Remove trailing space in gdbarch.sh.
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2012 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 if test -n "${garbage_at_eol}"
76 then
77 echo "Garbage at end-of-line in ${line}" 1>&2
78 kill $$
79 exit 1
80 fi
81
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
84 for r in ${read}
85 do
86 if eval test \"\${${r}}\" = \"\ \"
87 then
88 eval ${r}=""
89 fi
90 done
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 case "${class}" in
99 F | V | M )
100 case "${invalid_p}" in
101 "" )
102 if test -n "${predefault}"
103 then
104 #invalid_p="gdbarch->${function} == ${predefault}"
105 predicate="gdbarch->${function} != ${predefault}"
106 elif class_is_variable_p
107 then
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
110 then
111 predicate="gdbarch->${function} != NULL"
112 fi
113 ;;
114 * )
115 echo "Predicate function ${function} with invalid_p." 1>&2
116 kill $$
117 exit 1
118 ;;
119 esac
120 esac
121
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
128
129 if [ -n "${postdefault}" ]
130 then
131 fallbackdefault="${postdefault}"
132 elif [ -n "${predefault}" ]
133 then
134 fallbackdefault="${predefault}"
135 else
136 fallbackdefault="0"
137 fi
138
139 #NOT YET: See gdbarch.log for basic verification of
140 # database
141
142 break
143 fi
144 done
145 if [ -n "${class}" ]
146 then
147 true
148 else
149 false
150 fi
151 }
152
153
154 fallback_default_p ()
155 {
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
158 }
159
160 class_is_variable_p ()
161 {
162 case "${class}" in
163 *v* | *V* ) true ;;
164 * ) false ;;
165 esac
166 }
167
168 class_is_function_p ()
169 {
170 case "${class}" in
171 *f* | *F* | *m* | *M* ) true ;;
172 * ) false ;;
173 esac
174 }
175
176 class_is_multiarch_p ()
177 {
178 case "${class}" in
179 *m* | *M* ) true ;;
180 * ) false ;;
181 esac
182 }
183
184 class_is_predicate_p ()
185 {
186 case "${class}" in
187 *F* | *V* | *M* ) true ;;
188 * ) false ;;
189 esac
190 }
191
192 class_is_info_p ()
193 {
194 case "${class}" in
195 *i* ) true ;;
196 * ) false ;;
197 esac
198 }
199
200
201 # dump out/verify the doco
202 for field in ${read}
203 do
204 case ${field} in
205
206 class ) : ;;
207
208 # # -> line disable
209 # f -> function
210 # hiding a function
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
213 # v -> variable
214 # hiding a variable
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
217 # i -> set from info
218 # hiding something from the ``struct info'' object
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
223
224 returntype ) : ;;
225
226 # For functions, the return type; for variables, the data type
227
228 function ) : ;;
229
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
233
234 formal ) : ;;
235
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
240
241 actual ) : ;;
242
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
246
247 staticdefault ) : ;;
248
249 # To help with the GDB startup a static gdbarch object is
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
253
254 # If STATICDEFAULT is empty, zero is used.
255
256 predefault ) : ;;
257
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
262
263 # If PREDEFAULT is empty, zero is used.
264
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
268
269 # A zero PREDEFAULT function will force the fallback to call
270 # internal_error().
271
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
274
275 postdefault ) : ;;
276
277 # A value to assign to MEMBER of the new gdbarch object should
278 # the target architecture code fail to change the PREDEFAULT
279 # value.
280
281 # If POSTDEFAULT is empty, no post update is performed.
282
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
286
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
290 # PREDEFAULT).
291
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
293
294 # Variable declarations can refer to ``gdbarch'' which
295 # will contain the current architecture. Care should be
296 # taken.
297
298 invalid_p ) : ;;
299
300 # A predicate equation that validates MEMBER. Non-zero is
301 # returned if the code creating the new architecture failed to
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
305 # is called.
306
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
309
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
312
313 # See also PREDEFAULT and POSTDEFAULT.
314
315 print ) : ;;
316
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
319
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
322
323 garbage_at_eol ) : ;;
324
325 # Catches stray fields.
326
327 *)
328 echo "Bad field ${field}"
329 exit 1;;
330 esac
331 done
332
333
334 function_list ()
335 {
336 # See below (DOCO) for description of each field
337 cat <<EOF
338 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
339 #
340 i:int:byte_order:::BFD_ENDIAN_BIG
341 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
342 #
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344 #
345 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
346
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
354 #
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
362 # machine.
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364 # Alignment of a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367
368 # The ABI default bit-size and format for "half", "float", "double", and
369 # "long double". These bit/format pairs should eventually be combined
370 # into a single object. For the moment, just initialize them as a pair.
371 # Each format describes both the big and little endian layouts (if
372 # useful).
373
374 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
376 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
378 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
380 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
381 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
382
383 # For most targets, a pointer on the target and its representation as an
384 # address in GDB have the same size and "look the same". For such a
385 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
386 # / addr_bit will be set from it.
387 #
388 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
389 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390 # gdbarch_address_to_pointer as well.
391 #
392 # ptr_bit is the size of a pointer on the target
393 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
394 # addr_bit is the size of a target address as represented in gdb
395 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
396 #
397 # dwarf2_addr_size is the target address size as used in the Dwarf debug
398 # info. For .debug_frame FDEs, this is supposed to be the target address
399 # size from the associated CU header, and which is equivalent to the
400 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401 # Unfortunately there is no good way to determine this value. Therefore
402 # dwarf2_addr_size simply defaults to the target pointer size.
403 #
404 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405 # defined using the target's pointer size so far.
406 #
407 # Note that dwarf2_addr_size only needs to be redefined by a target if the
408 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409 # and if Dwarf versions < 4 need to be supported.
410 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
411 #
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v:int:char_signed:::1:-1:1
414 #
415 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
417 # Function for getting target's idea of a frame pointer. FIXME: GDB's
418 # whole scheme for dealing with "frames" and "frame pointers" needs a
419 # serious shakedown.
420 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
421 #
422 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
423 # Read a register into a new struct value. If the register is wholly
424 # or partly unavailable, this should call mark_value_bytes_unavailable
425 # as appropriate. If this is defined, then pseudo_register_read will
426 # never be called.
427 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
428 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
429 #
430 v:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:int:num_pseudo_regs:::0:0::0
436
437 # Assemble agent expression bytecode to collect pseudo-register REG.
438 # Return -1 if something goes wrong, 0 otherwise.
439 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
440
441 # Assemble agent expression bytecode to push the value of pseudo-register
442 # REG on the interpreter stack.
443 # Return -1 if something goes wrong, 0 otherwise.
444 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
445
446 # GDB's standard (or well known) register numbers. These can map onto
447 # a real register or a pseudo (computed) register or not be defined at
448 # all (-1).
449 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
450 v:int:sp_regnum:::-1:-1::0
451 v:int:pc_regnum:::-1:-1::0
452 v:int:ps_regnum:::-1:-1::0
453 v:int:fp0_regnum:::0:-1::0
454 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
455 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
456 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
457 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
458 # Convert from an sdb register number to an internal gdb register number.
459 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
460 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
461 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
462 m:const char *:register_name:int regnr:regnr::0
463
464 # Return the type of a register specified by the architecture. Only
465 # the register cache should call this function directly; others should
466 # use "register_type".
467 M:struct type *:register_type:int reg_nr:reg_nr
468
469 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
470 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
472 # deprecated_fp_regnum.
473 v:int:deprecated_fp_regnum:::-1:-1::0
474
475 # See gdbint.texinfo. See infcall.c.
476 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477 v:int:call_dummy_location::::AT_ENTRY_POINT::0
478 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
479
480 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
486 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
488 # setjmp/longjmp support.
489 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
490 #
491 v:int:believe_pcc_promotion:::::::
492 #
493 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
494 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
495 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
496 # Construct a value representing the contents of register REGNUM in
497 # frame FRAME, interpreted as type TYPE. The routine needs to
498 # allocate and return a struct value with all value attributes
499 # (but not the value contents) filled in.
500 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
501 #
502 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
504 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
505
506 # Return the return-value convention that will be used by FUNCTION
507 # to return a value of type VALTYPE. FUNCTION may be NULL in which
508 # case the return convention is computed based only on VALTYPE.
509 #
510 # If READBUF is not NULL, extract the return value and save it in this buffer.
511 #
512 # If WRITEBUF is not NULL, it contains a return value which will be
513 # stored into the appropriate register. This can be used when we want
514 # to force the value returned by a function (see the "return" command
515 # for instance).
516 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
517
518 # Return true if the return value of function is stored in the first hidden
519 # parameter. In theory, this feature should be language-dependent, specified
520 # by language and its ABI, such as C++. Unfortunately, compiler may
521 # implement it to a target-dependent feature. So that we need such hook here
522 # to be aware of this in GDB.
523 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
524
525 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
526 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
527 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
528 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
529 # Return the adjusted address and kind to use for Z0/Z1 packets.
530 # KIND is usually the memory length of the breakpoint, but may have a
531 # different target-specific meaning.
532 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
533 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
534 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
535 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
536 v:CORE_ADDR:decr_pc_after_break:::0:::0
537
538 # A function can be addressed by either it's "pointer" (possibly a
539 # descriptor address) or "entry point" (first executable instruction).
540 # The method "convert_from_func_ptr_addr" converting the former to the
541 # latter. gdbarch_deprecated_function_start_offset is being used to implement
542 # a simplified subset of that functionality - the function's address
543 # corresponds to the "function pointer" and the function's start
544 # corresponds to the "function entry point" - and hence is redundant.
545
546 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
547
548 # Return the remote protocol register number associated with this
549 # register. Normally the identity mapping.
550 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
551
552 # Fetch the target specific address used to represent a load module.
553 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
554 #
555 v:CORE_ADDR:frame_args_skip:::0:::0
556 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
557 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
558 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
559 # frame-base. Enable frame-base before frame-unwind.
560 F:int:frame_num_args:struct frame_info *frame:frame
561 #
562 M:CORE_ADDR:frame_align:CORE_ADDR address:address
563 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
564 v:int:frame_red_zone_size
565 #
566 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
567 # On some machines there are bits in addresses which are not really
568 # part of the address, but are used by the kernel, the hardware, etc.
569 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
570 # we get a "real" address such as one would find in a symbol table.
571 # This is used only for addresses of instructions, and even then I'm
572 # not sure it's used in all contexts. It exists to deal with there
573 # being a few stray bits in the PC which would mislead us, not as some
574 # sort of generic thing to handle alignment or segmentation (it's
575 # possible it should be in TARGET_READ_PC instead).
576 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
577
578 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
579 # indicates if the target needs software single step. An ISA method to
580 # implement it.
581 #
582 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
583 # breakpoints using the breakpoint system instead of blatting memory directly
584 # (as with rs6000).
585 #
586 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
587 # target can single step. If not, then implement single step using breakpoints.
588 #
589 # A return value of 1 means that the software_single_step breakpoints
590 # were inserted; 0 means they were not.
591 F:int:software_single_step:struct frame_info *frame:frame
592
593 # Return non-zero if the processor is executing a delay slot and a
594 # further single-step is needed before the instruction finishes.
595 M:int:single_step_through_delay:struct frame_info *frame:frame
596 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
597 # disassembler. Perhaps objdump can handle it?
598 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
599 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
600
601
602 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
603 # evaluates non-zero, this is the address where the debugger will place
604 # a step-resume breakpoint to get us past the dynamic linker.
605 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
606 # Some systems also have trampoline code for returning from shared libs.
607 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
608
609 # A target might have problems with watchpoints as soon as the stack
610 # frame of the current function has been destroyed. This mostly happens
611 # as the first action in a funtion's epilogue. in_function_epilogue_p()
612 # is defined to return a non-zero value if either the given addr is one
613 # instruction after the stack destroying instruction up to the trailing
614 # return instruction or if we can figure out that the stack frame has
615 # already been invalidated regardless of the value of addr. Targets
616 # which don't suffer from that problem could just let this functionality
617 # untouched.
618 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
619 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
620 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
621 v:int:cannot_step_breakpoint:::0:0::0
622 v:int:have_nonsteppable_watchpoint:::0:0::0
623 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
624 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
625 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
626 # Is a register in a group
627 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
628 # Fetch the pointer to the ith function argument.
629 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
630
631 # Return the appropriate register set for a core file section with
632 # name SECT_NAME and size SECT_SIZE.
633 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
634
635 # Supported register notes in a core file.
636 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
637
638 # Create core file notes
639 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
640
641 # Find core file memory regions
642 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
643
644 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
645 # core file into buffer READBUF with length LEN.
646 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
647
648 # How the core target converts a PTID from a core file to a string.
649 M:char *:core_pid_to_str:ptid_t ptid:ptid
650
651 # BFD target to use when generating a core file.
652 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
653
654 # If the elements of C++ vtables are in-place function descriptors rather
655 # than normal function pointers (which may point to code or a descriptor),
656 # set this to one.
657 v:int:vtable_function_descriptors:::0:0::0
658
659 # Set if the least significant bit of the delta is used instead of the least
660 # significant bit of the pfn for pointers to virtual member functions.
661 v:int:vbit_in_delta:::0:0::0
662
663 # Advance PC to next instruction in order to skip a permanent breakpoint.
664 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
665
666 # The maximum length of an instruction on this architecture in bytes.
667 V:ULONGEST:max_insn_length:::0:0
668
669 # Copy the instruction at FROM to TO, and make any adjustments
670 # necessary to single-step it at that address.
671 #
672 # REGS holds the state the thread's registers will have before
673 # executing the copied instruction; the PC in REGS will refer to FROM,
674 # not the copy at TO. The caller should update it to point at TO later.
675 #
676 # Return a pointer to data of the architecture's choice to be passed
677 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
678 # the instruction's effects have been completely simulated, with the
679 # resulting state written back to REGS.
680 #
681 # For a general explanation of displaced stepping and how GDB uses it,
682 # see the comments in infrun.c.
683 #
684 # The TO area is only guaranteed to have space for
685 # gdbarch_max_insn_length (arch) bytes, so this function must not
686 # write more bytes than that to that area.
687 #
688 # If you do not provide this function, GDB assumes that the
689 # architecture does not support displaced stepping.
690 #
691 # If your architecture doesn't need to adjust instructions before
692 # single-stepping them, consider using simple_displaced_step_copy_insn
693 # here.
694 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
695
696 # Return true if GDB should use hardware single-stepping to execute
697 # the displaced instruction identified by CLOSURE. If false,
698 # GDB will simply restart execution at the displaced instruction
699 # location, and it is up to the target to ensure GDB will receive
700 # control again (e.g. by placing a software breakpoint instruction
701 # into the displaced instruction buffer).
702 #
703 # The default implementation returns false on all targets that
704 # provide a gdbarch_software_single_step routine, and true otherwise.
705 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
706
707 # Fix up the state resulting from successfully single-stepping a
708 # displaced instruction, to give the result we would have gotten from
709 # stepping the instruction in its original location.
710 #
711 # REGS is the register state resulting from single-stepping the
712 # displaced instruction.
713 #
714 # CLOSURE is the result from the matching call to
715 # gdbarch_displaced_step_copy_insn.
716 #
717 # If you provide gdbarch_displaced_step_copy_insn.but not this
718 # function, then GDB assumes that no fixup is needed after
719 # single-stepping the instruction.
720 #
721 # For a general explanation of displaced stepping and how GDB uses it,
722 # see the comments in infrun.c.
723 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
724
725 # Free a closure returned by gdbarch_displaced_step_copy_insn.
726 #
727 # If you provide gdbarch_displaced_step_copy_insn, you must provide
728 # this function as well.
729 #
730 # If your architecture uses closures that don't need to be freed, then
731 # you can use simple_displaced_step_free_closure here.
732 #
733 # For a general explanation of displaced stepping and how GDB uses it,
734 # see the comments in infrun.c.
735 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
736
737 # Return the address of an appropriate place to put displaced
738 # instructions while we step over them. There need only be one such
739 # place, since we're only stepping one thread over a breakpoint at a
740 # time.
741 #
742 # For a general explanation of displaced stepping and how GDB uses it,
743 # see the comments in infrun.c.
744 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
745
746 # Relocate an instruction to execute at a different address. OLDLOC
747 # is the address in the inferior memory where the instruction to
748 # relocate is currently at. On input, TO points to the destination
749 # where we want the instruction to be copied (and possibly adjusted)
750 # to. On output, it points to one past the end of the resulting
751 # instruction(s). The effect of executing the instruction at TO shall
752 # be the same as if executing it at FROM. For example, call
753 # instructions that implicitly push the return address on the stack
754 # should be adjusted to return to the instruction after OLDLOC;
755 # relative branches, and other PC-relative instructions need the
756 # offset adjusted; etc.
757 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
758
759 # Refresh overlay mapped state for section OSECT.
760 F:void:overlay_update:struct obj_section *osect:osect
761
762 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
763
764 # Handle special encoding of static variables in stabs debug info.
765 F:const char *:static_transform_name:const char *name:name
766 # Set if the address in N_SO or N_FUN stabs may be zero.
767 v:int:sofun_address_maybe_missing:::0:0::0
768
769 # Parse the instruction at ADDR storing in the record execution log
770 # the registers REGCACHE and memory ranges that will be affected when
771 # the instruction executes, along with their current values.
772 # Return -1 if something goes wrong, 0 otherwise.
773 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
774
775 # Save process state after a signal.
776 # Return -1 if something goes wrong, 0 otherwise.
777 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
778
779 # Signal translation: translate inferior's signal (target's) number
780 # into GDB's representation. The implementation of this method must
781 # be host independent. IOW, don't rely on symbols of the NAT_FILE
782 # header (the nm-*.h files), the host <signal.h> header, or similar
783 # headers. This is mainly used when cross-debugging core files ---
784 # "Live" targets hide the translation behind the target interface
785 # (target_wait, target_resume, etc.).
786 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
787
788 # Extra signal info inspection.
789 #
790 # Return a type suitable to inspect extra signal information.
791 M:struct type *:get_siginfo_type:void:
792
793 # Record architecture-specific information from the symbol table.
794 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
795
796 # Function for the 'catch syscall' feature.
797
798 # Get architecture-specific system calls information from registers.
799 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
800
801 # SystemTap related fields and functions.
802
803 # Prefix used to mark an integer constant on the architecture's assembly
804 # For example, on x86 integer constants are written as:
805 #
806 # \$10 ;; integer constant 10
807 #
808 # in this case, this prefix would be the character \`\$\'.
809 v:const char *:stap_integer_prefix:::0:0::0:pstring (gdbarch->stap_integer_prefix)
810
811 # Suffix used to mark an integer constant on the architecture's assembly.
812 v:const char *:stap_integer_suffix:::0:0::0:pstring (gdbarch->stap_integer_suffix)
813
814 # Prefix used to mark a register name on the architecture's assembly.
815 # For example, on x86 the register name is written as:
816 #
817 # \%eax ;; register eax
818 #
819 # in this case, this prefix would be the character \`\%\'.
820 v:const char *:stap_register_prefix:::0:0::0:pstring (gdbarch->stap_register_prefix)
821
822 # Suffix used to mark a register name on the architecture's assembly
823 v:const char *:stap_register_suffix:::0:0::0:pstring (gdbarch->stap_register_suffix)
824
825 # Prefix used to mark a register indirection on the architecture's assembly.
826 # For example, on x86 the register indirection is written as:
827 #
828 # \(\%eax\) ;; indirecting eax
829 #
830 # in this case, this prefix would be the charater \`\(\'.
831 #
832 # Please note that we use the indirection prefix also for register
833 # displacement, e.g., \`4\(\%eax\)\' on x86.
834 v:const char *:stap_register_indirection_prefix:::0:0::0:pstring (gdbarch->stap_register_indirection_prefix)
835
836 # Suffix used to mark a register indirection on the architecture's assembly.
837 # For example, on x86 the register indirection is written as:
838 #
839 # \(\%eax\) ;; indirecting eax
840 #
841 # in this case, this prefix would be the charater \`\)\'.
842 #
843 # Please note that we use the indirection suffix also for register
844 # displacement, e.g., \`4\(\%eax\)\' on x86.
845 v:const char *:stap_register_indirection_suffix:::0:0::0:pstring (gdbarch->stap_register_indirection_suffix)
846
847 # Prefix used to name a register using GDB's nomenclature.
848 #
849 # For example, on PPC a register is represented by a number in the assembly
850 # language (e.g., \`10\' is the 10th general-purpose register). However,
851 # inside GDB this same register has an \`r\' appended to its name, so the 10th
852 # register would be represented as \`r10\' internally.
853 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
854
855 # Suffix used to name a register using GDB's nomenclature.
856 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
857
858 # Check if S is a single operand.
859 #
860 # Single operands can be:
861 # \- Literal integers, e.g. \`\$10\' on x86
862 # \- Register access, e.g. \`\%eax\' on x86
863 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
864 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
865 #
866 # This function should check for these patterns on the string
867 # and return 1 if some were found, or zero otherwise. Please try to match
868 # as much info as you can from the string, i.e., if you have to match
869 # something like \`\(\%\', do not match just the \`\(\'.
870 M:int:stap_is_single_operand:const char *s:s
871
872 # Function used to handle a "special case" in the parser.
873 #
874 # A "special case" is considered to be an unknown token, i.e., a token
875 # that the parser does not know how to parse. A good example of special
876 # case would be ARM's register displacement syntax:
877 #
878 # [R0, #4] ;; displacing R0 by 4
879 #
880 # Since the parser assumes that a register displacement is of the form:
881 #
882 # <number> <indirection_prefix> <register_name> <indirection_suffix>
883 #
884 # it means that it will not be able to recognize and parse this odd syntax.
885 # Therefore, we should add a special case function that will handle this token.
886 #
887 # This function should generate the proper expression form of the expression
888 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
889 # and so on). It should also return 1 if the parsing was successful, or zero
890 # if the token was not recognized as a special token (in this case, returning
891 # zero means that the special parser is deferring the parsing to the generic
892 # parser), and should advance the buffer pointer (p->arg).
893 M:int:stap_parse_special_token:struct stap_parse_info *p:p
894
895
896 # True if the list of shared libraries is one and only for all
897 # processes, as opposed to a list of shared libraries per inferior.
898 # This usually means that all processes, although may or may not share
899 # an address space, will see the same set of symbols at the same
900 # addresses.
901 v:int:has_global_solist:::0:0::0
902
903 # On some targets, even though each inferior has its own private
904 # address space, the debug interface takes care of making breakpoints
905 # visible to all address spaces automatically. For such cases,
906 # this property should be set to true.
907 v:int:has_global_breakpoints:::0:0::0
908
909 # True if inferiors share an address space (e.g., uClinux).
910 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
911
912 # True if a fast tracepoint can be set at an address.
913 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
914
915 # Return the "auto" target charset.
916 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
917 # Return the "auto" target wide charset.
918 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
919
920 # If non-empty, this is a file extension that will be opened in place
921 # of the file extension reported by the shared library list.
922 #
923 # This is most useful for toolchains that use a post-linker tool,
924 # where the names of the files run on the target differ in extension
925 # compared to the names of the files GDB should load for debug info.
926 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
927
928 # If true, the target OS has DOS-based file system semantics. That
929 # is, absolute paths include a drive name, and the backslash is
930 # considered a directory separator.
931 v:int:has_dos_based_file_system:::0:0::0
932
933 # Generate bytecodes to collect the return address in a frame.
934 # Since the bytecodes run on the target, possibly with GDB not even
935 # connected, the full unwinding machinery is not available, and
936 # typically this function will issue bytecodes for one or more likely
937 # places that the return address may be found.
938 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
939
940 # Implement the "info proc" command.
941 M:void:info_proc:char *args, enum info_proc_what what:args, what
942
943 # Iterate over all objfiles in the order that makes the most sense
944 # for the architecture to make global symbol searches.
945 #
946 # CB is a callback function where OBJFILE is the objfile to be searched,
947 # and CB_DATA a pointer to user-defined data (the same data that is passed
948 # when calling this gdbarch method). The iteration stops if this function
949 # returns nonzero.
950 #
951 # CB_DATA is a pointer to some user-defined data to be passed to
952 # the callback.
953 #
954 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
955 # inspected when the symbol search was requested.
956 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
957
958 EOF
959 }
960
961 #
962 # The .log file
963 #
964 exec > new-gdbarch.log
965 function_list | while do_read
966 do
967 cat <<EOF
968 ${class} ${returntype} ${function} ($formal)
969 EOF
970 for r in ${read}
971 do
972 eval echo \"\ \ \ \ ${r}=\${${r}}\"
973 done
974 if class_is_predicate_p && fallback_default_p
975 then
976 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
977 kill $$
978 exit 1
979 fi
980 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
981 then
982 echo "Error: postdefault is useless when invalid_p=0" 1>&2
983 kill $$
984 exit 1
985 fi
986 if class_is_multiarch_p
987 then
988 if class_is_predicate_p ; then :
989 elif test "x${predefault}" = "x"
990 then
991 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
992 kill $$
993 exit 1
994 fi
995 fi
996 echo ""
997 done
998
999 exec 1>&2
1000 compare_new gdbarch.log
1001
1002
1003 copyright ()
1004 {
1005 cat <<EOF
1006 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1007 /* vi:set ro: */
1008
1009 /* Dynamic architecture support for GDB, the GNU debugger.
1010
1011 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
1012 2007, 2008, 2009 Free Software Foundation, Inc.
1013
1014 This file is part of GDB.
1015
1016 This program is free software; you can redistribute it and/or modify
1017 it under the terms of the GNU General Public License as published by
1018 the Free Software Foundation; either version 3 of the License, or
1019 (at your option) any later version.
1020
1021 This program is distributed in the hope that it will be useful,
1022 but WITHOUT ANY WARRANTY; without even the implied warranty of
1023 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1024 GNU General Public License for more details.
1025
1026 You should have received a copy of the GNU General Public License
1027 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1028
1029 /* This file was created with the aid of \`\`gdbarch.sh''.
1030
1031 The Bourne shell script \`\`gdbarch.sh'' creates the files
1032 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1033 against the existing \`\`gdbarch.[hc]''. Any differences found
1034 being reported.
1035
1036 If editing this file, please also run gdbarch.sh and merge any
1037 changes into that script. Conversely, when making sweeping changes
1038 to this file, modifying gdbarch.sh and using its output may prove
1039 easier. */
1040
1041 EOF
1042 }
1043
1044 #
1045 # The .h file
1046 #
1047
1048 exec > new-gdbarch.h
1049 copyright
1050 cat <<EOF
1051 #ifndef GDBARCH_H
1052 #define GDBARCH_H
1053
1054 struct floatformat;
1055 struct ui_file;
1056 struct frame_info;
1057 struct value;
1058 struct objfile;
1059 struct obj_section;
1060 struct minimal_symbol;
1061 struct regcache;
1062 struct reggroup;
1063 struct regset;
1064 struct disassemble_info;
1065 struct target_ops;
1066 struct obstack;
1067 struct bp_target_info;
1068 struct target_desc;
1069 struct displaced_step_closure;
1070 struct core_regset_section;
1071 struct syscall;
1072 struct agent_expr;
1073 struct axs_value;
1074 struct stap_parse_info;
1075
1076 /* The architecture associated with the inferior through the
1077 connection to the target.
1078
1079 The architecture vector provides some information that is really a
1080 property of the inferior, accessed through a particular target:
1081 ptrace operations; the layout of certain RSP packets; the solib_ops
1082 vector; etc. To differentiate architecture accesses to
1083 per-inferior/target properties from
1084 per-thread/per-frame/per-objfile properties, accesses to
1085 per-inferior/target properties should be made through this
1086 gdbarch. */
1087
1088 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1089 extern struct gdbarch *target_gdbarch (void);
1090
1091 /* The initial, default architecture. It uses host values (for want of a better
1092 choice). */
1093 extern struct gdbarch startup_gdbarch;
1094
1095
1096 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1097 gdbarch method. */
1098
1099 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1100 (struct objfile *objfile, void *cb_data);
1101 EOF
1102
1103 # function typedef's
1104 printf "\n"
1105 printf "\n"
1106 printf "/* The following are pre-initialized by GDBARCH. */\n"
1107 function_list | while do_read
1108 do
1109 if class_is_info_p
1110 then
1111 printf "\n"
1112 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1113 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1114 fi
1115 done
1116
1117 # function typedef's
1118 printf "\n"
1119 printf "\n"
1120 printf "/* The following are initialized by the target dependent code. */\n"
1121 function_list | while do_read
1122 do
1123 if [ -n "${comment}" ]
1124 then
1125 echo "${comment}" | sed \
1126 -e '2 s,#,/*,' \
1127 -e '3,$ s,#, ,' \
1128 -e '$ s,$, */,'
1129 fi
1130
1131 if class_is_predicate_p
1132 then
1133 printf "\n"
1134 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1135 fi
1136 if class_is_variable_p
1137 then
1138 printf "\n"
1139 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1140 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1141 fi
1142 if class_is_function_p
1143 then
1144 printf "\n"
1145 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1146 then
1147 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1148 elif class_is_multiarch_p
1149 then
1150 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1151 else
1152 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1153 fi
1154 if [ "x${formal}" = "xvoid" ]
1155 then
1156 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1157 else
1158 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1159 fi
1160 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1161 fi
1162 done
1163
1164 # close it off
1165 cat <<EOF
1166
1167 /* Definition for an unknown syscall, used basically in error-cases. */
1168 #define UNKNOWN_SYSCALL (-1)
1169
1170 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1171
1172
1173 /* Mechanism for co-ordinating the selection of a specific
1174 architecture.
1175
1176 GDB targets (*-tdep.c) can register an interest in a specific
1177 architecture. Other GDB components can register a need to maintain
1178 per-architecture data.
1179
1180 The mechanisms below ensures that there is only a loose connection
1181 between the set-architecture command and the various GDB
1182 components. Each component can independently register their need
1183 to maintain architecture specific data with gdbarch.
1184
1185 Pragmatics:
1186
1187 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1188 didn't scale.
1189
1190 The more traditional mega-struct containing architecture specific
1191 data for all the various GDB components was also considered. Since
1192 GDB is built from a variable number of (fairly independent)
1193 components it was determined that the global aproach was not
1194 applicable. */
1195
1196
1197 /* Register a new architectural family with GDB.
1198
1199 Register support for the specified ARCHITECTURE with GDB. When
1200 gdbarch determines that the specified architecture has been
1201 selected, the corresponding INIT function is called.
1202
1203 --
1204
1205 The INIT function takes two parameters: INFO which contains the
1206 information available to gdbarch about the (possibly new)
1207 architecture; ARCHES which is a list of the previously created
1208 \`\`struct gdbarch'' for this architecture.
1209
1210 The INFO parameter is, as far as possible, be pre-initialized with
1211 information obtained from INFO.ABFD or the global defaults.
1212
1213 The ARCHES parameter is a linked list (sorted most recently used)
1214 of all the previously created architures for this architecture
1215 family. The (possibly NULL) ARCHES->gdbarch can used to access
1216 values from the previously selected architecture for this
1217 architecture family.
1218
1219 The INIT function shall return any of: NULL - indicating that it
1220 doesn't recognize the selected architecture; an existing \`\`struct
1221 gdbarch'' from the ARCHES list - indicating that the new
1222 architecture is just a synonym for an earlier architecture (see
1223 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1224 - that describes the selected architecture (see gdbarch_alloc()).
1225
1226 The DUMP_TDEP function shall print out all target specific values.
1227 Care should be taken to ensure that the function works in both the
1228 multi-arch and non- multi-arch cases. */
1229
1230 struct gdbarch_list
1231 {
1232 struct gdbarch *gdbarch;
1233 struct gdbarch_list *next;
1234 };
1235
1236 struct gdbarch_info
1237 {
1238 /* Use default: NULL (ZERO). */
1239 const struct bfd_arch_info *bfd_arch_info;
1240
1241 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1242 int byte_order;
1243
1244 int byte_order_for_code;
1245
1246 /* Use default: NULL (ZERO). */
1247 bfd *abfd;
1248
1249 /* Use default: NULL (ZERO). */
1250 struct gdbarch_tdep_info *tdep_info;
1251
1252 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1253 enum gdb_osabi osabi;
1254
1255 /* Use default: NULL (ZERO). */
1256 const struct target_desc *target_desc;
1257 };
1258
1259 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1260 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1261
1262 /* DEPRECATED - use gdbarch_register() */
1263 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1264
1265 extern void gdbarch_register (enum bfd_architecture architecture,
1266 gdbarch_init_ftype *,
1267 gdbarch_dump_tdep_ftype *);
1268
1269
1270 /* Return a freshly allocated, NULL terminated, array of the valid
1271 architecture names. Since architectures are registered during the
1272 _initialize phase this function only returns useful information
1273 once initialization has been completed. */
1274
1275 extern const char **gdbarch_printable_names (void);
1276
1277
1278 /* Helper function. Search the list of ARCHES for a GDBARCH that
1279 matches the information provided by INFO. */
1280
1281 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1282
1283
1284 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1285 basic initialization using values obtained from the INFO and TDEP
1286 parameters. set_gdbarch_*() functions are called to complete the
1287 initialization of the object. */
1288
1289 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1290
1291
1292 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1293 It is assumed that the caller freeds the \`\`struct
1294 gdbarch_tdep''. */
1295
1296 extern void gdbarch_free (struct gdbarch *);
1297
1298
1299 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1300 obstack. The memory is freed when the corresponding architecture
1301 is also freed. */
1302
1303 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1304 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1305 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1306
1307
1308 /* Helper function. Force an update of the current architecture.
1309
1310 The actual architecture selected is determined by INFO, \`\`(gdb) set
1311 architecture'' et.al., the existing architecture and BFD's default
1312 architecture. INFO should be initialized to zero and then selected
1313 fields should be updated.
1314
1315 Returns non-zero if the update succeeds. */
1316
1317 extern int gdbarch_update_p (struct gdbarch_info info);
1318
1319
1320 /* Helper function. Find an architecture matching info.
1321
1322 INFO should be initialized using gdbarch_info_init, relevant fields
1323 set, and then finished using gdbarch_info_fill.
1324
1325 Returns the corresponding architecture, or NULL if no matching
1326 architecture was found. */
1327
1328 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1329
1330
1331 /* Helper function. Set the target gdbarch to "gdbarch". */
1332
1333 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1334
1335
1336 /* Register per-architecture data-pointer.
1337
1338 Reserve space for a per-architecture data-pointer. An identifier
1339 for the reserved data-pointer is returned. That identifer should
1340 be saved in a local static variable.
1341
1342 Memory for the per-architecture data shall be allocated using
1343 gdbarch_obstack_zalloc. That memory will be deleted when the
1344 corresponding architecture object is deleted.
1345
1346 When a previously created architecture is re-selected, the
1347 per-architecture data-pointer for that previous architecture is
1348 restored. INIT() is not re-called.
1349
1350 Multiple registrarants for any architecture are allowed (and
1351 strongly encouraged). */
1352
1353 struct gdbarch_data;
1354
1355 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1356 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1357 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1358 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1359 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1360 struct gdbarch_data *data,
1361 void *pointer);
1362
1363 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1364
1365
1366 /* Set the dynamic target-system-dependent parameters (architecture,
1367 byte-order, ...) using information found in the BFD. */
1368
1369 extern void set_gdbarch_from_file (bfd *);
1370
1371
1372 /* Initialize the current architecture to the "first" one we find on
1373 our list. */
1374
1375 extern void initialize_current_architecture (void);
1376
1377 /* gdbarch trace variable */
1378 extern unsigned int gdbarch_debug;
1379
1380 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1381
1382 #endif
1383 EOF
1384 exec 1>&2
1385 #../move-if-change new-gdbarch.h gdbarch.h
1386 compare_new gdbarch.h
1387
1388
1389 #
1390 # C file
1391 #
1392
1393 exec > new-gdbarch.c
1394 copyright
1395 cat <<EOF
1396
1397 #include "defs.h"
1398 #include "arch-utils.h"
1399
1400 #include "gdbcmd.h"
1401 #include "inferior.h"
1402 #include "symcat.h"
1403
1404 #include "floatformat.h"
1405
1406 #include "gdb_assert.h"
1407 #include "gdb_string.h"
1408 #include "reggroups.h"
1409 #include "osabi.h"
1410 #include "gdb_obstack.h"
1411 #include "observer.h"
1412 #include "regcache.h"
1413 #include "objfiles.h"
1414
1415 /* Static function declarations */
1416
1417 static void alloc_gdbarch_data (struct gdbarch *);
1418
1419 /* Non-zero if we want to trace architecture code. */
1420
1421 #ifndef GDBARCH_DEBUG
1422 #define GDBARCH_DEBUG 0
1423 #endif
1424 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1425 static void
1426 show_gdbarch_debug (struct ui_file *file, int from_tty,
1427 struct cmd_list_element *c, const char *value)
1428 {
1429 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1430 }
1431
1432 static const char *
1433 pformat (const struct floatformat **format)
1434 {
1435 if (format == NULL)
1436 return "(null)";
1437 else
1438 /* Just print out one of them - this is only for diagnostics. */
1439 return format[0]->name;
1440 }
1441
1442 static const char *
1443 pstring (const char *string)
1444 {
1445 if (string == NULL)
1446 return "(null)";
1447 return string;
1448 }
1449
1450 EOF
1451
1452 # gdbarch open the gdbarch object
1453 printf "\n"
1454 printf "/* Maintain the struct gdbarch object. */\n"
1455 printf "\n"
1456 printf "struct gdbarch\n"
1457 printf "{\n"
1458 printf " /* Has this architecture been fully initialized? */\n"
1459 printf " int initialized_p;\n"
1460 printf "\n"
1461 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1462 printf " struct obstack *obstack;\n"
1463 printf "\n"
1464 printf " /* basic architectural information. */\n"
1465 function_list | while do_read
1466 do
1467 if class_is_info_p
1468 then
1469 printf " ${returntype} ${function};\n"
1470 fi
1471 done
1472 printf "\n"
1473 printf " /* target specific vector. */\n"
1474 printf " struct gdbarch_tdep *tdep;\n"
1475 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1476 printf "\n"
1477 printf " /* per-architecture data-pointers. */\n"
1478 printf " unsigned nr_data;\n"
1479 printf " void **data;\n"
1480 printf "\n"
1481 cat <<EOF
1482 /* Multi-arch values.
1483
1484 When extending this structure you must:
1485
1486 Add the field below.
1487
1488 Declare set/get functions and define the corresponding
1489 macro in gdbarch.h.
1490
1491 gdbarch_alloc(): If zero/NULL is not a suitable default,
1492 initialize the new field.
1493
1494 verify_gdbarch(): Confirm that the target updated the field
1495 correctly.
1496
1497 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1498 field is dumped out
1499
1500 \`\`startup_gdbarch()'': Append an initial value to the static
1501 variable (base values on the host's c-type system).
1502
1503 get_gdbarch(): Implement the set/get functions (probably using
1504 the macro's as shortcuts).
1505
1506 */
1507
1508 EOF
1509 function_list | while do_read
1510 do
1511 if class_is_variable_p
1512 then
1513 printf " ${returntype} ${function};\n"
1514 elif class_is_function_p
1515 then
1516 printf " gdbarch_${function}_ftype *${function};\n"
1517 fi
1518 done
1519 printf "};\n"
1520
1521 # A pre-initialized vector
1522 printf "\n"
1523 printf "\n"
1524 cat <<EOF
1525 /* The default architecture uses host values (for want of a better
1526 choice). */
1527 EOF
1528 printf "\n"
1529 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1530 printf "\n"
1531 printf "struct gdbarch startup_gdbarch =\n"
1532 printf "{\n"
1533 printf " 1, /* Always initialized. */\n"
1534 printf " NULL, /* The obstack. */\n"
1535 printf " /* basic architecture information. */\n"
1536 function_list | while do_read
1537 do
1538 if class_is_info_p
1539 then
1540 printf " ${staticdefault}, /* ${function} */\n"
1541 fi
1542 done
1543 cat <<EOF
1544 /* target specific vector and its dump routine. */
1545 NULL, NULL,
1546 /*per-architecture data-pointers. */
1547 0, NULL,
1548 /* Multi-arch values */
1549 EOF
1550 function_list | while do_read
1551 do
1552 if class_is_function_p || class_is_variable_p
1553 then
1554 printf " ${staticdefault}, /* ${function} */\n"
1555 fi
1556 done
1557 cat <<EOF
1558 /* startup_gdbarch() */
1559 };
1560
1561 EOF
1562
1563 # Create a new gdbarch struct
1564 cat <<EOF
1565
1566 /* Create a new \`\`struct gdbarch'' based on information provided by
1567 \`\`struct gdbarch_info''. */
1568 EOF
1569 printf "\n"
1570 cat <<EOF
1571 struct gdbarch *
1572 gdbarch_alloc (const struct gdbarch_info *info,
1573 struct gdbarch_tdep *tdep)
1574 {
1575 struct gdbarch *gdbarch;
1576
1577 /* Create an obstack for allocating all the per-architecture memory,
1578 then use that to allocate the architecture vector. */
1579 struct obstack *obstack = XMALLOC (struct obstack);
1580 obstack_init (obstack);
1581 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1582 memset (gdbarch, 0, sizeof (*gdbarch));
1583 gdbarch->obstack = obstack;
1584
1585 alloc_gdbarch_data (gdbarch);
1586
1587 gdbarch->tdep = tdep;
1588 EOF
1589 printf "\n"
1590 function_list | while do_read
1591 do
1592 if class_is_info_p
1593 then
1594 printf " gdbarch->${function} = info->${function};\n"
1595 fi
1596 done
1597 printf "\n"
1598 printf " /* Force the explicit initialization of these. */\n"
1599 function_list | while do_read
1600 do
1601 if class_is_function_p || class_is_variable_p
1602 then
1603 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1604 then
1605 printf " gdbarch->${function} = ${predefault};\n"
1606 fi
1607 fi
1608 done
1609 cat <<EOF
1610 /* gdbarch_alloc() */
1611
1612 return gdbarch;
1613 }
1614 EOF
1615
1616 # Free a gdbarch struct.
1617 printf "\n"
1618 printf "\n"
1619 cat <<EOF
1620 /* Allocate extra space using the per-architecture obstack. */
1621
1622 void *
1623 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1624 {
1625 void *data = obstack_alloc (arch->obstack, size);
1626
1627 memset (data, 0, size);
1628 return data;
1629 }
1630
1631
1632 /* Free a gdbarch struct. This should never happen in normal
1633 operation --- once you've created a gdbarch, you keep it around.
1634 However, if an architecture's init function encounters an error
1635 building the structure, it may need to clean up a partially
1636 constructed gdbarch. */
1637
1638 void
1639 gdbarch_free (struct gdbarch *arch)
1640 {
1641 struct obstack *obstack;
1642
1643 gdb_assert (arch != NULL);
1644 gdb_assert (!arch->initialized_p);
1645 obstack = arch->obstack;
1646 obstack_free (obstack, 0); /* Includes the ARCH. */
1647 xfree (obstack);
1648 }
1649 EOF
1650
1651 # verify a new architecture
1652 cat <<EOF
1653
1654
1655 /* Ensure that all values in a GDBARCH are reasonable. */
1656
1657 static void
1658 verify_gdbarch (struct gdbarch *gdbarch)
1659 {
1660 struct ui_file *log;
1661 struct cleanup *cleanups;
1662 long length;
1663 char *buf;
1664
1665 log = mem_fileopen ();
1666 cleanups = make_cleanup_ui_file_delete (log);
1667 /* fundamental */
1668 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1669 fprintf_unfiltered (log, "\n\tbyte-order");
1670 if (gdbarch->bfd_arch_info == NULL)
1671 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1672 /* Check those that need to be defined for the given multi-arch level. */
1673 EOF
1674 function_list | while do_read
1675 do
1676 if class_is_function_p || class_is_variable_p
1677 then
1678 if [ "x${invalid_p}" = "x0" ]
1679 then
1680 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1681 elif class_is_predicate_p
1682 then
1683 printf " /* Skip verify of ${function}, has predicate. */\n"
1684 # FIXME: See do_read for potential simplification
1685 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1686 then
1687 printf " if (${invalid_p})\n"
1688 printf " gdbarch->${function} = ${postdefault};\n"
1689 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1690 then
1691 printf " if (gdbarch->${function} == ${predefault})\n"
1692 printf " gdbarch->${function} = ${postdefault};\n"
1693 elif [ -n "${postdefault}" ]
1694 then
1695 printf " if (gdbarch->${function} == 0)\n"
1696 printf " gdbarch->${function} = ${postdefault};\n"
1697 elif [ -n "${invalid_p}" ]
1698 then
1699 printf " if (${invalid_p})\n"
1700 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1701 elif [ -n "${predefault}" ]
1702 then
1703 printf " if (gdbarch->${function} == ${predefault})\n"
1704 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1705 fi
1706 fi
1707 done
1708 cat <<EOF
1709 buf = ui_file_xstrdup (log, &length);
1710 make_cleanup (xfree, buf);
1711 if (length > 0)
1712 internal_error (__FILE__, __LINE__,
1713 _("verify_gdbarch: the following are invalid ...%s"),
1714 buf);
1715 do_cleanups (cleanups);
1716 }
1717 EOF
1718
1719 # dump the structure
1720 printf "\n"
1721 printf "\n"
1722 cat <<EOF
1723 /* Print out the details of the current architecture. */
1724
1725 void
1726 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1727 {
1728 const char *gdb_nm_file = "<not-defined>";
1729
1730 #if defined (GDB_NM_FILE)
1731 gdb_nm_file = GDB_NM_FILE;
1732 #endif
1733 fprintf_unfiltered (file,
1734 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1735 gdb_nm_file);
1736 EOF
1737 function_list | sort -t: -k 3 | while do_read
1738 do
1739 # First the predicate
1740 if class_is_predicate_p
1741 then
1742 printf " fprintf_unfiltered (file,\n"
1743 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1744 printf " gdbarch_${function}_p (gdbarch));\n"
1745 fi
1746 # Print the corresponding value.
1747 if class_is_function_p
1748 then
1749 printf " fprintf_unfiltered (file,\n"
1750 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1751 printf " host_address_to_string (gdbarch->${function}));\n"
1752 else
1753 # It is a variable
1754 case "${print}:${returntype}" in
1755 :CORE_ADDR )
1756 fmt="%s"
1757 print="core_addr_to_string_nz (gdbarch->${function})"
1758 ;;
1759 :* )
1760 fmt="%s"
1761 print="plongest (gdbarch->${function})"
1762 ;;
1763 * )
1764 fmt="%s"
1765 ;;
1766 esac
1767 printf " fprintf_unfiltered (file,\n"
1768 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1769 printf " ${print});\n"
1770 fi
1771 done
1772 cat <<EOF
1773 if (gdbarch->dump_tdep != NULL)
1774 gdbarch->dump_tdep (gdbarch, file);
1775 }
1776 EOF
1777
1778
1779 # GET/SET
1780 printf "\n"
1781 cat <<EOF
1782 struct gdbarch_tdep *
1783 gdbarch_tdep (struct gdbarch *gdbarch)
1784 {
1785 if (gdbarch_debug >= 2)
1786 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1787 return gdbarch->tdep;
1788 }
1789 EOF
1790 printf "\n"
1791 function_list | while do_read
1792 do
1793 if class_is_predicate_p
1794 then
1795 printf "\n"
1796 printf "int\n"
1797 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1798 printf "{\n"
1799 printf " gdb_assert (gdbarch != NULL);\n"
1800 printf " return ${predicate};\n"
1801 printf "}\n"
1802 fi
1803 if class_is_function_p
1804 then
1805 printf "\n"
1806 printf "${returntype}\n"
1807 if [ "x${formal}" = "xvoid" ]
1808 then
1809 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1810 else
1811 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1812 fi
1813 printf "{\n"
1814 printf " gdb_assert (gdbarch != NULL);\n"
1815 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1816 if class_is_predicate_p && test -n "${predefault}"
1817 then
1818 # Allow a call to a function with a predicate.
1819 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1820 fi
1821 printf " if (gdbarch_debug >= 2)\n"
1822 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1823 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1824 then
1825 if class_is_multiarch_p
1826 then
1827 params="gdbarch"
1828 else
1829 params=""
1830 fi
1831 else
1832 if class_is_multiarch_p
1833 then
1834 params="gdbarch, ${actual}"
1835 else
1836 params="${actual}"
1837 fi
1838 fi
1839 if [ "x${returntype}" = "xvoid" ]
1840 then
1841 printf " gdbarch->${function} (${params});\n"
1842 else
1843 printf " return gdbarch->${function} (${params});\n"
1844 fi
1845 printf "}\n"
1846 printf "\n"
1847 printf "void\n"
1848 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1849 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1850 printf "{\n"
1851 printf " gdbarch->${function} = ${function};\n"
1852 printf "}\n"
1853 elif class_is_variable_p
1854 then
1855 printf "\n"
1856 printf "${returntype}\n"
1857 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1858 printf "{\n"
1859 printf " gdb_assert (gdbarch != NULL);\n"
1860 if [ "x${invalid_p}" = "x0" ]
1861 then
1862 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1863 elif [ -n "${invalid_p}" ]
1864 then
1865 printf " /* Check variable is valid. */\n"
1866 printf " gdb_assert (!(${invalid_p}));\n"
1867 elif [ -n "${predefault}" ]
1868 then
1869 printf " /* Check variable changed from pre-default. */\n"
1870 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1871 fi
1872 printf " if (gdbarch_debug >= 2)\n"
1873 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1874 printf " return gdbarch->${function};\n"
1875 printf "}\n"
1876 printf "\n"
1877 printf "void\n"
1878 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1879 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1880 printf "{\n"
1881 printf " gdbarch->${function} = ${function};\n"
1882 printf "}\n"
1883 elif class_is_info_p
1884 then
1885 printf "\n"
1886 printf "${returntype}\n"
1887 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1888 printf "{\n"
1889 printf " gdb_assert (gdbarch != NULL);\n"
1890 printf " if (gdbarch_debug >= 2)\n"
1891 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1892 printf " return gdbarch->${function};\n"
1893 printf "}\n"
1894 fi
1895 done
1896
1897 # All the trailing guff
1898 cat <<EOF
1899
1900
1901 /* Keep a registry of per-architecture data-pointers required by GDB
1902 modules. */
1903
1904 struct gdbarch_data
1905 {
1906 unsigned index;
1907 int init_p;
1908 gdbarch_data_pre_init_ftype *pre_init;
1909 gdbarch_data_post_init_ftype *post_init;
1910 };
1911
1912 struct gdbarch_data_registration
1913 {
1914 struct gdbarch_data *data;
1915 struct gdbarch_data_registration *next;
1916 };
1917
1918 struct gdbarch_data_registry
1919 {
1920 unsigned nr;
1921 struct gdbarch_data_registration *registrations;
1922 };
1923
1924 struct gdbarch_data_registry gdbarch_data_registry =
1925 {
1926 0, NULL,
1927 };
1928
1929 static struct gdbarch_data *
1930 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1931 gdbarch_data_post_init_ftype *post_init)
1932 {
1933 struct gdbarch_data_registration **curr;
1934
1935 /* Append the new registration. */
1936 for (curr = &gdbarch_data_registry.registrations;
1937 (*curr) != NULL;
1938 curr = &(*curr)->next);
1939 (*curr) = XMALLOC (struct gdbarch_data_registration);
1940 (*curr)->next = NULL;
1941 (*curr)->data = XMALLOC (struct gdbarch_data);
1942 (*curr)->data->index = gdbarch_data_registry.nr++;
1943 (*curr)->data->pre_init = pre_init;
1944 (*curr)->data->post_init = post_init;
1945 (*curr)->data->init_p = 1;
1946 return (*curr)->data;
1947 }
1948
1949 struct gdbarch_data *
1950 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1951 {
1952 return gdbarch_data_register (pre_init, NULL);
1953 }
1954
1955 struct gdbarch_data *
1956 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1957 {
1958 return gdbarch_data_register (NULL, post_init);
1959 }
1960
1961 /* Create/delete the gdbarch data vector. */
1962
1963 static void
1964 alloc_gdbarch_data (struct gdbarch *gdbarch)
1965 {
1966 gdb_assert (gdbarch->data == NULL);
1967 gdbarch->nr_data = gdbarch_data_registry.nr;
1968 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1969 }
1970
1971 /* Initialize the current value of the specified per-architecture
1972 data-pointer. */
1973
1974 void
1975 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1976 struct gdbarch_data *data,
1977 void *pointer)
1978 {
1979 gdb_assert (data->index < gdbarch->nr_data);
1980 gdb_assert (gdbarch->data[data->index] == NULL);
1981 gdb_assert (data->pre_init == NULL);
1982 gdbarch->data[data->index] = pointer;
1983 }
1984
1985 /* Return the current value of the specified per-architecture
1986 data-pointer. */
1987
1988 void *
1989 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1990 {
1991 gdb_assert (data->index < gdbarch->nr_data);
1992 if (gdbarch->data[data->index] == NULL)
1993 {
1994 /* The data-pointer isn't initialized, call init() to get a
1995 value. */
1996 if (data->pre_init != NULL)
1997 /* Mid architecture creation: pass just the obstack, and not
1998 the entire architecture, as that way it isn't possible for
1999 pre-init code to refer to undefined architecture
2000 fields. */
2001 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2002 else if (gdbarch->initialized_p
2003 && data->post_init != NULL)
2004 /* Post architecture creation: pass the entire architecture
2005 (as all fields are valid), but be careful to also detect
2006 recursive references. */
2007 {
2008 gdb_assert (data->init_p);
2009 data->init_p = 0;
2010 gdbarch->data[data->index] = data->post_init (gdbarch);
2011 data->init_p = 1;
2012 }
2013 else
2014 /* The architecture initialization hasn't completed - punt -
2015 hope that the caller knows what they are doing. Once
2016 deprecated_set_gdbarch_data has been initialized, this can be
2017 changed to an internal error. */
2018 return NULL;
2019 gdb_assert (gdbarch->data[data->index] != NULL);
2020 }
2021 return gdbarch->data[data->index];
2022 }
2023
2024
2025 /* Keep a registry of the architectures known by GDB. */
2026
2027 struct gdbarch_registration
2028 {
2029 enum bfd_architecture bfd_architecture;
2030 gdbarch_init_ftype *init;
2031 gdbarch_dump_tdep_ftype *dump_tdep;
2032 struct gdbarch_list *arches;
2033 struct gdbarch_registration *next;
2034 };
2035
2036 static struct gdbarch_registration *gdbarch_registry = NULL;
2037
2038 static void
2039 append_name (const char ***buf, int *nr, const char *name)
2040 {
2041 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2042 (*buf)[*nr] = name;
2043 *nr += 1;
2044 }
2045
2046 const char **
2047 gdbarch_printable_names (void)
2048 {
2049 /* Accumulate a list of names based on the registed list of
2050 architectures. */
2051 int nr_arches = 0;
2052 const char **arches = NULL;
2053 struct gdbarch_registration *rego;
2054
2055 for (rego = gdbarch_registry;
2056 rego != NULL;
2057 rego = rego->next)
2058 {
2059 const struct bfd_arch_info *ap;
2060 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2061 if (ap == NULL)
2062 internal_error (__FILE__, __LINE__,
2063 _("gdbarch_architecture_names: multi-arch unknown"));
2064 do
2065 {
2066 append_name (&arches, &nr_arches, ap->printable_name);
2067 ap = ap->next;
2068 }
2069 while (ap != NULL);
2070 }
2071 append_name (&arches, &nr_arches, NULL);
2072 return arches;
2073 }
2074
2075
2076 void
2077 gdbarch_register (enum bfd_architecture bfd_architecture,
2078 gdbarch_init_ftype *init,
2079 gdbarch_dump_tdep_ftype *dump_tdep)
2080 {
2081 struct gdbarch_registration **curr;
2082 const struct bfd_arch_info *bfd_arch_info;
2083
2084 /* Check that BFD recognizes this architecture */
2085 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2086 if (bfd_arch_info == NULL)
2087 {
2088 internal_error (__FILE__, __LINE__,
2089 _("gdbarch: Attempt to register "
2090 "unknown architecture (%d)"),
2091 bfd_architecture);
2092 }
2093 /* Check that we haven't seen this architecture before. */
2094 for (curr = &gdbarch_registry;
2095 (*curr) != NULL;
2096 curr = &(*curr)->next)
2097 {
2098 if (bfd_architecture == (*curr)->bfd_architecture)
2099 internal_error (__FILE__, __LINE__,
2100 _("gdbarch: Duplicate registration "
2101 "of architecture (%s)"),
2102 bfd_arch_info->printable_name);
2103 }
2104 /* log it */
2105 if (gdbarch_debug)
2106 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2107 bfd_arch_info->printable_name,
2108 host_address_to_string (init));
2109 /* Append it */
2110 (*curr) = XMALLOC (struct gdbarch_registration);
2111 (*curr)->bfd_architecture = bfd_architecture;
2112 (*curr)->init = init;
2113 (*curr)->dump_tdep = dump_tdep;
2114 (*curr)->arches = NULL;
2115 (*curr)->next = NULL;
2116 }
2117
2118 void
2119 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2120 gdbarch_init_ftype *init)
2121 {
2122 gdbarch_register (bfd_architecture, init, NULL);
2123 }
2124
2125
2126 /* Look for an architecture using gdbarch_info. */
2127
2128 struct gdbarch_list *
2129 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2130 const struct gdbarch_info *info)
2131 {
2132 for (; arches != NULL; arches = arches->next)
2133 {
2134 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2135 continue;
2136 if (info->byte_order != arches->gdbarch->byte_order)
2137 continue;
2138 if (info->osabi != arches->gdbarch->osabi)
2139 continue;
2140 if (info->target_desc != arches->gdbarch->target_desc)
2141 continue;
2142 return arches;
2143 }
2144 return NULL;
2145 }
2146
2147
2148 /* Find an architecture that matches the specified INFO. Create a new
2149 architecture if needed. Return that new architecture. */
2150
2151 struct gdbarch *
2152 gdbarch_find_by_info (struct gdbarch_info info)
2153 {
2154 struct gdbarch *new_gdbarch;
2155 struct gdbarch_registration *rego;
2156
2157 /* Fill in missing parts of the INFO struct using a number of
2158 sources: "set ..."; INFOabfd supplied; and the global
2159 defaults. */
2160 gdbarch_info_fill (&info);
2161
2162 /* Must have found some sort of architecture. */
2163 gdb_assert (info.bfd_arch_info != NULL);
2164
2165 if (gdbarch_debug)
2166 {
2167 fprintf_unfiltered (gdb_stdlog,
2168 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2169 (info.bfd_arch_info != NULL
2170 ? info.bfd_arch_info->printable_name
2171 : "(null)"));
2172 fprintf_unfiltered (gdb_stdlog,
2173 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2174 info.byte_order,
2175 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2176 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2177 : "default"));
2178 fprintf_unfiltered (gdb_stdlog,
2179 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2180 info.osabi, gdbarch_osabi_name (info.osabi));
2181 fprintf_unfiltered (gdb_stdlog,
2182 "gdbarch_find_by_info: info.abfd %s\n",
2183 host_address_to_string (info.abfd));
2184 fprintf_unfiltered (gdb_stdlog,
2185 "gdbarch_find_by_info: info.tdep_info %s\n",
2186 host_address_to_string (info.tdep_info));
2187 }
2188
2189 /* Find the tdep code that knows about this architecture. */
2190 for (rego = gdbarch_registry;
2191 rego != NULL;
2192 rego = rego->next)
2193 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2194 break;
2195 if (rego == NULL)
2196 {
2197 if (gdbarch_debug)
2198 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2199 "No matching architecture\n");
2200 return 0;
2201 }
2202
2203 /* Ask the tdep code for an architecture that matches "info". */
2204 new_gdbarch = rego->init (info, rego->arches);
2205
2206 /* Did the tdep code like it? No. Reject the change and revert to
2207 the old architecture. */
2208 if (new_gdbarch == NULL)
2209 {
2210 if (gdbarch_debug)
2211 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2212 "Target rejected architecture\n");
2213 return NULL;
2214 }
2215
2216 /* Is this a pre-existing architecture (as determined by already
2217 being initialized)? Move it to the front of the architecture
2218 list (keeping the list sorted Most Recently Used). */
2219 if (new_gdbarch->initialized_p)
2220 {
2221 struct gdbarch_list **list;
2222 struct gdbarch_list *this;
2223 if (gdbarch_debug)
2224 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2225 "Previous architecture %s (%s) selected\n",
2226 host_address_to_string (new_gdbarch),
2227 new_gdbarch->bfd_arch_info->printable_name);
2228 /* Find the existing arch in the list. */
2229 for (list = &rego->arches;
2230 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2231 list = &(*list)->next);
2232 /* It had better be in the list of architectures. */
2233 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2234 /* Unlink THIS. */
2235 this = (*list);
2236 (*list) = this->next;
2237 /* Insert THIS at the front. */
2238 this->next = rego->arches;
2239 rego->arches = this;
2240 /* Return it. */
2241 return new_gdbarch;
2242 }
2243
2244 /* It's a new architecture. */
2245 if (gdbarch_debug)
2246 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2247 "New architecture %s (%s) selected\n",
2248 host_address_to_string (new_gdbarch),
2249 new_gdbarch->bfd_arch_info->printable_name);
2250
2251 /* Insert the new architecture into the front of the architecture
2252 list (keep the list sorted Most Recently Used). */
2253 {
2254 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2255 this->next = rego->arches;
2256 this->gdbarch = new_gdbarch;
2257 rego->arches = this;
2258 }
2259
2260 /* Check that the newly installed architecture is valid. Plug in
2261 any post init values. */
2262 new_gdbarch->dump_tdep = rego->dump_tdep;
2263 verify_gdbarch (new_gdbarch);
2264 new_gdbarch->initialized_p = 1;
2265
2266 if (gdbarch_debug)
2267 gdbarch_dump (new_gdbarch, gdb_stdlog);
2268
2269 return new_gdbarch;
2270 }
2271
2272 /* Make the specified architecture current. */
2273
2274 void
2275 set_target_gdbarch (struct gdbarch *new_gdbarch)
2276 {
2277 gdb_assert (new_gdbarch != NULL);
2278 gdb_assert (new_gdbarch->initialized_p);
2279 current_inferior ()->gdbarch = new_gdbarch;
2280 observer_notify_architecture_changed (new_gdbarch);
2281 registers_changed ();
2282 }
2283
2284 /* Return the current inferior's arch. */
2285
2286 struct gdbarch *
2287 target_gdbarch (void)
2288 {
2289 return current_inferior ()->gdbarch;
2290 }
2291
2292 extern void _initialize_gdbarch (void);
2293
2294 void
2295 _initialize_gdbarch (void)
2296 {
2297 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2298 Set architecture debugging."), _("\\
2299 Show architecture debugging."), _("\\
2300 When non-zero, architecture debugging is enabled."),
2301 NULL,
2302 show_gdbarch_debug,
2303 &setdebuglist, &showdebuglist);
2304 }
2305 EOF
2306
2307 # close things off
2308 exec 1>&2
2309 #../move-if-change new-gdbarch.c gdbarch.c
2310 compare_new gdbarch.c