2012-06-04 Pedro Alves <palves@redhat.com>
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2012 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 if test -n "${garbage_at_eol}"
76 then
77 echo "Garbage at end-of-line in ${line}" 1>&2
78 kill $$
79 exit 1
80 fi
81
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
84 for r in ${read}
85 do
86 if eval test \"\${${r}}\" = \"\ \"
87 then
88 eval ${r}=""
89 fi
90 done
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 case "${class}" in
99 F | V | M )
100 case "${invalid_p}" in
101 "" )
102 if test -n "${predefault}"
103 then
104 #invalid_p="gdbarch->${function} == ${predefault}"
105 predicate="gdbarch->${function} != ${predefault}"
106 elif class_is_variable_p
107 then
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
110 then
111 predicate="gdbarch->${function} != NULL"
112 fi
113 ;;
114 * )
115 echo "Predicate function ${function} with invalid_p." 1>&2
116 kill $$
117 exit 1
118 ;;
119 esac
120 esac
121
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
128
129 if [ -n "${postdefault}" ]
130 then
131 fallbackdefault="${postdefault}"
132 elif [ -n "${predefault}" ]
133 then
134 fallbackdefault="${predefault}"
135 else
136 fallbackdefault="0"
137 fi
138
139 #NOT YET: See gdbarch.log for basic verification of
140 # database
141
142 break
143 fi
144 done
145 if [ -n "${class}" ]
146 then
147 true
148 else
149 false
150 fi
151 }
152
153
154 fallback_default_p ()
155 {
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
158 }
159
160 class_is_variable_p ()
161 {
162 case "${class}" in
163 *v* | *V* ) true ;;
164 * ) false ;;
165 esac
166 }
167
168 class_is_function_p ()
169 {
170 case "${class}" in
171 *f* | *F* | *m* | *M* ) true ;;
172 * ) false ;;
173 esac
174 }
175
176 class_is_multiarch_p ()
177 {
178 case "${class}" in
179 *m* | *M* ) true ;;
180 * ) false ;;
181 esac
182 }
183
184 class_is_predicate_p ()
185 {
186 case "${class}" in
187 *F* | *V* | *M* ) true ;;
188 * ) false ;;
189 esac
190 }
191
192 class_is_info_p ()
193 {
194 case "${class}" in
195 *i* ) true ;;
196 * ) false ;;
197 esac
198 }
199
200
201 # dump out/verify the doco
202 for field in ${read}
203 do
204 case ${field} in
205
206 class ) : ;;
207
208 # # -> line disable
209 # f -> function
210 # hiding a function
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
213 # v -> variable
214 # hiding a variable
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
217 # i -> set from info
218 # hiding something from the ``struct info'' object
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
223
224 returntype ) : ;;
225
226 # For functions, the return type; for variables, the data type
227
228 function ) : ;;
229
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
233
234 formal ) : ;;
235
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
240
241 actual ) : ;;
242
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
246
247 staticdefault ) : ;;
248
249 # To help with the GDB startup a static gdbarch object is
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
253
254 # If STATICDEFAULT is empty, zero is used.
255
256 predefault ) : ;;
257
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
262
263 # If PREDEFAULT is empty, zero is used.
264
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
268
269 # A zero PREDEFAULT function will force the fallback to call
270 # internal_error().
271
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
274
275 postdefault ) : ;;
276
277 # A value to assign to MEMBER of the new gdbarch object should
278 # the target architecture code fail to change the PREDEFAULT
279 # value.
280
281 # If POSTDEFAULT is empty, no post update is performed.
282
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
286
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
290 # PREDEFAULT).
291
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
293
294 # Variable declarations can refer to ``gdbarch'' which
295 # will contain the current architecture. Care should be
296 # taken.
297
298 invalid_p ) : ;;
299
300 # A predicate equation that validates MEMBER. Non-zero is
301 # returned if the code creating the new architecture failed to
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
305 # is called.
306
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
309
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
312
313 # See also PREDEFAULT and POSTDEFAULT.
314
315 print ) : ;;
316
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
319
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
322
323 garbage_at_eol ) : ;;
324
325 # Catches stray fields.
326
327 *)
328 echo "Bad field ${field}"
329 exit 1;;
330 esac
331 done
332
333
334 function_list ()
335 {
336 # See below (DOCO) for description of each field
337 cat <<EOF
338 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
339 #
340 i:int:byte_order:::BFD_ENDIAN_BIG
341 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
342 #
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344 #
345 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
346
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
354 #
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
362 # machine.
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364 # Alignment of a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367
368 # The ABI default bit-size and format for "half", "float", "double", and
369 # "long double". These bit/format pairs should eventually be combined
370 # into a single object. For the moment, just initialize them as a pair.
371 # Each format describes both the big and little endian layouts (if
372 # useful).
373
374 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
376 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
378 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
380 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
381 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
382
383 # For most targets, a pointer on the target and its representation as an
384 # address in GDB have the same size and "look the same". For such a
385 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
386 # / addr_bit will be set from it.
387 #
388 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
389 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390 # gdbarch_address_to_pointer as well.
391 #
392 # ptr_bit is the size of a pointer on the target
393 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
394 # addr_bit is the size of a target address as represented in gdb
395 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
396 #
397 # dwarf2_addr_size is the target address size as used in the Dwarf debug
398 # info. For .debug_frame FDEs, this is supposed to be the target address
399 # size from the associated CU header, and which is equivalent to the
400 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401 # Unfortunately there is no good way to determine this value. Therefore
402 # dwarf2_addr_size simply defaults to the target pointer size.
403 #
404 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405 # defined using the target's pointer size so far.
406 #
407 # Note that dwarf2_addr_size only needs to be redefined by a target if the
408 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409 # and if Dwarf versions < 4 need to be supported.
410 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
411 #
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v:int:char_signed:::1:-1:1
414 #
415 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
417 # Function for getting target's idea of a frame pointer. FIXME: GDB's
418 # whole scheme for dealing with "frames" and "frame pointers" needs a
419 # serious shakedown.
420 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
421 #
422 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
423 # Read a register into a new struct value. If the register is wholly
424 # or partly unavailable, this should call mark_value_bytes_unavailable
425 # as appropriate. If this is defined, then pseudo_register_read will
426 # never be called.
427 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
428 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
429 #
430 v:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:int:num_pseudo_regs:::0:0::0
436
437 # Assemble agent expression bytecode to collect pseudo-register REG.
438 # Return -1 if something goes wrong, 0 otherwise.
439 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
440
441 # Assemble agent expression bytecode to push the value of pseudo-register
442 # REG on the interpreter stack.
443 # Return -1 if something goes wrong, 0 otherwise.
444 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
445
446 # GDB's standard (or well known) register numbers. These can map onto
447 # a real register or a pseudo (computed) register or not be defined at
448 # all (-1).
449 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
450 v:int:sp_regnum:::-1:-1::0
451 v:int:pc_regnum:::-1:-1::0
452 v:int:ps_regnum:::-1:-1::0
453 v:int:fp0_regnum:::0:-1::0
454 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
455 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
456 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
457 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
458 # Convert from an sdb register number to an internal gdb register number.
459 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
460 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
461 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
462 m:const char *:register_name:int regnr:regnr::0
463
464 # Return the type of a register specified by the architecture. Only
465 # the register cache should call this function directly; others should
466 # use "register_type".
467 M:struct type *:register_type:int reg_nr:reg_nr
468
469 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
470 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
472 # deprecated_fp_regnum.
473 v:int:deprecated_fp_regnum:::-1:-1::0
474
475 # See gdbint.texinfo. See infcall.c.
476 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477 v:int:call_dummy_location::::AT_ENTRY_POINT::0
478 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
479
480 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
486 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
488 # setjmp/longjmp support.
489 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
490 #
491 v:int:believe_pcc_promotion:::::::
492 #
493 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
494 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
495 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
496 # Construct a value representing the contents of register REGNUM in
497 # frame FRAME, interpreted as type TYPE. The routine needs to
498 # allocate and return a struct value with all value attributes
499 # (but not the value contents) filled in.
500 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
501 #
502 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
504 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
505
506 # Return the return-value convention that will be used by FUNCTION
507 # to return a value of type VALTYPE. FUNCTION may be NULL in which
508 # case the return convention is computed based only on VALTYPE.
509 #
510 # If READBUF is not NULL, extract the return value and save it in this buffer.
511 #
512 # If WRITEBUF is not NULL, it contains a return value which will be
513 # stored into the appropriate register. This can be used when we want
514 # to force the value returned by a function (see the "return" command
515 # for instance).
516 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
517
518 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
519 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
520 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
521 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
522 # Return the adjusted address and kind to use for Z0/Z1 packets.
523 # KIND is usually the memory length of the breakpoint, but may have a
524 # different target-specific meaning.
525 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
526 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
527 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
528 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
529 v:CORE_ADDR:decr_pc_after_break:::0:::0
530
531 # A function can be addressed by either it's "pointer" (possibly a
532 # descriptor address) or "entry point" (first executable instruction).
533 # The method "convert_from_func_ptr_addr" converting the former to the
534 # latter. gdbarch_deprecated_function_start_offset is being used to implement
535 # a simplified subset of that functionality - the function's address
536 # corresponds to the "function pointer" and the function's start
537 # corresponds to the "function entry point" - and hence is redundant.
538
539 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
540
541 # Return the remote protocol register number associated with this
542 # register. Normally the identity mapping.
543 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
544
545 # Fetch the target specific address used to represent a load module.
546 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
547 #
548 v:CORE_ADDR:frame_args_skip:::0:::0
549 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
550 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
551 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
552 # frame-base. Enable frame-base before frame-unwind.
553 F:int:frame_num_args:struct frame_info *frame:frame
554 #
555 M:CORE_ADDR:frame_align:CORE_ADDR address:address
556 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
557 v:int:frame_red_zone_size
558 #
559 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
560 # On some machines there are bits in addresses which are not really
561 # part of the address, but are used by the kernel, the hardware, etc.
562 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
563 # we get a "real" address such as one would find in a symbol table.
564 # This is used only for addresses of instructions, and even then I'm
565 # not sure it's used in all contexts. It exists to deal with there
566 # being a few stray bits in the PC which would mislead us, not as some
567 # sort of generic thing to handle alignment or segmentation (it's
568 # possible it should be in TARGET_READ_PC instead).
569 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
570 # It is not at all clear why gdbarch_smash_text_address is not folded into
571 # gdbarch_addr_bits_remove.
572 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
573
574 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
575 # indicates if the target needs software single step. An ISA method to
576 # implement it.
577 #
578 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
579 # breakpoints using the breakpoint system instead of blatting memory directly
580 # (as with rs6000).
581 #
582 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
583 # target can single step. If not, then implement single step using breakpoints.
584 #
585 # A return value of 1 means that the software_single_step breakpoints
586 # were inserted; 0 means they were not.
587 F:int:software_single_step:struct frame_info *frame:frame
588
589 # Return non-zero if the processor is executing a delay slot and a
590 # further single-step is needed before the instruction finishes.
591 M:int:single_step_through_delay:struct frame_info *frame:frame
592 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
593 # disassembler. Perhaps objdump can handle it?
594 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
595 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
596
597
598 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
599 # evaluates non-zero, this is the address where the debugger will place
600 # a step-resume breakpoint to get us past the dynamic linker.
601 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
602 # Some systems also have trampoline code for returning from shared libs.
603 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
604
605 # A target might have problems with watchpoints as soon as the stack
606 # frame of the current function has been destroyed. This mostly happens
607 # as the first action in a funtion's epilogue. in_function_epilogue_p()
608 # is defined to return a non-zero value if either the given addr is one
609 # instruction after the stack destroying instruction up to the trailing
610 # return instruction or if we can figure out that the stack frame has
611 # already been invalidated regardless of the value of addr. Targets
612 # which don't suffer from that problem could just let this functionality
613 # untouched.
614 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
615 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
616 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
617 v:int:cannot_step_breakpoint:::0:0::0
618 v:int:have_nonsteppable_watchpoint:::0:0::0
619 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
620 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
621 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
622 # Is a register in a group
623 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
624 # Fetch the pointer to the ith function argument.
625 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
626
627 # Return the appropriate register set for a core file section with
628 # name SECT_NAME and size SECT_SIZE.
629 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
630
631 # Supported register notes in a core file.
632 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
633
634 # Create core file notes
635 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
636
637 # Find core file memory regions
638 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
639
640 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
641 # core file into buffer READBUF with length LEN.
642 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
643
644 # How the core target converts a PTID from a core file to a string.
645 M:char *:core_pid_to_str:ptid_t ptid:ptid
646
647 # BFD target to use when generating a core file.
648 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
649
650 # If the elements of C++ vtables are in-place function descriptors rather
651 # than normal function pointers (which may point to code or a descriptor),
652 # set this to one.
653 v:int:vtable_function_descriptors:::0:0::0
654
655 # Set if the least significant bit of the delta is used instead of the least
656 # significant bit of the pfn for pointers to virtual member functions.
657 v:int:vbit_in_delta:::0:0::0
658
659 # Advance PC to next instruction in order to skip a permanent breakpoint.
660 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
661
662 # The maximum length of an instruction on this architecture in bytes.
663 V:ULONGEST:max_insn_length:::0:0
664
665 # Copy the instruction at FROM to TO, and make any adjustments
666 # necessary to single-step it at that address.
667 #
668 # REGS holds the state the thread's registers will have before
669 # executing the copied instruction; the PC in REGS will refer to FROM,
670 # not the copy at TO. The caller should update it to point at TO later.
671 #
672 # Return a pointer to data of the architecture's choice to be passed
673 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
674 # the instruction's effects have been completely simulated, with the
675 # resulting state written back to REGS.
676 #
677 # For a general explanation of displaced stepping and how GDB uses it,
678 # see the comments in infrun.c.
679 #
680 # The TO area is only guaranteed to have space for
681 # gdbarch_max_insn_length (arch) bytes, so this function must not
682 # write more bytes than that to that area.
683 #
684 # If you do not provide this function, GDB assumes that the
685 # architecture does not support displaced stepping.
686 #
687 # If your architecture doesn't need to adjust instructions before
688 # single-stepping them, consider using simple_displaced_step_copy_insn
689 # here.
690 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
691
692 # Return true if GDB should use hardware single-stepping to execute
693 # the displaced instruction identified by CLOSURE. If false,
694 # GDB will simply restart execution at the displaced instruction
695 # location, and it is up to the target to ensure GDB will receive
696 # control again (e.g. by placing a software breakpoint instruction
697 # into the displaced instruction buffer).
698 #
699 # The default implementation returns false on all targets that
700 # provide a gdbarch_software_single_step routine, and true otherwise.
701 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
702
703 # Fix up the state resulting from successfully single-stepping a
704 # displaced instruction, to give the result we would have gotten from
705 # stepping the instruction in its original location.
706 #
707 # REGS is the register state resulting from single-stepping the
708 # displaced instruction.
709 #
710 # CLOSURE is the result from the matching call to
711 # gdbarch_displaced_step_copy_insn.
712 #
713 # If you provide gdbarch_displaced_step_copy_insn.but not this
714 # function, then GDB assumes that no fixup is needed after
715 # single-stepping the instruction.
716 #
717 # For a general explanation of displaced stepping and how GDB uses it,
718 # see the comments in infrun.c.
719 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
720
721 # Free a closure returned by gdbarch_displaced_step_copy_insn.
722 #
723 # If you provide gdbarch_displaced_step_copy_insn, you must provide
724 # this function as well.
725 #
726 # If your architecture uses closures that don't need to be freed, then
727 # you can use simple_displaced_step_free_closure here.
728 #
729 # For a general explanation of displaced stepping and how GDB uses it,
730 # see the comments in infrun.c.
731 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
732
733 # Return the address of an appropriate place to put displaced
734 # instructions while we step over them. There need only be one such
735 # place, since we're only stepping one thread over a breakpoint at a
736 # time.
737 #
738 # For a general explanation of displaced stepping and how GDB uses it,
739 # see the comments in infrun.c.
740 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
741
742 # Relocate an instruction to execute at a different address. OLDLOC
743 # is the address in the inferior memory where the instruction to
744 # relocate is currently at. On input, TO points to the destination
745 # where we want the instruction to be copied (and possibly adjusted)
746 # to. On output, it points to one past the end of the resulting
747 # instruction(s). The effect of executing the instruction at TO shall
748 # be the same as if executing it at FROM. For example, call
749 # instructions that implicitly push the return address on the stack
750 # should be adjusted to return to the instruction after OLDLOC;
751 # relative branches, and other PC-relative instructions need the
752 # offset adjusted; etc.
753 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
754
755 # Refresh overlay mapped state for section OSECT.
756 F:void:overlay_update:struct obj_section *osect:osect
757
758 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
759
760 # Handle special encoding of static variables in stabs debug info.
761 F:const char *:static_transform_name:const char *name:name
762 # Set if the address in N_SO or N_FUN stabs may be zero.
763 v:int:sofun_address_maybe_missing:::0:0::0
764
765 # Parse the instruction at ADDR storing in the record execution log
766 # the registers REGCACHE and memory ranges that will be affected when
767 # the instruction executes, along with their current values.
768 # Return -1 if something goes wrong, 0 otherwise.
769 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
770
771 # Save process state after a signal.
772 # Return -1 if something goes wrong, 0 otherwise.
773 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
774
775 # Signal translation: translate inferior's signal (target's) number
776 # into GDB's representation. The implementation of this method must
777 # be host independent. IOW, don't rely on symbols of the NAT_FILE
778 # header (the nm-*.h files), the host <signal.h> header, or similar
779 # headers. This is mainly used when cross-debugging core files ---
780 # "Live" targets hide the translation behind the target interface
781 # (target_wait, target_resume, etc.). The default is to do the
782 # translation using host signal numbers.
783 m:enum gdb_signal:gdb_signal_from_target:int signo:signo::default_gdb_signal_from_target::0
784
785 # Extra signal info inspection.
786 #
787 # Return a type suitable to inspect extra signal information.
788 M:struct type *:get_siginfo_type:void:
789
790 # Record architecture-specific information from the symbol table.
791 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
792
793 # Function for the 'catch syscall' feature.
794
795 # Get architecture-specific system calls information from registers.
796 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
797
798 # SystemTap related fields and functions.
799
800 # Prefix used to mark an integer constant on the architecture's assembly
801 # For example, on x86 integer constants are written as:
802 #
803 # \$10 ;; integer constant 10
804 #
805 # in this case, this prefix would be the character \`\$\'.
806 v:const char *:stap_integer_prefix:::0:0::0:gdbarch->stap_integer_prefix
807
808 # Suffix used to mark an integer constant on the architecture's assembly.
809 v:const char *:stap_integer_suffix:::0:0::0:gdbarch->stap_integer_suffix
810
811 # Prefix used to mark a register name on the architecture's assembly.
812 # For example, on x86 the register name is written as:
813 #
814 # \%eax ;; register eax
815 #
816 # in this case, this prefix would be the character \`\%\'.
817 v:const char *:stap_register_prefix:::0:0::0:gdbarch->stap_register_prefix
818
819 # Suffix used to mark a register name on the architecture's assembly
820 v:const char *:stap_register_suffix:::0:0::0:gdbarch->stap_register_suffix
821
822 # Prefix used to mark a register indirection on the architecture's assembly.
823 # For example, on x86 the register indirection is written as:
824 #
825 # \(\%eax\) ;; indirecting eax
826 #
827 # in this case, this prefix would be the charater \`\(\'.
828 #
829 # Please note that we use the indirection prefix also for register
830 # displacement, e.g., \`4\(\%eax\)\' on x86.
831 v:const char *:stap_register_indirection_prefix:::0:0::0:gdbarch->stap_register_indirection_prefix
832
833 # Suffix used to mark a register indirection on the architecture's assembly.
834 # For example, on x86 the register indirection is written as:
835 #
836 # \(\%eax\) ;; indirecting eax
837 #
838 # in this case, this prefix would be the charater \`\)\'.
839 #
840 # Please note that we use the indirection suffix also for register
841 # displacement, e.g., \`4\(\%eax\)\' on x86.
842 v:const char *:stap_register_indirection_suffix:::0:0::0:gdbarch->stap_register_indirection_suffix
843
844 # Prefix used to name a register using GDB's nomenclature.
845 #
846 # For example, on PPC a register is represented by a number in the assembly
847 # language (e.g., \`10\' is the 10th general-purpose register). However,
848 # inside GDB this same register has an \`r\' appended to its name, so the 10th
849 # register would be represented as \`r10\' internally.
850 v:const char *:stap_gdb_register_prefix:::0:0::0:gdbarch->stap_gdb_register_prefix
851
852 # Suffix used to name a register using GDB's nomenclature.
853 v:const char *:stap_gdb_register_suffix:::0:0::0:gdbarch->stap_gdb_register_suffix
854
855 # Check if S is a single operand.
856 #
857 # Single operands can be:
858 # \- Literal integers, e.g. \`\$10\' on x86
859 # \- Register access, e.g. \`\%eax\' on x86
860 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
861 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
862 #
863 # This function should check for these patterns on the string
864 # and return 1 if some were found, or zero otherwise. Please try to match
865 # as much info as you can from the string, i.e., if you have to match
866 # something like \`\(\%\', do not match just the \`\(\'.
867 M:int:stap_is_single_operand:const char *s:s
868
869 # Function used to handle a "special case" in the parser.
870 #
871 # A "special case" is considered to be an unknown token, i.e., a token
872 # that the parser does not know how to parse. A good example of special
873 # case would be ARM's register displacement syntax:
874 #
875 # [R0, #4] ;; displacing R0 by 4
876 #
877 # Since the parser assumes that a register displacement is of the form:
878 #
879 # <number> <indirection_prefix> <register_name> <indirection_suffix>
880 #
881 # it means that it will not be able to recognize and parse this odd syntax.
882 # Therefore, we should add a special case function that will handle this token.
883 #
884 # This function should generate the proper expression form of the expression
885 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
886 # and so on). It should also return 1 if the parsing was successful, or zero
887 # if the token was not recognized as a special token (in this case, returning
888 # zero means that the special parser is deferring the parsing to the generic
889 # parser), and should advance the buffer pointer (p->arg).
890 M:int:stap_parse_special_token:struct stap_parse_info *p:p
891
892
893 # True if the list of shared libraries is one and only for all
894 # processes, as opposed to a list of shared libraries per inferior.
895 # This usually means that all processes, although may or may not share
896 # an address space, will see the same set of symbols at the same
897 # addresses.
898 v:int:has_global_solist:::0:0::0
899
900 # On some targets, even though each inferior has its own private
901 # address space, the debug interface takes care of making breakpoints
902 # visible to all address spaces automatically. For such cases,
903 # this property should be set to true.
904 v:int:has_global_breakpoints:::0:0::0
905
906 # True if inferiors share an address space (e.g., uClinux).
907 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
908
909 # True if a fast tracepoint can be set at an address.
910 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
911
912 # Return the "auto" target charset.
913 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
914 # Return the "auto" target wide charset.
915 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
916
917 # If non-empty, this is a file extension that will be opened in place
918 # of the file extension reported by the shared library list.
919 #
920 # This is most useful for toolchains that use a post-linker tool,
921 # where the names of the files run on the target differ in extension
922 # compared to the names of the files GDB should load for debug info.
923 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
924
925 # If true, the target OS has DOS-based file system semantics. That
926 # is, absolute paths include a drive name, and the backslash is
927 # considered a directory separator.
928 v:int:has_dos_based_file_system:::0:0::0
929
930 # Generate bytecodes to collect the return address in a frame.
931 # Since the bytecodes run on the target, possibly with GDB not even
932 # connected, the full unwinding machinery is not available, and
933 # typically this function will issue bytecodes for one or more likely
934 # places that the return address may be found.
935 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
936
937 # Implement the "info proc" command.
938 M:void:info_proc:char *args, enum info_proc_what what:args, what
939
940 EOF
941 }
942
943 #
944 # The .log file
945 #
946 exec > new-gdbarch.log
947 function_list | while do_read
948 do
949 cat <<EOF
950 ${class} ${returntype} ${function} ($formal)
951 EOF
952 for r in ${read}
953 do
954 eval echo \"\ \ \ \ ${r}=\${${r}}\"
955 done
956 if class_is_predicate_p && fallback_default_p
957 then
958 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
959 kill $$
960 exit 1
961 fi
962 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
963 then
964 echo "Error: postdefault is useless when invalid_p=0" 1>&2
965 kill $$
966 exit 1
967 fi
968 if class_is_multiarch_p
969 then
970 if class_is_predicate_p ; then :
971 elif test "x${predefault}" = "x"
972 then
973 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
974 kill $$
975 exit 1
976 fi
977 fi
978 echo ""
979 done
980
981 exec 1>&2
982 compare_new gdbarch.log
983
984
985 copyright ()
986 {
987 cat <<EOF
988 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
989
990 /* Dynamic architecture support for GDB, the GNU debugger.
991
992 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
993 2007, 2008, 2009 Free Software Foundation, Inc.
994
995 This file is part of GDB.
996
997 This program is free software; you can redistribute it and/or modify
998 it under the terms of the GNU General Public License as published by
999 the Free Software Foundation; either version 3 of the License, or
1000 (at your option) any later version.
1001
1002 This program is distributed in the hope that it will be useful,
1003 but WITHOUT ANY WARRANTY; without even the implied warranty of
1004 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1005 GNU General Public License for more details.
1006
1007 You should have received a copy of the GNU General Public License
1008 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1009
1010 /* This file was created with the aid of \`\`gdbarch.sh''.
1011
1012 The Bourne shell script \`\`gdbarch.sh'' creates the files
1013 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1014 against the existing \`\`gdbarch.[hc]''. Any differences found
1015 being reported.
1016
1017 If editing this file, please also run gdbarch.sh and merge any
1018 changes into that script. Conversely, when making sweeping changes
1019 to this file, modifying gdbarch.sh and using its output may prove
1020 easier. */
1021
1022 EOF
1023 }
1024
1025 #
1026 # The .h file
1027 #
1028
1029 exec > new-gdbarch.h
1030 copyright
1031 cat <<EOF
1032 #ifndef GDBARCH_H
1033 #define GDBARCH_H
1034
1035 struct floatformat;
1036 struct ui_file;
1037 struct frame_info;
1038 struct value;
1039 struct objfile;
1040 struct obj_section;
1041 struct minimal_symbol;
1042 struct regcache;
1043 struct reggroup;
1044 struct regset;
1045 struct disassemble_info;
1046 struct target_ops;
1047 struct obstack;
1048 struct bp_target_info;
1049 struct target_desc;
1050 struct displaced_step_closure;
1051 struct core_regset_section;
1052 struct syscall;
1053 struct agent_expr;
1054 struct axs_value;
1055 struct stap_parse_info;
1056
1057 /* The architecture associated with the connection to the target.
1058
1059 The architecture vector provides some information that is really
1060 a property of the target: The layout of certain packets, for instance;
1061 or the solib_ops vector. Etc. To differentiate architecture accesses
1062 to per-target properties from per-thread/per-frame/per-objfile properties,
1063 accesses to per-target properties should be made through target_gdbarch.
1064
1065 Eventually, when support for multiple targets is implemented in
1066 GDB, this global should be made target-specific. */
1067 extern struct gdbarch *target_gdbarch;
1068 EOF
1069
1070 # function typedef's
1071 printf "\n"
1072 printf "\n"
1073 printf "/* The following are pre-initialized by GDBARCH. */\n"
1074 function_list | while do_read
1075 do
1076 if class_is_info_p
1077 then
1078 printf "\n"
1079 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1080 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1081 fi
1082 done
1083
1084 # function typedef's
1085 printf "\n"
1086 printf "\n"
1087 printf "/* The following are initialized by the target dependent code. */\n"
1088 function_list | while do_read
1089 do
1090 if [ -n "${comment}" ]
1091 then
1092 echo "${comment}" | sed \
1093 -e '2 s,#,/*,' \
1094 -e '3,$ s,#, ,' \
1095 -e '$ s,$, */,'
1096 fi
1097
1098 if class_is_predicate_p
1099 then
1100 printf "\n"
1101 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1102 fi
1103 if class_is_variable_p
1104 then
1105 printf "\n"
1106 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1107 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1108 fi
1109 if class_is_function_p
1110 then
1111 printf "\n"
1112 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1113 then
1114 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1115 elif class_is_multiarch_p
1116 then
1117 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1118 else
1119 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1120 fi
1121 if [ "x${formal}" = "xvoid" ]
1122 then
1123 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1124 else
1125 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1126 fi
1127 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1128 fi
1129 done
1130
1131 # close it off
1132 cat <<EOF
1133
1134 /* Definition for an unknown syscall, used basically in error-cases. */
1135 #define UNKNOWN_SYSCALL (-1)
1136
1137 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1138
1139
1140 /* Mechanism for co-ordinating the selection of a specific
1141 architecture.
1142
1143 GDB targets (*-tdep.c) can register an interest in a specific
1144 architecture. Other GDB components can register a need to maintain
1145 per-architecture data.
1146
1147 The mechanisms below ensures that there is only a loose connection
1148 between the set-architecture command and the various GDB
1149 components. Each component can independently register their need
1150 to maintain architecture specific data with gdbarch.
1151
1152 Pragmatics:
1153
1154 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1155 didn't scale.
1156
1157 The more traditional mega-struct containing architecture specific
1158 data for all the various GDB components was also considered. Since
1159 GDB is built from a variable number of (fairly independent)
1160 components it was determined that the global aproach was not
1161 applicable. */
1162
1163
1164 /* Register a new architectural family with GDB.
1165
1166 Register support for the specified ARCHITECTURE with GDB. When
1167 gdbarch determines that the specified architecture has been
1168 selected, the corresponding INIT function is called.
1169
1170 --
1171
1172 The INIT function takes two parameters: INFO which contains the
1173 information available to gdbarch about the (possibly new)
1174 architecture; ARCHES which is a list of the previously created
1175 \`\`struct gdbarch'' for this architecture.
1176
1177 The INFO parameter is, as far as possible, be pre-initialized with
1178 information obtained from INFO.ABFD or the global defaults.
1179
1180 The ARCHES parameter is a linked list (sorted most recently used)
1181 of all the previously created architures for this architecture
1182 family. The (possibly NULL) ARCHES->gdbarch can used to access
1183 values from the previously selected architecture for this
1184 architecture family.
1185
1186 The INIT function shall return any of: NULL - indicating that it
1187 doesn't recognize the selected architecture; an existing \`\`struct
1188 gdbarch'' from the ARCHES list - indicating that the new
1189 architecture is just a synonym for an earlier architecture (see
1190 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1191 - that describes the selected architecture (see gdbarch_alloc()).
1192
1193 The DUMP_TDEP function shall print out all target specific values.
1194 Care should be taken to ensure that the function works in both the
1195 multi-arch and non- multi-arch cases. */
1196
1197 struct gdbarch_list
1198 {
1199 struct gdbarch *gdbarch;
1200 struct gdbarch_list *next;
1201 };
1202
1203 struct gdbarch_info
1204 {
1205 /* Use default: NULL (ZERO). */
1206 const struct bfd_arch_info *bfd_arch_info;
1207
1208 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1209 int byte_order;
1210
1211 int byte_order_for_code;
1212
1213 /* Use default: NULL (ZERO). */
1214 bfd *abfd;
1215
1216 /* Use default: NULL (ZERO). */
1217 struct gdbarch_tdep_info *tdep_info;
1218
1219 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1220 enum gdb_osabi osabi;
1221
1222 /* Use default: NULL (ZERO). */
1223 const struct target_desc *target_desc;
1224 };
1225
1226 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1227 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1228
1229 /* DEPRECATED - use gdbarch_register() */
1230 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1231
1232 extern void gdbarch_register (enum bfd_architecture architecture,
1233 gdbarch_init_ftype *,
1234 gdbarch_dump_tdep_ftype *);
1235
1236
1237 /* Return a freshly allocated, NULL terminated, array of the valid
1238 architecture names. Since architectures are registered during the
1239 _initialize phase this function only returns useful information
1240 once initialization has been completed. */
1241
1242 extern const char **gdbarch_printable_names (void);
1243
1244
1245 /* Helper function. Search the list of ARCHES for a GDBARCH that
1246 matches the information provided by INFO. */
1247
1248 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1249
1250
1251 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1252 basic initialization using values obtained from the INFO and TDEP
1253 parameters. set_gdbarch_*() functions are called to complete the
1254 initialization of the object. */
1255
1256 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1257
1258
1259 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1260 It is assumed that the caller freeds the \`\`struct
1261 gdbarch_tdep''. */
1262
1263 extern void gdbarch_free (struct gdbarch *);
1264
1265
1266 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1267 obstack. The memory is freed when the corresponding architecture
1268 is also freed. */
1269
1270 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1271 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1272 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1273
1274
1275 /* Helper function. Force an update of the current architecture.
1276
1277 The actual architecture selected is determined by INFO, \`\`(gdb) set
1278 architecture'' et.al., the existing architecture and BFD's default
1279 architecture. INFO should be initialized to zero and then selected
1280 fields should be updated.
1281
1282 Returns non-zero if the update succeeds. */
1283
1284 extern int gdbarch_update_p (struct gdbarch_info info);
1285
1286
1287 /* Helper function. Find an architecture matching info.
1288
1289 INFO should be initialized using gdbarch_info_init, relevant fields
1290 set, and then finished using gdbarch_info_fill.
1291
1292 Returns the corresponding architecture, or NULL if no matching
1293 architecture was found. */
1294
1295 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1296
1297
1298 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1299
1300 FIXME: kettenis/20031124: Of the functions that follow, only
1301 gdbarch_from_bfd is supposed to survive. The others will
1302 dissappear since in the future GDB will (hopefully) be truly
1303 multi-arch. However, for now we're still stuck with the concept of
1304 a single active architecture. */
1305
1306 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1307
1308
1309 /* Register per-architecture data-pointer.
1310
1311 Reserve space for a per-architecture data-pointer. An identifier
1312 for the reserved data-pointer is returned. That identifer should
1313 be saved in a local static variable.
1314
1315 Memory for the per-architecture data shall be allocated using
1316 gdbarch_obstack_zalloc. That memory will be deleted when the
1317 corresponding architecture object is deleted.
1318
1319 When a previously created architecture is re-selected, the
1320 per-architecture data-pointer for that previous architecture is
1321 restored. INIT() is not re-called.
1322
1323 Multiple registrarants for any architecture are allowed (and
1324 strongly encouraged). */
1325
1326 struct gdbarch_data;
1327
1328 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1329 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1330 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1331 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1332 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1333 struct gdbarch_data *data,
1334 void *pointer);
1335
1336 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1337
1338
1339 /* Set the dynamic target-system-dependent parameters (architecture,
1340 byte-order, ...) using information found in the BFD. */
1341
1342 extern void set_gdbarch_from_file (bfd *);
1343
1344
1345 /* Initialize the current architecture to the "first" one we find on
1346 our list. */
1347
1348 extern void initialize_current_architecture (void);
1349
1350 /* gdbarch trace variable */
1351 extern int gdbarch_debug;
1352
1353 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1354
1355 #endif
1356 EOF
1357 exec 1>&2
1358 #../move-if-change new-gdbarch.h gdbarch.h
1359 compare_new gdbarch.h
1360
1361
1362 #
1363 # C file
1364 #
1365
1366 exec > new-gdbarch.c
1367 copyright
1368 cat <<EOF
1369
1370 #include "defs.h"
1371 #include "arch-utils.h"
1372
1373 #include "gdbcmd.h"
1374 #include "inferior.h"
1375 #include "symcat.h"
1376
1377 #include "floatformat.h"
1378
1379 #include "gdb_assert.h"
1380 #include "gdb_string.h"
1381 #include "reggroups.h"
1382 #include "osabi.h"
1383 #include "gdb_obstack.h"
1384 #include "observer.h"
1385 #include "regcache.h"
1386
1387 /* Static function declarations */
1388
1389 static void alloc_gdbarch_data (struct gdbarch *);
1390
1391 /* Non-zero if we want to trace architecture code. */
1392
1393 #ifndef GDBARCH_DEBUG
1394 #define GDBARCH_DEBUG 0
1395 #endif
1396 int gdbarch_debug = GDBARCH_DEBUG;
1397 static void
1398 show_gdbarch_debug (struct ui_file *file, int from_tty,
1399 struct cmd_list_element *c, const char *value)
1400 {
1401 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1402 }
1403
1404 static const char *
1405 pformat (const struct floatformat **format)
1406 {
1407 if (format == NULL)
1408 return "(null)";
1409 else
1410 /* Just print out one of them - this is only for diagnostics. */
1411 return format[0]->name;
1412 }
1413
1414 static const char *
1415 pstring (const char *string)
1416 {
1417 if (string == NULL)
1418 return "(null)";
1419 return string;
1420 }
1421
1422 EOF
1423
1424 # gdbarch open the gdbarch object
1425 printf "\n"
1426 printf "/* Maintain the struct gdbarch object. */\n"
1427 printf "\n"
1428 printf "struct gdbarch\n"
1429 printf "{\n"
1430 printf " /* Has this architecture been fully initialized? */\n"
1431 printf " int initialized_p;\n"
1432 printf "\n"
1433 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1434 printf " struct obstack *obstack;\n"
1435 printf "\n"
1436 printf " /* basic architectural information. */\n"
1437 function_list | while do_read
1438 do
1439 if class_is_info_p
1440 then
1441 printf " ${returntype} ${function};\n"
1442 fi
1443 done
1444 printf "\n"
1445 printf " /* target specific vector. */\n"
1446 printf " struct gdbarch_tdep *tdep;\n"
1447 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1448 printf "\n"
1449 printf " /* per-architecture data-pointers. */\n"
1450 printf " unsigned nr_data;\n"
1451 printf " void **data;\n"
1452 printf "\n"
1453 printf " /* per-architecture swap-regions. */\n"
1454 printf " struct gdbarch_swap *swap;\n"
1455 printf "\n"
1456 cat <<EOF
1457 /* Multi-arch values.
1458
1459 When extending this structure you must:
1460
1461 Add the field below.
1462
1463 Declare set/get functions and define the corresponding
1464 macro in gdbarch.h.
1465
1466 gdbarch_alloc(): If zero/NULL is not a suitable default,
1467 initialize the new field.
1468
1469 verify_gdbarch(): Confirm that the target updated the field
1470 correctly.
1471
1472 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1473 field is dumped out
1474
1475 \`\`startup_gdbarch()'': Append an initial value to the static
1476 variable (base values on the host's c-type system).
1477
1478 get_gdbarch(): Implement the set/get functions (probably using
1479 the macro's as shortcuts).
1480
1481 */
1482
1483 EOF
1484 function_list | while do_read
1485 do
1486 if class_is_variable_p
1487 then
1488 printf " ${returntype} ${function};\n"
1489 elif class_is_function_p
1490 then
1491 printf " gdbarch_${function}_ftype *${function};\n"
1492 fi
1493 done
1494 printf "};\n"
1495
1496 # A pre-initialized vector
1497 printf "\n"
1498 printf "\n"
1499 cat <<EOF
1500 /* The default architecture uses host values (for want of a better
1501 choice). */
1502 EOF
1503 printf "\n"
1504 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1505 printf "\n"
1506 printf "struct gdbarch startup_gdbarch =\n"
1507 printf "{\n"
1508 printf " 1, /* Always initialized. */\n"
1509 printf " NULL, /* The obstack. */\n"
1510 printf " /* basic architecture information. */\n"
1511 function_list | while do_read
1512 do
1513 if class_is_info_p
1514 then
1515 printf " ${staticdefault}, /* ${function} */\n"
1516 fi
1517 done
1518 cat <<EOF
1519 /* target specific vector and its dump routine. */
1520 NULL, NULL,
1521 /*per-architecture data-pointers and swap regions. */
1522 0, NULL, NULL,
1523 /* Multi-arch values */
1524 EOF
1525 function_list | while do_read
1526 do
1527 if class_is_function_p || class_is_variable_p
1528 then
1529 printf " ${staticdefault}, /* ${function} */\n"
1530 fi
1531 done
1532 cat <<EOF
1533 /* startup_gdbarch() */
1534 };
1535
1536 struct gdbarch *target_gdbarch = &startup_gdbarch;
1537 EOF
1538
1539 # Create a new gdbarch struct
1540 cat <<EOF
1541
1542 /* Create a new \`\`struct gdbarch'' based on information provided by
1543 \`\`struct gdbarch_info''. */
1544 EOF
1545 printf "\n"
1546 cat <<EOF
1547 struct gdbarch *
1548 gdbarch_alloc (const struct gdbarch_info *info,
1549 struct gdbarch_tdep *tdep)
1550 {
1551 struct gdbarch *gdbarch;
1552
1553 /* Create an obstack for allocating all the per-architecture memory,
1554 then use that to allocate the architecture vector. */
1555 struct obstack *obstack = XMALLOC (struct obstack);
1556 obstack_init (obstack);
1557 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1558 memset (gdbarch, 0, sizeof (*gdbarch));
1559 gdbarch->obstack = obstack;
1560
1561 alloc_gdbarch_data (gdbarch);
1562
1563 gdbarch->tdep = tdep;
1564 EOF
1565 printf "\n"
1566 function_list | while do_read
1567 do
1568 if class_is_info_p
1569 then
1570 printf " gdbarch->${function} = info->${function};\n"
1571 fi
1572 done
1573 printf "\n"
1574 printf " /* Force the explicit initialization of these. */\n"
1575 function_list | while do_read
1576 do
1577 if class_is_function_p || class_is_variable_p
1578 then
1579 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1580 then
1581 printf " gdbarch->${function} = ${predefault};\n"
1582 fi
1583 fi
1584 done
1585 cat <<EOF
1586 /* gdbarch_alloc() */
1587
1588 return gdbarch;
1589 }
1590 EOF
1591
1592 # Free a gdbarch struct.
1593 printf "\n"
1594 printf "\n"
1595 cat <<EOF
1596 /* Allocate extra space using the per-architecture obstack. */
1597
1598 void *
1599 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1600 {
1601 void *data = obstack_alloc (arch->obstack, size);
1602
1603 memset (data, 0, size);
1604 return data;
1605 }
1606
1607
1608 /* Free a gdbarch struct. This should never happen in normal
1609 operation --- once you've created a gdbarch, you keep it around.
1610 However, if an architecture's init function encounters an error
1611 building the structure, it may need to clean up a partially
1612 constructed gdbarch. */
1613
1614 void
1615 gdbarch_free (struct gdbarch *arch)
1616 {
1617 struct obstack *obstack;
1618
1619 gdb_assert (arch != NULL);
1620 gdb_assert (!arch->initialized_p);
1621 obstack = arch->obstack;
1622 obstack_free (obstack, 0); /* Includes the ARCH. */
1623 xfree (obstack);
1624 }
1625 EOF
1626
1627 # verify a new architecture
1628 cat <<EOF
1629
1630
1631 /* Ensure that all values in a GDBARCH are reasonable. */
1632
1633 static void
1634 verify_gdbarch (struct gdbarch *gdbarch)
1635 {
1636 struct ui_file *log;
1637 struct cleanup *cleanups;
1638 long length;
1639 char *buf;
1640
1641 log = mem_fileopen ();
1642 cleanups = make_cleanup_ui_file_delete (log);
1643 /* fundamental */
1644 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1645 fprintf_unfiltered (log, "\n\tbyte-order");
1646 if (gdbarch->bfd_arch_info == NULL)
1647 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1648 /* Check those that need to be defined for the given multi-arch level. */
1649 EOF
1650 function_list | while do_read
1651 do
1652 if class_is_function_p || class_is_variable_p
1653 then
1654 if [ "x${invalid_p}" = "x0" ]
1655 then
1656 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1657 elif class_is_predicate_p
1658 then
1659 printf " /* Skip verify of ${function}, has predicate. */\n"
1660 # FIXME: See do_read for potential simplification
1661 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1662 then
1663 printf " if (${invalid_p})\n"
1664 printf " gdbarch->${function} = ${postdefault};\n"
1665 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1666 then
1667 printf " if (gdbarch->${function} == ${predefault})\n"
1668 printf " gdbarch->${function} = ${postdefault};\n"
1669 elif [ -n "${postdefault}" ]
1670 then
1671 printf " if (gdbarch->${function} == 0)\n"
1672 printf " gdbarch->${function} = ${postdefault};\n"
1673 elif [ -n "${invalid_p}" ]
1674 then
1675 printf " if (${invalid_p})\n"
1676 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1677 elif [ -n "${predefault}" ]
1678 then
1679 printf " if (gdbarch->${function} == ${predefault})\n"
1680 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1681 fi
1682 fi
1683 done
1684 cat <<EOF
1685 buf = ui_file_xstrdup (log, &length);
1686 make_cleanup (xfree, buf);
1687 if (length > 0)
1688 internal_error (__FILE__, __LINE__,
1689 _("verify_gdbarch: the following are invalid ...%s"),
1690 buf);
1691 do_cleanups (cleanups);
1692 }
1693 EOF
1694
1695 # dump the structure
1696 printf "\n"
1697 printf "\n"
1698 cat <<EOF
1699 /* Print out the details of the current architecture. */
1700
1701 void
1702 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1703 {
1704 const char *gdb_nm_file = "<not-defined>";
1705
1706 #if defined (GDB_NM_FILE)
1707 gdb_nm_file = GDB_NM_FILE;
1708 #endif
1709 fprintf_unfiltered (file,
1710 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1711 gdb_nm_file);
1712 EOF
1713 function_list | sort -t: -k 3 | while do_read
1714 do
1715 # First the predicate
1716 if class_is_predicate_p
1717 then
1718 printf " fprintf_unfiltered (file,\n"
1719 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1720 printf " gdbarch_${function}_p (gdbarch));\n"
1721 fi
1722 # Print the corresponding value.
1723 if class_is_function_p
1724 then
1725 printf " fprintf_unfiltered (file,\n"
1726 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1727 printf " host_address_to_string (gdbarch->${function}));\n"
1728 else
1729 # It is a variable
1730 case "${print}:${returntype}" in
1731 :CORE_ADDR )
1732 fmt="%s"
1733 print="core_addr_to_string_nz (gdbarch->${function})"
1734 ;;
1735 :* )
1736 fmt="%s"
1737 print="plongest (gdbarch->${function})"
1738 ;;
1739 * )
1740 fmt="%s"
1741 ;;
1742 esac
1743 printf " fprintf_unfiltered (file,\n"
1744 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1745 printf " ${print});\n"
1746 fi
1747 done
1748 cat <<EOF
1749 if (gdbarch->dump_tdep != NULL)
1750 gdbarch->dump_tdep (gdbarch, file);
1751 }
1752 EOF
1753
1754
1755 # GET/SET
1756 printf "\n"
1757 cat <<EOF
1758 struct gdbarch_tdep *
1759 gdbarch_tdep (struct gdbarch *gdbarch)
1760 {
1761 if (gdbarch_debug >= 2)
1762 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1763 return gdbarch->tdep;
1764 }
1765 EOF
1766 printf "\n"
1767 function_list | while do_read
1768 do
1769 if class_is_predicate_p
1770 then
1771 printf "\n"
1772 printf "int\n"
1773 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1774 printf "{\n"
1775 printf " gdb_assert (gdbarch != NULL);\n"
1776 printf " return ${predicate};\n"
1777 printf "}\n"
1778 fi
1779 if class_is_function_p
1780 then
1781 printf "\n"
1782 printf "${returntype}\n"
1783 if [ "x${formal}" = "xvoid" ]
1784 then
1785 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1786 else
1787 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1788 fi
1789 printf "{\n"
1790 printf " gdb_assert (gdbarch != NULL);\n"
1791 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1792 if class_is_predicate_p && test -n "${predefault}"
1793 then
1794 # Allow a call to a function with a predicate.
1795 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1796 fi
1797 printf " if (gdbarch_debug >= 2)\n"
1798 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1799 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1800 then
1801 if class_is_multiarch_p
1802 then
1803 params="gdbarch"
1804 else
1805 params=""
1806 fi
1807 else
1808 if class_is_multiarch_p
1809 then
1810 params="gdbarch, ${actual}"
1811 else
1812 params="${actual}"
1813 fi
1814 fi
1815 if [ "x${returntype}" = "xvoid" ]
1816 then
1817 printf " gdbarch->${function} (${params});\n"
1818 else
1819 printf " return gdbarch->${function} (${params});\n"
1820 fi
1821 printf "}\n"
1822 printf "\n"
1823 printf "void\n"
1824 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1825 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1826 printf "{\n"
1827 printf " gdbarch->${function} = ${function};\n"
1828 printf "}\n"
1829 elif class_is_variable_p
1830 then
1831 printf "\n"
1832 printf "${returntype}\n"
1833 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1834 printf "{\n"
1835 printf " gdb_assert (gdbarch != NULL);\n"
1836 if [ "x${invalid_p}" = "x0" ]
1837 then
1838 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1839 elif [ -n "${invalid_p}" ]
1840 then
1841 printf " /* Check variable is valid. */\n"
1842 printf " gdb_assert (!(${invalid_p}));\n"
1843 elif [ -n "${predefault}" ]
1844 then
1845 printf " /* Check variable changed from pre-default. */\n"
1846 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1847 fi
1848 printf " if (gdbarch_debug >= 2)\n"
1849 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1850 printf " return gdbarch->${function};\n"
1851 printf "}\n"
1852 printf "\n"
1853 printf "void\n"
1854 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1855 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1856 printf "{\n"
1857 printf " gdbarch->${function} = ${function};\n"
1858 printf "}\n"
1859 elif class_is_info_p
1860 then
1861 printf "\n"
1862 printf "${returntype}\n"
1863 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1864 printf "{\n"
1865 printf " gdb_assert (gdbarch != NULL);\n"
1866 printf " if (gdbarch_debug >= 2)\n"
1867 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1868 printf " return gdbarch->${function};\n"
1869 printf "}\n"
1870 fi
1871 done
1872
1873 # All the trailing guff
1874 cat <<EOF
1875
1876
1877 /* Keep a registry of per-architecture data-pointers required by GDB
1878 modules. */
1879
1880 struct gdbarch_data
1881 {
1882 unsigned index;
1883 int init_p;
1884 gdbarch_data_pre_init_ftype *pre_init;
1885 gdbarch_data_post_init_ftype *post_init;
1886 };
1887
1888 struct gdbarch_data_registration
1889 {
1890 struct gdbarch_data *data;
1891 struct gdbarch_data_registration *next;
1892 };
1893
1894 struct gdbarch_data_registry
1895 {
1896 unsigned nr;
1897 struct gdbarch_data_registration *registrations;
1898 };
1899
1900 struct gdbarch_data_registry gdbarch_data_registry =
1901 {
1902 0, NULL,
1903 };
1904
1905 static struct gdbarch_data *
1906 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1907 gdbarch_data_post_init_ftype *post_init)
1908 {
1909 struct gdbarch_data_registration **curr;
1910
1911 /* Append the new registration. */
1912 for (curr = &gdbarch_data_registry.registrations;
1913 (*curr) != NULL;
1914 curr = &(*curr)->next);
1915 (*curr) = XMALLOC (struct gdbarch_data_registration);
1916 (*curr)->next = NULL;
1917 (*curr)->data = XMALLOC (struct gdbarch_data);
1918 (*curr)->data->index = gdbarch_data_registry.nr++;
1919 (*curr)->data->pre_init = pre_init;
1920 (*curr)->data->post_init = post_init;
1921 (*curr)->data->init_p = 1;
1922 return (*curr)->data;
1923 }
1924
1925 struct gdbarch_data *
1926 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1927 {
1928 return gdbarch_data_register (pre_init, NULL);
1929 }
1930
1931 struct gdbarch_data *
1932 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1933 {
1934 return gdbarch_data_register (NULL, post_init);
1935 }
1936
1937 /* Create/delete the gdbarch data vector. */
1938
1939 static void
1940 alloc_gdbarch_data (struct gdbarch *gdbarch)
1941 {
1942 gdb_assert (gdbarch->data == NULL);
1943 gdbarch->nr_data = gdbarch_data_registry.nr;
1944 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1945 }
1946
1947 /* Initialize the current value of the specified per-architecture
1948 data-pointer. */
1949
1950 void
1951 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1952 struct gdbarch_data *data,
1953 void *pointer)
1954 {
1955 gdb_assert (data->index < gdbarch->nr_data);
1956 gdb_assert (gdbarch->data[data->index] == NULL);
1957 gdb_assert (data->pre_init == NULL);
1958 gdbarch->data[data->index] = pointer;
1959 }
1960
1961 /* Return the current value of the specified per-architecture
1962 data-pointer. */
1963
1964 void *
1965 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1966 {
1967 gdb_assert (data->index < gdbarch->nr_data);
1968 if (gdbarch->data[data->index] == NULL)
1969 {
1970 /* The data-pointer isn't initialized, call init() to get a
1971 value. */
1972 if (data->pre_init != NULL)
1973 /* Mid architecture creation: pass just the obstack, and not
1974 the entire architecture, as that way it isn't possible for
1975 pre-init code to refer to undefined architecture
1976 fields. */
1977 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1978 else if (gdbarch->initialized_p
1979 && data->post_init != NULL)
1980 /* Post architecture creation: pass the entire architecture
1981 (as all fields are valid), but be careful to also detect
1982 recursive references. */
1983 {
1984 gdb_assert (data->init_p);
1985 data->init_p = 0;
1986 gdbarch->data[data->index] = data->post_init (gdbarch);
1987 data->init_p = 1;
1988 }
1989 else
1990 /* The architecture initialization hasn't completed - punt -
1991 hope that the caller knows what they are doing. Once
1992 deprecated_set_gdbarch_data has been initialized, this can be
1993 changed to an internal error. */
1994 return NULL;
1995 gdb_assert (gdbarch->data[data->index] != NULL);
1996 }
1997 return gdbarch->data[data->index];
1998 }
1999
2000
2001 /* Keep a registry of the architectures known by GDB. */
2002
2003 struct gdbarch_registration
2004 {
2005 enum bfd_architecture bfd_architecture;
2006 gdbarch_init_ftype *init;
2007 gdbarch_dump_tdep_ftype *dump_tdep;
2008 struct gdbarch_list *arches;
2009 struct gdbarch_registration *next;
2010 };
2011
2012 static struct gdbarch_registration *gdbarch_registry = NULL;
2013
2014 static void
2015 append_name (const char ***buf, int *nr, const char *name)
2016 {
2017 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2018 (*buf)[*nr] = name;
2019 *nr += 1;
2020 }
2021
2022 const char **
2023 gdbarch_printable_names (void)
2024 {
2025 /* Accumulate a list of names based on the registed list of
2026 architectures. */
2027 int nr_arches = 0;
2028 const char **arches = NULL;
2029 struct gdbarch_registration *rego;
2030
2031 for (rego = gdbarch_registry;
2032 rego != NULL;
2033 rego = rego->next)
2034 {
2035 const struct bfd_arch_info *ap;
2036 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2037 if (ap == NULL)
2038 internal_error (__FILE__, __LINE__,
2039 _("gdbarch_architecture_names: multi-arch unknown"));
2040 do
2041 {
2042 append_name (&arches, &nr_arches, ap->printable_name);
2043 ap = ap->next;
2044 }
2045 while (ap != NULL);
2046 }
2047 append_name (&arches, &nr_arches, NULL);
2048 return arches;
2049 }
2050
2051
2052 void
2053 gdbarch_register (enum bfd_architecture bfd_architecture,
2054 gdbarch_init_ftype *init,
2055 gdbarch_dump_tdep_ftype *dump_tdep)
2056 {
2057 struct gdbarch_registration **curr;
2058 const struct bfd_arch_info *bfd_arch_info;
2059
2060 /* Check that BFD recognizes this architecture */
2061 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2062 if (bfd_arch_info == NULL)
2063 {
2064 internal_error (__FILE__, __LINE__,
2065 _("gdbarch: Attempt to register "
2066 "unknown architecture (%d)"),
2067 bfd_architecture);
2068 }
2069 /* Check that we haven't seen this architecture before. */
2070 for (curr = &gdbarch_registry;
2071 (*curr) != NULL;
2072 curr = &(*curr)->next)
2073 {
2074 if (bfd_architecture == (*curr)->bfd_architecture)
2075 internal_error (__FILE__, __LINE__,
2076 _("gdbarch: Duplicate registration "
2077 "of architecture (%s)"),
2078 bfd_arch_info->printable_name);
2079 }
2080 /* log it */
2081 if (gdbarch_debug)
2082 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2083 bfd_arch_info->printable_name,
2084 host_address_to_string (init));
2085 /* Append it */
2086 (*curr) = XMALLOC (struct gdbarch_registration);
2087 (*curr)->bfd_architecture = bfd_architecture;
2088 (*curr)->init = init;
2089 (*curr)->dump_tdep = dump_tdep;
2090 (*curr)->arches = NULL;
2091 (*curr)->next = NULL;
2092 }
2093
2094 void
2095 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2096 gdbarch_init_ftype *init)
2097 {
2098 gdbarch_register (bfd_architecture, init, NULL);
2099 }
2100
2101
2102 /* Look for an architecture using gdbarch_info. */
2103
2104 struct gdbarch_list *
2105 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2106 const struct gdbarch_info *info)
2107 {
2108 for (; arches != NULL; arches = arches->next)
2109 {
2110 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2111 continue;
2112 if (info->byte_order != arches->gdbarch->byte_order)
2113 continue;
2114 if (info->osabi != arches->gdbarch->osabi)
2115 continue;
2116 if (info->target_desc != arches->gdbarch->target_desc)
2117 continue;
2118 return arches;
2119 }
2120 return NULL;
2121 }
2122
2123
2124 /* Find an architecture that matches the specified INFO. Create a new
2125 architecture if needed. Return that new architecture. */
2126
2127 struct gdbarch *
2128 gdbarch_find_by_info (struct gdbarch_info info)
2129 {
2130 struct gdbarch *new_gdbarch;
2131 struct gdbarch_registration *rego;
2132
2133 /* Fill in missing parts of the INFO struct using a number of
2134 sources: "set ..."; INFOabfd supplied; and the global
2135 defaults. */
2136 gdbarch_info_fill (&info);
2137
2138 /* Must have found some sort of architecture. */
2139 gdb_assert (info.bfd_arch_info != NULL);
2140
2141 if (gdbarch_debug)
2142 {
2143 fprintf_unfiltered (gdb_stdlog,
2144 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2145 (info.bfd_arch_info != NULL
2146 ? info.bfd_arch_info->printable_name
2147 : "(null)"));
2148 fprintf_unfiltered (gdb_stdlog,
2149 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2150 info.byte_order,
2151 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2152 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2153 : "default"));
2154 fprintf_unfiltered (gdb_stdlog,
2155 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2156 info.osabi, gdbarch_osabi_name (info.osabi));
2157 fprintf_unfiltered (gdb_stdlog,
2158 "gdbarch_find_by_info: info.abfd %s\n",
2159 host_address_to_string (info.abfd));
2160 fprintf_unfiltered (gdb_stdlog,
2161 "gdbarch_find_by_info: info.tdep_info %s\n",
2162 host_address_to_string (info.tdep_info));
2163 }
2164
2165 /* Find the tdep code that knows about this architecture. */
2166 for (rego = gdbarch_registry;
2167 rego != NULL;
2168 rego = rego->next)
2169 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2170 break;
2171 if (rego == NULL)
2172 {
2173 if (gdbarch_debug)
2174 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2175 "No matching architecture\n");
2176 return 0;
2177 }
2178
2179 /* Ask the tdep code for an architecture that matches "info". */
2180 new_gdbarch = rego->init (info, rego->arches);
2181
2182 /* Did the tdep code like it? No. Reject the change and revert to
2183 the old architecture. */
2184 if (new_gdbarch == NULL)
2185 {
2186 if (gdbarch_debug)
2187 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2188 "Target rejected architecture\n");
2189 return NULL;
2190 }
2191
2192 /* Is this a pre-existing architecture (as determined by already
2193 being initialized)? Move it to the front of the architecture
2194 list (keeping the list sorted Most Recently Used). */
2195 if (new_gdbarch->initialized_p)
2196 {
2197 struct gdbarch_list **list;
2198 struct gdbarch_list *this;
2199 if (gdbarch_debug)
2200 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2201 "Previous architecture %s (%s) selected\n",
2202 host_address_to_string (new_gdbarch),
2203 new_gdbarch->bfd_arch_info->printable_name);
2204 /* Find the existing arch in the list. */
2205 for (list = &rego->arches;
2206 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2207 list = &(*list)->next);
2208 /* It had better be in the list of architectures. */
2209 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2210 /* Unlink THIS. */
2211 this = (*list);
2212 (*list) = this->next;
2213 /* Insert THIS at the front. */
2214 this->next = rego->arches;
2215 rego->arches = this;
2216 /* Return it. */
2217 return new_gdbarch;
2218 }
2219
2220 /* It's a new architecture. */
2221 if (gdbarch_debug)
2222 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2223 "New architecture %s (%s) selected\n",
2224 host_address_to_string (new_gdbarch),
2225 new_gdbarch->bfd_arch_info->printable_name);
2226
2227 /* Insert the new architecture into the front of the architecture
2228 list (keep the list sorted Most Recently Used). */
2229 {
2230 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2231 this->next = rego->arches;
2232 this->gdbarch = new_gdbarch;
2233 rego->arches = this;
2234 }
2235
2236 /* Check that the newly installed architecture is valid. Plug in
2237 any post init values. */
2238 new_gdbarch->dump_tdep = rego->dump_tdep;
2239 verify_gdbarch (new_gdbarch);
2240 new_gdbarch->initialized_p = 1;
2241
2242 if (gdbarch_debug)
2243 gdbarch_dump (new_gdbarch, gdb_stdlog);
2244
2245 return new_gdbarch;
2246 }
2247
2248 /* Make the specified architecture current. */
2249
2250 void
2251 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2252 {
2253 gdb_assert (new_gdbarch != NULL);
2254 gdb_assert (new_gdbarch->initialized_p);
2255 target_gdbarch = new_gdbarch;
2256 observer_notify_architecture_changed (new_gdbarch);
2257 registers_changed ();
2258 }
2259
2260 extern void _initialize_gdbarch (void);
2261
2262 void
2263 _initialize_gdbarch (void)
2264 {
2265 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2266 Set architecture debugging."), _("\\
2267 Show architecture debugging."), _("\\
2268 When non-zero, architecture debugging is enabled."),
2269 NULL,
2270 show_gdbarch_debug,
2271 &setdebuglist, &showdebuglist);
2272 }
2273 EOF
2274
2275 # close things off
2276 exec 1>&2
2277 #../move-if-change new-gdbarch.c gdbarch.c
2278 compare_new gdbarch.c