2003-06-11 Andrew Cagney <cagney@redhat.com>
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # This is simply not needed. See value_of_builtin_frame_fp_reg and
432 # call_function_by_hand.
433 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
434 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
435 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
436 # The dummy call frame SP should be set by push_dummy_call.
437 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
438 # Function for getting target's idea of a frame pointer. FIXME: GDB's
439 # whole scheme for dealing with "frames" and "frame pointers" needs a
440 # serious shakedown.
441 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
442 #
443 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
444 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
445 #
446 v:2:NUM_REGS:int:num_regs::::0:-1
447 # This macro gives the number of pseudo-registers that live in the
448 # register namespace but do not get fetched or stored on the target.
449 # These pseudo-registers may be aliases for other registers,
450 # combinations of other registers, or they may be computed by GDB.
451 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
452
453 # GDB's standard (or well known) register numbers. These can map onto
454 # a real register or a pseudo (computed) register or not be defined at
455 # all (-1).
456 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
457 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
458 # This is simply not needed. See value_of_builtin_frame_fp_reg and
459 # call_function_by_hand.
460 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
461 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
462 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
463 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
464 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
465 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
466 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
467 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
468 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
469 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
470 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
471 # Convert from an sdb register number to an internal gdb register number.
472 # This should be defined in tm.h, if REGISTER_NAMES is not set up
473 # to map one to one onto the sdb register numbers.
474 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
475 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
476 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
477 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
478 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
479 # NOTE: cagney/2002-05-02: This function with predicate has a valid
480 # (callable) initial value. As a consequence, even when the predicate
481 # is false, the corresponding function works. This simplifies the
482 # migration process - old code, calling REGISTER_BYTE, doesn't need to
483 # be modified.
484 F::REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
485 # The methods REGISTER_VIRTUAL_TYPE, REGISTER_VIRTUAL_SIZE and
486 # REGISTER_RAW_SIZE are all being replaced by REGISTER_TYPE.
487 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
488 # The methods DEPRECATED_MAX_REGISTER_RAW_SIZE and
489 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE are all being replaced by
490 # MAX_REGISTER_SIZE (a constant).
491 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
492 # The methods REGISTER_VIRTUAL_TYPE, REGISTER_VIRTUAL_SIZE and
493 # REGISTER_RAW_SIZE are all being replaced by REGISTER_TYPE.
494 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
495 # The methods DEPRECATED_MAX_REGISTER_RAW_SIZE and
496 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE are all being replaced by
497 # MAX_REGISTER_SIZE (a constant).
498 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
499 # The methods REGISTER_VIRTUAL_TYPE, REGISTER_VIRTUAL_SIZE and
500 # REGISTER_RAW_SIZE are all being replaced by REGISTER_TYPE.
501 F:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
502 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
503 #
504 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
505 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
506 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
507 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
508 # MAP a GDB RAW register number onto a simulator register number. See
509 # also include/...-sim.h.
510 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
511 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
512 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
513 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
514 # setjmp/longjmp support.
515 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
516 #
517 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
518 # much better but at least they are vaguely consistent). The headers
519 # and body contain convoluted #if/#else sequences for determine how
520 # things should be compiled. Instead of trying to mimic that
521 # behaviour here (and hence entrench it further) gdbarch simply
522 # reqires that these methods be set up from the word go. This also
523 # avoids any potential problems with moving beyond multi-arch partial.
524 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
525 # Replaced by push_dummy_code.
526 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
527 # Replaced by push_dummy_code.
528 f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0
529 # Replaced by push_dummy_code.
530 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
531 # Replaced by push_dummy_code.
532 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
533 # Replaced by push_dummy_code.
534 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
535 # NOTE: cagney/2002-11-24: This function with predicate has a valid
536 # (callable) initial value. As a consequence, even when the predicate
537 # is false, the corresponding function works. This simplifies the
538 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
539 # doesn't need to be modified.
540 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
541 # Replaced by push_dummy_code.
542 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
543 # Replaced by push_dummy_code.
544 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
545 # Replaced by push_dummy_code.
546 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust::::0
547 # Replaced by push_dummy_code.
548 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
549 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
550 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr:
551 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
552 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
553 #
554 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
555 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
556 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
557 #
558 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
559 # For raw <-> cooked register conversions, replaced by pseudo registers.
560 f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
561 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
562 # For raw <-> cooked register conversions, replaced by pseudo registers.
563 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
564 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
565 # For raw <-> cooked register conversions, replaced by pseudo registers.
566 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
567 #
568 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
569 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
570 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
571 #
572 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
573 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
574 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
575 #
576 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
577 # Replaced by PUSH_DUMMY_CALL
578 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
579 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
580 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
581 # NOTE: This can be handled directly in push_dummy_call.
582 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
583 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-:::0
584 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
585 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
586 #
587 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
588 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
589 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
590 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
591 #
592 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
593 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
594 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
595 #
596 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame:::0
597 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
598 #
599 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
600 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
601 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
602 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
603 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
604 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
605 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
606 f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
607 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
608 #
609 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
610 #
611 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
612 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
613 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame::0:0
614 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
615 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
616 # note, per UNWIND_PC's doco, that while the two have similar
617 # interfaces they have very different underlying implementations.
618 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi::0:0
619 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame:
620 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame:
621 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
622 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
623 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
624 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
625 #
626 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
627 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
628 # NOTE: cagney/2003-03-24: This is better handled by PUSH_ARGUMENTS.
629 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
630 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
631 # FIXME: kettenis/2003-03-08: This should be replaced by a function
632 # parametrized with (at least) the regcache.
633 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
634 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info::0:0
635 v:2:PARM_BOUNDARY:int:parm_boundary
636 #
637 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
638 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
639 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
640 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
641 # On some machines there are bits in addresses which are not really
642 # part of the address, but are used by the kernel, the hardware, etc.
643 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
644 # we get a "real" address such as one would find in a symbol table.
645 # This is used only for addresses of instructions, and even then I'm
646 # not sure it's used in all contexts. It exists to deal with there
647 # being a few stray bits in the PC which would mislead us, not as some
648 # sort of generic thing to handle alignment or segmentation (it's
649 # possible it should be in TARGET_READ_PC instead).
650 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
651 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
652 # ADDR_BITS_REMOVE.
653 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
654 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
655 # the target needs software single step. An ISA method to implement it.
656 #
657 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
658 # using the breakpoint system instead of blatting memory directly (as with rs6000).
659 #
660 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
661 # single step. If not, then implement single step using breakpoints.
662 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
663 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
664 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
665
666
667 # For SVR4 shared libraries, each call goes through a small piece of
668 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
669 # to nonzero if we are currently stopped in one of these.
670 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
671
672 # Some systems also have trampoline code for returning from shared libs.
673 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
674
675 # Sigtramp is a routine that the kernel calls (which then calls the
676 # signal handler). On most machines it is a library routine that is
677 # linked into the executable.
678 #
679 # This macro, given a program counter value and the name of the
680 # function in which that PC resides (which can be null if the name is
681 # not known), returns nonzero if the PC and name show that we are in
682 # sigtramp.
683 #
684 # On most machines just see if the name is sigtramp (and if we have
685 # no name, assume we are not in sigtramp).
686 #
687 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
688 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
689 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
690 # own local NAME lookup.
691 #
692 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
693 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
694 # does not.
695 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
696 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
697 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
698 # A target might have problems with watchpoints as soon as the stack
699 # frame of the current function has been destroyed. This mostly happens
700 # as the first action in a funtion's epilogue. in_function_epilogue_p()
701 # is defined to return a non-zero value if either the given addr is one
702 # instruction after the stack destroying instruction up to the trailing
703 # return instruction or if we can figure out that the stack frame has
704 # already been invalidated regardless of the value of addr. Targets
705 # which don't suffer from that problem could just let this functionality
706 # untouched.
707 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
708 # Given a vector of command-line arguments, return a newly allocated
709 # string which, when passed to the create_inferior function, will be
710 # parsed (on Unix systems, by the shell) to yield the same vector.
711 # This function should call error() if the argument vector is not
712 # representable for this target or if this target does not support
713 # command-line arguments.
714 # ARGC is the number of elements in the vector.
715 # ARGV is an array of strings, one per argument.
716 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
717 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
718 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
719 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
720 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
721 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
722 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
723 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
724 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
725 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
726 # Is a register in a group
727 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
728 # Fetch the pointer to the ith function argument.
729 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type:::::::::
730 EOF
731 }
732
733 #
734 # The .log file
735 #
736 exec > new-gdbarch.log
737 function_list | while do_read
738 do
739 cat <<EOF
740 ${class} ${macro}(${actual})
741 ${returntype} ${function} ($formal)${attrib}
742 EOF
743 for r in ${read}
744 do
745 eval echo \"\ \ \ \ ${r}=\${${r}}\"
746 done
747 if class_is_predicate_p && fallback_default_p
748 then
749 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
750 kill $$
751 exit 1
752 fi
753 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
754 then
755 echo "Error: postdefault is useless when invalid_p=0" 1>&2
756 kill $$
757 exit 1
758 fi
759 if class_is_multiarch_p
760 then
761 if class_is_predicate_p ; then :
762 elif test "x${predefault}" = "x"
763 then
764 echo "Error: pure multi-arch function must have a predefault" 1>&2
765 kill $$
766 exit 1
767 fi
768 fi
769 echo ""
770 done
771
772 exec 1>&2
773 compare_new gdbarch.log
774
775
776 copyright ()
777 {
778 cat <<EOF
779 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
780
781 /* Dynamic architecture support for GDB, the GNU debugger.
782 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
783
784 This file is part of GDB.
785
786 This program is free software; you can redistribute it and/or modify
787 it under the terms of the GNU General Public License as published by
788 the Free Software Foundation; either version 2 of the License, or
789 (at your option) any later version.
790
791 This program is distributed in the hope that it will be useful,
792 but WITHOUT ANY WARRANTY; without even the implied warranty of
793 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
794 GNU General Public License for more details.
795
796 You should have received a copy of the GNU General Public License
797 along with this program; if not, write to the Free Software
798 Foundation, Inc., 59 Temple Place - Suite 330,
799 Boston, MA 02111-1307, USA. */
800
801 /* This file was created with the aid of \`\`gdbarch.sh''.
802
803 The Bourne shell script \`\`gdbarch.sh'' creates the files
804 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
805 against the existing \`\`gdbarch.[hc]''. Any differences found
806 being reported.
807
808 If editing this file, please also run gdbarch.sh and merge any
809 changes into that script. Conversely, when making sweeping changes
810 to this file, modifying gdbarch.sh and using its output may prove
811 easier. */
812
813 EOF
814 }
815
816 #
817 # The .h file
818 #
819
820 exec > new-gdbarch.h
821 copyright
822 cat <<EOF
823 #ifndef GDBARCH_H
824 #define GDBARCH_H
825
826 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
827 #if !GDB_MULTI_ARCH
828 /* Pull in function declarations refered to, indirectly, via macros. */
829 #include "inferior.h" /* For unsigned_address_to_pointer(). */
830 #include "symfile.h" /* For entry_point_address(). */
831 #endif
832
833 struct floatformat;
834 struct ui_file;
835 struct frame_info;
836 struct value;
837 struct objfile;
838 struct minimal_symbol;
839 struct regcache;
840 struct reggroup;
841
842 extern struct gdbarch *current_gdbarch;
843
844
845 /* If any of the following are defined, the target wasn't correctly
846 converted. */
847
848 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
849 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
850 #endif
851 EOF
852
853 # function typedef's
854 printf "\n"
855 printf "\n"
856 printf "/* The following are pre-initialized by GDBARCH. */\n"
857 function_list | while do_read
858 do
859 if class_is_info_p
860 then
861 printf "\n"
862 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
863 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
864 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
865 printf "#error \"Non multi-arch definition of ${macro}\"\n"
866 printf "#endif\n"
867 printf "#if !defined (${macro})\n"
868 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
869 printf "#endif\n"
870 fi
871 done
872
873 # function typedef's
874 printf "\n"
875 printf "\n"
876 printf "/* The following are initialized by the target dependent code. */\n"
877 function_list | while do_read
878 do
879 if [ -n "${comment}" ]
880 then
881 echo "${comment}" | sed \
882 -e '2 s,#,/*,' \
883 -e '3,$ s,#, ,' \
884 -e '$ s,$, */,'
885 fi
886 if class_is_multiarch_p
887 then
888 if class_is_predicate_p
889 then
890 printf "\n"
891 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
892 fi
893 else
894 if class_is_predicate_p
895 then
896 printf "\n"
897 printf "#if defined (${macro})\n"
898 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
899 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
900 printf "#if !defined (${macro}_P)\n"
901 printf "#define ${macro}_P() (1)\n"
902 printf "#endif\n"
903 printf "#endif\n"
904 printf "\n"
905 printf "/* Default predicate for non- multi-arch targets. */\n"
906 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
907 printf "#define ${macro}_P() (0)\n"
908 printf "#endif\n"
909 printf "\n"
910 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
911 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
912 printf "#error \"Non multi-arch definition of ${macro}\"\n"
913 printf "#endif\n"
914 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
915 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
916 printf "#endif\n"
917 fi
918 fi
919 if class_is_variable_p
920 then
921 if fallback_default_p || class_is_predicate_p
922 then
923 printf "\n"
924 printf "/* Default (value) for non- multi-arch platforms. */\n"
925 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
926 echo "#define ${macro} (${fallbackdefault})" \
927 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
928 printf "#endif\n"
929 fi
930 printf "\n"
931 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
932 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
933 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
934 printf "#error \"Non multi-arch definition of ${macro}\"\n"
935 printf "#endif\n"
936 printf "#if !defined (${macro})\n"
937 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
938 printf "#endif\n"
939 fi
940 if class_is_function_p
941 then
942 if class_is_multiarch_p ; then :
943 elif fallback_default_p || class_is_predicate_p
944 then
945 printf "\n"
946 printf "/* Default (function) for non- multi-arch platforms. */\n"
947 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
948 if [ "x${fallbackdefault}" = "x0" ]
949 then
950 if [ "x${actual}" = "x-" ]
951 then
952 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
953 else
954 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
955 fi
956 else
957 # FIXME: Should be passing current_gdbarch through!
958 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
959 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
960 fi
961 printf "#endif\n"
962 fi
963 printf "\n"
964 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
965 then
966 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
967 elif class_is_multiarch_p
968 then
969 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
970 else
971 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
972 fi
973 if [ "x${formal}" = "xvoid" ]
974 then
975 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
976 else
977 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
978 fi
979 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
980 if class_is_multiarch_p ; then :
981 else
982 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
983 printf "#error \"Non multi-arch definition of ${macro}\"\n"
984 printf "#endif\n"
985 if [ "x${actual}" = "x" ]
986 then
987 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
988 elif [ "x${actual}" = "x-" ]
989 then
990 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
991 else
992 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
993 fi
994 printf "#if !defined (${macro})\n"
995 if [ "x${actual}" = "x" ]
996 then
997 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
998 elif [ "x${actual}" = "x-" ]
999 then
1000 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1001 else
1002 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1003 fi
1004 printf "#endif\n"
1005 fi
1006 fi
1007 done
1008
1009 # close it off
1010 cat <<EOF
1011
1012 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1013
1014
1015 /* Mechanism for co-ordinating the selection of a specific
1016 architecture.
1017
1018 GDB targets (*-tdep.c) can register an interest in a specific
1019 architecture. Other GDB components can register a need to maintain
1020 per-architecture data.
1021
1022 The mechanisms below ensures that there is only a loose connection
1023 between the set-architecture command and the various GDB
1024 components. Each component can independently register their need
1025 to maintain architecture specific data with gdbarch.
1026
1027 Pragmatics:
1028
1029 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1030 didn't scale.
1031
1032 The more traditional mega-struct containing architecture specific
1033 data for all the various GDB components was also considered. Since
1034 GDB is built from a variable number of (fairly independent)
1035 components it was determined that the global aproach was not
1036 applicable. */
1037
1038
1039 /* Register a new architectural family with GDB.
1040
1041 Register support for the specified ARCHITECTURE with GDB. When
1042 gdbarch determines that the specified architecture has been
1043 selected, the corresponding INIT function is called.
1044
1045 --
1046
1047 The INIT function takes two parameters: INFO which contains the
1048 information available to gdbarch about the (possibly new)
1049 architecture; ARCHES which is a list of the previously created
1050 \`\`struct gdbarch'' for this architecture.
1051
1052 The INFO parameter is, as far as possible, be pre-initialized with
1053 information obtained from INFO.ABFD or the previously selected
1054 architecture.
1055
1056 The ARCHES parameter is a linked list (sorted most recently used)
1057 of all the previously created architures for this architecture
1058 family. The (possibly NULL) ARCHES->gdbarch can used to access
1059 values from the previously selected architecture for this
1060 architecture family. The global \`\`current_gdbarch'' shall not be
1061 used.
1062
1063 The INIT function shall return any of: NULL - indicating that it
1064 doesn't recognize the selected architecture; an existing \`\`struct
1065 gdbarch'' from the ARCHES list - indicating that the new
1066 architecture is just a synonym for an earlier architecture (see
1067 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1068 - that describes the selected architecture (see gdbarch_alloc()).
1069
1070 The DUMP_TDEP function shall print out all target specific values.
1071 Care should be taken to ensure that the function works in both the
1072 multi-arch and non- multi-arch cases. */
1073
1074 struct gdbarch_list
1075 {
1076 struct gdbarch *gdbarch;
1077 struct gdbarch_list *next;
1078 };
1079
1080 struct gdbarch_info
1081 {
1082 /* Use default: NULL (ZERO). */
1083 const struct bfd_arch_info *bfd_arch_info;
1084
1085 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1086 int byte_order;
1087
1088 /* Use default: NULL (ZERO). */
1089 bfd *abfd;
1090
1091 /* Use default: NULL (ZERO). */
1092 struct gdbarch_tdep_info *tdep_info;
1093
1094 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1095 enum gdb_osabi osabi;
1096 };
1097
1098 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1099 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1100
1101 /* DEPRECATED - use gdbarch_register() */
1102 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1103
1104 extern void gdbarch_register (enum bfd_architecture architecture,
1105 gdbarch_init_ftype *,
1106 gdbarch_dump_tdep_ftype *);
1107
1108
1109 /* Return a freshly allocated, NULL terminated, array of the valid
1110 architecture names. Since architectures are registered during the
1111 _initialize phase this function only returns useful information
1112 once initialization has been completed. */
1113
1114 extern const char **gdbarch_printable_names (void);
1115
1116
1117 /* Helper function. Search the list of ARCHES for a GDBARCH that
1118 matches the information provided by INFO. */
1119
1120 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1121
1122
1123 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1124 basic initialization using values obtained from the INFO andTDEP
1125 parameters. set_gdbarch_*() functions are called to complete the
1126 initialization of the object. */
1127
1128 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1129
1130
1131 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1132 It is assumed that the caller freeds the \`\`struct
1133 gdbarch_tdep''. */
1134
1135 extern void gdbarch_free (struct gdbarch *);
1136
1137
1138 /* Helper function. Force an update of the current architecture.
1139
1140 The actual architecture selected is determined by INFO, \`\`(gdb) set
1141 architecture'' et.al., the existing architecture and BFD's default
1142 architecture. INFO should be initialized to zero and then selected
1143 fields should be updated.
1144
1145 Returns non-zero if the update succeeds */
1146
1147 extern int gdbarch_update_p (struct gdbarch_info info);
1148
1149
1150
1151 /* Register per-architecture data-pointer.
1152
1153 Reserve space for a per-architecture data-pointer. An identifier
1154 for the reserved data-pointer is returned. That identifer should
1155 be saved in a local static variable.
1156
1157 The per-architecture data-pointer is either initialized explicitly
1158 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1159 gdbarch_data()). FREE() is called to delete either an existing
1160 data-pointer overridden by set_gdbarch_data() or when the
1161 architecture object is being deleted.
1162
1163 When a previously created architecture is re-selected, the
1164 per-architecture data-pointer for that previous architecture is
1165 restored. INIT() is not re-called.
1166
1167 Multiple registrarants for any architecture are allowed (and
1168 strongly encouraged). */
1169
1170 struct gdbarch_data;
1171
1172 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1173 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1174 void *pointer);
1175 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1176 gdbarch_data_free_ftype *free);
1177 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1178 struct gdbarch_data *data,
1179 void *pointer);
1180
1181 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1182
1183
1184 /* Register per-architecture memory region.
1185
1186 Provide a memory-region swap mechanism. Per-architecture memory
1187 region are created. These memory regions are swapped whenever the
1188 architecture is changed. For a new architecture, the memory region
1189 is initialized with zero (0) and the INIT function is called.
1190
1191 Memory regions are swapped / initialized in the order that they are
1192 registered. NULL DATA and/or INIT values can be specified.
1193
1194 New code should use register_gdbarch_data(). */
1195
1196 typedef void (gdbarch_swap_ftype) (void);
1197 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1198 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1199
1200
1201
1202 /* The target-system-dependent byte order is dynamic */
1203
1204 extern int target_byte_order;
1205 #ifndef TARGET_BYTE_ORDER
1206 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1207 #endif
1208
1209 extern int target_byte_order_auto;
1210 #ifndef TARGET_BYTE_ORDER_AUTO
1211 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1212 #endif
1213
1214
1215
1216 /* The target-system-dependent BFD architecture is dynamic */
1217
1218 extern int target_architecture_auto;
1219 #ifndef TARGET_ARCHITECTURE_AUTO
1220 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1221 #endif
1222
1223 extern const struct bfd_arch_info *target_architecture;
1224 #ifndef TARGET_ARCHITECTURE
1225 #define TARGET_ARCHITECTURE (target_architecture + 0)
1226 #endif
1227
1228
1229 /* The target-system-dependent disassembler is semi-dynamic */
1230
1231 /* Use gdb_disassemble, and gdbarch_print_insn instead. */
1232 extern int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info*);
1233
1234 /* Use set_gdbarch_print_insn instead. */
1235 extern disassemble_info deprecated_tm_print_insn_info;
1236
1237 /* Set the dynamic target-system-dependent parameters (architecture,
1238 byte-order, ...) using information found in the BFD */
1239
1240 extern void set_gdbarch_from_file (bfd *);
1241
1242
1243 /* Initialize the current architecture to the "first" one we find on
1244 our list. */
1245
1246 extern void initialize_current_architecture (void);
1247
1248 /* For non-multiarched targets, do any initialization of the default
1249 gdbarch object necessary after the _initialize_MODULE functions
1250 have run. */
1251 extern void initialize_non_multiarch (void);
1252
1253 /* gdbarch trace variable */
1254 extern int gdbarch_debug;
1255
1256 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1257
1258 #endif
1259 EOF
1260 exec 1>&2
1261 #../move-if-change new-gdbarch.h gdbarch.h
1262 compare_new gdbarch.h
1263
1264
1265 #
1266 # C file
1267 #
1268
1269 exec > new-gdbarch.c
1270 copyright
1271 cat <<EOF
1272
1273 #include "defs.h"
1274 #include "arch-utils.h"
1275
1276 #if GDB_MULTI_ARCH
1277 #include "gdbcmd.h"
1278 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1279 #else
1280 /* Just include everything in sight so that the every old definition
1281 of macro is visible. */
1282 #include "gdb_string.h"
1283 #include <ctype.h>
1284 #include "symtab.h"
1285 #include "frame.h"
1286 #include "inferior.h"
1287 #include "breakpoint.h"
1288 #include "gdb_wait.h"
1289 #include "gdbcore.h"
1290 #include "gdbcmd.h"
1291 #include "target.h"
1292 #include "gdbthread.h"
1293 #include "annotate.h"
1294 #include "symfile.h" /* for overlay functions */
1295 #include "value.h" /* For old tm.h/nm.h macros. */
1296 #endif
1297 #include "symcat.h"
1298
1299 #include "floatformat.h"
1300
1301 #include "gdb_assert.h"
1302 #include "gdb_string.h"
1303 #include "gdb-events.h"
1304 #include "reggroups.h"
1305 #include "osabi.h"
1306 #include "symfile.h" /* For entry_point_address. */
1307
1308 /* Static function declarations */
1309
1310 static void verify_gdbarch (struct gdbarch *gdbarch);
1311 static void alloc_gdbarch_data (struct gdbarch *);
1312 static void free_gdbarch_data (struct gdbarch *);
1313 static void init_gdbarch_swap (struct gdbarch *);
1314 static void clear_gdbarch_swap (struct gdbarch *);
1315 static void swapout_gdbarch_swap (struct gdbarch *);
1316 static void swapin_gdbarch_swap (struct gdbarch *);
1317
1318 /* Non-zero if we want to trace architecture code. */
1319
1320 #ifndef GDBARCH_DEBUG
1321 #define GDBARCH_DEBUG 0
1322 #endif
1323 int gdbarch_debug = GDBARCH_DEBUG;
1324
1325 EOF
1326
1327 # gdbarch open the gdbarch object
1328 printf "\n"
1329 printf "/* Maintain the struct gdbarch object */\n"
1330 printf "\n"
1331 printf "struct gdbarch\n"
1332 printf "{\n"
1333 printf " /* Has this architecture been fully initialized? */\n"
1334 printf " int initialized_p;\n"
1335 printf " /* basic architectural information */\n"
1336 function_list | while do_read
1337 do
1338 if class_is_info_p
1339 then
1340 printf " ${returntype} ${function};\n"
1341 fi
1342 done
1343 printf "\n"
1344 printf " /* target specific vector. */\n"
1345 printf " struct gdbarch_tdep *tdep;\n"
1346 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1347 printf "\n"
1348 printf " /* per-architecture data-pointers */\n"
1349 printf " unsigned nr_data;\n"
1350 printf " void **data;\n"
1351 printf "\n"
1352 printf " /* per-architecture swap-regions */\n"
1353 printf " struct gdbarch_swap *swap;\n"
1354 printf "\n"
1355 cat <<EOF
1356 /* Multi-arch values.
1357
1358 When extending this structure you must:
1359
1360 Add the field below.
1361
1362 Declare set/get functions and define the corresponding
1363 macro in gdbarch.h.
1364
1365 gdbarch_alloc(): If zero/NULL is not a suitable default,
1366 initialize the new field.
1367
1368 verify_gdbarch(): Confirm that the target updated the field
1369 correctly.
1370
1371 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1372 field is dumped out
1373
1374 \`\`startup_gdbarch()'': Append an initial value to the static
1375 variable (base values on the host's c-type system).
1376
1377 get_gdbarch(): Implement the set/get functions (probably using
1378 the macro's as shortcuts).
1379
1380 */
1381
1382 EOF
1383 function_list | while do_read
1384 do
1385 if class_is_variable_p
1386 then
1387 printf " ${returntype} ${function};\n"
1388 elif class_is_function_p
1389 then
1390 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1391 fi
1392 done
1393 printf "};\n"
1394
1395 # A pre-initialized vector
1396 printf "\n"
1397 printf "\n"
1398 cat <<EOF
1399 /* The default architecture uses host values (for want of a better
1400 choice). */
1401 EOF
1402 printf "\n"
1403 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1404 printf "\n"
1405 printf "struct gdbarch startup_gdbarch =\n"
1406 printf "{\n"
1407 printf " 1, /* Always initialized. */\n"
1408 printf " /* basic architecture information */\n"
1409 function_list | while do_read
1410 do
1411 if class_is_info_p
1412 then
1413 printf " ${staticdefault}, /* ${function} */\n"
1414 fi
1415 done
1416 cat <<EOF
1417 /* target specific vector and its dump routine */
1418 NULL, NULL,
1419 /*per-architecture data-pointers and swap regions */
1420 0, NULL, NULL,
1421 /* Multi-arch values */
1422 EOF
1423 function_list | while do_read
1424 do
1425 if class_is_function_p || class_is_variable_p
1426 then
1427 printf " ${staticdefault}, /* ${function} */\n"
1428 fi
1429 done
1430 cat <<EOF
1431 /* startup_gdbarch() */
1432 };
1433
1434 struct gdbarch *current_gdbarch = &startup_gdbarch;
1435
1436 /* Do any initialization needed for a non-multiarch configuration
1437 after the _initialize_MODULE functions have been run. */
1438 void
1439 initialize_non_multiarch (void)
1440 {
1441 alloc_gdbarch_data (&startup_gdbarch);
1442 /* Ensure that all swap areas are zeroed so that they again think
1443 they are starting from scratch. */
1444 clear_gdbarch_swap (&startup_gdbarch);
1445 init_gdbarch_swap (&startup_gdbarch);
1446 }
1447 EOF
1448
1449 # Create a new gdbarch struct
1450 printf "\n"
1451 printf "\n"
1452 cat <<EOF
1453 /* Create a new \`\`struct gdbarch'' based on information provided by
1454 \`\`struct gdbarch_info''. */
1455 EOF
1456 printf "\n"
1457 cat <<EOF
1458 struct gdbarch *
1459 gdbarch_alloc (const struct gdbarch_info *info,
1460 struct gdbarch_tdep *tdep)
1461 {
1462 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1463 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1464 the current local architecture and not the previous global
1465 architecture. This ensures that the new architectures initial
1466 values are not influenced by the previous architecture. Once
1467 everything is parameterised with gdbarch, this will go away. */
1468 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1469 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1470
1471 alloc_gdbarch_data (current_gdbarch);
1472
1473 current_gdbarch->tdep = tdep;
1474 EOF
1475 printf "\n"
1476 function_list | while do_read
1477 do
1478 if class_is_info_p
1479 then
1480 printf " current_gdbarch->${function} = info->${function};\n"
1481 fi
1482 done
1483 printf "\n"
1484 printf " /* Force the explicit initialization of these. */\n"
1485 function_list | while do_read
1486 do
1487 if class_is_function_p || class_is_variable_p
1488 then
1489 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1490 then
1491 printf " current_gdbarch->${function} = ${predefault};\n"
1492 fi
1493 fi
1494 done
1495 cat <<EOF
1496 /* gdbarch_alloc() */
1497
1498 return current_gdbarch;
1499 }
1500 EOF
1501
1502 # Free a gdbarch struct.
1503 printf "\n"
1504 printf "\n"
1505 cat <<EOF
1506 /* Free a gdbarch struct. This should never happen in normal
1507 operation --- once you've created a gdbarch, you keep it around.
1508 However, if an architecture's init function encounters an error
1509 building the structure, it may need to clean up a partially
1510 constructed gdbarch. */
1511
1512 void
1513 gdbarch_free (struct gdbarch *arch)
1514 {
1515 gdb_assert (arch != NULL);
1516 free_gdbarch_data (arch);
1517 xfree (arch);
1518 }
1519 EOF
1520
1521 # verify a new architecture
1522 printf "\n"
1523 printf "\n"
1524 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1525 printf "\n"
1526 cat <<EOF
1527 static void
1528 verify_gdbarch (struct gdbarch *gdbarch)
1529 {
1530 struct ui_file *log;
1531 struct cleanup *cleanups;
1532 long dummy;
1533 char *buf;
1534 /* Only perform sanity checks on a multi-arch target. */
1535 if (!GDB_MULTI_ARCH)
1536 return;
1537 log = mem_fileopen ();
1538 cleanups = make_cleanup_ui_file_delete (log);
1539 /* fundamental */
1540 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1541 fprintf_unfiltered (log, "\n\tbyte-order");
1542 if (gdbarch->bfd_arch_info == NULL)
1543 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1544 /* Check those that need to be defined for the given multi-arch level. */
1545 EOF
1546 function_list | while do_read
1547 do
1548 if class_is_function_p || class_is_variable_p
1549 then
1550 if [ "x${invalid_p}" = "x0" ]
1551 then
1552 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1553 elif class_is_predicate_p
1554 then
1555 printf " /* Skip verify of ${function}, has predicate */\n"
1556 # FIXME: See do_read for potential simplification
1557 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1558 then
1559 printf " if (${invalid_p})\n"
1560 printf " gdbarch->${function} = ${postdefault};\n"
1561 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1562 then
1563 printf " if (gdbarch->${function} == ${predefault})\n"
1564 printf " gdbarch->${function} = ${postdefault};\n"
1565 elif [ -n "${postdefault}" ]
1566 then
1567 printf " if (gdbarch->${function} == 0)\n"
1568 printf " gdbarch->${function} = ${postdefault};\n"
1569 elif [ -n "${invalid_p}" ]
1570 then
1571 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1572 printf " && (${invalid_p}))\n"
1573 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1574 elif [ -n "${predefault}" ]
1575 then
1576 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1577 printf " && (gdbarch->${function} == ${predefault}))\n"
1578 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1579 fi
1580 fi
1581 done
1582 cat <<EOF
1583 buf = ui_file_xstrdup (log, &dummy);
1584 make_cleanup (xfree, buf);
1585 if (strlen (buf) > 0)
1586 internal_error (__FILE__, __LINE__,
1587 "verify_gdbarch: the following are invalid ...%s",
1588 buf);
1589 do_cleanups (cleanups);
1590 }
1591 EOF
1592
1593 # dump the structure
1594 printf "\n"
1595 printf "\n"
1596 cat <<EOF
1597 /* Print out the details of the current architecture. */
1598
1599 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1600 just happens to match the global variable \`\`current_gdbarch''. That
1601 way macros refering to that variable get the local and not the global
1602 version - ulgh. Once everything is parameterised with gdbarch, this
1603 will go away. */
1604
1605 void
1606 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1607 {
1608 fprintf_unfiltered (file,
1609 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1610 GDB_MULTI_ARCH);
1611 EOF
1612 function_list | sort -t: -k 3 | while do_read
1613 do
1614 # First the predicate
1615 if class_is_predicate_p
1616 then
1617 if class_is_multiarch_p
1618 then
1619 printf " if (GDB_MULTI_ARCH)\n"
1620 printf " fprintf_unfiltered (file,\n"
1621 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1622 printf " gdbarch_${function}_p (current_gdbarch));\n"
1623 else
1624 printf "#ifdef ${macro}_P\n"
1625 printf " fprintf_unfiltered (file,\n"
1626 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1627 printf " \"${macro}_P()\",\n"
1628 printf " XSTRING (${macro}_P ()));\n"
1629 printf " fprintf_unfiltered (file,\n"
1630 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1631 printf " ${macro}_P ());\n"
1632 printf "#endif\n"
1633 fi
1634 fi
1635 # multiarch functions don't have macros.
1636 if class_is_multiarch_p
1637 then
1638 printf " if (GDB_MULTI_ARCH)\n"
1639 printf " fprintf_unfiltered (file,\n"
1640 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1641 printf " (long) current_gdbarch->${function});\n"
1642 continue
1643 fi
1644 # Print the macro definition.
1645 printf "#ifdef ${macro}\n"
1646 if [ "x${returntype}" = "xvoid" ]
1647 then
1648 printf "#if GDB_MULTI_ARCH\n"
1649 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1650 fi
1651 if class_is_function_p
1652 then
1653 printf " fprintf_unfiltered (file,\n"
1654 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1655 printf " \"${macro}(${actual})\",\n"
1656 printf " XSTRING (${macro} (${actual})));\n"
1657 else
1658 printf " fprintf_unfiltered (file,\n"
1659 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1660 printf " XSTRING (${macro}));\n"
1661 fi
1662 # Print the architecture vector value
1663 if [ "x${returntype}" = "xvoid" ]
1664 then
1665 printf "#endif\n"
1666 fi
1667 if [ "x${print_p}" = "x()" ]
1668 then
1669 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1670 elif [ "x${print_p}" = "x0" ]
1671 then
1672 printf " /* skip print of ${macro}, print_p == 0. */\n"
1673 elif [ -n "${print_p}" ]
1674 then
1675 printf " if (${print_p})\n"
1676 printf " fprintf_unfiltered (file,\n"
1677 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1678 printf " ${print});\n"
1679 elif class_is_function_p
1680 then
1681 printf " if (GDB_MULTI_ARCH)\n"
1682 printf " fprintf_unfiltered (file,\n"
1683 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1684 printf " (long) current_gdbarch->${function}\n"
1685 printf " /*${macro} ()*/);\n"
1686 else
1687 printf " fprintf_unfiltered (file,\n"
1688 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1689 printf " ${print});\n"
1690 fi
1691 printf "#endif\n"
1692 done
1693 cat <<EOF
1694 if (current_gdbarch->dump_tdep != NULL)
1695 current_gdbarch->dump_tdep (current_gdbarch, file);
1696 }
1697 EOF
1698
1699
1700 # GET/SET
1701 printf "\n"
1702 cat <<EOF
1703 struct gdbarch_tdep *
1704 gdbarch_tdep (struct gdbarch *gdbarch)
1705 {
1706 if (gdbarch_debug >= 2)
1707 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1708 return gdbarch->tdep;
1709 }
1710 EOF
1711 printf "\n"
1712 function_list | while do_read
1713 do
1714 if class_is_predicate_p
1715 then
1716 printf "\n"
1717 printf "int\n"
1718 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1719 printf "{\n"
1720 printf " gdb_assert (gdbarch != NULL);\n"
1721 if [ -n "${predicate}" ]
1722 then
1723 printf " return ${predicate};\n"
1724 else
1725 printf " return gdbarch->${function} != 0;\n"
1726 fi
1727 printf "}\n"
1728 fi
1729 if class_is_function_p
1730 then
1731 printf "\n"
1732 printf "${returntype}\n"
1733 if [ "x${formal}" = "xvoid" ]
1734 then
1735 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1736 else
1737 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1738 fi
1739 printf "{\n"
1740 printf " gdb_assert (gdbarch != NULL);\n"
1741 printf " if (gdbarch->${function} == 0)\n"
1742 printf " internal_error (__FILE__, __LINE__,\n"
1743 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1744 if class_is_predicate_p && test -n "${predicate}"
1745 then
1746 # Allow a call to a function with a predicate.
1747 printf " /* Ignore predicate (${predicate}). */\n"
1748 fi
1749 printf " if (gdbarch_debug >= 2)\n"
1750 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1751 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1752 then
1753 if class_is_multiarch_p
1754 then
1755 params="gdbarch"
1756 else
1757 params=""
1758 fi
1759 else
1760 if class_is_multiarch_p
1761 then
1762 params="gdbarch, ${actual}"
1763 else
1764 params="${actual}"
1765 fi
1766 fi
1767 if [ "x${returntype}" = "xvoid" ]
1768 then
1769 printf " gdbarch->${function} (${params});\n"
1770 else
1771 printf " return gdbarch->${function} (${params});\n"
1772 fi
1773 printf "}\n"
1774 printf "\n"
1775 printf "void\n"
1776 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1777 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1778 printf "{\n"
1779 printf " gdbarch->${function} = ${function};\n"
1780 printf "}\n"
1781 elif class_is_variable_p
1782 then
1783 printf "\n"
1784 printf "${returntype}\n"
1785 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1786 printf "{\n"
1787 printf " gdb_assert (gdbarch != NULL);\n"
1788 if [ "x${invalid_p}" = "x0" ]
1789 then
1790 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1791 elif [ -n "${invalid_p}" ]
1792 then
1793 printf " if (${invalid_p})\n"
1794 printf " internal_error (__FILE__, __LINE__,\n"
1795 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1796 elif [ -n "${predefault}" ]
1797 then
1798 printf " if (gdbarch->${function} == ${predefault})\n"
1799 printf " internal_error (__FILE__, __LINE__,\n"
1800 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1801 fi
1802 printf " if (gdbarch_debug >= 2)\n"
1803 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1804 printf " return gdbarch->${function};\n"
1805 printf "}\n"
1806 printf "\n"
1807 printf "void\n"
1808 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1809 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1810 printf "{\n"
1811 printf " gdbarch->${function} = ${function};\n"
1812 printf "}\n"
1813 elif class_is_info_p
1814 then
1815 printf "\n"
1816 printf "${returntype}\n"
1817 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1818 printf "{\n"
1819 printf " gdb_assert (gdbarch != NULL);\n"
1820 printf " if (gdbarch_debug >= 2)\n"
1821 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1822 printf " return gdbarch->${function};\n"
1823 printf "}\n"
1824 fi
1825 done
1826
1827 # All the trailing guff
1828 cat <<EOF
1829
1830
1831 /* Keep a registry of per-architecture data-pointers required by GDB
1832 modules. */
1833
1834 struct gdbarch_data
1835 {
1836 unsigned index;
1837 int init_p;
1838 gdbarch_data_init_ftype *init;
1839 gdbarch_data_free_ftype *free;
1840 };
1841
1842 struct gdbarch_data_registration
1843 {
1844 struct gdbarch_data *data;
1845 struct gdbarch_data_registration *next;
1846 };
1847
1848 struct gdbarch_data_registry
1849 {
1850 unsigned nr;
1851 struct gdbarch_data_registration *registrations;
1852 };
1853
1854 struct gdbarch_data_registry gdbarch_data_registry =
1855 {
1856 0, NULL,
1857 };
1858
1859 struct gdbarch_data *
1860 register_gdbarch_data (gdbarch_data_init_ftype *init,
1861 gdbarch_data_free_ftype *free)
1862 {
1863 struct gdbarch_data_registration **curr;
1864 /* Append the new registraration. */
1865 for (curr = &gdbarch_data_registry.registrations;
1866 (*curr) != NULL;
1867 curr = &(*curr)->next);
1868 (*curr) = XMALLOC (struct gdbarch_data_registration);
1869 (*curr)->next = NULL;
1870 (*curr)->data = XMALLOC (struct gdbarch_data);
1871 (*curr)->data->index = gdbarch_data_registry.nr++;
1872 (*curr)->data->init = init;
1873 (*curr)->data->init_p = 1;
1874 (*curr)->data->free = free;
1875 return (*curr)->data;
1876 }
1877
1878
1879 /* Create/delete the gdbarch data vector. */
1880
1881 static void
1882 alloc_gdbarch_data (struct gdbarch *gdbarch)
1883 {
1884 gdb_assert (gdbarch->data == NULL);
1885 gdbarch->nr_data = gdbarch_data_registry.nr;
1886 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1887 }
1888
1889 static void
1890 free_gdbarch_data (struct gdbarch *gdbarch)
1891 {
1892 struct gdbarch_data_registration *rego;
1893 gdb_assert (gdbarch->data != NULL);
1894 for (rego = gdbarch_data_registry.registrations;
1895 rego != NULL;
1896 rego = rego->next)
1897 {
1898 struct gdbarch_data *data = rego->data;
1899 gdb_assert (data->index < gdbarch->nr_data);
1900 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1901 {
1902 data->free (gdbarch, gdbarch->data[data->index]);
1903 gdbarch->data[data->index] = NULL;
1904 }
1905 }
1906 xfree (gdbarch->data);
1907 gdbarch->data = NULL;
1908 }
1909
1910
1911 /* Initialize the current value of the specified per-architecture
1912 data-pointer. */
1913
1914 void
1915 set_gdbarch_data (struct gdbarch *gdbarch,
1916 struct gdbarch_data *data,
1917 void *pointer)
1918 {
1919 gdb_assert (data->index < gdbarch->nr_data);
1920 if (gdbarch->data[data->index] != NULL)
1921 {
1922 gdb_assert (data->free != NULL);
1923 data->free (gdbarch, gdbarch->data[data->index]);
1924 }
1925 gdbarch->data[data->index] = pointer;
1926 }
1927
1928 /* Return the current value of the specified per-architecture
1929 data-pointer. */
1930
1931 void *
1932 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1933 {
1934 gdb_assert (data->index < gdbarch->nr_data);
1935 /* The data-pointer isn't initialized, call init() to get a value but
1936 only if the architecture initializaiton has completed. Otherwise
1937 punt - hope that the caller knows what they are doing. */
1938 if (gdbarch->data[data->index] == NULL
1939 && gdbarch->initialized_p)
1940 {
1941 /* Be careful to detect an initialization cycle. */
1942 gdb_assert (data->init_p);
1943 data->init_p = 0;
1944 gdb_assert (data->init != NULL);
1945 gdbarch->data[data->index] = data->init (gdbarch);
1946 data->init_p = 1;
1947 gdb_assert (gdbarch->data[data->index] != NULL);
1948 }
1949 return gdbarch->data[data->index];
1950 }
1951
1952
1953
1954 /* Keep a registry of swapped data required by GDB modules. */
1955
1956 struct gdbarch_swap
1957 {
1958 void *swap;
1959 struct gdbarch_swap_registration *source;
1960 struct gdbarch_swap *next;
1961 };
1962
1963 struct gdbarch_swap_registration
1964 {
1965 void *data;
1966 unsigned long sizeof_data;
1967 gdbarch_swap_ftype *init;
1968 struct gdbarch_swap_registration *next;
1969 };
1970
1971 struct gdbarch_swap_registry
1972 {
1973 int nr;
1974 struct gdbarch_swap_registration *registrations;
1975 };
1976
1977 struct gdbarch_swap_registry gdbarch_swap_registry =
1978 {
1979 0, NULL,
1980 };
1981
1982 void
1983 register_gdbarch_swap (void *data,
1984 unsigned long sizeof_data,
1985 gdbarch_swap_ftype *init)
1986 {
1987 struct gdbarch_swap_registration **rego;
1988 for (rego = &gdbarch_swap_registry.registrations;
1989 (*rego) != NULL;
1990 rego = &(*rego)->next);
1991 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1992 (*rego)->next = NULL;
1993 (*rego)->init = init;
1994 (*rego)->data = data;
1995 (*rego)->sizeof_data = sizeof_data;
1996 }
1997
1998 static void
1999 clear_gdbarch_swap (struct gdbarch *gdbarch)
2000 {
2001 struct gdbarch_swap *curr;
2002 for (curr = gdbarch->swap;
2003 curr != NULL;
2004 curr = curr->next)
2005 {
2006 memset (curr->source->data, 0, curr->source->sizeof_data);
2007 }
2008 }
2009
2010 static void
2011 init_gdbarch_swap (struct gdbarch *gdbarch)
2012 {
2013 struct gdbarch_swap_registration *rego;
2014 struct gdbarch_swap **curr = &gdbarch->swap;
2015 for (rego = gdbarch_swap_registry.registrations;
2016 rego != NULL;
2017 rego = rego->next)
2018 {
2019 if (rego->data != NULL)
2020 {
2021 (*curr) = XMALLOC (struct gdbarch_swap);
2022 (*curr)->source = rego;
2023 (*curr)->swap = xmalloc (rego->sizeof_data);
2024 (*curr)->next = NULL;
2025 curr = &(*curr)->next;
2026 }
2027 if (rego->init != NULL)
2028 rego->init ();
2029 }
2030 }
2031
2032 static void
2033 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2034 {
2035 struct gdbarch_swap *curr;
2036 for (curr = gdbarch->swap;
2037 curr != NULL;
2038 curr = curr->next)
2039 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2040 }
2041
2042 static void
2043 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2044 {
2045 struct gdbarch_swap *curr;
2046 for (curr = gdbarch->swap;
2047 curr != NULL;
2048 curr = curr->next)
2049 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2050 }
2051
2052
2053 /* Keep a registry of the architectures known by GDB. */
2054
2055 struct gdbarch_registration
2056 {
2057 enum bfd_architecture bfd_architecture;
2058 gdbarch_init_ftype *init;
2059 gdbarch_dump_tdep_ftype *dump_tdep;
2060 struct gdbarch_list *arches;
2061 struct gdbarch_registration *next;
2062 };
2063
2064 static struct gdbarch_registration *gdbarch_registry = NULL;
2065
2066 static void
2067 append_name (const char ***buf, int *nr, const char *name)
2068 {
2069 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2070 (*buf)[*nr] = name;
2071 *nr += 1;
2072 }
2073
2074 const char **
2075 gdbarch_printable_names (void)
2076 {
2077 if (GDB_MULTI_ARCH)
2078 {
2079 /* Accumulate a list of names based on the registed list of
2080 architectures. */
2081 enum bfd_architecture a;
2082 int nr_arches = 0;
2083 const char **arches = NULL;
2084 struct gdbarch_registration *rego;
2085 for (rego = gdbarch_registry;
2086 rego != NULL;
2087 rego = rego->next)
2088 {
2089 const struct bfd_arch_info *ap;
2090 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2091 if (ap == NULL)
2092 internal_error (__FILE__, __LINE__,
2093 "gdbarch_architecture_names: multi-arch unknown");
2094 do
2095 {
2096 append_name (&arches, &nr_arches, ap->printable_name);
2097 ap = ap->next;
2098 }
2099 while (ap != NULL);
2100 }
2101 append_name (&arches, &nr_arches, NULL);
2102 return arches;
2103 }
2104 else
2105 /* Just return all the architectures that BFD knows. Assume that
2106 the legacy architecture framework supports them. */
2107 return bfd_arch_list ();
2108 }
2109
2110
2111 void
2112 gdbarch_register (enum bfd_architecture bfd_architecture,
2113 gdbarch_init_ftype *init,
2114 gdbarch_dump_tdep_ftype *dump_tdep)
2115 {
2116 struct gdbarch_registration **curr;
2117 const struct bfd_arch_info *bfd_arch_info;
2118 /* Check that BFD recognizes this architecture */
2119 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2120 if (bfd_arch_info == NULL)
2121 {
2122 internal_error (__FILE__, __LINE__,
2123 "gdbarch: Attempt to register unknown architecture (%d)",
2124 bfd_architecture);
2125 }
2126 /* Check that we haven't seen this architecture before */
2127 for (curr = &gdbarch_registry;
2128 (*curr) != NULL;
2129 curr = &(*curr)->next)
2130 {
2131 if (bfd_architecture == (*curr)->bfd_architecture)
2132 internal_error (__FILE__, __LINE__,
2133 "gdbarch: Duplicate registraration of architecture (%s)",
2134 bfd_arch_info->printable_name);
2135 }
2136 /* log it */
2137 if (gdbarch_debug)
2138 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2139 bfd_arch_info->printable_name,
2140 (long) init);
2141 /* Append it */
2142 (*curr) = XMALLOC (struct gdbarch_registration);
2143 (*curr)->bfd_architecture = bfd_architecture;
2144 (*curr)->init = init;
2145 (*curr)->dump_tdep = dump_tdep;
2146 (*curr)->arches = NULL;
2147 (*curr)->next = NULL;
2148 /* When non- multi-arch, install whatever target dump routine we've
2149 been provided - hopefully that routine has been written correctly
2150 and works regardless of multi-arch. */
2151 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2152 && startup_gdbarch.dump_tdep == NULL)
2153 startup_gdbarch.dump_tdep = dump_tdep;
2154 }
2155
2156 void
2157 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2158 gdbarch_init_ftype *init)
2159 {
2160 gdbarch_register (bfd_architecture, init, NULL);
2161 }
2162
2163
2164 /* Look for an architecture using gdbarch_info. Base search on only
2165 BFD_ARCH_INFO and BYTE_ORDER. */
2166
2167 struct gdbarch_list *
2168 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2169 const struct gdbarch_info *info)
2170 {
2171 for (; arches != NULL; arches = arches->next)
2172 {
2173 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2174 continue;
2175 if (info->byte_order != arches->gdbarch->byte_order)
2176 continue;
2177 if (info->osabi != arches->gdbarch->osabi)
2178 continue;
2179 return arches;
2180 }
2181 return NULL;
2182 }
2183
2184
2185 /* Update the current architecture. Return ZERO if the update request
2186 failed. */
2187
2188 int
2189 gdbarch_update_p (struct gdbarch_info info)
2190 {
2191 struct gdbarch *new_gdbarch;
2192 struct gdbarch *old_gdbarch;
2193 struct gdbarch_registration *rego;
2194
2195 /* Fill in missing parts of the INFO struct using a number of
2196 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2197
2198 /* \`\`(gdb) set architecture ...'' */
2199 if (info.bfd_arch_info == NULL
2200 && !TARGET_ARCHITECTURE_AUTO)
2201 info.bfd_arch_info = TARGET_ARCHITECTURE;
2202 if (info.bfd_arch_info == NULL
2203 && info.abfd != NULL
2204 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2205 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2206 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2207 if (info.bfd_arch_info == NULL)
2208 info.bfd_arch_info = TARGET_ARCHITECTURE;
2209
2210 /* \`\`(gdb) set byte-order ...'' */
2211 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2212 && !TARGET_BYTE_ORDER_AUTO)
2213 info.byte_order = TARGET_BYTE_ORDER;
2214 /* From the INFO struct. */
2215 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2216 && info.abfd != NULL)
2217 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2218 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2219 : BFD_ENDIAN_UNKNOWN);
2220 /* From the current target. */
2221 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2222 info.byte_order = TARGET_BYTE_ORDER;
2223
2224 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2225 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2226 info.osabi = gdbarch_lookup_osabi (info.abfd);
2227 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2228 info.osabi = current_gdbarch->osabi;
2229
2230 /* Must have found some sort of architecture. */
2231 gdb_assert (info.bfd_arch_info != NULL);
2232
2233 if (gdbarch_debug)
2234 {
2235 fprintf_unfiltered (gdb_stdlog,
2236 "gdbarch_update: info.bfd_arch_info %s\n",
2237 (info.bfd_arch_info != NULL
2238 ? info.bfd_arch_info->printable_name
2239 : "(null)"));
2240 fprintf_unfiltered (gdb_stdlog,
2241 "gdbarch_update: info.byte_order %d (%s)\n",
2242 info.byte_order,
2243 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2244 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2245 : "default"));
2246 fprintf_unfiltered (gdb_stdlog,
2247 "gdbarch_update: info.osabi %d (%s)\n",
2248 info.osabi, gdbarch_osabi_name (info.osabi));
2249 fprintf_unfiltered (gdb_stdlog,
2250 "gdbarch_update: info.abfd 0x%lx\n",
2251 (long) info.abfd);
2252 fprintf_unfiltered (gdb_stdlog,
2253 "gdbarch_update: info.tdep_info 0x%lx\n",
2254 (long) info.tdep_info);
2255 }
2256
2257 /* Find the target that knows about this architecture. */
2258 for (rego = gdbarch_registry;
2259 rego != NULL;
2260 rego = rego->next)
2261 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2262 break;
2263 if (rego == NULL)
2264 {
2265 if (gdbarch_debug)
2266 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2267 return 0;
2268 }
2269
2270 /* Swap the data belonging to the old target out setting the
2271 installed data to zero. This stops the ->init() function trying
2272 to refer to the previous architecture's global data structures. */
2273 swapout_gdbarch_swap (current_gdbarch);
2274 clear_gdbarch_swap (current_gdbarch);
2275
2276 /* Save the previously selected architecture, setting the global to
2277 NULL. This stops ->init() trying to use the previous
2278 architecture's configuration. The previous architecture may not
2279 even be of the same architecture family. The most recent
2280 architecture of the same family is found at the head of the
2281 rego->arches list. */
2282 old_gdbarch = current_gdbarch;
2283 current_gdbarch = NULL;
2284
2285 /* Ask the target for a replacement architecture. */
2286 new_gdbarch = rego->init (info, rego->arches);
2287
2288 /* Did the target like it? No. Reject the change and revert to the
2289 old architecture. */
2290 if (new_gdbarch == NULL)
2291 {
2292 if (gdbarch_debug)
2293 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2294 swapin_gdbarch_swap (old_gdbarch);
2295 current_gdbarch = old_gdbarch;
2296 return 0;
2297 }
2298
2299 /* Did the architecture change? No. Oops, put the old architecture
2300 back. */
2301 if (old_gdbarch == new_gdbarch)
2302 {
2303 if (gdbarch_debug)
2304 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2305 (long) new_gdbarch,
2306 new_gdbarch->bfd_arch_info->printable_name);
2307 swapin_gdbarch_swap (old_gdbarch);
2308 current_gdbarch = old_gdbarch;
2309 return 1;
2310 }
2311
2312 /* Is this a pre-existing architecture? Yes. Move it to the front
2313 of the list of architectures (keeping the list sorted Most
2314 Recently Used) and then copy it in. */
2315 {
2316 struct gdbarch_list **list;
2317 for (list = &rego->arches;
2318 (*list) != NULL;
2319 list = &(*list)->next)
2320 {
2321 if ((*list)->gdbarch == new_gdbarch)
2322 {
2323 struct gdbarch_list *this;
2324 if (gdbarch_debug)
2325 fprintf_unfiltered (gdb_stdlog,
2326 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2327 (long) new_gdbarch,
2328 new_gdbarch->bfd_arch_info->printable_name);
2329 /* Unlink this. */
2330 this = (*list);
2331 (*list) = this->next;
2332 /* Insert in the front. */
2333 this->next = rego->arches;
2334 rego->arches = this;
2335 /* Copy the new architecture in. */
2336 current_gdbarch = new_gdbarch;
2337 swapin_gdbarch_swap (new_gdbarch);
2338 architecture_changed_event ();
2339 return 1;
2340 }
2341 }
2342 }
2343
2344 /* Prepend this new architecture to the architecture list (keep the
2345 list sorted Most Recently Used). */
2346 {
2347 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2348 this->next = rego->arches;
2349 this->gdbarch = new_gdbarch;
2350 rego->arches = this;
2351 }
2352
2353 /* Switch to this new architecture marking it initialized. */
2354 current_gdbarch = new_gdbarch;
2355 current_gdbarch->initialized_p = 1;
2356 if (gdbarch_debug)
2357 {
2358 fprintf_unfiltered (gdb_stdlog,
2359 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2360 (long) new_gdbarch,
2361 new_gdbarch->bfd_arch_info->printable_name);
2362 }
2363
2364 /* Check that the newly installed architecture is valid. Plug in
2365 any post init values. */
2366 new_gdbarch->dump_tdep = rego->dump_tdep;
2367 verify_gdbarch (new_gdbarch);
2368
2369 /* Initialize the per-architecture memory (swap) areas.
2370 CURRENT_GDBARCH must be update before these modules are
2371 called. */
2372 init_gdbarch_swap (new_gdbarch);
2373
2374 /* Initialize the per-architecture data. CURRENT_GDBARCH
2375 must be updated before these modules are called. */
2376 architecture_changed_event ();
2377
2378 if (gdbarch_debug)
2379 gdbarch_dump (current_gdbarch, gdb_stdlog);
2380
2381 return 1;
2382 }
2383
2384
2385 /* Disassembler */
2386
2387 /* Pointer to the target-dependent disassembly function. */
2388 int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info *);
2389
2390 extern void _initialize_gdbarch (void);
2391
2392 void
2393 _initialize_gdbarch (void)
2394 {
2395 struct cmd_list_element *c;
2396
2397 add_show_from_set (add_set_cmd ("arch",
2398 class_maintenance,
2399 var_zinteger,
2400 (char *)&gdbarch_debug,
2401 "Set architecture debugging.\\n\\
2402 When non-zero, architecture debugging is enabled.", &setdebuglist),
2403 &showdebuglist);
2404 c = add_set_cmd ("archdebug",
2405 class_maintenance,
2406 var_zinteger,
2407 (char *)&gdbarch_debug,
2408 "Set architecture debugging.\\n\\
2409 When non-zero, architecture debugging is enabled.", &setlist);
2410
2411 deprecate_cmd (c, "set debug arch");
2412 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2413 }
2414 EOF
2415
2416 # close things off
2417 exec 1>&2
2418 #../move-if-change new-gdbarch.c gdbarch.c
2419 compare_new gdbarch.c