values in a GDBARCH are reasonable. */
1522
1523 static void
1524 verify_gdbarch (struct gdbarch *gdbarch)
1525 {
1526 struct ui_file *log;
1527 struct cleanup *cleanups;
1528 long length;
1529 char *buf;
1530
1531 log = mem_fileopen ();
1532 cleanups = make_cleanup_ui_file_delete (log);
1533 /* fundamental */
1534 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1535 fprintf_unfiltered (log, "\n\tbyte-order");
1536 if (gdbarch->bfd_arch_info == NULL)
1537 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1538 /* Check those that need to be defined for the given multi-arch level. */
1539 EOF
1540 function_list | while do_read
1541 do
1542 if class_is_function_p || class_is_variable_p
1543 then
1544 if [ "x${invalid_p}" = "x0" ]
1545 then
1546 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1547 elif class_is_predicate_p
1548 then
1549 printf " /* Skip verify of ${function}, has predicate. */\n"
1550 # FIXME: See do_read for potential simplification
1551 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1552 then
1553 printf " if (${invalid_p})\n"
1554 printf " gdbarch->${function} = ${postdefault};\n"
1555 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1556 then
1557 printf " if (gdbarch->${function} == ${predefault})\n"
1558 printf " gdbarch->${function} = ${postdefault};\n"
1559 elif [ -n "${postdefault}" ]
1560 then
1561 printf " if (gdbarch->${function} == 0)\n"
1562 printf " gdbarch->${function} = ${postdefault};\n"
1563 elif [ -n "${invalid_p}" ]
1564 then
1565 printf " if (${invalid_p})\n"
1566 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1567 elif [ -n "${predefault}" ]
1568 then
1569 printf " if (gdbarch->${function} == ${predefault})\n"
1570 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1571 fi
1572 fi
1573 done
1574 cat <<EOF
1575 buf = ui_file_xstrdup (log, &length);
1576 make_cleanup (xfree, buf);
1577 if (length > 0)
1578 internal_error (__FILE__, __LINE__,
1579 _("verify_gdbarch: the following are invalid ...%s"),
1580 buf);
1581 do_cleanups (cleanups);
1582 }
1583 EOF
1584
1585 # dump the structure
1586 printf "\n"
1587 printf "\n"
1588 cat <<EOF
1589 /* Print out the details of the current architecture. */
1590
1591 void
1592 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1593 {
1594 const char *gdb_nm_file = "<not-defined>";
1595
1596 #if defined (GDB_NM_FILE)
1597 gdb_nm_file = GDB_NM_FILE;
1598 #endif
1599 fprintf_unfiltered (file,
1600 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1601 gdb_nm_file);
1602 EOF
1603 function_list | sort -t: -k 3 | while do_read
1604 do
1605 # First the predicate
1606 if class_is_predicate_p
1607 then
1608 printf " fprintf_unfiltered (file,\n"
1609 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1610 printf " gdbarch_${function}_p (gdbarch));\n"
1611 fi
1612 # Print the corresponding value.
1613 if class_is_function_p
1614 then
1615 printf " fprintf_unfiltered (file,\n"
1616 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1617 printf " host_address_to_string (gdbarch->${function}));\n"
1618 else
1619 # It is a variable
1620 case "${print}:${returntype}" in
1621 :CORE_ADDR )
1622 fmt="%s"
1623 print="core_addr_to_string_nz (gdbarch->${function})"
1624 ;;
1625 :* )
1626 fmt="%s"
1627 print="plongest (gdbarch->${function})"
1628 ;;
1629 * )
1630 fmt="%s"
1631 ;;
1632 esac
1633 printf " fprintf_unfiltered (file,\n"
1634 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1635 printf " ${print});\n"
1636 fi
1637 done
1638 cat <<EOF
1639 if (gdbarch->dump_tdep != NULL)
1640 gdbarch->dump_tdep (gdbarch, file);
1641 }
1642 EOF
1643
1644
1645 # GET/SET
1646 printf "\n"
1647 cat <<EOF
1648 struct gdbarch_tdep *
1649 gdbarch_tdep (struct gdbarch *gdbarch)
1650 {
1651 if (gdbarch_debug >= 2)
1652 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1653 return gdbarch->tdep;
1654 }
1655 EOF
1656 printf "\n"
1657 function_list | while do_read
1658 do
1659 if class_is_predicate_p
1660 then
1661 printf "\n"
1662 printf "int\n"
1663 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1664 printf "{\n"
1665 printf " gdb_assert (gdbarch != NULL);\n"
1666 printf " return ${predicate};\n"
1667 printf "}\n"
1668 fi
1669 if class_is_function_p
1670 then
1671 printf "\n"
1672 printf "${returntype}\n"
1673 if [ "x${formal}" = "xvoid" ]
1674 then
1675 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1676 else
1677 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1678 fi
1679 printf "{\n"
1680 printf " gdb_assert (gdbarch != NULL);\n"
1681 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1682 if class_is_predicate_p && test -n "${predefault}"
1683 then
1684 # Allow a call to a function with a predicate.
1685 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1686 fi
1687 printf " if (gdbarch_debug >= 2)\n"
1688 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1689 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1690 then
1691 if class_is_multiarch_p
1692 then
1693 params="gdbarch"
1694 else
1695 params=""
1696 fi
1697 else
1698 if class_is_multiarch_p
1699 then
1700 params="gdbarch, ${actual}"
1701 else
1702 params="${actual}"
1703 fi
1704 fi
1705 if [ "x${returntype}" = "xvoid" ]
1706 then
1707 printf " gdbarch->${function} (${params});\n"
1708 else
1709 printf " return gdbarch->${function} (${params});\n"
1710 fi
1711 printf "}\n"
1712 printf "\n"
1713 printf "void\n"
1714 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1715 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1716 printf "{\n"
1717 printf " gdbarch->${function} = ${function};\n"
1718 printf "}\n"
1719 elif class_is_variable_p
1720 then
1721 printf "\n"
1722 printf "${returntype}\n"
1723 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1724 printf "{\n"
1725 printf " gdb_assert (gdbarch != NULL);\n"
1726 if [ "x${invalid_p}" = "x0" ]
1727 then
1728 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1729 elif [ -n "${invalid_p}" ]
1730 then
1731 printf " /* Check variable is valid. */\n"
1732 printf " gdb_assert (!(${invalid_p}));\n"
1733 elif [ -n "${predefault}" ]
1734 then
1735 printf " /* Check variable changed from pre-default. */\n"
1736 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1737 fi
1738 printf " if (gdbarch_debug >= 2)\n"
1739 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1740 printf " return gdbarch->${function};\n"
1741 printf "}\n"
1742 printf "\n"
1743 printf "void\n"
1744 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1745 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1746 printf "{\n"
1747 printf " gdbarch->${function} = ${function};\n"
1748 printf "}\n"
1749 elif class_is_info_p
1750 then
1751 printf "\n"
1752 printf "${returntype}\n"
1753 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1754 printf "{\n"
1755 printf " gdb_assert (gdbarch != NULL);\n"
1756 printf " if (gdbarch_debug >= 2)\n"
1757 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1758 printf " return gdbarch->${function};\n"
1759 printf "}\n"
1760 fi
1761 done
1762
1763 # All the trailing guff
1764 cat <<EOF
1765
1766
1767 /* Keep a registry of per-architecture data-pointers required by GDB
1768 modules. */
1769
1770 struct gdbarch_data
1771 {
1772 unsigned index;
1773 int init_p;
1774 gdbarch_data_pre_init_ftype *pre_init;
1775 gdbarch_data_post_init_ftype *post_init;
1776 };
1777
1778 struct gdbarch_data_registration
1779 {
1780 struct gdbarch_data *data;
1781 struct gdbarch_data_registration *next;
1782 };
1783
1784 struct gdbarch_data_registry
1785 {
1786 unsigned nr;
1787 struct gdbarch_data_registration *registrations;
1788 };
1789
1790 struct gdbarch_data_registry gdbarch_data_registry =
1791 {
1792 0, NULL,
1793 };
1794
1795 static struct gdbarch_data *
1796 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1797 gdbarch_data_post_init_ftype *post_init)
1798 {
1799 struct gdbarch_data_registration **curr;
1800
1801 /* Append the new registration. */
1802 for (curr = &gdbarch_data_registry.registrations;
1803 (*curr) != NULL;
1804 curr = &(*curr)->next);
1805 (*curr) = XMALLOC (struct gdbarch_data_registration);
1806 (*curr)->next = NULL;
1807 (*curr)->data = XMALLOC (struct gdbarch_data);
1808 (*curr)->data->index = gdbarch_data_registry.nr++;
1809 (*curr)->data->pre_init = pre_init;
1810 (*curr)->data->post_init = post_init;
1811 (*curr)->data->init_p = 1;
1812 return (*curr)->data;
1813 }
1814
1815 struct gdbarch_data *
1816 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1817 {
1818 return gdbarch_data_register (pre_init, NULL);
1819 }
1820
1821 struct gdbarch_data *
1822 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1823 {
1824 return gdbarch_data_register (NULL, post_init);
1825 }
1826
1827 /* Create/delete the gdbarch data vector. */
1828
1829 static void
1830 alloc_gdbarch_data (struct gdbarch *gdbarch)
1831 {
1832 gdb_assert (gdbarch->data == NULL);
1833 gdbarch->nr_data = gdbarch_data_registry.nr;
1834 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1835 }
1836
1837 /* Initialize the current value of the specified per-architecture
1838 data-pointer. */
1839
1840 void
1841 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1842 struct gdbarch_data *data,
1843 void *pointer)
1844 {
1845 gdb_assert (data->index < gdbarch->nr_data);
1846 gdb_assert (gdbarch->data[data->index] == NULL);
1847 gdb_assert (data->pre_init == NULL);
1848 gdbarch->data[data->index] = pointer;
1849 }
1850
1851 /* Return the current value of the specified per-architecture
1852 data-pointer. */
1853
1854 void *
1855 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1856 {
1857 gdb_assert (data->index < gdbarch->nr_data);
1858 if (gdbarch->data[data->index] == NULL)
1859 {
1860 /* The data-pointer isn't initialized, call init() to get a
1861 value. */
1862 if (data->pre_init != NULL)
1863 /* Mid architecture creation: pass just the obstack, and not
1864 the entire architecture, as that way it isn't possible for
1865 pre-init code to refer to undefined architecture
1866 fields. */
1867 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1868 else if (gdbarch->initialized_p
1869 && data->post_init != NULL)
1870 /* Post architecture creation: pass the entire architecture
1871 (as all fields are valid), but be careful to also detect
1872 recursive references. */
1873 {
1874 gdb_assert (data->init_p);
1875 data->init_p = 0;
1876 gdbarch->data[data->index] = data->post_init (gdbarch);
1877 data->init_p = 1;
1878 }
1879 else
1880 /* The architecture initialization hasn't completed - punt -
1881 hope that the caller knows what they are doing. Once
1882 deprecated_set_gdbarch_data has been initialized, this can be
1883 changed to an internal error. */
1884 return NULL;
1885 gdb_assert (gdbarch->data[data->index] != NULL);
1886 }
1887 return gdbarch->data[data->index];
1888 }
1889
1890
1891 /* Keep a registry of the architectures known by GDB. */
1892
1893 struct gdbarch_registration
1894 {
1895 enum bfd_architecture bfd_architecture;
1896 gdbarch_init_ftype *init;
1897 gdbarch_dump_tdep_ftype *dump_tdep;
1898 struct gdbarch_list *arches;
1899 struct gdbarch_registration *next;
1900 };
1901
1902 static struct gdbarch_registration *gdbarch_registry = NULL;
1903
1904 static void
1905 append_name (const char ***buf, int *nr, const char *name)
1906 {
1907 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1908 (*buf)[*nr] = name;
1909 *nr += 1;
1910 }
1911
1912 const char **
1913 gdbarch_printable_names (void)
1914 {
1915 /* Accumulate a list of names based on the registed list of
1916 architectures. */
1917 int nr_arches = 0;
1918 const char **arches = NULL;
1919 struct gdbarch_registration *rego;
1920
1921 for (rego = gdbarch_registry;
1922 rego != NULL;
1923 rego = rego->next)
1924 {
1925 const struct bfd_arch_info *ap;
1926 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1927 if (ap == NULL)
1928 internal_error (__FILE__, __LINE__,
1929 _("gdbarch_architecture_names: multi-arch unknown"));
1930 do
1931 {
1932 append_name (&arches, &nr_arches, ap->printable_name);
1933 ap = ap->next;
1934 }
1935 while (ap != NULL);
1936 }
1937 append_name (&arches, &nr_arches, NULL);
1938 return arches;
1939 }
1940
1941
1942 void
1943 gdbarch_register (enum bfd_architecture bfd_architecture,
1944 gdbarch_init_ftype *init,
1945 gdbarch_dump_tdep_ftype *dump_tdep)
1946 {
1947 struct gdbarch_registration **curr;
1948 const struct bfd_arch_info *bfd_arch_info;
1949
1950 /* Check that BFD recognizes this architecture */
1951 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1952 if (bfd_arch_info == NULL)
1953 {
1954 internal_error (__FILE__, __LINE__,
1955 _("gdbarch: Attempt to register "
1956 "unknown architecture (%d)"),
1957 bfd_architecture);
1958 }
1959 /* Check that we haven't seen this architecture before. */
1960 for (curr = &gdbarch_registry;
1961 (*curr) != NULL;
1962 curr = &(*curr)->next)
1963 {
1964 if (bfd_architecture == (*curr)->bfd_architecture)
1965 internal_error (__FILE__, __LINE__,
1966 _("gdbarch: Duplicate registration "
1967 "of architecture (%s)"),
1968 bfd_arch_info->printable_name);
1969 }
1970 /* log it */
1971 if (gdbarch_debug)
1972 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1973 bfd_arch_info->printable_name,
1974 host_address_to_string (init));
1975 /* Append it */
1976 (*curr) = XMALLOC (struct gdbarch_registration);
1977 (*curr)->bfd_architecture = bfd_architecture;
1978 (*curr)->init = init;
1979 (*curr)->dump_tdep = dump_tdep;
1980 (*curr)->arches = NULL;
1981 (*curr)->next = NULL;
1982 }
1983
1984 void
1985 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1986 gdbarch_init_ftype *init)
1987 {
1988 gdbarch_register (bfd_architecture, init, NULL);
1989 }
1990
1991
1992 /* Look for an architecture using gdbarch_info. */
1993
1994 struct gdbarch_list *
1995 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1996 const struct gdbarch_info *info)
1997 {
1998 for (; arches != NULL; arches = arches->next)
1999 {
2000 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2001 continue;
2002 if (info->byte_order != arches->gdbarch->byte_order)
2003 continue;
2004 if (info->osabi != arches->gdbarch->osabi)
2005 continue;
2006 if (info->target_desc != arches->gdbarch->target_desc)
2007 continue;
2008 return arches;
2009 }
2010 return NULL;
2011 }
2012
2013
2014 /* Find an architecture that matches the specified INFO. Create a new
2015 architecture if needed. Return that new architecture. */
2016
2017 struct gdbarch *
2018 gdbarch_find_by_info (struct gdbarch_info info)
2019 {
2020 struct gdbarch *new_gdbarch;
2021 struct gdbarch_registration *rego;
2022
2023 /* Fill in missing parts of the INFO struct using a number of
2024 sources: "set ..."; INFOabfd supplied; and the global
2025 defaults. */
2026 gdbarch_info_fill (&info);
2027
2028 /* Must have found some sort of architecture. */
2029 gdb_assert (info.bfd_arch_info != NULL);
2030
2031 if (gdbarch_debug)
2032 {
2033 fprintf_unfiltered (gdb_stdlog,
2034 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2035 (info.bfd_arch_info != NULL
2036 ? info.bfd_arch_info->printable_name
2037 : "(null)"));
2038 fprintf_unfiltered (gdb_stdlog,
2039 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2040 info.byte_order,
2041 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2042 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2043 : "default"));
2044 fprintf_unfiltered (gdb_stdlog,
2045 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2046 info.osabi, gdbarch_osabi_name (info.osabi));
2047 fprintf_unfiltered (gdb_stdlog,
2048 "gdbarch_find_by_info: info.abfd %s\n",
2049 host_address_to_string (info.abfd));
2050 fprintf_unfiltered (gdb_stdlog,
2051 "gdbarch_find_by_info: info.tdep_info %s\n",
2052 host_address_to_string (info.tdep_info));
2053 }
2054
2055 /* Find the tdep code that knows about this architecture. */
2056 for (rego = gdbarch_registry;
2057 rego != NULL;
2058 rego = rego->next)
2059 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2060 break;
2061 if (rego == NULL)
2062 {
2063 if (gdbarch_debug)
2064 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2065 "No matching architecture\n");
2066 return 0;
2067 }
2068
2069 /* Ask the tdep code for an architecture that matches "info". */
2070 new_gdbarch = rego->init (info, rego->arches);
2071
2072 /* Did the tdep code like it? No. Reject the change and revert to
2073 the old architecture. */
2074 if (new_gdbarch == NULL)
2075 {
2076 if (gdbarch_debug)
2077 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2078 "Target rejected architecture\n");
2079 return NULL;
2080 }
2081
2082 /* Is this a pre-existing architecture (as determined by already
2083 being initialized)? Move it to the front of the architecture
2084 list (keeping the list sorted Most Recently Used). */
2085 if (new_gdbarch->initialized_p)
2086 {
2087 struct gdbarch_list **list;
2088 struct gdbarch_list *this;
2089 if (gdbarch_debug)
2090 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2091 "Previous architecture %s (%s) selected\n",
2092 host_address_to_string (new_gdbarch),
2093 new_gdbarch->bfd_arch_info->printable_name);
2094 /* Find the existing arch in the list. */
2095 for (list = &rego->arches;
2096 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2097 list = &(*list)->next);
2098 /* It had better be in the list of architectures. */
2099 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2100 /* Unlink THIS. */
2101 this = (*list);
2102 (*list) = this->next;
2103 /* Insert THIS at the front. */
2104 this->next = rego->arches;
2105 rego->arches = this;
2106 /* Return it. */
2107 return new_gdbarch;
2108 }
2109
2110 /* It's a new architecture. */
2111 if (gdbarch_debug)
2112 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2113 "New architecture %s (%s) selected\n",
2114 host_address_to_string (new_gdbarch),
2115 new_gdbarch->bfd_arch_info->printable_name);
2116
2117 /* Insert the new architecture into the front of the architecture
2118 list (keep the list sorted Most Recently Used). */
2119 {
2120 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2121 this->next = rego->arches;
2122 this->gdbarch = new_gdbarch;
2123 rego->arches = this;
2124 }
2125
2126 /* Check that the newly installed architecture is valid. Plug in
2127 any post init values. */
2128 new_gdbarch->dump_tdep = rego->dump_tdep;
2129 verify_gdbarch (new_gdbarch);
2130 new_gdbarch->initialized_p = 1;
2131
2132 if (gdbarch_debug)
2133 gdbarch_dump (new_gdbarch, gdb_stdlog);
2134
2135 return new_gdbarch;
2136 }
2137
2138 /* Make the specified architecture current. */
2139
2140 void
2141 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2142 {
2143 gdb_assert (new_gdbarch != NULL);
2144 gdb_assert (new_gdbarch->initialized_p);
2145 target_gdbarch = new_gdbarch;
2146 observer_notify_architecture_changed (new_gdbarch);
2147 registers_changed ();
2148 }
2149
2150 extern void _initialize_gdbarch (void);
2151
2152 void
2153 _initialize_gdbarch (void)
2154 {
2155 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2156 Set architecture debugging."), _("\\
2157 Show architecture debugging."), _("\\
2158 When non-zero, architecture debugging is enabled."),
2159 NULL,
2160 show_gdbarch_debug,
2161 &setdebuglist, &showdebuglist);
2162 }
2163 EOF
2164
2165 # close things off
2166 exec 1>&2
2167 #../move-if-change new-gdbarch.c gdbarch.c
2168 compare_new gdbarch.c