* arch-utils.c (init_frame_pc_default): New function
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 test "${staticdefault}" || staticdefault=0
80 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
81 # multi-arch defaults.
82 # test "${predefault}" || predefault=0
83 test "${fmt}" || fmt="%ld"
84 test "${print}" || print="(long) ${macro}"
85 case "${invalid_p}" in
86 0 ) valid_p=1 ;;
87 "" )
88 if [ -n "${predefault}" ]
89 then
90 #invalid_p="gdbarch->${function} == ${predefault}"
91 valid_p="gdbarch->${function} != ${predefault}"
92 else
93 #invalid_p="gdbarch->${function} == 0"
94 valid_p="gdbarch->${function} != 0"
95 fi
96 ;;
97 * ) valid_p="!(${invalid_p})"
98 esac
99
100 # PREDEFAULT is a valid fallback definition of MEMBER when
101 # multi-arch is not enabled. This ensures that the
102 # default value, when multi-arch is the same as the
103 # default value when not multi-arch. POSTDEFAULT is
104 # always a valid definition of MEMBER as this again
105 # ensures consistency.
106
107 if [ -n "${postdefault}" ]
108 then
109 fallbackdefault="${postdefault}"
110 elif [ -n "${predefault}" ]
111 then
112 fallbackdefault="${predefault}"
113 else
114 fallbackdefault=""
115 fi
116
117 #NOT YET: See gdbarch.log for basic verification of
118 # database
119
120 break
121 fi
122 done
123 if [ -n "${class}" ]
124 then
125 true
126 else
127 false
128 fi
129 }
130
131
132 fallback_default_p ()
133 {
134 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
135 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
136 }
137
138 class_is_variable_p ()
139 {
140 case "${class}" in
141 *v* | *V* ) true ;;
142 * ) false ;;
143 esac
144 }
145
146 class_is_function_p ()
147 {
148 case "${class}" in
149 *f* | *F* | *m* | *M* ) true ;;
150 * ) false ;;
151 esac
152 }
153
154 class_is_multiarch_p ()
155 {
156 case "${class}" in
157 *m* | *M* ) true ;;
158 * ) false ;;
159 esac
160 }
161
162 class_is_predicate_p ()
163 {
164 case "${class}" in
165 *F* | *V* | *M* ) true ;;
166 * ) false ;;
167 esac
168 }
169
170 class_is_info_p ()
171 {
172 case "${class}" in
173 *i* ) true ;;
174 * ) false ;;
175 esac
176 }
177
178
179 # dump out/verify the doco
180 for field in ${read}
181 do
182 case ${field} in
183
184 class ) : ;;
185
186 # # -> line disable
187 # f -> function
188 # hiding a function
189 # F -> function + predicate
190 # hiding a function + predicate to test function validity
191 # v -> variable
192 # hiding a variable
193 # V -> variable + predicate
194 # hiding a variable + predicate to test variables validity
195 # i -> set from info
196 # hiding something from the ``struct info'' object
197 # m -> multi-arch function
198 # hiding a multi-arch function (parameterised with the architecture)
199 # M -> multi-arch function + predicate
200 # hiding a multi-arch function + predicate to test function validity
201
202 level ) : ;;
203
204 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
205 # LEVEL is a predicate on checking that a given method is
206 # initialized (using INVALID_P).
207
208 macro ) : ;;
209
210 # The name of the MACRO that this method is to be accessed by.
211
212 returntype ) : ;;
213
214 # For functions, the return type; for variables, the data type
215
216 function ) : ;;
217
218 # For functions, the member function name; for variables, the
219 # variable name. Member function names are always prefixed with
220 # ``gdbarch_'' for name-space purity.
221
222 formal ) : ;;
223
224 # The formal argument list. It is assumed that the formal
225 # argument list includes the actual name of each list element.
226 # A function with no arguments shall have ``void'' as the
227 # formal argument list.
228
229 actual ) : ;;
230
231 # The list of actual arguments. The arguments specified shall
232 # match the FORMAL list given above. Functions with out
233 # arguments leave this blank.
234
235 attrib ) : ;;
236
237 # Any GCC attributes that should be attached to the function
238 # declaration. At present this field is unused.
239
240 staticdefault ) : ;;
241
242 # To help with the GDB startup a static gdbarch object is
243 # created. STATICDEFAULT is the value to insert into that
244 # static gdbarch object. Since this a static object only
245 # simple expressions can be used.
246
247 # If STATICDEFAULT is empty, zero is used.
248
249 predefault ) : ;;
250
251 # An initial value to assign to MEMBER of the freshly
252 # malloc()ed gdbarch object. After initialization, the
253 # freshly malloc()ed object is passed to the target
254 # architecture code for further updates.
255
256 # If PREDEFAULT is empty, zero is used.
257
258 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
259 # INVALID_P are specified, PREDEFAULT will be used as the
260 # default for the non- multi-arch target.
261
262 # A zero PREDEFAULT function will force the fallback to call
263 # internal_error().
264
265 # Variable declarations can refer to ``gdbarch'' which will
266 # contain the current architecture. Care should be taken.
267
268 postdefault ) : ;;
269
270 # A value to assign to MEMBER of the new gdbarch object should
271 # the target architecture code fail to change the PREDEFAULT
272 # value.
273
274 # If POSTDEFAULT is empty, no post update is performed.
275
276 # If both INVALID_P and POSTDEFAULT are non-empty then
277 # INVALID_P will be used to determine if MEMBER should be
278 # changed to POSTDEFAULT.
279
280 # If a non-empty POSTDEFAULT and a zero INVALID_P are
281 # specified, POSTDEFAULT will be used as the default for the
282 # non- multi-arch target (regardless of the value of
283 # PREDEFAULT).
284
285 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
286
287 # Variable declarations can refer to ``gdbarch'' which will
288 # contain the current architecture. Care should be taken.
289
290 invalid_p ) : ;;
291
292 # A predicate equation that validates MEMBER. Non-zero is
293 # returned if the code creating the new architecture failed to
294 # initialize MEMBER or the initialized the member is invalid.
295 # If POSTDEFAULT is non-empty then MEMBER will be updated to
296 # that value. If POSTDEFAULT is empty then internal_error()
297 # is called.
298
299 # If INVALID_P is empty, a check that MEMBER is no longer
300 # equal to PREDEFAULT is used.
301
302 # The expression ``0'' disables the INVALID_P check making
303 # PREDEFAULT a legitimate value.
304
305 # See also PREDEFAULT and POSTDEFAULT.
306
307 fmt ) : ;;
308
309 # printf style format string that can be used to print out the
310 # MEMBER. Sometimes "%s" is useful. For functions, this is
311 # ignored and the function address is printed.
312
313 # If FMT is empty, ``%ld'' is used.
314
315 print ) : ;;
316
317 # An optional equation that casts MEMBER to a value suitable
318 # for formatting by FMT.
319
320 # If PRINT is empty, ``(long)'' is used.
321
322 print_p ) : ;;
323
324 # An optional indicator for any predicte to wrap around the
325 # print member code.
326
327 # () -> Call a custom function to do the dump.
328 # exp -> Wrap print up in ``if (${print_p}) ...
329 # ``'' -> No predicate
330
331 # If PRINT_P is empty, ``1'' is always used.
332
333 description ) : ;;
334
335 # Currently unused.
336
337 *) exit 1;;
338 esac
339 done
340
341
342 function_list ()
343 {
344 # See below (DOCO) for description of each field
345 cat <<EOF
346 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
347 #
348 i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
349 # Number of bits in a char or unsigned char for the target machine.
350 # Just like CHAR_BIT in <limits.h> but describes the target machine.
351 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
352 #
353 # Number of bits in a short or unsigned short for the target machine.
354 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
355 # Number of bits in an int or unsigned int for the target machine.
356 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
357 # Number of bits in a long or unsigned long for the target machine.
358 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long long or unsigned long long for the target
360 # machine.
361 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
362 # Number of bits in a float for the target machine.
363 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
364 # Number of bits in a double for the target machine.
365 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
366 # Number of bits in a long double for the target machine.
367 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
368 # For most targets, a pointer on the target and its representation as an
369 # address in GDB have the same size and "look the same". For such a
370 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
371 # / addr_bit will be set from it.
372 #
373 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
374 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
375 #
376 # ptr_bit is the size of a pointer on the target
377 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
378 # addr_bit is the size of a target address as represented in gdb
379 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
380 # Number of bits in a BFD_VMA for the target object file format.
381 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
382 #
383 v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
384 #
385 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
386 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
387 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
388 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
389 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
390 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
391 #
392 M:::void:register_read:int regnum, char *buf:regnum, buf:
393 M:::void:register_write:int regnum, char *buf:regnum, buf:
394 #
395 v:2:NUM_REGS:int:num_regs::::0:-1
396 # This macro gives the number of pseudo-registers that live in the
397 # register namespace but do not get fetched or stored on the target.
398 # These pseudo-registers may be aliases for other registers,
399 # combinations of other registers, or they may be computed by GDB.
400 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
401 v:2:SP_REGNUM:int:sp_regnum::::0:-1
402 v:2:FP_REGNUM:int:fp_regnum::::0:-1
403 v:2:PC_REGNUM:int:pc_regnum::::0:-1
404 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
405 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
406 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
407 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
408 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
409 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
410 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
411 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
412 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
413 # Convert from an sdb register number to an internal gdb register number.
414 # This should be defined in tm.h, if REGISTER_NAMES is not set up
415 # to map one to one onto the sdb register numbers.
416 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
417 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
418 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
419 v:2:REGISTER_SIZE:int:register_size::::0:-1
420 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
421 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
422 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
423 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
424 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
425 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
426 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
427 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
428 # MAP a GDB RAW register number onto a simulator register number. See
429 # also include/...-sim.h.
430 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
431 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
432 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
433 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
434 #
435 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
436 v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
437 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
438 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
439 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1:::0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
440 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
441 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
442 f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
443 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
444 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
445 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
446 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
447 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
448 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
449 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
450 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
451 #
452 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
453 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
454 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
455 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
456 #
457 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
458 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
459 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
460 # This function is called when the value of a pseudo-register needs to
461 # be updated. Typically it will be defined on a per-architecture
462 # basis.
463 f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
464 # This function is called when the value of a pseudo-register needs to
465 # be set or stored. Typically it will be defined on a
466 # per-architecture basis.
467 f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
468 #
469 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
470 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
471 #
472 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
473 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
474 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
475 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
476 f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
477 f:2:POP_FRAME:void:pop_frame:void:-:::0
478 #
479 # I wish that these would just go away....
480 f:2:D10V_MAKE_DADDR:CORE_ADDR:d10v_make_daddr:CORE_ADDR x:x:::0::0
481 f:2:D10V_MAKE_IADDR:CORE_ADDR:d10v_make_iaddr:CORE_ADDR x:x:::0::0
482 f:2:D10V_DADDR_P:int:d10v_daddr_p:CORE_ADDR x:x:::0::0
483 f:2:D10V_IADDR_P:int:d10v_iaddr_p:CORE_ADDR x:x:::0::0
484 f:2:D10V_CONVERT_DADDR_TO_RAW:CORE_ADDR:d10v_convert_daddr_to_raw:CORE_ADDR x:x:::0::0
485 f:2:D10V_CONVERT_IADDR_TO_RAW:CORE_ADDR:d10v_convert_iaddr_to_raw:CORE_ADDR x:x:::0::0
486 #
487 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
488 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
489 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
490 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0
491 #
492 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
493 f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
494 #
495 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
496 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
497 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
498 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
499 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
500 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
501 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
502 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
503 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
504 #
505 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
506 #
507 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
508 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
509 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
510 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
511 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
512 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
513 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
514 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
515 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
516 #
517 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
518 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
519 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
520 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
521 v:2:PARM_BOUNDARY:int:parm_boundary
522 #
523 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
524 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
525 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
526 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
527 # On some machines there are bits in addresses which are not really
528 # part of the address, but are used by the kernel, the hardware, etc.
529 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
530 # we get a "real" address such as one would find in a symbol table.
531 # This is used only for addresses of instructions, and even then I'm
532 # not sure it's used in all contexts. It exists to deal with there
533 # being a few stray bits in the PC which would mislead us, not as some
534 # sort of generic thing to handle alignment or segmentation (it's
535 # possible it should be in TARGET_READ_PC instead).
536 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
537 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
538 # the target needs software single step. An ISA method to implement it.
539 #
540 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
541 # using the breakpoint system instead of blatting memory directly (as with rs6000).
542 #
543 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
544 # single step. If not, then implement single step using breakpoints.
545 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
546 EOF
547 }
548
549 #
550 # The .log file
551 #
552 exec > new-gdbarch.log
553 function_list | while do_read
554 do
555 cat <<EOF
556 ${class} ${macro}(${actual})
557 ${returntype} ${function} ($formal)${attrib}
558 EOF
559 for r in ${read}
560 do
561 eval echo \"\ \ \ \ ${r}=\${${r}}\"
562 done
563 # #fallbackdefault=${fallbackdefault}
564 # #valid_p=${valid_p}
565 #EOF
566 if class_is_predicate_p && fallback_default_p
567 then
568 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
569 kill $$
570 exit 1
571 fi
572 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
573 then
574 echo "Error: postdefault is useless when invalid_p=0" 1>&2
575 kill $$
576 exit 1
577 fi
578 echo ""
579 done
580
581 exec 1>&2
582 compare_new gdbarch.log
583
584
585 copyright ()
586 {
587 cat <<EOF
588 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
589
590 /* Dynamic architecture support for GDB, the GNU debugger.
591 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
592
593 This file is part of GDB.
594
595 This program is free software; you can redistribute it and/or modify
596 it under the terms of the GNU General Public License as published by
597 the Free Software Foundation; either version 2 of the License, or
598 (at your option) any later version.
599
600 This program is distributed in the hope that it will be useful,
601 but WITHOUT ANY WARRANTY; without even the implied warranty of
602 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
603 GNU General Public License for more details.
604
605 You should have received a copy of the GNU General Public License
606 along with this program; if not, write to the Free Software
607 Foundation, Inc., 59 Temple Place - Suite 330,
608 Boston, MA 02111-1307, USA. */
609
610 /* This file was created with the aid of \`\`gdbarch.sh''.
611
612 The Bourne shell script \`\`gdbarch.sh'' creates the files
613 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
614 against the existing \`\`gdbarch.[hc]''. Any differences found
615 being reported.
616
617 If editing this file, please also run gdbarch.sh and merge any
618 changes into that script. Conversely, when making sweeping changes
619 to this file, modifying gdbarch.sh and using its output may prove
620 easier. */
621
622 EOF
623 }
624
625 #
626 # The .h file
627 #
628
629 exec > new-gdbarch.h
630 copyright
631 cat <<EOF
632 #ifndef GDBARCH_H
633 #define GDBARCH_H
634
635 struct frame_info;
636 struct value;
637
638
639 extern struct gdbarch *current_gdbarch;
640
641
642 /* If any of the following are defined, the target wasn't correctly
643 converted. */
644
645 #if GDB_MULTI_ARCH
646 #if defined (EXTRA_FRAME_INFO)
647 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
648 #endif
649 #endif
650
651 #if GDB_MULTI_ARCH
652 #if defined (FRAME_FIND_SAVED_REGS)
653 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
654 #endif
655 #endif
656 EOF
657
658 # function typedef's
659 printf "\n"
660 printf "\n"
661 printf "/* The following are pre-initialized by GDBARCH. */\n"
662 function_list | while do_read
663 do
664 if class_is_info_p
665 then
666 printf "\n"
667 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
668 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
669 printf "#if GDB_MULTI_ARCH\n"
670 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
671 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
672 printf "#endif\n"
673 printf "#endif\n"
674 fi
675 done
676
677 # function typedef's
678 printf "\n"
679 printf "\n"
680 printf "/* The following are initialized by the target dependent code. */\n"
681 function_list | while do_read
682 do
683 if [ -n "${comment}" ]
684 then
685 echo "${comment}" | sed \
686 -e '2 s,#,/*,' \
687 -e '3,$ s,#, ,' \
688 -e '$ s,$, */,'
689 fi
690 if class_is_multiarch_p
691 then
692 if class_is_predicate_p
693 then
694 printf "\n"
695 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
696 fi
697 else
698 if class_is_predicate_p
699 then
700 printf "\n"
701 printf "#if defined (${macro})\n"
702 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
703 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
704 printf "#if !defined (${macro}_P)\n"
705 printf "#define ${macro}_P() (1)\n"
706 printf "#endif\n"
707 printf "#endif\n"
708 printf "\n"
709 printf "/* Default predicate for non- multi-arch targets. */\n"
710 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
711 printf "#define ${macro}_P() (0)\n"
712 printf "#endif\n"
713 printf "\n"
714 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
715 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
716 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
717 printf "#endif\n"
718 fi
719 fi
720 if class_is_variable_p
721 then
722 if fallback_default_p || class_is_predicate_p
723 then
724 printf "\n"
725 printf "/* Default (value) for non- multi-arch platforms. */\n"
726 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
727 echo "#define ${macro} (${fallbackdefault})" \
728 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
729 printf "#endif\n"
730 fi
731 printf "\n"
732 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
733 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
734 printf "#if GDB_MULTI_ARCH\n"
735 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
736 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
737 printf "#endif\n"
738 printf "#endif\n"
739 fi
740 if class_is_function_p
741 then
742 if class_is_multiarch_p ; then :
743 elif fallback_default_p || class_is_predicate_p
744 then
745 printf "\n"
746 printf "/* Default (function) for non- multi-arch platforms. */\n"
747 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
748 if [ "x${fallbackdefault}" = "x0" ]
749 then
750 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
751 else
752 # FIXME: Should be passing current_gdbarch through!
753 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
754 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
755 fi
756 printf "#endif\n"
757 fi
758 printf "\n"
759 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
760 then
761 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
762 elif class_is_multiarch_p
763 then
764 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
765 else
766 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
767 fi
768 if [ "x${formal}" = "xvoid" ]
769 then
770 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
771 else
772 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
773 fi
774 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
775 if class_is_multiarch_p ; then :
776 else
777 printf "#if GDB_MULTI_ARCH\n"
778 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
779 if [ "x${actual}" = "x" ]
780 then
781 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
782 elif [ "x${actual}" = "x-" ]
783 then
784 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
785 else
786 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
787 fi
788 printf "#endif\n"
789 printf "#endif\n"
790 fi
791 fi
792 done
793
794 # close it off
795 cat <<EOF
796
797 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
798
799
800 /* Mechanism for co-ordinating the selection of a specific
801 architecture.
802
803 GDB targets (*-tdep.c) can register an interest in a specific
804 architecture. Other GDB components can register a need to maintain
805 per-architecture data.
806
807 The mechanisms below ensures that there is only a loose connection
808 between the set-architecture command and the various GDB
809 components. Each component can independently register their need
810 to maintain architecture specific data with gdbarch.
811
812 Pragmatics:
813
814 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
815 didn't scale.
816
817 The more traditional mega-struct containing architecture specific
818 data for all the various GDB components was also considered. Since
819 GDB is built from a variable number of (fairly independent)
820 components it was determined that the global aproach was not
821 applicable. */
822
823
824 /* Register a new architectural family with GDB.
825
826 Register support for the specified ARCHITECTURE with GDB. When
827 gdbarch determines that the specified architecture has been
828 selected, the corresponding INIT function is called.
829
830 --
831
832 The INIT function takes two parameters: INFO which contains the
833 information available to gdbarch about the (possibly new)
834 architecture; ARCHES which is a list of the previously created
835 \`\`struct gdbarch'' for this architecture.
836
837 The INIT function parameter INFO shall, as far as possible, be
838 pre-initialized with information obtained from INFO.ABFD or
839 previously selected architecture (if similar). INIT shall ensure
840 that the INFO.BYTE_ORDER is non-zero.
841
842 The INIT function shall return any of: NULL - indicating that it
843 doesn't recognize the selected architecture; an existing \`\`struct
844 gdbarch'' from the ARCHES list - indicating that the new
845 architecture is just a synonym for an earlier architecture (see
846 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
847 - that describes the selected architecture (see gdbarch_alloc()).
848
849 The DUMP_TDEP function shall print out all target specific values.
850 Care should be taken to ensure that the function works in both the
851 multi-arch and non- multi-arch cases. */
852
853 struct gdbarch_list
854 {
855 struct gdbarch *gdbarch;
856 struct gdbarch_list *next;
857 };
858
859 struct gdbarch_info
860 {
861 /* Use default: NULL (ZERO). */
862 const struct bfd_arch_info *bfd_arch_info;
863
864 /* Use default: 0 (ZERO). */
865 int byte_order;
866
867 /* Use default: NULL (ZERO). */
868 bfd *abfd;
869
870 /* Use default: NULL (ZERO). */
871 struct gdbarch_tdep_info *tdep_info;
872 };
873
874 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
875 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
876
877 /* DEPRECATED - use gdbarch_register() */
878 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
879
880 extern void gdbarch_register (enum bfd_architecture architecture,
881 gdbarch_init_ftype *,
882 gdbarch_dump_tdep_ftype *);
883
884
885 /* Return a freshly allocated, NULL terminated, array of the valid
886 architecture names. Since architectures are registered during the
887 _initialize phase this function only returns useful information
888 once initialization has been completed. */
889
890 extern const char **gdbarch_printable_names (void);
891
892
893 /* Helper function. Search the list of ARCHES for a GDBARCH that
894 matches the information provided by INFO. */
895
896 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
897
898
899 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
900 basic initialization using values obtained from the INFO andTDEP
901 parameters. set_gdbarch_*() functions are called to complete the
902 initialization of the object. */
903
904 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
905
906
907 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
908 It is assumed that the caller freeds the \`\`struct
909 gdbarch_tdep''. */
910
911 extern void gdbarch_free (struct gdbarch *);
912
913
914 /* Helper function. Force an update of the current architecture.
915
916 The actual architecture selected is determined by INFO, \`\`(gdb) set
917 architecture'' et.al., the existing architecture and BFD's default
918 architecture. INFO should be initialized to zero and then selected
919 fields should be updated.
920
921 Returns non-zero if the update succeeds */
922
923 extern int gdbarch_update_p (struct gdbarch_info info);
924
925
926
927 /* Register per-architecture data-pointer.
928
929 Reserve space for a per-architecture data-pointer. An identifier
930 for the reserved data-pointer is returned. That identifer should
931 be saved in a local static variable.
932
933 The per-architecture data-pointer can be initialized in one of two
934 ways: The value can be set explicitly using a call to
935 set_gdbarch_data(); the value can be set implicitly using the value
936 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
937 called after the basic architecture vector has been created.
938
939 When a previously created architecture is re-selected, the
940 per-architecture data-pointer for that previous architecture is
941 restored. INIT() is not called.
942
943 During initialization, multiple assignments of the data-pointer are
944 allowed, non-NULL values are deleted by calling FREE(). If the
945 architecture is deleted using gdbarch_free() all non-NULL data
946 pointers are also deleted using FREE().
947
948 Multiple registrarants for any architecture are allowed (and
949 strongly encouraged). */
950
951 struct gdbarch_data;
952
953 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
954 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
955 void *pointer);
956 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
957 gdbarch_data_free_ftype *free);
958 extern void set_gdbarch_data (struct gdbarch *gdbarch,
959 struct gdbarch_data *data,
960 void *pointer);
961
962 extern void *gdbarch_data (struct gdbarch_data*);
963
964
965 /* Register per-architecture memory region.
966
967 Provide a memory-region swap mechanism. Per-architecture memory
968 region are created. These memory regions are swapped whenever the
969 architecture is changed. For a new architecture, the memory region
970 is initialized with zero (0) and the INIT function is called.
971
972 Memory regions are swapped / initialized in the order that they are
973 registered. NULL DATA and/or INIT values can be specified.
974
975 New code should use register_gdbarch_data(). */
976
977 typedef void (gdbarch_swap_ftype) (void);
978 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
979 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
980
981
982
983 /* The target-system-dependent byte order is dynamic */
984
985 /* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
986 is selectable at runtime. The user can use the \`\`set endian''
987 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
988 target_byte_order should be auto-detected (from the program image
989 say). */
990
991 #if GDB_MULTI_ARCH
992 /* Multi-arch GDB is always bi-endian. */
993 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
994 #endif
995
996 #ifndef TARGET_BYTE_ORDER_SELECTABLE_P
997 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
998 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
999 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1000 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1001 #else
1002 #define TARGET_BYTE_ORDER_SELECTABLE_P 0
1003 #endif
1004 #endif
1005
1006 extern int target_byte_order;
1007 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1008 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
1009 and expect defs.h to re-define TARGET_BYTE_ORDER. */
1010 #undef TARGET_BYTE_ORDER
1011 #endif
1012 #ifndef TARGET_BYTE_ORDER
1013 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1014 #endif
1015
1016 extern int target_byte_order_auto;
1017 #ifndef TARGET_BYTE_ORDER_AUTO
1018 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1019 #endif
1020
1021
1022
1023 /* The target-system-dependent BFD architecture is dynamic */
1024
1025 extern int target_architecture_auto;
1026 #ifndef TARGET_ARCHITECTURE_AUTO
1027 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1028 #endif
1029
1030 extern const struct bfd_arch_info *target_architecture;
1031 #ifndef TARGET_ARCHITECTURE
1032 #define TARGET_ARCHITECTURE (target_architecture + 0)
1033 #endif
1034
1035
1036 /* The target-system-dependent disassembler is semi-dynamic */
1037
1038 #include "dis-asm.h" /* Get defs for disassemble_info */
1039
1040 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1041 unsigned int len, disassemble_info *info);
1042
1043 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1044 disassemble_info *info);
1045
1046 extern void dis_asm_print_address (bfd_vma addr,
1047 disassemble_info *info);
1048
1049 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1050 extern disassemble_info tm_print_insn_info;
1051 #ifndef TARGET_PRINT_INSN
1052 #define TARGET_PRINT_INSN(vma, info) (*tm_print_insn) (vma, info)
1053 #endif
1054 #ifndef TARGET_PRINT_INSN_INFO
1055 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1056 #endif
1057
1058
1059
1060 /* Explicit test for D10V architecture.
1061 USE of these macro's is *STRONGLY* discouraged. */
1062
1063 #define GDB_TARGET_IS_D10V (TARGET_ARCHITECTURE->arch == bfd_arch_d10v)
1064
1065
1066 /* Set the dynamic target-system-dependent parameters (architecture,
1067 byte-order, ...) using information found in the BFD */
1068
1069 extern void set_gdbarch_from_file (bfd *);
1070
1071
1072 /* Initialize the current architecture to the "first" one we find on
1073 our list. */
1074
1075 extern void initialize_current_architecture (void);
1076
1077 /* For non-multiarched targets, do any initialization of the default
1078 gdbarch object necessary after the _initialize_MODULE functions
1079 have run. */
1080 extern void initialize_non_multiarch ();
1081
1082 /* gdbarch trace variable */
1083 extern int gdbarch_debug;
1084
1085 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1086
1087 #endif
1088 EOF
1089 exec 1>&2
1090 #../move-if-change new-gdbarch.h gdbarch.h
1091 compare_new gdbarch.h
1092
1093
1094 #
1095 # C file
1096 #
1097
1098 exec > new-gdbarch.c
1099 copyright
1100 cat <<EOF
1101
1102 #include "defs.h"
1103 #include "arch-utils.h"
1104
1105 #if GDB_MULTI_ARCH
1106 #include "gdbcmd.h"
1107 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1108 #else
1109 /* Just include everything in sight so that the every old definition
1110 of macro is visible. */
1111 #include "gdb_string.h"
1112 #include <ctype.h>
1113 #include "symtab.h"
1114 #include "frame.h"
1115 #include "inferior.h"
1116 #include "breakpoint.h"
1117 #include "gdb_wait.h"
1118 #include "gdbcore.h"
1119 #include "gdbcmd.h"
1120 #include "target.h"
1121 #include "gdbthread.h"
1122 #include "annotate.h"
1123 #include "symfile.h" /* for overlay functions */
1124 #endif
1125 #include "symcat.h"
1126
1127 #include "floatformat.h"
1128
1129 #include "gdb_assert.h"
1130
1131 /* Static function declarations */
1132
1133 static void verify_gdbarch (struct gdbarch *gdbarch);
1134 static void alloc_gdbarch_data (struct gdbarch *);
1135 static void init_gdbarch_data (struct gdbarch *);
1136 static void free_gdbarch_data (struct gdbarch *);
1137 static void init_gdbarch_swap (struct gdbarch *);
1138 static void swapout_gdbarch_swap (struct gdbarch *);
1139 static void swapin_gdbarch_swap (struct gdbarch *);
1140
1141 /* Convenience macro for allocting typesafe memory. */
1142
1143 #ifndef XMALLOC
1144 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1145 #endif
1146
1147
1148 /* Non-zero if we want to trace architecture code. */
1149
1150 #ifndef GDBARCH_DEBUG
1151 #define GDBARCH_DEBUG 0
1152 #endif
1153 int gdbarch_debug = GDBARCH_DEBUG;
1154
1155 EOF
1156
1157 # gdbarch open the gdbarch object
1158 printf "\n"
1159 printf "/* Maintain the struct gdbarch object */\n"
1160 printf "\n"
1161 printf "struct gdbarch\n"
1162 printf "{\n"
1163 printf " /* basic architectural information */\n"
1164 function_list | while do_read
1165 do
1166 if class_is_info_p
1167 then
1168 printf " ${returntype} ${function};\n"
1169 fi
1170 done
1171 printf "\n"
1172 printf " /* target specific vector. */\n"
1173 printf " struct gdbarch_tdep *tdep;\n"
1174 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1175 printf "\n"
1176 printf " /* per-architecture data-pointers */\n"
1177 printf " unsigned nr_data;\n"
1178 printf " void **data;\n"
1179 printf "\n"
1180 printf " /* per-architecture swap-regions */\n"
1181 printf " struct gdbarch_swap *swap;\n"
1182 printf "\n"
1183 cat <<EOF
1184 /* Multi-arch values.
1185
1186 When extending this structure you must:
1187
1188 Add the field below.
1189
1190 Declare set/get functions and define the corresponding
1191 macro in gdbarch.h.
1192
1193 gdbarch_alloc(): If zero/NULL is not a suitable default,
1194 initialize the new field.
1195
1196 verify_gdbarch(): Confirm that the target updated the field
1197 correctly.
1198
1199 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1200 field is dumped out
1201
1202 \`\`startup_gdbarch()'': Append an initial value to the static
1203 variable (base values on the host's c-type system).
1204
1205 get_gdbarch(): Implement the set/get functions (probably using
1206 the macro's as shortcuts).
1207
1208 */
1209
1210 EOF
1211 function_list | while do_read
1212 do
1213 if class_is_variable_p
1214 then
1215 printf " ${returntype} ${function};\n"
1216 elif class_is_function_p
1217 then
1218 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1219 fi
1220 done
1221 printf "};\n"
1222
1223 # A pre-initialized vector
1224 printf "\n"
1225 printf "\n"
1226 cat <<EOF
1227 /* The default architecture uses host values (for want of a better
1228 choice). */
1229 EOF
1230 printf "\n"
1231 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1232 printf "\n"
1233 printf "struct gdbarch startup_gdbarch =\n"
1234 printf "{\n"
1235 printf " /* basic architecture information */\n"
1236 function_list | while do_read
1237 do
1238 if class_is_info_p
1239 then
1240 printf " ${staticdefault},\n"
1241 fi
1242 done
1243 cat <<EOF
1244 /* target specific vector and its dump routine */
1245 NULL, NULL,
1246 /*per-architecture data-pointers and swap regions */
1247 0, NULL, NULL,
1248 /* Multi-arch values */
1249 EOF
1250 function_list | while do_read
1251 do
1252 if class_is_function_p || class_is_variable_p
1253 then
1254 printf " ${staticdefault},\n"
1255 fi
1256 done
1257 cat <<EOF
1258 /* startup_gdbarch() */
1259 };
1260
1261 struct gdbarch *current_gdbarch = &startup_gdbarch;
1262
1263 /* Do any initialization needed for a non-multiarch configuration
1264 after the _initialize_MODULE functions have been run. */
1265 void
1266 initialize_non_multiarch ()
1267 {
1268 alloc_gdbarch_data (&startup_gdbarch);
1269 init_gdbarch_data (&startup_gdbarch);
1270 }
1271 EOF
1272
1273 # Create a new gdbarch struct
1274 printf "\n"
1275 printf "\n"
1276 cat <<EOF
1277 /* Create a new \`\`struct gdbarch'' based on information provided by
1278 \`\`struct gdbarch_info''. */
1279 EOF
1280 printf "\n"
1281 cat <<EOF
1282 struct gdbarch *
1283 gdbarch_alloc (const struct gdbarch_info *info,
1284 struct gdbarch_tdep *tdep)
1285 {
1286 struct gdbarch *gdbarch = XMALLOC (struct gdbarch);
1287 memset (gdbarch, 0, sizeof (*gdbarch));
1288
1289 alloc_gdbarch_data (gdbarch);
1290
1291 gdbarch->tdep = tdep;
1292 EOF
1293 printf "\n"
1294 function_list | while do_read
1295 do
1296 if class_is_info_p
1297 then
1298 printf " gdbarch->${function} = info->${function};\n"
1299 fi
1300 done
1301 printf "\n"
1302 printf " /* Force the explicit initialization of these. */\n"
1303 function_list | while do_read
1304 do
1305 if class_is_function_p || class_is_variable_p
1306 then
1307 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1308 then
1309 printf " gdbarch->${function} = ${predefault};\n"
1310 fi
1311 fi
1312 done
1313 cat <<EOF
1314 /* gdbarch_alloc() */
1315
1316 return gdbarch;
1317 }
1318 EOF
1319
1320 # Free a gdbarch struct.
1321 printf "\n"
1322 printf "\n"
1323 cat <<EOF
1324 /* Free a gdbarch struct. This should never happen in normal
1325 operation --- once you've created a gdbarch, you keep it around.
1326 However, if an architecture's init function encounters an error
1327 building the structure, it may need to clean up a partially
1328 constructed gdbarch. */
1329
1330 void
1331 gdbarch_free (struct gdbarch *arch)
1332 {
1333 gdb_assert (arch != NULL);
1334 free_gdbarch_data (arch);
1335 xfree (arch);
1336 }
1337 EOF
1338
1339 # verify a new architecture
1340 printf "\n"
1341 printf "\n"
1342 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1343 printf "\n"
1344 cat <<EOF
1345 static void
1346 verify_gdbarch (struct gdbarch *gdbarch)
1347 {
1348 /* Only perform sanity checks on a multi-arch target. */
1349 if (!GDB_MULTI_ARCH)
1350 return;
1351 /* fundamental */
1352 if (gdbarch->byte_order == 0)
1353 internal_error (__FILE__, __LINE__,
1354 "verify_gdbarch: byte-order unset");
1355 if (gdbarch->bfd_arch_info == NULL)
1356 internal_error (__FILE__, __LINE__,
1357 "verify_gdbarch: bfd_arch_info unset");
1358 /* Check those that need to be defined for the given multi-arch level. */
1359 EOF
1360 function_list | while do_read
1361 do
1362 if class_is_function_p || class_is_variable_p
1363 then
1364 if [ "x${invalid_p}" = "x0" ]
1365 then
1366 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1367 elif class_is_predicate_p
1368 then
1369 printf " /* Skip verify of ${function}, has predicate */\n"
1370 # FIXME: See do_read for potential simplification
1371 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1372 then
1373 printf " if (${invalid_p})\n"
1374 printf " gdbarch->${function} = ${postdefault};\n"
1375 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1376 then
1377 printf " if (gdbarch->${function} == ${predefault})\n"
1378 printf " gdbarch->${function} = ${postdefault};\n"
1379 elif [ -n "${postdefault}" ]
1380 then
1381 printf " if (gdbarch->${function} == 0)\n"
1382 printf " gdbarch->${function} = ${postdefault};\n"
1383 elif [ -n "${invalid_p}" ]
1384 then
1385 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1386 printf " && (${invalid_p}))\n"
1387 printf " internal_error (__FILE__, __LINE__,\n"
1388 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1389 elif [ -n "${predefault}" ]
1390 then
1391 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1392 printf " && (gdbarch->${function} == ${predefault}))\n"
1393 printf " internal_error (__FILE__, __LINE__,\n"
1394 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1395 fi
1396 fi
1397 done
1398 cat <<EOF
1399 }
1400 EOF
1401
1402 # dump the structure
1403 printf "\n"
1404 printf "\n"
1405 cat <<EOF
1406 /* Print out the details of the current architecture. */
1407
1408 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1409 just happens to match the global variable \`\`current_gdbarch''. That
1410 way macros refering to that variable get the local and not the global
1411 version - ulgh. Once everything is parameterised with gdbarch, this
1412 will go away. */
1413
1414 void
1415 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1416 {
1417 fprintf_unfiltered (file,
1418 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1419 GDB_MULTI_ARCH);
1420 EOF
1421 function_list | while do_read
1422 do
1423 # multiarch functions don't have macros.
1424 class_is_multiarch_p && continue
1425 if [ "x${returntype}" = "xvoid" ]
1426 then
1427 printf "#if defined (${macro}) && GDB_MULTI_ARCH\n"
1428 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1429 else
1430 printf "#ifdef ${macro}\n"
1431 fi
1432 if class_is_function_p
1433 then
1434 printf " fprintf_unfiltered (file,\n"
1435 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1436 printf " \"${macro}(${actual})\",\n"
1437 printf " XSTRING (${macro} (${actual})));\n"
1438 else
1439 printf " fprintf_unfiltered (file,\n"
1440 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1441 printf " XSTRING (${macro}));\n"
1442 fi
1443 printf "#endif\n"
1444 done
1445 function_list | while do_read
1446 do
1447 if class_is_multiarch_p
1448 then
1449 printf " if (GDB_MULTI_ARCH)\n"
1450 printf " fprintf_unfiltered (file,\n"
1451 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1452 printf " (long) current_gdbarch->${function});\n"
1453 continue
1454 fi
1455 printf "#ifdef ${macro}\n"
1456 if [ "x${print_p}" = "x()" ]
1457 then
1458 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1459 elif [ "x${print_p}" = "x0" ]
1460 then
1461 printf " /* skip print of ${macro}, print_p == 0. */\n"
1462 elif [ -n "${print_p}" ]
1463 then
1464 printf " if (${print_p})\n"
1465 printf " fprintf_unfiltered (file,\n"
1466 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1467 printf " ${print});\n"
1468 elif class_is_function_p
1469 then
1470 printf " if (GDB_MULTI_ARCH)\n"
1471 printf " fprintf_unfiltered (file,\n"
1472 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1473 printf " (long) current_gdbarch->${function}\n"
1474 printf " /*${macro} ()*/);\n"
1475 else
1476 printf " fprintf_unfiltered (file,\n"
1477 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1478 printf " ${print});\n"
1479 fi
1480 printf "#endif\n"
1481 done
1482 cat <<EOF
1483 if (current_gdbarch->dump_tdep != NULL)
1484 current_gdbarch->dump_tdep (current_gdbarch, file);
1485 }
1486 EOF
1487
1488
1489 # GET/SET
1490 printf "\n"
1491 cat <<EOF
1492 struct gdbarch_tdep *
1493 gdbarch_tdep (struct gdbarch *gdbarch)
1494 {
1495 if (gdbarch_debug >= 2)
1496 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1497 return gdbarch->tdep;
1498 }
1499 EOF
1500 printf "\n"
1501 function_list | while do_read
1502 do
1503 if class_is_predicate_p
1504 then
1505 printf "\n"
1506 printf "int\n"
1507 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1508 printf "{\n"
1509 if [ -n "${valid_p}" ]
1510 then
1511 printf " return ${valid_p};\n"
1512 else
1513 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1514 fi
1515 printf "}\n"
1516 fi
1517 if class_is_function_p
1518 then
1519 printf "\n"
1520 printf "${returntype}\n"
1521 if [ "x${formal}" = "xvoid" ]
1522 then
1523 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1524 else
1525 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1526 fi
1527 printf "{\n"
1528 printf " if (gdbarch->${function} == 0)\n"
1529 printf " internal_error (__FILE__, __LINE__,\n"
1530 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1531 printf " if (gdbarch_debug >= 2)\n"
1532 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1533 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1534 then
1535 if class_is_multiarch_p
1536 then
1537 params="gdbarch"
1538 else
1539 params=""
1540 fi
1541 else
1542 if class_is_multiarch_p
1543 then
1544 params="gdbarch, ${actual}"
1545 else
1546 params="${actual}"
1547 fi
1548 fi
1549 if [ "x${returntype}" = "xvoid" ]
1550 then
1551 printf " gdbarch->${function} (${params});\n"
1552 else
1553 printf " return gdbarch->${function} (${params});\n"
1554 fi
1555 printf "}\n"
1556 printf "\n"
1557 printf "void\n"
1558 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1559 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1560 printf "{\n"
1561 printf " gdbarch->${function} = ${function};\n"
1562 printf "}\n"
1563 elif class_is_variable_p
1564 then
1565 printf "\n"
1566 printf "${returntype}\n"
1567 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1568 printf "{\n"
1569 if [ "x${invalid_p}" = "x0" ]
1570 then
1571 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1572 elif [ -n "${invalid_p}" ]
1573 then
1574 printf " if (${invalid_p})\n"
1575 printf " internal_error (__FILE__, __LINE__,\n"
1576 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1577 elif [ -n "${predefault}" ]
1578 then
1579 printf " if (gdbarch->${function} == ${predefault})\n"
1580 printf " internal_error (__FILE__, __LINE__,\n"
1581 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1582 fi
1583 printf " if (gdbarch_debug >= 2)\n"
1584 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1585 printf " return gdbarch->${function};\n"
1586 printf "}\n"
1587 printf "\n"
1588 printf "void\n"
1589 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1590 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1591 printf "{\n"
1592 printf " gdbarch->${function} = ${function};\n"
1593 printf "}\n"
1594 elif class_is_info_p
1595 then
1596 printf "\n"
1597 printf "${returntype}\n"
1598 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1599 printf "{\n"
1600 printf " if (gdbarch_debug >= 2)\n"
1601 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1602 printf " return gdbarch->${function};\n"
1603 printf "}\n"
1604 fi
1605 done
1606
1607 # All the trailing guff
1608 cat <<EOF
1609
1610
1611 /* Keep a registry of per-architecture data-pointers required by GDB
1612 modules. */
1613
1614 struct gdbarch_data
1615 {
1616 unsigned index;
1617 gdbarch_data_init_ftype *init;
1618 gdbarch_data_free_ftype *free;
1619 };
1620
1621 struct gdbarch_data_registration
1622 {
1623 struct gdbarch_data *data;
1624 struct gdbarch_data_registration *next;
1625 };
1626
1627 struct gdbarch_data_registry
1628 {
1629 unsigned nr;
1630 struct gdbarch_data_registration *registrations;
1631 };
1632
1633 struct gdbarch_data_registry gdbarch_data_registry =
1634 {
1635 0, NULL,
1636 };
1637
1638 struct gdbarch_data *
1639 register_gdbarch_data (gdbarch_data_init_ftype *init,
1640 gdbarch_data_free_ftype *free)
1641 {
1642 struct gdbarch_data_registration **curr;
1643 for (curr = &gdbarch_data_registry.registrations;
1644 (*curr) != NULL;
1645 curr = &(*curr)->next);
1646 (*curr) = XMALLOC (struct gdbarch_data_registration);
1647 (*curr)->next = NULL;
1648 (*curr)->data = XMALLOC (struct gdbarch_data);
1649 (*curr)->data->index = gdbarch_data_registry.nr++;
1650 (*curr)->data->init = init;
1651 (*curr)->data->free = free;
1652 return (*curr)->data;
1653 }
1654
1655
1656 /* Walk through all the registered users initializing each in turn. */
1657
1658 static void
1659 init_gdbarch_data (struct gdbarch *gdbarch)
1660 {
1661 struct gdbarch_data_registration *rego;
1662 for (rego = gdbarch_data_registry.registrations;
1663 rego != NULL;
1664 rego = rego->next)
1665 {
1666 struct gdbarch_data *data = rego->data;
1667 gdb_assert (data->index < gdbarch->nr_data);
1668 if (data->init != NULL)
1669 {
1670 void *pointer = data->init (gdbarch);
1671 set_gdbarch_data (gdbarch, data, pointer);
1672 }
1673 }
1674 }
1675
1676 /* Create/delete the gdbarch data vector. */
1677
1678 static void
1679 alloc_gdbarch_data (struct gdbarch *gdbarch)
1680 {
1681 gdb_assert (gdbarch->data == NULL);
1682 gdbarch->nr_data = gdbarch_data_registry.nr;
1683 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1684 }
1685
1686 static void
1687 free_gdbarch_data (struct gdbarch *gdbarch)
1688 {
1689 struct gdbarch_data_registration *rego;
1690 gdb_assert (gdbarch->data != NULL);
1691 for (rego = gdbarch_data_registry.registrations;
1692 rego != NULL;
1693 rego = rego->next)
1694 {
1695 struct gdbarch_data *data = rego->data;
1696 gdb_assert (data->index < gdbarch->nr_data);
1697 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1698 {
1699 data->free (gdbarch, gdbarch->data[data->index]);
1700 gdbarch->data[data->index] = NULL;
1701 }
1702 }
1703 xfree (gdbarch->data);
1704 gdbarch->data = NULL;
1705 }
1706
1707
1708 /* Initialize the current value of thee specified per-architecture
1709 data-pointer. */
1710
1711 void
1712 set_gdbarch_data (struct gdbarch *gdbarch,
1713 struct gdbarch_data *data,
1714 void *pointer)
1715 {
1716 gdb_assert (data->index < gdbarch->nr_data);
1717 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1718 data->free (gdbarch, gdbarch->data[data->index]);
1719 gdbarch->data[data->index] = pointer;
1720 }
1721
1722 /* Return the current value of the specified per-architecture
1723 data-pointer. */
1724
1725 void *
1726 gdbarch_data (struct gdbarch_data *data)
1727 {
1728 gdb_assert (data->index < current_gdbarch->nr_data);
1729 return current_gdbarch->data[data->index];
1730 }
1731
1732
1733
1734 /* Keep a registry of swapped data required by GDB modules. */
1735
1736 struct gdbarch_swap
1737 {
1738 void *swap;
1739 struct gdbarch_swap_registration *source;
1740 struct gdbarch_swap *next;
1741 };
1742
1743 struct gdbarch_swap_registration
1744 {
1745 void *data;
1746 unsigned long sizeof_data;
1747 gdbarch_swap_ftype *init;
1748 struct gdbarch_swap_registration *next;
1749 };
1750
1751 struct gdbarch_swap_registry
1752 {
1753 int nr;
1754 struct gdbarch_swap_registration *registrations;
1755 };
1756
1757 struct gdbarch_swap_registry gdbarch_swap_registry =
1758 {
1759 0, NULL,
1760 };
1761
1762 void
1763 register_gdbarch_swap (void *data,
1764 unsigned long sizeof_data,
1765 gdbarch_swap_ftype *init)
1766 {
1767 struct gdbarch_swap_registration **rego;
1768 for (rego = &gdbarch_swap_registry.registrations;
1769 (*rego) != NULL;
1770 rego = &(*rego)->next);
1771 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1772 (*rego)->next = NULL;
1773 (*rego)->init = init;
1774 (*rego)->data = data;
1775 (*rego)->sizeof_data = sizeof_data;
1776 }
1777
1778
1779 static void
1780 init_gdbarch_swap (struct gdbarch *gdbarch)
1781 {
1782 struct gdbarch_swap_registration *rego;
1783 struct gdbarch_swap **curr = &gdbarch->swap;
1784 for (rego = gdbarch_swap_registry.registrations;
1785 rego != NULL;
1786 rego = rego->next)
1787 {
1788 if (rego->data != NULL)
1789 {
1790 (*curr) = XMALLOC (struct gdbarch_swap);
1791 (*curr)->source = rego;
1792 (*curr)->swap = xmalloc (rego->sizeof_data);
1793 (*curr)->next = NULL;
1794 memset (rego->data, 0, rego->sizeof_data);
1795 curr = &(*curr)->next;
1796 }
1797 if (rego->init != NULL)
1798 rego->init ();
1799 }
1800 }
1801
1802 static void
1803 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1804 {
1805 struct gdbarch_swap *curr;
1806 for (curr = gdbarch->swap;
1807 curr != NULL;
1808 curr = curr->next)
1809 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1810 }
1811
1812 static void
1813 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1814 {
1815 struct gdbarch_swap *curr;
1816 for (curr = gdbarch->swap;
1817 curr != NULL;
1818 curr = curr->next)
1819 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1820 }
1821
1822
1823 /* Keep a registry of the architectures known by GDB. */
1824
1825 struct gdbarch_registration
1826 {
1827 enum bfd_architecture bfd_architecture;
1828 gdbarch_init_ftype *init;
1829 gdbarch_dump_tdep_ftype *dump_tdep;
1830 struct gdbarch_list *arches;
1831 struct gdbarch_registration *next;
1832 };
1833
1834 static struct gdbarch_registration *gdbarch_registry = NULL;
1835
1836 static void
1837 append_name (const char ***buf, int *nr, const char *name)
1838 {
1839 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1840 (*buf)[*nr] = name;
1841 *nr += 1;
1842 }
1843
1844 const char **
1845 gdbarch_printable_names (void)
1846 {
1847 if (GDB_MULTI_ARCH)
1848 {
1849 /* Accumulate a list of names based on the registed list of
1850 architectures. */
1851 enum bfd_architecture a;
1852 int nr_arches = 0;
1853 const char **arches = NULL;
1854 struct gdbarch_registration *rego;
1855 for (rego = gdbarch_registry;
1856 rego != NULL;
1857 rego = rego->next)
1858 {
1859 const struct bfd_arch_info *ap;
1860 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1861 if (ap == NULL)
1862 internal_error (__FILE__, __LINE__,
1863 "gdbarch_architecture_names: multi-arch unknown");
1864 do
1865 {
1866 append_name (&arches, &nr_arches, ap->printable_name);
1867 ap = ap->next;
1868 }
1869 while (ap != NULL);
1870 }
1871 append_name (&arches, &nr_arches, NULL);
1872 return arches;
1873 }
1874 else
1875 /* Just return all the architectures that BFD knows. Assume that
1876 the legacy architecture framework supports them. */
1877 return bfd_arch_list ();
1878 }
1879
1880
1881 void
1882 gdbarch_register (enum bfd_architecture bfd_architecture,
1883 gdbarch_init_ftype *init,
1884 gdbarch_dump_tdep_ftype *dump_tdep)
1885 {
1886 struct gdbarch_registration **curr;
1887 const struct bfd_arch_info *bfd_arch_info;
1888 /* Check that BFD recognizes this architecture */
1889 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1890 if (bfd_arch_info == NULL)
1891 {
1892 internal_error (__FILE__, __LINE__,
1893 "gdbarch: Attempt to register unknown architecture (%d)",
1894 bfd_architecture);
1895 }
1896 /* Check that we haven't seen this architecture before */
1897 for (curr = &gdbarch_registry;
1898 (*curr) != NULL;
1899 curr = &(*curr)->next)
1900 {
1901 if (bfd_architecture == (*curr)->bfd_architecture)
1902 internal_error (__FILE__, __LINE__,
1903 "gdbarch: Duplicate registraration of architecture (%s)",
1904 bfd_arch_info->printable_name);
1905 }
1906 /* log it */
1907 if (gdbarch_debug)
1908 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1909 bfd_arch_info->printable_name,
1910 (long) init);
1911 /* Append it */
1912 (*curr) = XMALLOC (struct gdbarch_registration);
1913 (*curr)->bfd_architecture = bfd_architecture;
1914 (*curr)->init = init;
1915 (*curr)->dump_tdep = dump_tdep;
1916 (*curr)->arches = NULL;
1917 (*curr)->next = NULL;
1918 /* When non- multi-arch, install whatever target dump routine we've
1919 been provided - hopefully that routine has been written correctly
1920 and works regardless of multi-arch. */
1921 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1922 && startup_gdbarch.dump_tdep == NULL)
1923 startup_gdbarch.dump_tdep = dump_tdep;
1924 }
1925
1926 void
1927 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1928 gdbarch_init_ftype *init)
1929 {
1930 gdbarch_register (bfd_architecture, init, NULL);
1931 }
1932
1933
1934 /* Look for an architecture using gdbarch_info. Base search on only
1935 BFD_ARCH_INFO and BYTE_ORDER. */
1936
1937 struct gdbarch_list *
1938 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1939 const struct gdbarch_info *info)
1940 {
1941 for (; arches != NULL; arches = arches->next)
1942 {
1943 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1944 continue;
1945 if (info->byte_order != arches->gdbarch->byte_order)
1946 continue;
1947 return arches;
1948 }
1949 return NULL;
1950 }
1951
1952
1953 /* Update the current architecture. Return ZERO if the update request
1954 failed. */
1955
1956 int
1957 gdbarch_update_p (struct gdbarch_info info)
1958 {
1959 struct gdbarch *new_gdbarch;
1960 struct gdbarch_list **list;
1961 struct gdbarch_registration *rego;
1962
1963 /* Fill in missing parts of the INFO struct using a number of
1964 sources: \`\`set ...''; INFOabfd supplied; existing target. */
1965
1966 /* \`\`(gdb) set architecture ...'' */
1967 if (info.bfd_arch_info == NULL
1968 && !TARGET_ARCHITECTURE_AUTO)
1969 info.bfd_arch_info = TARGET_ARCHITECTURE;
1970 if (info.bfd_arch_info == NULL
1971 && info.abfd != NULL
1972 && bfd_get_arch (info.abfd) != bfd_arch_unknown
1973 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
1974 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
1975 if (info.bfd_arch_info == NULL)
1976 info.bfd_arch_info = TARGET_ARCHITECTURE;
1977
1978 /* \`\`(gdb) set byte-order ...'' */
1979 if (info.byte_order == 0
1980 && !TARGET_BYTE_ORDER_AUTO)
1981 info.byte_order = TARGET_BYTE_ORDER;
1982 /* From the INFO struct. */
1983 if (info.byte_order == 0
1984 && info.abfd != NULL)
1985 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
1986 : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
1987 : 0);
1988 /* From the current target. */
1989 if (info.byte_order == 0)
1990 info.byte_order = TARGET_BYTE_ORDER;
1991
1992 /* Must have found some sort of architecture. */
1993 gdb_assert (info.bfd_arch_info != NULL);
1994
1995 if (gdbarch_debug)
1996 {
1997 fprintf_unfiltered (gdb_stdlog,
1998 "gdbarch_update: info.bfd_arch_info %s\n",
1999 (info.bfd_arch_info != NULL
2000 ? info.bfd_arch_info->printable_name
2001 : "(null)"));
2002 fprintf_unfiltered (gdb_stdlog,
2003 "gdbarch_update: info.byte_order %d (%s)\n",
2004 info.byte_order,
2005 (info.byte_order == BIG_ENDIAN ? "big"
2006 : info.byte_order == LITTLE_ENDIAN ? "little"
2007 : "default"));
2008 fprintf_unfiltered (gdb_stdlog,
2009 "gdbarch_update: info.abfd 0x%lx\n",
2010 (long) info.abfd);
2011 fprintf_unfiltered (gdb_stdlog,
2012 "gdbarch_update: info.tdep_info 0x%lx\n",
2013 (long) info.tdep_info);
2014 }
2015
2016 /* Find the target that knows about this architecture. */
2017 for (rego = gdbarch_registry;
2018 rego != NULL;
2019 rego = rego->next)
2020 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2021 break;
2022 if (rego == NULL)
2023 {
2024 if (gdbarch_debug)
2025 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2026 return 0;
2027 }
2028
2029 /* Ask the target for a replacement architecture. */
2030 new_gdbarch = rego->init (info, rego->arches);
2031
2032 /* Did the target like it? No. Reject the change. */
2033 if (new_gdbarch == NULL)
2034 {
2035 if (gdbarch_debug)
2036 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2037 return 0;
2038 }
2039
2040 /* Did the architecture change? No. Do nothing. */
2041 if (current_gdbarch == new_gdbarch)
2042 {
2043 if (gdbarch_debug)
2044 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2045 (long) new_gdbarch,
2046 new_gdbarch->bfd_arch_info->printable_name);
2047 return 1;
2048 }
2049
2050 /* Swap all data belonging to the old target out */
2051 swapout_gdbarch_swap (current_gdbarch);
2052
2053 /* Is this a pre-existing architecture? Yes. Swap it in. */
2054 for (list = &rego->arches;
2055 (*list) != NULL;
2056 list = &(*list)->next)
2057 {
2058 if ((*list)->gdbarch == new_gdbarch)
2059 {
2060 if (gdbarch_debug)
2061 fprintf_unfiltered (gdb_stdlog,
2062 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2063 (long) new_gdbarch,
2064 new_gdbarch->bfd_arch_info->printable_name);
2065 current_gdbarch = new_gdbarch;
2066 swapin_gdbarch_swap (new_gdbarch);
2067 return 1;
2068 }
2069 }
2070
2071 /* Append this new architecture to this targets list. */
2072 (*list) = XMALLOC (struct gdbarch_list);
2073 (*list)->next = NULL;
2074 (*list)->gdbarch = new_gdbarch;
2075
2076 /* Switch to this new architecture. Dump it out. */
2077 current_gdbarch = new_gdbarch;
2078 if (gdbarch_debug)
2079 {
2080 fprintf_unfiltered (gdb_stdlog,
2081 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2082 (long) new_gdbarch,
2083 new_gdbarch->bfd_arch_info->printable_name);
2084 }
2085
2086 /* Check that the newly installed architecture is valid. Plug in
2087 any post init values. */
2088 new_gdbarch->dump_tdep = rego->dump_tdep;
2089 verify_gdbarch (new_gdbarch);
2090
2091 /* Initialize the per-architecture memory (swap) areas.
2092 CURRENT_GDBARCH must be update before these modules are
2093 called. */
2094 init_gdbarch_swap (new_gdbarch);
2095
2096 /* Initialize the per-architecture data-pointer of all parties that
2097 registered an interest in this architecture. CURRENT_GDBARCH
2098 must be updated before these modules are called. */
2099 init_gdbarch_data (new_gdbarch);
2100
2101 if (gdbarch_debug)
2102 gdbarch_dump (current_gdbarch, gdb_stdlog);
2103
2104 return 1;
2105 }
2106
2107
2108 /* Disassembler */
2109
2110 /* Pointer to the target-dependent disassembly function. */
2111 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2112 disassemble_info tm_print_insn_info;
2113
2114
2115 extern void _initialize_gdbarch (void);
2116
2117 void
2118 _initialize_gdbarch (void)
2119 {
2120 struct cmd_list_element *c;
2121
2122 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2123 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2124 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2125 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2126 tm_print_insn_info.print_address_func = dis_asm_print_address;
2127
2128 add_show_from_set (add_set_cmd ("arch",
2129 class_maintenance,
2130 var_zinteger,
2131 (char *)&gdbarch_debug,
2132 "Set architecture debugging.\\n\\
2133 When non-zero, architecture debugging is enabled.", &setdebuglist),
2134 &showdebuglist);
2135 c = add_set_cmd ("archdebug",
2136 class_maintenance,
2137 var_zinteger,
2138 (char *)&gdbarch_debug,
2139 "Set architecture debugging.\\n\\
2140 When non-zero, architecture debugging is enabled.", &setlist);
2141
2142 deprecate_cmd (c, "set debug arch");
2143 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2144 }
2145 EOF
2146
2147 # close things off
2148 exec 1>&2
2149 #../move-if-change new-gdbarch.c gdbarch.c
2150 compare_new gdbarch.c