multi-arch ADDR_BITS_REMOVE.
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 test "${staticdefault}" || staticdefault=0
80 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
81 # multi-arch defaults.
82 # test "${predefault}" || predefault=0
83 test "${fmt}" || fmt="%ld"
84 test "${print}" || print="(long) ${macro}"
85 case "${invalid_p}" in
86 0 ) valid_p=1 ;;
87 "" )
88 if [ -n "${predefault}" ]
89 then
90 #invalid_p="gdbarch->${function} == ${predefault}"
91 valid_p="gdbarch->${function} != ${predefault}"
92 else
93 #invalid_p="gdbarch->${function} == 0"
94 valid_p="gdbarch->${function} != 0"
95 fi
96 ;;
97 * ) valid_p="!(${invalid_p})"
98 esac
99
100 # PREDEFAULT is a valid fallback definition of MEMBER when
101 # multi-arch is not enabled. This ensures that the
102 # default value, when multi-arch is the same as the
103 # default value when not multi-arch. POSTDEFAULT is
104 # always a valid definition of MEMBER as this again
105 # ensures consistency.
106
107 if [ -n "${postdefault}" ]
108 then
109 fallbackdefault="${postdefault}"
110 elif [ -n "${predefault}" ]
111 then
112 fallbackdefault="${predefault}"
113 else
114 fallbackdefault=""
115 fi
116
117 #NOT YET: See gdbarch.log for basic verification of
118 # database
119
120 break
121 fi
122 done
123 if [ -n "${class}" ]
124 then
125 true
126 else
127 false
128 fi
129 }
130
131
132 fallback_default_p ()
133 {
134 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
135 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
136 }
137
138 class_is_variable_p ()
139 {
140 case "${class}" in
141 *v* | *V* ) true ;;
142 * ) false ;;
143 esac
144 }
145
146 class_is_function_p ()
147 {
148 case "${class}" in
149 *f* | *F* | *m* | *M* ) true ;;
150 * ) false ;;
151 esac
152 }
153
154 class_is_multiarch_p ()
155 {
156 case "${class}" in
157 *m* | *M* ) true ;;
158 * ) false ;;
159 esac
160 }
161
162 class_is_predicate_p ()
163 {
164 case "${class}" in
165 *F* | *V* | *M* ) true ;;
166 * ) false ;;
167 esac
168 }
169
170 class_is_info_p ()
171 {
172 case "${class}" in
173 *i* ) true ;;
174 * ) false ;;
175 esac
176 }
177
178
179 # dump out/verify the doco
180 for field in ${read}
181 do
182 case ${field} in
183
184 class ) : ;;
185
186 # # -> line disable
187 # f -> function
188 # hiding a function
189 # F -> function + predicate
190 # hiding a function + predicate to test function validity
191 # v -> variable
192 # hiding a variable
193 # V -> variable + predicate
194 # hiding a variable + predicate to test variables validity
195 # i -> set from info
196 # hiding something from the ``struct info'' object
197 # m -> multi-arch function
198 # hiding a multi-arch function (parameterised with the architecture)
199 # M -> multi-arch function + predicate
200 # hiding a multi-arch function + predicate to test function validity
201
202 level ) : ;;
203
204 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
205 # LEVEL is a predicate on checking that a given method is
206 # initialized (using INVALID_P).
207
208 macro ) : ;;
209
210 # The name of the MACRO that this method is to be accessed by.
211
212 returntype ) : ;;
213
214 # For functions, the return type; for variables, the data type
215
216 function ) : ;;
217
218 # For functions, the member function name; for variables, the
219 # variable name. Member function names are always prefixed with
220 # ``gdbarch_'' for name-space purity.
221
222 formal ) : ;;
223
224 # The formal argument list. It is assumed that the formal
225 # argument list includes the actual name of each list element.
226 # A function with no arguments shall have ``void'' as the
227 # formal argument list.
228
229 actual ) : ;;
230
231 # The list of actual arguments. The arguments specified shall
232 # match the FORMAL list given above. Functions with out
233 # arguments leave this blank.
234
235 attrib ) : ;;
236
237 # Any GCC attributes that should be attached to the function
238 # declaration. At present this field is unused.
239
240 staticdefault ) : ;;
241
242 # To help with the GDB startup a static gdbarch object is
243 # created. STATICDEFAULT is the value to insert into that
244 # static gdbarch object. Since this a static object only
245 # simple expressions can be used.
246
247 # If STATICDEFAULT is empty, zero is used.
248
249 predefault ) : ;;
250
251 # A initial value to assign to MEMBER of the freshly
252 # malloc()ed gdbarch object. After the gdbarch object has
253 # been initialized using PREDEFAULT, it is passed to the
254 # target code for further updates.
255
256 # If PREDEFAULT is empty, zero is used.
257
258 # When POSTDEFAULT is empty, a non-empty PREDEFAULT and a zero
259 # INVALID_P will be used as default values when when
260 # multi-arch is disabled. Specify a zero PREDEFAULT function
261 # to make that fallback call internal_error().
262
263 # Variable declarations can refer to ``gdbarch'' which will
264 # contain the current architecture. Care should be taken.
265
266 postdefault ) : ;;
267
268 # A value to assign to MEMBER of the new gdbarch object should
269 # the target code fail to change the PREDEFAULT value. Also
270 # use POSTDEFAULT as the fallback value for the non-
271 # multi-arch case.
272
273 # If POSTDEFAULT is empty, no post update is performed.
274
275 # If both INVALID_P and POSTDEFAULT are non-empty then
276 # INVALID_P will be used to determine if MEMBER should be
277 # changed to POSTDEFAULT.
278
279 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
280
281 # Variable declarations can refer to ``gdbarch'' which will
282 # contain the current architecture. Care should be taken.
283
284 invalid_p ) : ;;
285
286 # A predicate equation that validates MEMBER. Non-zero is
287 # returned if the code creating the new architecture failed to
288 # initialize MEMBER or the initialized the member is invalid.
289 # If POSTDEFAULT is non-empty then MEMBER will be updated to
290 # that value. If POSTDEFAULT is empty then internal_error()
291 # is called.
292
293 # If INVALID_P is empty, a check that MEMBER is no longer
294 # equal to PREDEFAULT is used.
295
296 # The expression ``0'' disables the INVALID_P check making
297 # PREDEFAULT a legitimate value.
298
299 # See also PREDEFAULT and POSTDEFAULT.
300
301 fmt ) : ;;
302
303 # printf style format string that can be used to print out the
304 # MEMBER. Sometimes "%s" is useful. For functions, this is
305 # ignored and the function address is printed.
306
307 # If FMT is empty, ``%ld'' is used.
308
309 print ) : ;;
310
311 # An optional equation that casts MEMBER to a value suitable
312 # for formatting by FMT.
313
314 # If PRINT is empty, ``(long)'' is used.
315
316 print_p ) : ;;
317
318 # An optional indicator for any predicte to wrap around the
319 # print member code.
320
321 # () -> Call a custom function to do the dump.
322 # exp -> Wrap print up in ``if (${print_p}) ...
323 # ``'' -> No predicate
324
325 # If PRINT_P is empty, ``1'' is always used.
326
327 description ) : ;;
328
329 # Currently unused.
330
331 *) exit 1;;
332 esac
333 done
334
335
336 function_list ()
337 {
338 # See below (DOCO) for description of each field
339 cat <<EOF
340 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
341 #
342 i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
343 # Number of bits in a char or unsigned char for the target machine.
344 # Just like CHAR_BIT in <limits.h> but describes the target machine.
345 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
346 #
347 # Number of bits in a short or unsigned short for the target machine.
348 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
349 # Number of bits in an int or unsigned int for the target machine.
350 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
351 # Number of bits in a long or unsigned long for the target machine.
352 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
353 # Number of bits in a long long or unsigned long long for the target
354 # machine.
355 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
356 # Number of bits in a float for the target machine.
357 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
358 # Number of bits in a double for the target machine.
359 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
360 # Number of bits in a long double for the target machine.
361 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
362 # For most targets, a pointer on the target and its representation as an
363 # address in GDB have the same size and "look the same". For such a
364 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
365 # / addr_bit will be set from it.
366 #
367 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
368 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
369 #
370 # ptr_bit is the size of a pointer on the target
371 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
372 # addr_bit is the size of a target address as represented in gdb
373 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
374 # Number of bits in a BFD_VMA for the target object file format.
375 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
376 #
377 v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
378 #
379 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
380 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
381 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
382 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
383 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
384 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
385 #
386 M:::void:register_read:int regnum, char *buf:regnum, buf:
387 M:::void:register_write:int regnum, char *buf:regnum, buf:
388 #
389 v:2:NUM_REGS:int:num_regs::::0:-1
390 # This macro gives the number of pseudo-registers that live in the
391 # register namespace but do not get fetched or stored on the target.
392 # These pseudo-registers may be aliases for other registers,
393 # combinations of other registers, or they may be computed by GDB.
394 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
395 v:2:SP_REGNUM:int:sp_regnum::::0:-1
396 v:2:FP_REGNUM:int:fp_regnum::::0:-1
397 v:2:PC_REGNUM:int:pc_regnum::::0:-1
398 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
399 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
400 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
401 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
402 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
403 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
404 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
405 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
406 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
407 # Convert from an sdb register number to an internal gdb register number.
408 # This should be defined in tm.h, if REGISTER_NAMES is not set up
409 # to map one to one onto the sdb register numbers.
410 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
411 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
412 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
413 v:2:REGISTER_SIZE:int:register_size::::0:-1
414 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
415 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
416 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
417 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
418 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
419 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
420 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
421 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
422 # MAP a GDB RAW register number onto a simulator register number. See
423 # also include/...-sim.h.
424 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
425 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
426 #
427 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
428 v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
429 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
430 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
431 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1:::0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
432 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
433 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
434 f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
435 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
436 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
437 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
438 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
439 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
440 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
441 #
442 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
443 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
444 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
445 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
446 #
447 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
448 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
449 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
450 # This function is called when the value of a pseudo-register needs to
451 # be updated. Typically it will be defined on a per-architecture
452 # basis.
453 f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
454 # This function is called when the value of a pseudo-register needs to
455 # be set or stored. Typically it will be defined on a
456 # per-architecture basis.
457 f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
458 #
459 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
460 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
461 #
462 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
463 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
464 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
465 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
466 f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
467 f:2:POP_FRAME:void:pop_frame:void:-:::0
468 #
469 # I wish that these would just go away....
470 f:2:D10V_MAKE_DADDR:CORE_ADDR:d10v_make_daddr:CORE_ADDR x:x:::0::0
471 f:2:D10V_MAKE_IADDR:CORE_ADDR:d10v_make_iaddr:CORE_ADDR x:x:::0::0
472 f:2:D10V_DADDR_P:int:d10v_daddr_p:CORE_ADDR x:x:::0::0
473 f:2:D10V_IADDR_P:int:d10v_iaddr_p:CORE_ADDR x:x:::0::0
474 f:2:D10V_CONVERT_DADDR_TO_RAW:CORE_ADDR:d10v_convert_daddr_to_raw:CORE_ADDR x:x:::0::0
475 f:2:D10V_CONVERT_IADDR_TO_RAW:CORE_ADDR:d10v_convert_iaddr_to_raw:CORE_ADDR x:x:::0::0
476 #
477 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
478 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
479 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
480 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0
481 #
482 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
483 f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
484 #
485 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
486 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
487 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
488 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
489 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
490 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
491 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
492 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
493 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
494 #
495 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
496 #
497 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
498 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
499 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
500 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
501 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
502 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
503 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
504 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
505 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
506 #
507 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
508 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
509 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
510 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
511 v:2:PARM_BOUNDARY:int:parm_boundary
512 #
513 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
514 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
515 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
516 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
517 # On some machines there are bits in addresses which are not really
518 # part of the address, but are used by the kernel, the hardware, etc.
519 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
520 # we get a "real" address such as one would find in a symbol table.
521 # This is used only for addresses of instructions, and even then I'm
522 # not sure it's used in all contexts. It exists to deal with there
523 # being a few stray bits in the PC which would mislead us, not as some
524 # sort of generic thing to handle alignment or segmentation (it's
525 # possible it should be in TARGET_READ_PC instead).
526 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
527 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
528 # the target needs software single step. An ISA method to implement it.
529 #
530 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
531 # using the breakpoint system instead of blatting memory directly (as with rs6000).
532 #
533 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
534 # single step. If not, then implement single step using breakpoints.
535 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
536 EOF
537 }
538
539 #
540 # The .log file
541 #
542 exec > new-gdbarch.log
543 function_list | while do_read
544 do
545 cat <<EOF
546 ${class} ${macro}(${actual})
547 ${returntype} ${function} ($formal)${attrib}
548 EOF
549 for r in ${read}
550 do
551 eval echo \"\ \ \ \ ${r}=\${${r}}\"
552 done
553 # #fallbackdefault=${fallbackdefault}
554 # #valid_p=${valid_p}
555 #EOF
556 if class_is_predicate_p && fallback_default_p
557 then
558 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
559 kill $$
560 exit 1
561 fi
562 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
563 then
564 echo "Error: postdefault is useless when invalid_p=0" 1>&2
565 kill $$
566 exit 1
567 fi
568 echo ""
569 done
570
571 exec 1>&2
572 compare_new gdbarch.log
573
574
575 copyright ()
576 {
577 cat <<EOF
578 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
579
580 /* Dynamic architecture support for GDB, the GNU debugger.
581 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
582
583 This file is part of GDB.
584
585 This program is free software; you can redistribute it and/or modify
586 it under the terms of the GNU General Public License as published by
587 the Free Software Foundation; either version 2 of the License, or
588 (at your option) any later version.
589
590 This program is distributed in the hope that it will be useful,
591 but WITHOUT ANY WARRANTY; without even the implied warranty of
592 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
593 GNU General Public License for more details.
594
595 You should have received a copy of the GNU General Public License
596 along with this program; if not, write to the Free Software
597 Foundation, Inc., 59 Temple Place - Suite 330,
598 Boston, MA 02111-1307, USA. */
599
600 /* This file was created with the aid of \`\`gdbarch.sh''.
601
602 The Bourne shell script \`\`gdbarch.sh'' creates the files
603 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
604 against the existing \`\`gdbarch.[hc]''. Any differences found
605 being reported.
606
607 If editing this file, please also run gdbarch.sh and merge any
608 changes into that script. Conversely, when making sweeping changes
609 to this file, modifying gdbarch.sh and using its output may prove
610 easier. */
611
612 EOF
613 }
614
615 #
616 # The .h file
617 #
618
619 exec > new-gdbarch.h
620 copyright
621 cat <<EOF
622 #ifndef GDBARCH_H
623 #define GDBARCH_H
624
625 struct frame_info;
626 struct value;
627
628
629 extern struct gdbarch *current_gdbarch;
630
631
632 /* If any of the following are defined, the target wasn't correctly
633 converted. */
634
635 #if GDB_MULTI_ARCH
636 #if defined (EXTRA_FRAME_INFO)
637 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
638 #endif
639 #endif
640
641 #if GDB_MULTI_ARCH
642 #if defined (FRAME_FIND_SAVED_REGS)
643 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
644 #endif
645 #endif
646 EOF
647
648 # function typedef's
649 printf "\n"
650 printf "\n"
651 printf "/* The following are pre-initialized by GDBARCH. */\n"
652 function_list | while do_read
653 do
654 if class_is_info_p
655 then
656 printf "\n"
657 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
658 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
659 printf "#if GDB_MULTI_ARCH\n"
660 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
661 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
662 printf "#endif\n"
663 printf "#endif\n"
664 fi
665 done
666
667 # function typedef's
668 printf "\n"
669 printf "\n"
670 printf "/* The following are initialized by the target dependent code. */\n"
671 function_list | while do_read
672 do
673 if [ -n "${comment}" ]
674 then
675 echo "${comment}" | sed \
676 -e '2 s,#,/*,' \
677 -e '3,$ s,#, ,' \
678 -e '$ s,$, */,'
679 fi
680 if class_is_multiarch_p
681 then
682 if class_is_predicate_p
683 then
684 printf "\n"
685 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
686 fi
687 else
688 if class_is_predicate_p
689 then
690 printf "\n"
691 printf "#if defined (${macro})\n"
692 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
693 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
694 printf "#if !defined (${macro}_P)\n"
695 printf "#define ${macro}_P() (1)\n"
696 printf "#endif\n"
697 printf "#endif\n"
698 printf "\n"
699 printf "/* Default predicate for non- multi-arch targets. */\n"
700 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
701 printf "#define ${macro}_P() (0)\n"
702 printf "#endif\n"
703 printf "\n"
704 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
705 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
706 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
707 printf "#endif\n"
708 fi
709 fi
710 if class_is_variable_p
711 then
712 if fallback_default_p || class_is_predicate_p
713 then
714 printf "\n"
715 printf "/* Default (value) for non- multi-arch platforms. */\n"
716 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
717 echo "#define ${macro} (${fallbackdefault})" \
718 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
719 printf "#endif\n"
720 fi
721 printf "\n"
722 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
723 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
724 printf "#if GDB_MULTI_ARCH\n"
725 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
726 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
727 printf "#endif\n"
728 printf "#endif\n"
729 fi
730 if class_is_function_p
731 then
732 if class_is_multiarch_p ; then :
733 elif fallback_default_p || class_is_predicate_p
734 then
735 printf "\n"
736 printf "/* Default (function) for non- multi-arch platforms. */\n"
737 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
738 if [ "x${fallbackdefault}" = "x0" ]
739 then
740 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
741 else
742 # FIXME: Should be passing current_gdbarch through!
743 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
744 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
745 fi
746 printf "#endif\n"
747 fi
748 printf "\n"
749 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
750 then
751 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
752 elif class_is_multiarch_p
753 then
754 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
755 else
756 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
757 fi
758 if [ "x${formal}" = "xvoid" ]
759 then
760 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
761 else
762 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
763 fi
764 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
765 if class_is_multiarch_p ; then :
766 else
767 printf "#if GDB_MULTI_ARCH\n"
768 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
769 if [ "x${actual}" = "x" ]
770 then
771 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
772 elif [ "x${actual}" = "x-" ]
773 then
774 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
775 else
776 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
777 fi
778 printf "#endif\n"
779 printf "#endif\n"
780 fi
781 fi
782 done
783
784 # close it off
785 cat <<EOF
786
787 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
788
789
790 /* Mechanism for co-ordinating the selection of a specific
791 architecture.
792
793 GDB targets (*-tdep.c) can register an interest in a specific
794 architecture. Other GDB components can register a need to maintain
795 per-architecture data.
796
797 The mechanisms below ensures that there is only a loose connection
798 between the set-architecture command and the various GDB
799 components. Each component can independently register their need
800 to maintain architecture specific data with gdbarch.
801
802 Pragmatics:
803
804 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
805 didn't scale.
806
807 The more traditional mega-struct containing architecture specific
808 data for all the various GDB components was also considered. Since
809 GDB is built from a variable number of (fairly independent)
810 components it was determined that the global aproach was not
811 applicable. */
812
813
814 /* Register a new architectural family with GDB.
815
816 Register support for the specified ARCHITECTURE with GDB. When
817 gdbarch determines that the specified architecture has been
818 selected, the corresponding INIT function is called.
819
820 --
821
822 The INIT function takes two parameters: INFO which contains the
823 information available to gdbarch about the (possibly new)
824 architecture; ARCHES which is a list of the previously created
825 \`\`struct gdbarch'' for this architecture.
826
827 The INIT function parameter INFO shall, as far as possible, be
828 pre-initialized with information obtained from INFO.ABFD or
829 previously selected architecture (if similar). INIT shall ensure
830 that the INFO.BYTE_ORDER is non-zero.
831
832 The INIT function shall return any of: NULL - indicating that it
833 doesn't recognize the selected architecture; an existing \`\`struct
834 gdbarch'' from the ARCHES list - indicating that the new
835 architecture is just a synonym for an earlier architecture (see
836 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
837 - that describes the selected architecture (see gdbarch_alloc()).
838
839 The DUMP_TDEP function shall print out all target specific values.
840 Care should be taken to ensure that the function works in both the
841 multi-arch and non- multi-arch cases. */
842
843 struct gdbarch_list
844 {
845 struct gdbarch *gdbarch;
846 struct gdbarch_list *next;
847 };
848
849 struct gdbarch_info
850 {
851 /* Use default: NULL (ZERO). */
852 const struct bfd_arch_info *bfd_arch_info;
853
854 /* Use default: 0 (ZERO). */
855 int byte_order;
856
857 /* Use default: NULL (ZERO). */
858 bfd *abfd;
859
860 /* Use default: NULL (ZERO). */
861 struct gdbarch_tdep_info *tdep_info;
862 };
863
864 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
865 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
866
867 /* DEPRECATED - use gdbarch_register() */
868 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
869
870 extern void gdbarch_register (enum bfd_architecture architecture,
871 gdbarch_init_ftype *,
872 gdbarch_dump_tdep_ftype *);
873
874
875 /* Return a freshly allocated, NULL terminated, array of the valid
876 architecture names. Since architectures are registered during the
877 _initialize phase this function only returns useful information
878 once initialization has been completed. */
879
880 extern const char **gdbarch_printable_names (void);
881
882
883 /* Helper function. Search the list of ARCHES for a GDBARCH that
884 matches the information provided by INFO. */
885
886 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
887
888
889 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
890 basic initialization using values obtained from the INFO andTDEP
891 parameters. set_gdbarch_*() functions are called to complete the
892 initialization of the object. */
893
894 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
895
896
897 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
898 It is assumed that the caller freeds the \`\`struct
899 gdbarch_tdep''. */
900
901 extern void gdbarch_free (struct gdbarch *);
902
903
904 /* Helper function. Force an update of the current architecture.
905
906 The actual architecture selected is determined by INFO, \`\`(gdb) set
907 architecture'' et.al., the existing architecture and BFD's default
908 architecture. INFO should be initialized to zero and then selected
909 fields should be updated.
910
911 Returns non-zero if the update succeeds */
912
913 extern int gdbarch_update_p (struct gdbarch_info info);
914
915
916
917 /* Register per-architecture data-pointer.
918
919 Reserve space for a per-architecture data-pointer. An identifier
920 for the reserved data-pointer is returned. That identifer should
921 be saved in a local static variable.
922
923 The per-architecture data-pointer can be initialized in one of two
924 ways: The value can be set explicitly using a call to
925 set_gdbarch_data(); the value can be set implicitly using the value
926 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
927 called after the basic architecture vector has been created.
928
929 When a previously created architecture is re-selected, the
930 per-architecture data-pointer for that previous architecture is
931 restored. INIT() is not called.
932
933 During initialization, multiple assignments of the data-pointer are
934 allowed, non-NULL values are deleted by calling FREE(). If the
935 architecture is deleted using gdbarch_free() all non-NULL data
936 pointers are also deleted using FREE().
937
938 Multiple registrarants for any architecture are allowed (and
939 strongly encouraged). */
940
941 struct gdbarch_data;
942
943 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
944 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
945 void *pointer);
946 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
947 gdbarch_data_free_ftype *free);
948 extern void set_gdbarch_data (struct gdbarch *gdbarch,
949 struct gdbarch_data *data,
950 void *pointer);
951
952 extern void *gdbarch_data (struct gdbarch_data*);
953
954
955 /* Register per-architecture memory region.
956
957 Provide a memory-region swap mechanism. Per-architecture memory
958 region are created. These memory regions are swapped whenever the
959 architecture is changed. For a new architecture, the memory region
960 is initialized with zero (0) and the INIT function is called.
961
962 Memory regions are swapped / initialized in the order that they are
963 registered. NULL DATA and/or INIT values can be specified.
964
965 New code should use register_gdbarch_data(). */
966
967 typedef void (gdbarch_swap_ftype) (void);
968 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
969 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
970
971
972
973 /* The target-system-dependent byte order is dynamic */
974
975 /* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
976 is selectable at runtime. The user can use the \`\`set endian''
977 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
978 target_byte_order should be auto-detected (from the program image
979 say). */
980
981 #if GDB_MULTI_ARCH
982 /* Multi-arch GDB is always bi-endian. */
983 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
984 #endif
985
986 #ifndef TARGET_BYTE_ORDER_SELECTABLE_P
987 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
988 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
989 #ifdef TARGET_BYTE_ORDER_SELECTABLE
990 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
991 #else
992 #define TARGET_BYTE_ORDER_SELECTABLE_P 0
993 #endif
994 #endif
995
996 extern int target_byte_order;
997 #ifdef TARGET_BYTE_ORDER_SELECTABLE
998 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
999 and expect defs.h to re-define TARGET_BYTE_ORDER. */
1000 #undef TARGET_BYTE_ORDER
1001 #endif
1002 #ifndef TARGET_BYTE_ORDER
1003 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1004 #endif
1005
1006 extern int target_byte_order_auto;
1007 #ifndef TARGET_BYTE_ORDER_AUTO
1008 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1009 #endif
1010
1011
1012
1013 /* The target-system-dependent BFD architecture is dynamic */
1014
1015 extern int target_architecture_auto;
1016 #ifndef TARGET_ARCHITECTURE_AUTO
1017 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1018 #endif
1019
1020 extern const struct bfd_arch_info *target_architecture;
1021 #ifndef TARGET_ARCHITECTURE
1022 #define TARGET_ARCHITECTURE (target_architecture + 0)
1023 #endif
1024
1025
1026 /* The target-system-dependent disassembler is semi-dynamic */
1027
1028 #include "dis-asm.h" /* Get defs for disassemble_info */
1029
1030 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1031 unsigned int len, disassemble_info *info);
1032
1033 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1034 disassemble_info *info);
1035
1036 extern void dis_asm_print_address (bfd_vma addr,
1037 disassemble_info *info);
1038
1039 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1040 extern disassemble_info tm_print_insn_info;
1041 #ifndef TARGET_PRINT_INSN
1042 #define TARGET_PRINT_INSN(vma, info) (*tm_print_insn) (vma, info)
1043 #endif
1044 #ifndef TARGET_PRINT_INSN_INFO
1045 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1046 #endif
1047
1048
1049
1050 /* Explicit test for D10V architecture.
1051 USE of these macro's is *STRONGLY* discouraged. */
1052
1053 #define GDB_TARGET_IS_D10V (TARGET_ARCHITECTURE->arch == bfd_arch_d10v)
1054
1055
1056 /* Set the dynamic target-system-dependent parameters (architecture,
1057 byte-order, ...) using information found in the BFD */
1058
1059 extern void set_gdbarch_from_file (bfd *);
1060
1061
1062 /* Initialize the current architecture to the "first" one we find on
1063 our list. */
1064
1065 extern void initialize_current_architecture (void);
1066
1067 /* For non-multiarched targets, do any initialization of the default
1068 gdbarch object necessary after the _initialize_MODULE functions
1069 have run. */
1070 extern void initialize_non_multiarch ();
1071
1072 /* gdbarch trace variable */
1073 extern int gdbarch_debug;
1074
1075 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1076
1077 #endif
1078 EOF
1079 exec 1>&2
1080 #../move-if-change new-gdbarch.h gdbarch.h
1081 compare_new gdbarch.h
1082
1083
1084 #
1085 # C file
1086 #
1087
1088 exec > new-gdbarch.c
1089 copyright
1090 cat <<EOF
1091
1092 #include "defs.h"
1093 #include "arch-utils.h"
1094
1095 #if GDB_MULTI_ARCH
1096 #include "gdbcmd.h"
1097 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1098 #else
1099 /* Just include everything in sight so that the every old definition
1100 of macro is visible. */
1101 #include "gdb_string.h"
1102 #include <ctype.h>
1103 #include "symtab.h"
1104 #include "frame.h"
1105 #include "inferior.h"
1106 #include "breakpoint.h"
1107 #include "gdb_wait.h"
1108 #include "gdbcore.h"
1109 #include "gdbcmd.h"
1110 #include "target.h"
1111 #include "gdbthread.h"
1112 #include "annotate.h"
1113 #include "symfile.h" /* for overlay functions */
1114 #endif
1115 #include "symcat.h"
1116
1117 #include "floatformat.h"
1118
1119 #include "gdb_assert.h"
1120
1121 /* Static function declarations */
1122
1123 static void verify_gdbarch (struct gdbarch *gdbarch);
1124 static void alloc_gdbarch_data (struct gdbarch *);
1125 static void init_gdbarch_data (struct gdbarch *);
1126 static void free_gdbarch_data (struct gdbarch *);
1127 static void init_gdbarch_swap (struct gdbarch *);
1128 static void swapout_gdbarch_swap (struct gdbarch *);
1129 static void swapin_gdbarch_swap (struct gdbarch *);
1130
1131 /* Convenience macro for allocting typesafe memory. */
1132
1133 #ifndef XMALLOC
1134 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1135 #endif
1136
1137
1138 /* Non-zero if we want to trace architecture code. */
1139
1140 #ifndef GDBARCH_DEBUG
1141 #define GDBARCH_DEBUG 0
1142 #endif
1143 int gdbarch_debug = GDBARCH_DEBUG;
1144
1145 EOF
1146
1147 # gdbarch open the gdbarch object
1148 printf "\n"
1149 printf "/* Maintain the struct gdbarch object */\n"
1150 printf "\n"
1151 printf "struct gdbarch\n"
1152 printf "{\n"
1153 printf " /* basic architectural information */\n"
1154 function_list | while do_read
1155 do
1156 if class_is_info_p
1157 then
1158 printf " ${returntype} ${function};\n"
1159 fi
1160 done
1161 printf "\n"
1162 printf " /* target specific vector. */\n"
1163 printf " struct gdbarch_tdep *tdep;\n"
1164 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1165 printf "\n"
1166 printf " /* per-architecture data-pointers */\n"
1167 printf " unsigned nr_data;\n"
1168 printf " void **data;\n"
1169 printf "\n"
1170 printf " /* per-architecture swap-regions */\n"
1171 printf " struct gdbarch_swap *swap;\n"
1172 printf "\n"
1173 cat <<EOF
1174 /* Multi-arch values.
1175
1176 When extending this structure you must:
1177
1178 Add the field below.
1179
1180 Declare set/get functions and define the corresponding
1181 macro in gdbarch.h.
1182
1183 gdbarch_alloc(): If zero/NULL is not a suitable default,
1184 initialize the new field.
1185
1186 verify_gdbarch(): Confirm that the target updated the field
1187 correctly.
1188
1189 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1190 field is dumped out
1191
1192 \`\`startup_gdbarch()'': Append an initial value to the static
1193 variable (base values on the host's c-type system).
1194
1195 get_gdbarch(): Implement the set/get functions (probably using
1196 the macro's as shortcuts).
1197
1198 */
1199
1200 EOF
1201 function_list | while do_read
1202 do
1203 if class_is_variable_p
1204 then
1205 printf " ${returntype} ${function};\n"
1206 elif class_is_function_p
1207 then
1208 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1209 fi
1210 done
1211 printf "};\n"
1212
1213 # A pre-initialized vector
1214 printf "\n"
1215 printf "\n"
1216 cat <<EOF
1217 /* The default architecture uses host values (for want of a better
1218 choice). */
1219 EOF
1220 printf "\n"
1221 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1222 printf "\n"
1223 printf "struct gdbarch startup_gdbarch =\n"
1224 printf "{\n"
1225 printf " /* basic architecture information */\n"
1226 function_list | while do_read
1227 do
1228 if class_is_info_p
1229 then
1230 printf " ${staticdefault},\n"
1231 fi
1232 done
1233 cat <<EOF
1234 /* target specific vector and its dump routine */
1235 NULL, NULL,
1236 /*per-architecture data-pointers and swap regions */
1237 0, NULL, NULL,
1238 /* Multi-arch values */
1239 EOF
1240 function_list | while do_read
1241 do
1242 if class_is_function_p || class_is_variable_p
1243 then
1244 printf " ${staticdefault},\n"
1245 fi
1246 done
1247 cat <<EOF
1248 /* startup_gdbarch() */
1249 };
1250
1251 struct gdbarch *current_gdbarch = &startup_gdbarch;
1252
1253 /* Do any initialization needed for a non-multiarch configuration
1254 after the _initialize_MODULE functions have been run. */
1255 void
1256 initialize_non_multiarch ()
1257 {
1258 alloc_gdbarch_data (&startup_gdbarch);
1259 init_gdbarch_data (&startup_gdbarch);
1260 }
1261 EOF
1262
1263 # Create a new gdbarch struct
1264 printf "\n"
1265 printf "\n"
1266 cat <<EOF
1267 /* Create a new \`\`struct gdbarch'' based on information provided by
1268 \`\`struct gdbarch_info''. */
1269 EOF
1270 printf "\n"
1271 cat <<EOF
1272 struct gdbarch *
1273 gdbarch_alloc (const struct gdbarch_info *info,
1274 struct gdbarch_tdep *tdep)
1275 {
1276 struct gdbarch *gdbarch = XMALLOC (struct gdbarch);
1277 memset (gdbarch, 0, sizeof (*gdbarch));
1278
1279 alloc_gdbarch_data (gdbarch);
1280
1281 gdbarch->tdep = tdep;
1282 EOF
1283 printf "\n"
1284 function_list | while do_read
1285 do
1286 if class_is_info_p
1287 then
1288 printf " gdbarch->${function} = info->${function};\n"
1289 fi
1290 done
1291 printf "\n"
1292 printf " /* Force the explicit initialization of these. */\n"
1293 function_list | while do_read
1294 do
1295 if class_is_function_p || class_is_variable_p
1296 then
1297 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1298 then
1299 printf " gdbarch->${function} = ${predefault};\n"
1300 fi
1301 fi
1302 done
1303 cat <<EOF
1304 /* gdbarch_alloc() */
1305
1306 return gdbarch;
1307 }
1308 EOF
1309
1310 # Free a gdbarch struct.
1311 printf "\n"
1312 printf "\n"
1313 cat <<EOF
1314 /* Free a gdbarch struct. This should never happen in normal
1315 operation --- once you've created a gdbarch, you keep it around.
1316 However, if an architecture's init function encounters an error
1317 building the structure, it may need to clean up a partially
1318 constructed gdbarch. */
1319
1320 void
1321 gdbarch_free (struct gdbarch *arch)
1322 {
1323 gdb_assert (arch != NULL);
1324 free_gdbarch_data (arch);
1325 xfree (arch);
1326 }
1327 EOF
1328
1329 # verify a new architecture
1330 printf "\n"
1331 printf "\n"
1332 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1333 printf "\n"
1334 cat <<EOF
1335 static void
1336 verify_gdbarch (struct gdbarch *gdbarch)
1337 {
1338 /* Only perform sanity checks on a multi-arch target. */
1339 if (!GDB_MULTI_ARCH)
1340 return;
1341 /* fundamental */
1342 if (gdbarch->byte_order == 0)
1343 internal_error (__FILE__, __LINE__,
1344 "verify_gdbarch: byte-order unset");
1345 if (gdbarch->bfd_arch_info == NULL)
1346 internal_error (__FILE__, __LINE__,
1347 "verify_gdbarch: bfd_arch_info unset");
1348 /* Check those that need to be defined for the given multi-arch level. */
1349 EOF
1350 function_list | while do_read
1351 do
1352 if class_is_function_p || class_is_variable_p
1353 then
1354 if [ "x${invalid_p}" = "x0" ]
1355 then
1356 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1357 elif class_is_predicate_p
1358 then
1359 printf " /* Skip verify of ${function}, has predicate */\n"
1360 # FIXME: See do_read for potential simplification
1361 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1362 then
1363 printf " if (${invalid_p})\n"
1364 printf " gdbarch->${function} = ${postdefault};\n"
1365 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1366 then
1367 printf " if (gdbarch->${function} == ${predefault})\n"
1368 printf " gdbarch->${function} = ${postdefault};\n"
1369 elif [ -n "${postdefault}" ]
1370 then
1371 printf " if (gdbarch->${function} == 0)\n"
1372 printf " gdbarch->${function} = ${postdefault};\n"
1373 elif [ -n "${invalid_p}" ]
1374 then
1375 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1376 printf " && (${invalid_p}))\n"
1377 printf " internal_error (__FILE__, __LINE__,\n"
1378 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1379 elif [ -n "${predefault}" ]
1380 then
1381 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1382 printf " && (gdbarch->${function} == ${predefault}))\n"
1383 printf " internal_error (__FILE__, __LINE__,\n"
1384 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1385 fi
1386 fi
1387 done
1388 cat <<EOF
1389 }
1390 EOF
1391
1392 # dump the structure
1393 printf "\n"
1394 printf "\n"
1395 cat <<EOF
1396 /* Print out the details of the current architecture. */
1397
1398 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1399 just happens to match the global variable \`\`current_gdbarch''. That
1400 way macros refering to that variable get the local and not the global
1401 version - ulgh. Once everything is parameterised with gdbarch, this
1402 will go away. */
1403
1404 void
1405 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1406 {
1407 fprintf_unfiltered (file,
1408 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1409 GDB_MULTI_ARCH);
1410 EOF
1411 function_list | while do_read
1412 do
1413 # multiarch functions don't have macros.
1414 class_is_multiarch_p && continue
1415 if [ "x${returntype}" = "xvoid" ]
1416 then
1417 printf "#if defined (${macro}) && GDB_MULTI_ARCH\n"
1418 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1419 else
1420 printf "#ifdef ${macro}\n"
1421 fi
1422 if class_is_function_p
1423 then
1424 printf " fprintf_unfiltered (file,\n"
1425 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1426 printf " \"${macro}(${actual})\",\n"
1427 printf " XSTRING (${macro} (${actual})));\n"
1428 else
1429 printf " fprintf_unfiltered (file,\n"
1430 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1431 printf " XSTRING (${macro}));\n"
1432 fi
1433 printf "#endif\n"
1434 done
1435 function_list | while do_read
1436 do
1437 if class_is_multiarch_p
1438 then
1439 printf " if (GDB_MULTI_ARCH)\n"
1440 printf " fprintf_unfiltered (file,\n"
1441 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1442 printf " (long) current_gdbarch->${function});\n"
1443 continue
1444 fi
1445 printf "#ifdef ${macro}\n"
1446 if [ "x${print_p}" = "x()" ]
1447 then
1448 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1449 elif [ "x${print_p}" = "x0" ]
1450 then
1451 printf " /* skip print of ${macro}, print_p == 0. */\n"
1452 elif [ -n "${print_p}" ]
1453 then
1454 printf " if (${print_p})\n"
1455 printf " fprintf_unfiltered (file,\n"
1456 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1457 printf " ${print});\n"
1458 elif class_is_function_p
1459 then
1460 printf " if (GDB_MULTI_ARCH)\n"
1461 printf " fprintf_unfiltered (file,\n"
1462 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1463 printf " (long) current_gdbarch->${function}\n"
1464 printf " /*${macro} ()*/);\n"
1465 else
1466 printf " fprintf_unfiltered (file,\n"
1467 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1468 printf " ${print});\n"
1469 fi
1470 printf "#endif\n"
1471 done
1472 cat <<EOF
1473 if (current_gdbarch->dump_tdep != NULL)
1474 current_gdbarch->dump_tdep (current_gdbarch, file);
1475 }
1476 EOF
1477
1478
1479 # GET/SET
1480 printf "\n"
1481 cat <<EOF
1482 struct gdbarch_tdep *
1483 gdbarch_tdep (struct gdbarch *gdbarch)
1484 {
1485 if (gdbarch_debug >= 2)
1486 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1487 return gdbarch->tdep;
1488 }
1489 EOF
1490 printf "\n"
1491 function_list | while do_read
1492 do
1493 if class_is_predicate_p
1494 then
1495 printf "\n"
1496 printf "int\n"
1497 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1498 printf "{\n"
1499 if [ -n "${valid_p}" ]
1500 then
1501 printf " return ${valid_p};\n"
1502 else
1503 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1504 fi
1505 printf "}\n"
1506 fi
1507 if class_is_function_p
1508 then
1509 printf "\n"
1510 printf "${returntype}\n"
1511 if [ "x${formal}" = "xvoid" ]
1512 then
1513 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1514 else
1515 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1516 fi
1517 printf "{\n"
1518 printf " if (gdbarch->${function} == 0)\n"
1519 printf " internal_error (__FILE__, __LINE__,\n"
1520 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1521 printf " if (gdbarch_debug >= 2)\n"
1522 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1523 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1524 then
1525 if class_is_multiarch_p
1526 then
1527 params="gdbarch"
1528 else
1529 params=""
1530 fi
1531 else
1532 if class_is_multiarch_p
1533 then
1534 params="gdbarch, ${actual}"
1535 else
1536 params="${actual}"
1537 fi
1538 fi
1539 if [ "x${returntype}" = "xvoid" ]
1540 then
1541 printf " gdbarch->${function} (${params});\n"
1542 else
1543 printf " return gdbarch->${function} (${params});\n"
1544 fi
1545 printf "}\n"
1546 printf "\n"
1547 printf "void\n"
1548 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1549 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1550 printf "{\n"
1551 printf " gdbarch->${function} = ${function};\n"
1552 printf "}\n"
1553 elif class_is_variable_p
1554 then
1555 printf "\n"
1556 printf "${returntype}\n"
1557 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1558 printf "{\n"
1559 if [ "x${invalid_p}" = "x0" ]
1560 then
1561 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1562 elif [ -n "${invalid_p}" ]
1563 then
1564 printf " if (${invalid_p})\n"
1565 printf " internal_error (__FILE__, __LINE__,\n"
1566 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1567 elif [ -n "${predefault}" ]
1568 then
1569 printf " if (gdbarch->${function} == ${predefault})\n"
1570 printf " internal_error (__FILE__, __LINE__,\n"
1571 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1572 fi
1573 printf " if (gdbarch_debug >= 2)\n"
1574 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1575 printf " return gdbarch->${function};\n"
1576 printf "}\n"
1577 printf "\n"
1578 printf "void\n"
1579 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1580 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1581 printf "{\n"
1582 printf " gdbarch->${function} = ${function};\n"
1583 printf "}\n"
1584 elif class_is_info_p
1585 then
1586 printf "\n"
1587 printf "${returntype}\n"
1588 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1589 printf "{\n"
1590 printf " if (gdbarch_debug >= 2)\n"
1591 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1592 printf " return gdbarch->${function};\n"
1593 printf "}\n"
1594 fi
1595 done
1596
1597 # All the trailing guff
1598 cat <<EOF
1599
1600
1601 /* Keep a registry of per-architecture data-pointers required by GDB
1602 modules. */
1603
1604 struct gdbarch_data
1605 {
1606 unsigned index;
1607 gdbarch_data_init_ftype *init;
1608 gdbarch_data_free_ftype *free;
1609 };
1610
1611 struct gdbarch_data_registration
1612 {
1613 struct gdbarch_data *data;
1614 struct gdbarch_data_registration *next;
1615 };
1616
1617 struct gdbarch_data_registry
1618 {
1619 unsigned nr;
1620 struct gdbarch_data_registration *registrations;
1621 };
1622
1623 struct gdbarch_data_registry gdbarch_data_registry =
1624 {
1625 0, NULL,
1626 };
1627
1628 struct gdbarch_data *
1629 register_gdbarch_data (gdbarch_data_init_ftype *init,
1630 gdbarch_data_free_ftype *free)
1631 {
1632 struct gdbarch_data_registration **curr;
1633 for (curr = &gdbarch_data_registry.registrations;
1634 (*curr) != NULL;
1635 curr = &(*curr)->next);
1636 (*curr) = XMALLOC (struct gdbarch_data_registration);
1637 (*curr)->next = NULL;
1638 (*curr)->data = XMALLOC (struct gdbarch_data);
1639 (*curr)->data->index = gdbarch_data_registry.nr++;
1640 (*curr)->data->init = init;
1641 (*curr)->data->free = free;
1642 return (*curr)->data;
1643 }
1644
1645
1646 /* Walk through all the registered users initializing each in turn. */
1647
1648 static void
1649 init_gdbarch_data (struct gdbarch *gdbarch)
1650 {
1651 struct gdbarch_data_registration *rego;
1652 for (rego = gdbarch_data_registry.registrations;
1653 rego != NULL;
1654 rego = rego->next)
1655 {
1656 struct gdbarch_data *data = rego->data;
1657 gdb_assert (data->index < gdbarch->nr_data);
1658 if (data->init != NULL)
1659 {
1660 void *pointer = data->init (gdbarch);
1661 set_gdbarch_data (gdbarch, data, pointer);
1662 }
1663 }
1664 }
1665
1666 /* Create/delete the gdbarch data vector. */
1667
1668 static void
1669 alloc_gdbarch_data (struct gdbarch *gdbarch)
1670 {
1671 gdb_assert (gdbarch->data == NULL);
1672 gdbarch->nr_data = gdbarch_data_registry.nr;
1673 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1674 }
1675
1676 static void
1677 free_gdbarch_data (struct gdbarch *gdbarch)
1678 {
1679 struct gdbarch_data_registration *rego;
1680 gdb_assert (gdbarch->data != NULL);
1681 for (rego = gdbarch_data_registry.registrations;
1682 rego != NULL;
1683 rego = rego->next)
1684 {
1685 struct gdbarch_data *data = rego->data;
1686 gdb_assert (data->index < gdbarch->nr_data);
1687 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1688 {
1689 data->free (gdbarch, gdbarch->data[data->index]);
1690 gdbarch->data[data->index] = NULL;
1691 }
1692 }
1693 xfree (gdbarch->data);
1694 gdbarch->data = NULL;
1695 }
1696
1697
1698 /* Initialize the current value of thee specified per-architecture
1699 data-pointer. */
1700
1701 void
1702 set_gdbarch_data (struct gdbarch *gdbarch,
1703 struct gdbarch_data *data,
1704 void *pointer)
1705 {
1706 gdb_assert (data->index < gdbarch->nr_data);
1707 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1708 data->free (gdbarch, gdbarch->data[data->index]);
1709 gdbarch->data[data->index] = pointer;
1710 }
1711
1712 /* Return the current value of the specified per-architecture
1713 data-pointer. */
1714
1715 void *
1716 gdbarch_data (struct gdbarch_data *data)
1717 {
1718 gdb_assert (data->index < current_gdbarch->nr_data);
1719 return current_gdbarch->data[data->index];
1720 }
1721
1722
1723
1724 /* Keep a registry of swapped data required by GDB modules. */
1725
1726 struct gdbarch_swap
1727 {
1728 void *swap;
1729 struct gdbarch_swap_registration *source;
1730 struct gdbarch_swap *next;
1731 };
1732
1733 struct gdbarch_swap_registration
1734 {
1735 void *data;
1736 unsigned long sizeof_data;
1737 gdbarch_swap_ftype *init;
1738 struct gdbarch_swap_registration *next;
1739 };
1740
1741 struct gdbarch_swap_registry
1742 {
1743 int nr;
1744 struct gdbarch_swap_registration *registrations;
1745 };
1746
1747 struct gdbarch_swap_registry gdbarch_swap_registry =
1748 {
1749 0, NULL,
1750 };
1751
1752 void
1753 register_gdbarch_swap (void *data,
1754 unsigned long sizeof_data,
1755 gdbarch_swap_ftype *init)
1756 {
1757 struct gdbarch_swap_registration **rego;
1758 for (rego = &gdbarch_swap_registry.registrations;
1759 (*rego) != NULL;
1760 rego = &(*rego)->next);
1761 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1762 (*rego)->next = NULL;
1763 (*rego)->init = init;
1764 (*rego)->data = data;
1765 (*rego)->sizeof_data = sizeof_data;
1766 }
1767
1768
1769 static void
1770 init_gdbarch_swap (struct gdbarch *gdbarch)
1771 {
1772 struct gdbarch_swap_registration *rego;
1773 struct gdbarch_swap **curr = &gdbarch->swap;
1774 for (rego = gdbarch_swap_registry.registrations;
1775 rego != NULL;
1776 rego = rego->next)
1777 {
1778 if (rego->data != NULL)
1779 {
1780 (*curr) = XMALLOC (struct gdbarch_swap);
1781 (*curr)->source = rego;
1782 (*curr)->swap = xmalloc (rego->sizeof_data);
1783 (*curr)->next = NULL;
1784 memset (rego->data, 0, rego->sizeof_data);
1785 curr = &(*curr)->next;
1786 }
1787 if (rego->init != NULL)
1788 rego->init ();
1789 }
1790 }
1791
1792 static void
1793 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1794 {
1795 struct gdbarch_swap *curr;
1796 for (curr = gdbarch->swap;
1797 curr != NULL;
1798 curr = curr->next)
1799 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1800 }
1801
1802 static void
1803 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1804 {
1805 struct gdbarch_swap *curr;
1806 for (curr = gdbarch->swap;
1807 curr != NULL;
1808 curr = curr->next)
1809 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1810 }
1811
1812
1813 /* Keep a registry of the architectures known by GDB. */
1814
1815 struct gdbarch_registration
1816 {
1817 enum bfd_architecture bfd_architecture;
1818 gdbarch_init_ftype *init;
1819 gdbarch_dump_tdep_ftype *dump_tdep;
1820 struct gdbarch_list *arches;
1821 struct gdbarch_registration *next;
1822 };
1823
1824 static struct gdbarch_registration *gdbarch_registry = NULL;
1825
1826 static void
1827 append_name (const char ***buf, int *nr, const char *name)
1828 {
1829 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1830 (*buf)[*nr] = name;
1831 *nr += 1;
1832 }
1833
1834 const char **
1835 gdbarch_printable_names (void)
1836 {
1837 if (GDB_MULTI_ARCH)
1838 {
1839 /* Accumulate a list of names based on the registed list of
1840 architectures. */
1841 enum bfd_architecture a;
1842 int nr_arches = 0;
1843 const char **arches = NULL;
1844 struct gdbarch_registration *rego;
1845 for (rego = gdbarch_registry;
1846 rego != NULL;
1847 rego = rego->next)
1848 {
1849 const struct bfd_arch_info *ap;
1850 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1851 if (ap == NULL)
1852 internal_error (__FILE__, __LINE__,
1853 "gdbarch_architecture_names: multi-arch unknown");
1854 do
1855 {
1856 append_name (&arches, &nr_arches, ap->printable_name);
1857 ap = ap->next;
1858 }
1859 while (ap != NULL);
1860 }
1861 append_name (&arches, &nr_arches, NULL);
1862 return arches;
1863 }
1864 else
1865 /* Just return all the architectures that BFD knows. Assume that
1866 the legacy architecture framework supports them. */
1867 return bfd_arch_list ();
1868 }
1869
1870
1871 void
1872 gdbarch_register (enum bfd_architecture bfd_architecture,
1873 gdbarch_init_ftype *init,
1874 gdbarch_dump_tdep_ftype *dump_tdep)
1875 {
1876 struct gdbarch_registration **curr;
1877 const struct bfd_arch_info *bfd_arch_info;
1878 /* Check that BFD recognizes this architecture */
1879 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1880 if (bfd_arch_info == NULL)
1881 {
1882 internal_error (__FILE__, __LINE__,
1883 "gdbarch: Attempt to register unknown architecture (%d)",
1884 bfd_architecture);
1885 }
1886 /* Check that we haven't seen this architecture before */
1887 for (curr = &gdbarch_registry;
1888 (*curr) != NULL;
1889 curr = &(*curr)->next)
1890 {
1891 if (bfd_architecture == (*curr)->bfd_architecture)
1892 internal_error (__FILE__, __LINE__,
1893 "gdbarch: Duplicate registraration of architecture (%s)",
1894 bfd_arch_info->printable_name);
1895 }
1896 /* log it */
1897 if (gdbarch_debug)
1898 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1899 bfd_arch_info->printable_name,
1900 (long) init);
1901 /* Append it */
1902 (*curr) = XMALLOC (struct gdbarch_registration);
1903 (*curr)->bfd_architecture = bfd_architecture;
1904 (*curr)->init = init;
1905 (*curr)->dump_tdep = dump_tdep;
1906 (*curr)->arches = NULL;
1907 (*curr)->next = NULL;
1908 /* When non- multi-arch, install whatever target dump routine we've
1909 been provided - hopefully that routine has been written correctly
1910 and works regardless of multi-arch. */
1911 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1912 && startup_gdbarch.dump_tdep == NULL)
1913 startup_gdbarch.dump_tdep = dump_tdep;
1914 }
1915
1916 void
1917 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1918 gdbarch_init_ftype *init)
1919 {
1920 gdbarch_register (bfd_architecture, init, NULL);
1921 }
1922
1923
1924 /* Look for an architecture using gdbarch_info. Base search on only
1925 BFD_ARCH_INFO and BYTE_ORDER. */
1926
1927 struct gdbarch_list *
1928 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1929 const struct gdbarch_info *info)
1930 {
1931 for (; arches != NULL; arches = arches->next)
1932 {
1933 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1934 continue;
1935 if (info->byte_order != arches->gdbarch->byte_order)
1936 continue;
1937 return arches;
1938 }
1939 return NULL;
1940 }
1941
1942
1943 /* Update the current architecture. Return ZERO if the update request
1944 failed. */
1945
1946 int
1947 gdbarch_update_p (struct gdbarch_info info)
1948 {
1949 struct gdbarch *new_gdbarch;
1950 struct gdbarch_list **list;
1951 struct gdbarch_registration *rego;
1952
1953 /* Fill in missing parts of the INFO struct using a number of
1954 sources: \`\`set ...''; INFOabfd supplied; existing target. */
1955
1956 /* \`\`(gdb) set architecture ...'' */
1957 if (info.bfd_arch_info == NULL
1958 && !TARGET_ARCHITECTURE_AUTO)
1959 info.bfd_arch_info = TARGET_ARCHITECTURE;
1960 if (info.bfd_arch_info == NULL
1961 && info.abfd != NULL
1962 && bfd_get_arch (info.abfd) != bfd_arch_unknown
1963 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
1964 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
1965 if (info.bfd_arch_info == NULL)
1966 info.bfd_arch_info = TARGET_ARCHITECTURE;
1967
1968 /* \`\`(gdb) set byte-order ...'' */
1969 if (info.byte_order == 0
1970 && !TARGET_BYTE_ORDER_AUTO)
1971 info.byte_order = TARGET_BYTE_ORDER;
1972 /* From the INFO struct. */
1973 if (info.byte_order == 0
1974 && info.abfd != NULL)
1975 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
1976 : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
1977 : 0);
1978 /* From the current target. */
1979 if (info.byte_order == 0)
1980 info.byte_order = TARGET_BYTE_ORDER;
1981
1982 /* Must have found some sort of architecture. */
1983 gdb_assert (info.bfd_arch_info != NULL);
1984
1985 if (gdbarch_debug)
1986 {
1987 fprintf_unfiltered (gdb_stdlog,
1988 "gdbarch_update: info.bfd_arch_info %s\n",
1989 (info.bfd_arch_info != NULL
1990 ? info.bfd_arch_info->printable_name
1991 : "(null)"));
1992 fprintf_unfiltered (gdb_stdlog,
1993 "gdbarch_update: info.byte_order %d (%s)\n",
1994 info.byte_order,
1995 (info.byte_order == BIG_ENDIAN ? "big"
1996 : info.byte_order == LITTLE_ENDIAN ? "little"
1997 : "default"));
1998 fprintf_unfiltered (gdb_stdlog,
1999 "gdbarch_update: info.abfd 0x%lx\n",
2000 (long) info.abfd);
2001 fprintf_unfiltered (gdb_stdlog,
2002 "gdbarch_update: info.tdep_info 0x%lx\n",
2003 (long) info.tdep_info);
2004 }
2005
2006 /* Find the target that knows about this architecture. */
2007 for (rego = gdbarch_registry;
2008 rego != NULL;
2009 rego = rego->next)
2010 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2011 break;
2012 if (rego == NULL)
2013 {
2014 if (gdbarch_debug)
2015 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2016 return 0;
2017 }
2018
2019 /* Ask the target for a replacement architecture. */
2020 new_gdbarch = rego->init (info, rego->arches);
2021
2022 /* Did the target like it? No. Reject the change. */
2023 if (new_gdbarch == NULL)
2024 {
2025 if (gdbarch_debug)
2026 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2027 return 0;
2028 }
2029
2030 /* Did the architecture change? No. Do nothing. */
2031 if (current_gdbarch == new_gdbarch)
2032 {
2033 if (gdbarch_debug)
2034 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2035 (long) new_gdbarch,
2036 new_gdbarch->bfd_arch_info->printable_name);
2037 return 1;
2038 }
2039
2040 /* Swap all data belonging to the old target out */
2041 swapout_gdbarch_swap (current_gdbarch);
2042
2043 /* Is this a pre-existing architecture? Yes. Swap it in. */
2044 for (list = &rego->arches;
2045 (*list) != NULL;
2046 list = &(*list)->next)
2047 {
2048 if ((*list)->gdbarch == new_gdbarch)
2049 {
2050 if (gdbarch_debug)
2051 fprintf_unfiltered (gdb_stdlog,
2052 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2053 (long) new_gdbarch,
2054 new_gdbarch->bfd_arch_info->printable_name);
2055 current_gdbarch = new_gdbarch;
2056 swapin_gdbarch_swap (new_gdbarch);
2057 return 1;
2058 }
2059 }
2060
2061 /* Append this new architecture to this targets list. */
2062 (*list) = XMALLOC (struct gdbarch_list);
2063 (*list)->next = NULL;
2064 (*list)->gdbarch = new_gdbarch;
2065
2066 /* Switch to this new architecture. Dump it out. */
2067 current_gdbarch = new_gdbarch;
2068 if (gdbarch_debug)
2069 {
2070 fprintf_unfiltered (gdb_stdlog,
2071 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2072 (long) new_gdbarch,
2073 new_gdbarch->bfd_arch_info->printable_name);
2074 }
2075
2076 /* Check that the newly installed architecture is valid. Plug in
2077 any post init values. */
2078 new_gdbarch->dump_tdep = rego->dump_tdep;
2079 verify_gdbarch (new_gdbarch);
2080
2081 /* Initialize the per-architecture memory (swap) areas.
2082 CURRENT_GDBARCH must be update before these modules are
2083 called. */
2084 init_gdbarch_swap (new_gdbarch);
2085
2086 /* Initialize the per-architecture data-pointer of all parties that
2087 registered an interest in this architecture. CURRENT_GDBARCH
2088 must be updated before these modules are called. */
2089 init_gdbarch_data (new_gdbarch);
2090
2091 if (gdbarch_debug)
2092 gdbarch_dump (current_gdbarch, gdb_stdlog);
2093
2094 return 1;
2095 }
2096
2097
2098 /* Disassembler */
2099
2100 /* Pointer to the target-dependent disassembly function. */
2101 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2102 disassemble_info tm_print_insn_info;
2103
2104
2105 extern void _initialize_gdbarch (void);
2106
2107 void
2108 _initialize_gdbarch (void)
2109 {
2110 struct cmd_list_element *c;
2111
2112 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2113 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2114 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2115 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2116 tm_print_insn_info.print_address_func = dis_asm_print_address;
2117
2118 add_show_from_set (add_set_cmd ("arch",
2119 class_maintenance,
2120 var_zinteger,
2121 (char *)&gdbarch_debug,
2122 "Set architecture debugging.\\n\\
2123 When non-zero, architecture debugging is enabled.", &setdebuglist),
2124 &showdebuglist);
2125 c = add_set_cmd ("archdebug",
2126 class_maintenance,
2127 var_zinteger,
2128 (char *)&gdbarch_debug,
2129 "Set architecture debugging.\\n\\
2130 When non-zero, architecture debugging is enabled.", &setlist);
2131
2132 deprecate_cmd (c, "set debug arch");
2133 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2134 }
2135 EOF
2136
2137 # close things off
2138 exec 1>&2
2139 #../move-if-change new-gdbarch.c gdbarch.c
2140 compare_new gdbarch.c