* corelow.c (core_close): Don't hardcode the core's pid.
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double". These bit/format pairs should eventually be combined into
368 # a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same". For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
383 #
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386 # as well.
387 #
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392 #
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
395 #
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 # serious shakedown.
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402 #
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405 #
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
412
413 # GDB's standard (or well known) register numbers. These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
415 # all (-1).
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
490 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
492 v:CORE_ADDR:decr_pc_after_break:::0:::0
493
494 # A function can be addressed by either it's "pointer" (possibly a
495 # descriptor address) or "entry point" (first executable instruction).
496 # The method "convert_from_func_ptr_addr" converting the former to the
497 # latter. gdbarch_deprecated_function_start_offset is being used to implement
498 # a simplified subset of that functionality - the function's address
499 # corresponds to the "function pointer" and the function's start
500 # corresponds to the "function entry point" - and hence is redundant.
501
502 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
503
504 # Return the remote protocol register number associated with this
505 # register. Normally the identity mapping.
506 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
507
508 # Fetch the target specific address used to represent a load module.
509 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
510 #
511 v:CORE_ADDR:frame_args_skip:::0:::0
512 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
514 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515 # frame-base. Enable frame-base before frame-unwind.
516 F:int:frame_num_args:struct frame_info *frame:frame
517 #
518 M:CORE_ADDR:frame_align:CORE_ADDR address:address
519 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520 v:int:frame_red_zone_size
521 #
522 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
523 # On some machines there are bits in addresses which are not really
524 # part of the address, but are used by the kernel, the hardware, etc.
525 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
526 # we get a "real" address such as one would find in a symbol table.
527 # This is used only for addresses of instructions, and even then I'm
528 # not sure it's used in all contexts. It exists to deal with there
529 # being a few stray bits in the PC which would mislead us, not as some
530 # sort of generic thing to handle alignment or segmentation (it's
531 # possible it should be in TARGET_READ_PC instead).
532 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
533 # It is not at all clear why gdbarch_smash_text_address is not folded into
534 # gdbarch_addr_bits_remove.
535 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
536
537 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
538 # indicates if the target needs software single step. An ISA method to
539 # implement it.
540 #
541 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542 # breakpoints using the breakpoint system instead of blatting memory directly
543 # (as with rs6000).
544 #
545 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546 # target can single step. If not, then implement single step using breakpoints.
547 #
548 # A return value of 1 means that the software_single_step breakpoints
549 # were inserted; 0 means they were not.
550 F:int:software_single_step:struct frame_info *frame:frame
551
552 # Return non-zero if the processor is executing a delay slot and a
553 # further single-step is needed before the instruction finishes.
554 M:int:single_step_through_delay:struct frame_info *frame:frame
555 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
556 # disassembler. Perhaps objdump can handle it?
557 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
559
560
561 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
562 # evaluates non-zero, this is the address where the debugger will place
563 # a step-resume breakpoint to get us past the dynamic linker.
564 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
565 # Some systems also have trampoline code for returning from shared libs.
566 f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
567
568 # A target might have problems with watchpoints as soon as the stack
569 # frame of the current function has been destroyed. This mostly happens
570 # as the first action in a funtion's epilogue. in_function_epilogue_p()
571 # is defined to return a non-zero value if either the given addr is one
572 # instruction after the stack destroying instruction up to the trailing
573 # return instruction or if we can figure out that the stack frame has
574 # already been invalidated regardless of the value of addr. Targets
575 # which don't suffer from that problem could just let this functionality
576 # untouched.
577 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
578 # Given a vector of command-line arguments, return a newly allocated
579 # string which, when passed to the create_inferior function, will be
580 # parsed (on Unix systems, by the shell) to yield the same vector.
581 # This function should call error() if the argument vector is not
582 # representable for this target or if this target does not support
583 # command-line arguments.
584 # ARGC is the number of elements in the vector.
585 # ARGV is an array of strings, one per argument.
586 m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
587 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
588 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
589 v:int:cannot_step_breakpoint:::0:0::0
590 v:int:have_nonsteppable_watchpoint:::0:0::0
591 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
592 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
593 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
594 # Is a register in a group
595 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
596 # Fetch the pointer to the ith function argument.
597 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
598
599 # Return the appropriate register set for a core file section with
600 # name SECT_NAME and size SECT_SIZE.
601 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
602
603 # When creating core dumps, some systems encode the PID in addition
604 # to the LWP id in core file register section names. In those cases, the
605 # "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
606 # is set to true for such architectures; false if "XXX" represents an LWP
607 # or thread id with no special encoding.
608 v:int:core_reg_section_encodes_pid:::0:0::0
609
610 # Supported register notes in a core file.
611 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
612
613 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
614 # core file into buffer READBUF with length LEN.
615 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
616
617 # If the elements of C++ vtables are in-place function descriptors rather
618 # than normal function pointers (which may point to code or a descriptor),
619 # set this to one.
620 v:int:vtable_function_descriptors:::0:0::0
621
622 # Set if the least significant bit of the delta is used instead of the least
623 # significant bit of the pfn for pointers to virtual member functions.
624 v:int:vbit_in_delta:::0:0::0
625
626 # Advance PC to next instruction in order to skip a permanent breakpoint.
627 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
628
629 # The maximum length of an instruction on this architecture.
630 V:ULONGEST:max_insn_length:::0:0
631
632 # Copy the instruction at FROM to TO, and make any adjustments
633 # necessary to single-step it at that address.
634 #
635 # REGS holds the state the thread's registers will have before
636 # executing the copied instruction; the PC in REGS will refer to FROM,
637 # not the copy at TO. The caller should update it to point at TO later.
638 #
639 # Return a pointer to data of the architecture's choice to be passed
640 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
641 # the instruction's effects have been completely simulated, with the
642 # resulting state written back to REGS.
643 #
644 # For a general explanation of displaced stepping and how GDB uses it,
645 # see the comments in infrun.c.
646 #
647 # The TO area is only guaranteed to have space for
648 # gdbarch_max_insn_length (arch) bytes, so this function must not
649 # write more bytes than that to that area.
650 #
651 # If you do not provide this function, GDB assumes that the
652 # architecture does not support displaced stepping.
653 #
654 # If your architecture doesn't need to adjust instructions before
655 # single-stepping them, consider using simple_displaced_step_copy_insn
656 # here.
657 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
658
659 # Fix up the state resulting from successfully single-stepping a
660 # displaced instruction, to give the result we would have gotten from
661 # stepping the instruction in its original location.
662 #
663 # REGS is the register state resulting from single-stepping the
664 # displaced instruction.
665 #
666 # CLOSURE is the result from the matching call to
667 # gdbarch_displaced_step_copy_insn.
668 #
669 # If you provide gdbarch_displaced_step_copy_insn.but not this
670 # function, then GDB assumes that no fixup is needed after
671 # single-stepping the instruction.
672 #
673 # For a general explanation of displaced stepping and how GDB uses it,
674 # see the comments in infrun.c.
675 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
676
677 # Free a closure returned by gdbarch_displaced_step_copy_insn.
678 #
679 # If you provide gdbarch_displaced_step_copy_insn, you must provide
680 # this function as well.
681 #
682 # If your architecture uses closures that don't need to be freed, then
683 # you can use simple_displaced_step_free_closure here.
684 #
685 # For a general explanation of displaced stepping and how GDB uses it,
686 # see the comments in infrun.c.
687 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
688
689 # Return the address of an appropriate place to put displaced
690 # instructions while we step over them. There need only be one such
691 # place, since we're only stepping one thread over a breakpoint at a
692 # time.
693 #
694 # For a general explanation of displaced stepping and how GDB uses it,
695 # see the comments in infrun.c.
696 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
697
698 # Refresh overlay mapped state for section OSECT.
699 F:void:overlay_update:struct obj_section *osect:osect
700
701 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
702
703 # Handle special encoding of static variables in stabs debug info.
704 F:char *:static_transform_name:char *name:name
705 # Set if the address in N_SO or N_FUN stabs may be zero.
706 v:int:sofun_address_maybe_missing:::0:0::0
707
708 # Signal translation: translate inferior's signal (host's) number into
709 # GDB's representation.
710 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
711 # Signal translation: translate GDB's signal number into inferior's host
712 # signal number.
713 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
714
715 # Extra signal info inspection.
716 #
717 # Return a type suitable to inspect extra signal information.
718 M:struct type *:get_siginfo_type:void:
719
720 # Record architecture-specific information from the symbol table.
721 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
722
723 # True if the list of shared libraries is one and only for all
724 # processes, as opposed to a list of shared libraries per inferior.
725 # When this property is true, GDB assumes that since shared libraries
726 # are shared across processes, so is all code. Hence, GDB further
727 # assumes an inserted breakpoint location is visible to all processes.
728 v:int:has_global_solist:::0:0::0
729 EOF
730 }
731
732 #
733 # The .log file
734 #
735 exec > new-gdbarch.log
736 function_list | while do_read
737 do
738 cat <<EOF
739 ${class} ${returntype} ${function} ($formal)
740 EOF
741 for r in ${read}
742 do
743 eval echo \"\ \ \ \ ${r}=\${${r}}\"
744 done
745 if class_is_predicate_p && fallback_default_p
746 then
747 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
748 kill $$
749 exit 1
750 fi
751 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
752 then
753 echo "Error: postdefault is useless when invalid_p=0" 1>&2
754 kill $$
755 exit 1
756 fi
757 if class_is_multiarch_p
758 then
759 if class_is_predicate_p ; then :
760 elif test "x${predefault}" = "x"
761 then
762 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
763 kill $$
764 exit 1
765 fi
766 fi
767 echo ""
768 done
769
770 exec 1>&2
771 compare_new gdbarch.log
772
773
774 copyright ()
775 {
776 cat <<EOF
777 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
778
779 /* Dynamic architecture support for GDB, the GNU debugger.
780
781 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
782 Free Software Foundation, Inc.
783
784 This file is part of GDB.
785
786 This program is free software; you can redistribute it and/or modify
787 it under the terms of the GNU General Public License as published by
788 the Free Software Foundation; either version 3 of the License, or
789 (at your option) any later version.
790
791 This program is distributed in the hope that it will be useful,
792 but WITHOUT ANY WARRANTY; without even the implied warranty of
793 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
794 GNU General Public License for more details.
795
796 You should have received a copy of the GNU General Public License
797 along with this program. If not, see <http://www.gnu.org/licenses/>. */
798
799 /* This file was created with the aid of \`\`gdbarch.sh''.
800
801 The Bourne shell script \`\`gdbarch.sh'' creates the files
802 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
803 against the existing \`\`gdbarch.[hc]''. Any differences found
804 being reported.
805
806 If editing this file, please also run gdbarch.sh and merge any
807 changes into that script. Conversely, when making sweeping changes
808 to this file, modifying gdbarch.sh and using its output may prove
809 easier. */
810
811 EOF
812 }
813
814 #
815 # The .h file
816 #
817
818 exec > new-gdbarch.h
819 copyright
820 cat <<EOF
821 #ifndef GDBARCH_H
822 #define GDBARCH_H
823
824 struct floatformat;
825 struct ui_file;
826 struct frame_info;
827 struct value;
828 struct objfile;
829 struct obj_section;
830 struct minimal_symbol;
831 struct regcache;
832 struct reggroup;
833 struct regset;
834 struct disassemble_info;
835 struct target_ops;
836 struct obstack;
837 struct bp_target_info;
838 struct target_desc;
839 struct displaced_step_closure;
840 struct core_regset_section;
841
842 extern struct gdbarch *current_gdbarch;
843 extern struct gdbarch *target_gdbarch;
844 EOF
845
846 # function typedef's
847 printf "\n"
848 printf "\n"
849 printf "/* The following are pre-initialized by GDBARCH. */\n"
850 function_list | while do_read
851 do
852 if class_is_info_p
853 then
854 printf "\n"
855 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
856 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
857 fi
858 done
859
860 # function typedef's
861 printf "\n"
862 printf "\n"
863 printf "/* The following are initialized by the target dependent code. */\n"
864 function_list | while do_read
865 do
866 if [ -n "${comment}" ]
867 then
868 echo "${comment}" | sed \
869 -e '2 s,#,/*,' \
870 -e '3,$ s,#, ,' \
871 -e '$ s,$, */,'
872 fi
873
874 if class_is_predicate_p
875 then
876 printf "\n"
877 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
878 fi
879 if class_is_variable_p
880 then
881 printf "\n"
882 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
883 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
884 fi
885 if class_is_function_p
886 then
887 printf "\n"
888 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
889 then
890 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
891 elif class_is_multiarch_p
892 then
893 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
894 else
895 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
896 fi
897 if [ "x${formal}" = "xvoid" ]
898 then
899 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
900 else
901 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
902 fi
903 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
904 fi
905 done
906
907 # close it off
908 cat <<EOF
909
910 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
911
912
913 /* Mechanism for co-ordinating the selection of a specific
914 architecture.
915
916 GDB targets (*-tdep.c) can register an interest in a specific
917 architecture. Other GDB components can register a need to maintain
918 per-architecture data.
919
920 The mechanisms below ensures that there is only a loose connection
921 between the set-architecture command and the various GDB
922 components. Each component can independently register their need
923 to maintain architecture specific data with gdbarch.
924
925 Pragmatics:
926
927 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
928 didn't scale.
929
930 The more traditional mega-struct containing architecture specific
931 data for all the various GDB components was also considered. Since
932 GDB is built from a variable number of (fairly independent)
933 components it was determined that the global aproach was not
934 applicable. */
935
936
937 /* Register a new architectural family with GDB.
938
939 Register support for the specified ARCHITECTURE with GDB. When
940 gdbarch determines that the specified architecture has been
941 selected, the corresponding INIT function is called.
942
943 --
944
945 The INIT function takes two parameters: INFO which contains the
946 information available to gdbarch about the (possibly new)
947 architecture; ARCHES which is a list of the previously created
948 \`\`struct gdbarch'' for this architecture.
949
950 The INFO parameter is, as far as possible, be pre-initialized with
951 information obtained from INFO.ABFD or the global defaults.
952
953 The ARCHES parameter is a linked list (sorted most recently used)
954 of all the previously created architures for this architecture
955 family. The (possibly NULL) ARCHES->gdbarch can used to access
956 values from the previously selected architecture for this
957 architecture family. The global \`\`current_gdbarch'' shall not be
958 used.
959
960 The INIT function shall return any of: NULL - indicating that it
961 doesn't recognize the selected architecture; an existing \`\`struct
962 gdbarch'' from the ARCHES list - indicating that the new
963 architecture is just a synonym for an earlier architecture (see
964 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
965 - that describes the selected architecture (see gdbarch_alloc()).
966
967 The DUMP_TDEP function shall print out all target specific values.
968 Care should be taken to ensure that the function works in both the
969 multi-arch and non- multi-arch cases. */
970
971 struct gdbarch_list
972 {
973 struct gdbarch *gdbarch;
974 struct gdbarch_list *next;
975 };
976
977 struct gdbarch_info
978 {
979 /* Use default: NULL (ZERO). */
980 const struct bfd_arch_info *bfd_arch_info;
981
982 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
983 int byte_order;
984
985 int byte_order_for_code;
986
987 /* Use default: NULL (ZERO). */
988 bfd *abfd;
989
990 /* Use default: NULL (ZERO). */
991 struct gdbarch_tdep_info *tdep_info;
992
993 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
994 enum gdb_osabi osabi;
995
996 /* Use default: NULL (ZERO). */
997 const struct target_desc *target_desc;
998 };
999
1000 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1001 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1002
1003 /* DEPRECATED - use gdbarch_register() */
1004 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1005
1006 extern void gdbarch_register (enum bfd_architecture architecture,
1007 gdbarch_init_ftype *,
1008 gdbarch_dump_tdep_ftype *);
1009
1010
1011 /* Return a freshly allocated, NULL terminated, array of the valid
1012 architecture names. Since architectures are registered during the
1013 _initialize phase this function only returns useful information
1014 once initialization has been completed. */
1015
1016 extern const char **gdbarch_printable_names (void);
1017
1018
1019 /* Helper function. Search the list of ARCHES for a GDBARCH that
1020 matches the information provided by INFO. */
1021
1022 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1023
1024
1025 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1026 basic initialization using values obtained from the INFO and TDEP
1027 parameters. set_gdbarch_*() functions are called to complete the
1028 initialization of the object. */
1029
1030 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1031
1032
1033 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1034 It is assumed that the caller freeds the \`\`struct
1035 gdbarch_tdep''. */
1036
1037 extern void gdbarch_free (struct gdbarch *);
1038
1039
1040 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1041 obstack. The memory is freed when the corresponding architecture
1042 is also freed. */
1043
1044 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1045 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1046 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1047
1048
1049 /* Helper function. Force an update of the current architecture.
1050
1051 The actual architecture selected is determined by INFO, \`\`(gdb) set
1052 architecture'' et.al., the existing architecture and BFD's default
1053 architecture. INFO should be initialized to zero and then selected
1054 fields should be updated.
1055
1056 Returns non-zero if the update succeeds */
1057
1058 extern int gdbarch_update_p (struct gdbarch_info info);
1059
1060
1061 /* Helper function. Find an architecture matching info.
1062
1063 INFO should be initialized using gdbarch_info_init, relevant fields
1064 set, and then finished using gdbarch_info_fill.
1065
1066 Returns the corresponding architecture, or NULL if no matching
1067 architecture was found. "current_gdbarch" is not updated. */
1068
1069 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1070
1071
1072 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1073
1074 FIXME: kettenis/20031124: Of the functions that follow, only
1075 gdbarch_from_bfd is supposed to survive. The others will
1076 dissappear since in the future GDB will (hopefully) be truly
1077 multi-arch. However, for now we're still stuck with the concept of
1078 a single active architecture. */
1079
1080 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1081
1082
1083 /* Register per-architecture data-pointer.
1084
1085 Reserve space for a per-architecture data-pointer. An identifier
1086 for the reserved data-pointer is returned. That identifer should
1087 be saved in a local static variable.
1088
1089 Memory for the per-architecture data shall be allocated using
1090 gdbarch_obstack_zalloc. That memory will be deleted when the
1091 corresponding architecture object is deleted.
1092
1093 When a previously created architecture is re-selected, the
1094 per-architecture data-pointer for that previous architecture is
1095 restored. INIT() is not re-called.
1096
1097 Multiple registrarants for any architecture are allowed (and
1098 strongly encouraged). */
1099
1100 struct gdbarch_data;
1101
1102 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1103 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1104 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1105 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1106 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1107 struct gdbarch_data *data,
1108 void *pointer);
1109
1110 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1111
1112
1113 /* Set the dynamic target-system-dependent parameters (architecture,
1114 byte-order, ...) using information found in the BFD */
1115
1116 extern void set_gdbarch_from_file (bfd *);
1117
1118
1119 /* Initialize the current architecture to the "first" one we find on
1120 our list. */
1121
1122 extern void initialize_current_architecture (void);
1123
1124 /* gdbarch trace variable */
1125 extern int gdbarch_debug;
1126
1127 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1128
1129 #endif
1130 EOF
1131 exec 1>&2
1132 #../move-if-change new-gdbarch.h gdbarch.h
1133 compare_new gdbarch.h
1134
1135
1136 #
1137 # C file
1138 #
1139
1140 exec > new-gdbarch.c
1141 copyright
1142 cat <<EOF
1143
1144 #include "defs.h"
1145 #include "arch-utils.h"
1146
1147 #include "gdbcmd.h"
1148 #include "inferior.h"
1149 #include "symcat.h"
1150
1151 #include "floatformat.h"
1152
1153 #include "gdb_assert.h"
1154 #include "gdb_string.h"
1155 #include "reggroups.h"
1156 #include "osabi.h"
1157 #include "gdb_obstack.h"
1158 #include "observer.h"
1159 #include "regcache.h"
1160
1161 /* Static function declarations */
1162
1163 static void alloc_gdbarch_data (struct gdbarch *);
1164
1165 /* Non-zero if we want to trace architecture code. */
1166
1167 #ifndef GDBARCH_DEBUG
1168 #define GDBARCH_DEBUG 0
1169 #endif
1170 int gdbarch_debug = GDBARCH_DEBUG;
1171 static void
1172 show_gdbarch_debug (struct ui_file *file, int from_tty,
1173 struct cmd_list_element *c, const char *value)
1174 {
1175 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1176 }
1177
1178 static const char *
1179 pformat (const struct floatformat **format)
1180 {
1181 if (format == NULL)
1182 return "(null)";
1183 else
1184 /* Just print out one of them - this is only for diagnostics. */
1185 return format[0]->name;
1186 }
1187
1188 EOF
1189
1190 # gdbarch open the gdbarch object
1191 printf "\n"
1192 printf "/* Maintain the struct gdbarch object */\n"
1193 printf "\n"
1194 printf "struct gdbarch\n"
1195 printf "{\n"
1196 printf " /* Has this architecture been fully initialized? */\n"
1197 printf " int initialized_p;\n"
1198 printf "\n"
1199 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1200 printf " struct obstack *obstack;\n"
1201 printf "\n"
1202 printf " /* basic architectural information */\n"
1203 function_list | while do_read
1204 do
1205 if class_is_info_p
1206 then
1207 printf " ${returntype} ${function};\n"
1208 fi
1209 done
1210 printf "\n"
1211 printf " /* target specific vector. */\n"
1212 printf " struct gdbarch_tdep *tdep;\n"
1213 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1214 printf "\n"
1215 printf " /* per-architecture data-pointers */\n"
1216 printf " unsigned nr_data;\n"
1217 printf " void **data;\n"
1218 printf "\n"
1219 printf " /* per-architecture swap-regions */\n"
1220 printf " struct gdbarch_swap *swap;\n"
1221 printf "\n"
1222 cat <<EOF
1223 /* Multi-arch values.
1224
1225 When extending this structure you must:
1226
1227 Add the field below.
1228
1229 Declare set/get functions and define the corresponding
1230 macro in gdbarch.h.
1231
1232 gdbarch_alloc(): If zero/NULL is not a suitable default,
1233 initialize the new field.
1234
1235 verify_gdbarch(): Confirm that the target updated the field
1236 correctly.
1237
1238 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1239 field is dumped out
1240
1241 \`\`startup_gdbarch()'': Append an initial value to the static
1242 variable (base values on the host's c-type system).
1243
1244 get_gdbarch(): Implement the set/get functions (probably using
1245 the macro's as shortcuts).
1246
1247 */
1248
1249 EOF
1250 function_list | while do_read
1251 do
1252 if class_is_variable_p
1253 then
1254 printf " ${returntype} ${function};\n"
1255 elif class_is_function_p
1256 then
1257 printf " gdbarch_${function}_ftype *${function};\n"
1258 fi
1259 done
1260 printf "};\n"
1261
1262 # A pre-initialized vector
1263 printf "\n"
1264 printf "\n"
1265 cat <<EOF
1266 /* The default architecture uses host values (for want of a better
1267 choice). */
1268 EOF
1269 printf "\n"
1270 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1271 printf "\n"
1272 printf "struct gdbarch startup_gdbarch =\n"
1273 printf "{\n"
1274 printf " 1, /* Always initialized. */\n"
1275 printf " NULL, /* The obstack. */\n"
1276 printf " /* basic architecture information */\n"
1277 function_list | while do_read
1278 do
1279 if class_is_info_p
1280 then
1281 printf " ${staticdefault}, /* ${function} */\n"
1282 fi
1283 done
1284 cat <<EOF
1285 /* target specific vector and its dump routine */
1286 NULL, NULL,
1287 /*per-architecture data-pointers and swap regions */
1288 0, NULL, NULL,
1289 /* Multi-arch values */
1290 EOF
1291 function_list | while do_read
1292 do
1293 if class_is_function_p || class_is_variable_p
1294 then
1295 printf " ${staticdefault}, /* ${function} */\n"
1296 fi
1297 done
1298 cat <<EOF
1299 /* startup_gdbarch() */
1300 };
1301
1302 struct gdbarch *current_gdbarch = &startup_gdbarch;
1303 struct gdbarch *target_gdbarch = &startup_gdbarch;
1304 EOF
1305
1306 # Create a new gdbarch struct
1307 cat <<EOF
1308
1309 /* Create a new \`\`struct gdbarch'' based on information provided by
1310 \`\`struct gdbarch_info''. */
1311 EOF
1312 printf "\n"
1313 cat <<EOF
1314 struct gdbarch *
1315 gdbarch_alloc (const struct gdbarch_info *info,
1316 struct gdbarch_tdep *tdep)
1317 {
1318 struct gdbarch *gdbarch;
1319
1320 /* Create an obstack for allocating all the per-architecture memory,
1321 then use that to allocate the architecture vector. */
1322 struct obstack *obstack = XMALLOC (struct obstack);
1323 obstack_init (obstack);
1324 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1325 memset (gdbarch, 0, sizeof (*gdbarch));
1326 gdbarch->obstack = obstack;
1327
1328 alloc_gdbarch_data (gdbarch);
1329
1330 gdbarch->tdep = tdep;
1331 EOF
1332 printf "\n"
1333 function_list | while do_read
1334 do
1335 if class_is_info_p
1336 then
1337 printf " gdbarch->${function} = info->${function};\n"
1338 fi
1339 done
1340 printf "\n"
1341 printf " /* Force the explicit initialization of these. */\n"
1342 function_list | while do_read
1343 do
1344 if class_is_function_p || class_is_variable_p
1345 then
1346 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1347 then
1348 printf " gdbarch->${function} = ${predefault};\n"
1349 fi
1350 fi
1351 done
1352 cat <<EOF
1353 /* gdbarch_alloc() */
1354
1355 return gdbarch;
1356 }
1357 EOF
1358
1359 # Free a gdbarch struct.
1360 printf "\n"
1361 printf "\n"
1362 cat <<EOF
1363 /* Allocate extra space using the per-architecture obstack. */
1364
1365 void *
1366 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1367 {
1368 void *data = obstack_alloc (arch->obstack, size);
1369 memset (data, 0, size);
1370 return data;
1371 }
1372
1373
1374 /* Free a gdbarch struct. This should never happen in normal
1375 operation --- once you've created a gdbarch, you keep it around.
1376 However, if an architecture's init function encounters an error
1377 building the structure, it may need to clean up a partially
1378 constructed gdbarch. */
1379
1380 void
1381 gdbarch_free (struct gdbarch *arch)
1382 {
1383 struct obstack *obstack;
1384 gdb_assert (arch != NULL);
1385 gdb_assert (!arch->initialized_p);
1386 obstack = arch->obstack;
1387 obstack_free (obstack, 0); /* Includes the ARCH. */
1388 xfree (obstack);
1389 }
1390 EOF
1391
1392 # verify a new architecture
1393 cat <<EOF
1394
1395
1396 /* Ensure that all values in a GDBARCH are reasonable. */
1397
1398 static void
1399 verify_gdbarch (struct gdbarch *gdbarch)
1400 {
1401 struct ui_file *log;
1402 struct cleanup *cleanups;
1403 long dummy;
1404 char *buf;
1405 log = mem_fileopen ();
1406 cleanups = make_cleanup_ui_file_delete (log);
1407 /* fundamental */
1408 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1409 fprintf_unfiltered (log, "\n\tbyte-order");
1410 if (gdbarch->bfd_arch_info == NULL)
1411 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1412 /* Check those that need to be defined for the given multi-arch level. */
1413 EOF
1414 function_list | while do_read
1415 do
1416 if class_is_function_p || class_is_variable_p
1417 then
1418 if [ "x${invalid_p}" = "x0" ]
1419 then
1420 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1421 elif class_is_predicate_p
1422 then
1423 printf " /* Skip verify of ${function}, has predicate */\n"
1424 # FIXME: See do_read for potential simplification
1425 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1426 then
1427 printf " if (${invalid_p})\n"
1428 printf " gdbarch->${function} = ${postdefault};\n"
1429 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1430 then
1431 printf " if (gdbarch->${function} == ${predefault})\n"
1432 printf " gdbarch->${function} = ${postdefault};\n"
1433 elif [ -n "${postdefault}" ]
1434 then
1435 printf " if (gdbarch->${function} == 0)\n"
1436 printf " gdbarch->${function} = ${postdefault};\n"
1437 elif [ -n "${invalid_p}" ]
1438 then
1439 printf " if (${invalid_p})\n"
1440 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1441 elif [ -n "${predefault}" ]
1442 then
1443 printf " if (gdbarch->${function} == ${predefault})\n"
1444 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1445 fi
1446 fi
1447 done
1448 cat <<EOF
1449 buf = ui_file_xstrdup (log, &dummy);
1450 make_cleanup (xfree, buf);
1451 if (strlen (buf) > 0)
1452 internal_error (__FILE__, __LINE__,
1453 _("verify_gdbarch: the following are invalid ...%s"),
1454 buf);
1455 do_cleanups (cleanups);
1456 }
1457 EOF
1458
1459 # dump the structure
1460 printf "\n"
1461 printf "\n"
1462 cat <<EOF
1463 /* Print out the details of the current architecture. */
1464
1465 void
1466 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1467 {
1468 const char *gdb_nm_file = "<not-defined>";
1469 #if defined (GDB_NM_FILE)
1470 gdb_nm_file = GDB_NM_FILE;
1471 #endif
1472 fprintf_unfiltered (file,
1473 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1474 gdb_nm_file);
1475 EOF
1476 function_list | sort -t: -k 3 | while do_read
1477 do
1478 # First the predicate
1479 if class_is_predicate_p
1480 then
1481 printf " fprintf_unfiltered (file,\n"
1482 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1483 printf " gdbarch_${function}_p (gdbarch));\n"
1484 fi
1485 # Print the corresponding value.
1486 if class_is_function_p
1487 then
1488 printf " fprintf_unfiltered (file,\n"
1489 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1490 printf " host_address_to_string (gdbarch->${function}));\n"
1491 else
1492 # It is a variable
1493 case "${print}:${returntype}" in
1494 :CORE_ADDR )
1495 fmt="%s"
1496 print="core_addr_to_string_nz (gdbarch->${function})"
1497 ;;
1498 :* )
1499 fmt="%s"
1500 print="plongest (gdbarch->${function})"
1501 ;;
1502 * )
1503 fmt="%s"
1504 ;;
1505 esac
1506 printf " fprintf_unfiltered (file,\n"
1507 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1508 printf " ${print});\n"
1509 fi
1510 done
1511 cat <<EOF
1512 if (gdbarch->dump_tdep != NULL)
1513 gdbarch->dump_tdep (gdbarch, file);
1514 }
1515 EOF
1516
1517
1518 # GET/SET
1519 printf "\n"
1520 cat <<EOF
1521 struct gdbarch_tdep *
1522 gdbarch_tdep (struct gdbarch *gdbarch)
1523 {
1524 if (gdbarch_debug >= 2)
1525 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1526 return gdbarch->tdep;
1527 }
1528 EOF
1529 printf "\n"
1530 function_list | while do_read
1531 do
1532 if class_is_predicate_p
1533 then
1534 printf "\n"
1535 printf "int\n"
1536 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1537 printf "{\n"
1538 printf " gdb_assert (gdbarch != NULL);\n"
1539 printf " return ${predicate};\n"
1540 printf "}\n"
1541 fi
1542 if class_is_function_p
1543 then
1544 printf "\n"
1545 printf "${returntype}\n"
1546 if [ "x${formal}" = "xvoid" ]
1547 then
1548 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1549 else
1550 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1551 fi
1552 printf "{\n"
1553 printf " gdb_assert (gdbarch != NULL);\n"
1554 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1555 if class_is_predicate_p && test -n "${predefault}"
1556 then
1557 # Allow a call to a function with a predicate.
1558 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1559 fi
1560 printf " if (gdbarch_debug >= 2)\n"
1561 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1562 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1563 then
1564 if class_is_multiarch_p
1565 then
1566 params="gdbarch"
1567 else
1568 params=""
1569 fi
1570 else
1571 if class_is_multiarch_p
1572 then
1573 params="gdbarch, ${actual}"
1574 else
1575 params="${actual}"
1576 fi
1577 fi
1578 if [ "x${returntype}" = "xvoid" ]
1579 then
1580 printf " gdbarch->${function} (${params});\n"
1581 else
1582 printf " return gdbarch->${function} (${params});\n"
1583 fi
1584 printf "}\n"
1585 printf "\n"
1586 printf "void\n"
1587 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1588 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1589 printf "{\n"
1590 printf " gdbarch->${function} = ${function};\n"
1591 printf "}\n"
1592 elif class_is_variable_p
1593 then
1594 printf "\n"
1595 printf "${returntype}\n"
1596 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1597 printf "{\n"
1598 printf " gdb_assert (gdbarch != NULL);\n"
1599 if [ "x${invalid_p}" = "x0" ]
1600 then
1601 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1602 elif [ -n "${invalid_p}" ]
1603 then
1604 printf " /* Check variable is valid. */\n"
1605 printf " gdb_assert (!(${invalid_p}));\n"
1606 elif [ -n "${predefault}" ]
1607 then
1608 printf " /* Check variable changed from pre-default. */\n"
1609 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1610 fi
1611 printf " if (gdbarch_debug >= 2)\n"
1612 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1613 printf " return gdbarch->${function};\n"
1614 printf "}\n"
1615 printf "\n"
1616 printf "void\n"
1617 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1618 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1619 printf "{\n"
1620 printf " gdbarch->${function} = ${function};\n"
1621 printf "}\n"
1622 elif class_is_info_p
1623 then
1624 printf "\n"
1625 printf "${returntype}\n"
1626 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1627 printf "{\n"
1628 printf " gdb_assert (gdbarch != NULL);\n"
1629 printf " if (gdbarch_debug >= 2)\n"
1630 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1631 printf " return gdbarch->${function};\n"
1632 printf "}\n"
1633 fi
1634 done
1635
1636 # All the trailing guff
1637 cat <<EOF
1638
1639
1640 /* Keep a registry of per-architecture data-pointers required by GDB
1641 modules. */
1642
1643 struct gdbarch_data
1644 {
1645 unsigned index;
1646 int init_p;
1647 gdbarch_data_pre_init_ftype *pre_init;
1648 gdbarch_data_post_init_ftype *post_init;
1649 };
1650
1651 struct gdbarch_data_registration
1652 {
1653 struct gdbarch_data *data;
1654 struct gdbarch_data_registration *next;
1655 };
1656
1657 struct gdbarch_data_registry
1658 {
1659 unsigned nr;
1660 struct gdbarch_data_registration *registrations;
1661 };
1662
1663 struct gdbarch_data_registry gdbarch_data_registry =
1664 {
1665 0, NULL,
1666 };
1667
1668 static struct gdbarch_data *
1669 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1670 gdbarch_data_post_init_ftype *post_init)
1671 {
1672 struct gdbarch_data_registration **curr;
1673 /* Append the new registraration. */
1674 for (curr = &gdbarch_data_registry.registrations;
1675 (*curr) != NULL;
1676 curr = &(*curr)->next);
1677 (*curr) = XMALLOC (struct gdbarch_data_registration);
1678 (*curr)->next = NULL;
1679 (*curr)->data = XMALLOC (struct gdbarch_data);
1680 (*curr)->data->index = gdbarch_data_registry.nr++;
1681 (*curr)->data->pre_init = pre_init;
1682 (*curr)->data->post_init = post_init;
1683 (*curr)->data->init_p = 1;
1684 return (*curr)->data;
1685 }
1686
1687 struct gdbarch_data *
1688 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1689 {
1690 return gdbarch_data_register (pre_init, NULL);
1691 }
1692
1693 struct gdbarch_data *
1694 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1695 {
1696 return gdbarch_data_register (NULL, post_init);
1697 }
1698
1699 /* Create/delete the gdbarch data vector. */
1700
1701 static void
1702 alloc_gdbarch_data (struct gdbarch *gdbarch)
1703 {
1704 gdb_assert (gdbarch->data == NULL);
1705 gdbarch->nr_data = gdbarch_data_registry.nr;
1706 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1707 }
1708
1709 /* Initialize the current value of the specified per-architecture
1710 data-pointer. */
1711
1712 void
1713 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1714 struct gdbarch_data *data,
1715 void *pointer)
1716 {
1717 gdb_assert (data->index < gdbarch->nr_data);
1718 gdb_assert (gdbarch->data[data->index] == NULL);
1719 gdb_assert (data->pre_init == NULL);
1720 gdbarch->data[data->index] = pointer;
1721 }
1722
1723 /* Return the current value of the specified per-architecture
1724 data-pointer. */
1725
1726 void *
1727 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1728 {
1729 gdb_assert (data->index < gdbarch->nr_data);
1730 if (gdbarch->data[data->index] == NULL)
1731 {
1732 /* The data-pointer isn't initialized, call init() to get a
1733 value. */
1734 if (data->pre_init != NULL)
1735 /* Mid architecture creation: pass just the obstack, and not
1736 the entire architecture, as that way it isn't possible for
1737 pre-init code to refer to undefined architecture
1738 fields. */
1739 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1740 else if (gdbarch->initialized_p
1741 && data->post_init != NULL)
1742 /* Post architecture creation: pass the entire architecture
1743 (as all fields are valid), but be careful to also detect
1744 recursive references. */
1745 {
1746 gdb_assert (data->init_p);
1747 data->init_p = 0;
1748 gdbarch->data[data->index] = data->post_init (gdbarch);
1749 data->init_p = 1;
1750 }
1751 else
1752 /* The architecture initialization hasn't completed - punt -
1753 hope that the caller knows what they are doing. Once
1754 deprecated_set_gdbarch_data has been initialized, this can be
1755 changed to an internal error. */
1756 return NULL;
1757 gdb_assert (gdbarch->data[data->index] != NULL);
1758 }
1759 return gdbarch->data[data->index];
1760 }
1761
1762
1763 /* Keep a registry of the architectures known by GDB. */
1764
1765 struct gdbarch_registration
1766 {
1767 enum bfd_architecture bfd_architecture;
1768 gdbarch_init_ftype *init;
1769 gdbarch_dump_tdep_ftype *dump_tdep;
1770 struct gdbarch_list *arches;
1771 struct gdbarch_registration *next;
1772 };
1773
1774 static struct gdbarch_registration *gdbarch_registry = NULL;
1775
1776 static void
1777 append_name (const char ***buf, int *nr, const char *name)
1778 {
1779 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1780 (*buf)[*nr] = name;
1781 *nr += 1;
1782 }
1783
1784 const char **
1785 gdbarch_printable_names (void)
1786 {
1787 /* Accumulate a list of names based on the registed list of
1788 architectures. */
1789 enum bfd_architecture a;
1790 int nr_arches = 0;
1791 const char **arches = NULL;
1792 struct gdbarch_registration *rego;
1793 for (rego = gdbarch_registry;
1794 rego != NULL;
1795 rego = rego->next)
1796 {
1797 const struct bfd_arch_info *ap;
1798 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1799 if (ap == NULL)
1800 internal_error (__FILE__, __LINE__,
1801 _("gdbarch_architecture_names: multi-arch unknown"));
1802 do
1803 {
1804 append_name (&arches, &nr_arches, ap->printable_name);
1805 ap = ap->next;
1806 }
1807 while (ap != NULL);
1808 }
1809 append_name (&arches, &nr_arches, NULL);
1810 return arches;
1811 }
1812
1813
1814 void
1815 gdbarch_register (enum bfd_architecture bfd_architecture,
1816 gdbarch_init_ftype *init,
1817 gdbarch_dump_tdep_ftype *dump_tdep)
1818 {
1819 struct gdbarch_registration **curr;
1820 const struct bfd_arch_info *bfd_arch_info;
1821 /* Check that BFD recognizes this architecture */
1822 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1823 if (bfd_arch_info == NULL)
1824 {
1825 internal_error (__FILE__, __LINE__,
1826 _("gdbarch: Attempt to register unknown architecture (%d)"),
1827 bfd_architecture);
1828 }
1829 /* Check that we haven't seen this architecture before */
1830 for (curr = &gdbarch_registry;
1831 (*curr) != NULL;
1832 curr = &(*curr)->next)
1833 {
1834 if (bfd_architecture == (*curr)->bfd_architecture)
1835 internal_error (__FILE__, __LINE__,
1836 _("gdbarch: Duplicate registraration of architecture (%s)"),
1837 bfd_arch_info->printable_name);
1838 }
1839 /* log it */
1840 if (gdbarch_debug)
1841 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1842 bfd_arch_info->printable_name,
1843 host_address_to_string (init));
1844 /* Append it */
1845 (*curr) = XMALLOC (struct gdbarch_registration);
1846 (*curr)->bfd_architecture = bfd_architecture;
1847 (*curr)->init = init;
1848 (*curr)->dump_tdep = dump_tdep;
1849 (*curr)->arches = NULL;
1850 (*curr)->next = NULL;
1851 }
1852
1853 void
1854 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1855 gdbarch_init_ftype *init)
1856 {
1857 gdbarch_register (bfd_architecture, init, NULL);
1858 }
1859
1860
1861 /* Look for an architecture using gdbarch_info. */
1862
1863 struct gdbarch_list *
1864 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1865 const struct gdbarch_info *info)
1866 {
1867 for (; arches != NULL; arches = arches->next)
1868 {
1869 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1870 continue;
1871 if (info->byte_order != arches->gdbarch->byte_order)
1872 continue;
1873 if (info->osabi != arches->gdbarch->osabi)
1874 continue;
1875 if (info->target_desc != arches->gdbarch->target_desc)
1876 continue;
1877 return arches;
1878 }
1879 return NULL;
1880 }
1881
1882
1883 /* Find an architecture that matches the specified INFO. Create a new
1884 architecture if needed. Return that new architecture. Assumes
1885 that there is no current architecture. */
1886
1887 static struct gdbarch *
1888 find_arch_by_info (struct gdbarch_info info)
1889 {
1890 struct gdbarch *new_gdbarch;
1891 struct gdbarch_registration *rego;
1892
1893 /* The existing architecture has been swapped out - all this code
1894 works from a clean slate. */
1895 gdb_assert (current_gdbarch == NULL);
1896
1897 /* Fill in missing parts of the INFO struct using a number of
1898 sources: "set ..."; INFOabfd supplied; and the global
1899 defaults. */
1900 gdbarch_info_fill (&info);
1901
1902 /* Must have found some sort of architecture. */
1903 gdb_assert (info.bfd_arch_info != NULL);
1904
1905 if (gdbarch_debug)
1906 {
1907 fprintf_unfiltered (gdb_stdlog,
1908 "find_arch_by_info: info.bfd_arch_info %s\n",
1909 (info.bfd_arch_info != NULL
1910 ? info.bfd_arch_info->printable_name
1911 : "(null)"));
1912 fprintf_unfiltered (gdb_stdlog,
1913 "find_arch_by_info: info.byte_order %d (%s)\n",
1914 info.byte_order,
1915 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1916 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1917 : "default"));
1918 fprintf_unfiltered (gdb_stdlog,
1919 "find_arch_by_info: info.osabi %d (%s)\n",
1920 info.osabi, gdbarch_osabi_name (info.osabi));
1921 fprintf_unfiltered (gdb_stdlog,
1922 "find_arch_by_info: info.abfd %s\n",
1923 host_address_to_string (info.abfd));
1924 fprintf_unfiltered (gdb_stdlog,
1925 "find_arch_by_info: info.tdep_info %s\n",
1926 host_address_to_string (info.tdep_info));
1927 }
1928
1929 /* Find the tdep code that knows about this architecture. */
1930 for (rego = gdbarch_registry;
1931 rego != NULL;
1932 rego = rego->next)
1933 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1934 break;
1935 if (rego == NULL)
1936 {
1937 if (gdbarch_debug)
1938 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1939 "No matching architecture\n");
1940 return 0;
1941 }
1942
1943 /* Ask the tdep code for an architecture that matches "info". */
1944 new_gdbarch = rego->init (info, rego->arches);
1945
1946 /* Did the tdep code like it? No. Reject the change and revert to
1947 the old architecture. */
1948 if (new_gdbarch == NULL)
1949 {
1950 if (gdbarch_debug)
1951 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1952 "Target rejected architecture\n");
1953 return NULL;
1954 }
1955
1956 /* Is this a pre-existing architecture (as determined by already
1957 being initialized)? Move it to the front of the architecture
1958 list (keeping the list sorted Most Recently Used). */
1959 if (new_gdbarch->initialized_p)
1960 {
1961 struct gdbarch_list **list;
1962 struct gdbarch_list *this;
1963 if (gdbarch_debug)
1964 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1965 "Previous architecture %s (%s) selected\n",
1966 host_address_to_string (new_gdbarch),
1967 new_gdbarch->bfd_arch_info->printable_name);
1968 /* Find the existing arch in the list. */
1969 for (list = &rego->arches;
1970 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1971 list = &(*list)->next);
1972 /* It had better be in the list of architectures. */
1973 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1974 /* Unlink THIS. */
1975 this = (*list);
1976 (*list) = this->next;
1977 /* Insert THIS at the front. */
1978 this->next = rego->arches;
1979 rego->arches = this;
1980 /* Return it. */
1981 return new_gdbarch;
1982 }
1983
1984 /* It's a new architecture. */
1985 if (gdbarch_debug)
1986 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1987 "New architecture %s (%s) selected\n",
1988 host_address_to_string (new_gdbarch),
1989 new_gdbarch->bfd_arch_info->printable_name);
1990
1991 /* Insert the new architecture into the front of the architecture
1992 list (keep the list sorted Most Recently Used). */
1993 {
1994 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1995 this->next = rego->arches;
1996 this->gdbarch = new_gdbarch;
1997 rego->arches = this;
1998 }
1999
2000 /* Check that the newly installed architecture is valid. Plug in
2001 any post init values. */
2002 new_gdbarch->dump_tdep = rego->dump_tdep;
2003 verify_gdbarch (new_gdbarch);
2004 new_gdbarch->initialized_p = 1;
2005
2006 if (gdbarch_debug)
2007 gdbarch_dump (new_gdbarch, gdb_stdlog);
2008
2009 return new_gdbarch;
2010 }
2011
2012 struct gdbarch *
2013 gdbarch_find_by_info (struct gdbarch_info info)
2014 {
2015 struct gdbarch *new_gdbarch;
2016
2017 /* Save the previously selected architecture, setting the global to
2018 NULL. This stops things like gdbarch->init() trying to use the
2019 previous architecture's configuration. The previous architecture
2020 may not even be of the same architecture family. The most recent
2021 architecture of the same family is found at the head of the
2022 rego->arches list. */
2023 struct gdbarch *old_gdbarch = current_gdbarch;
2024 current_gdbarch = NULL;
2025
2026 /* Find the specified architecture. */
2027 new_gdbarch = find_arch_by_info (info);
2028
2029 /* Restore the existing architecture. */
2030 gdb_assert (current_gdbarch == NULL);
2031 current_gdbarch = old_gdbarch;
2032
2033 return new_gdbarch;
2034 }
2035
2036 /* Make the specified architecture current. */
2037
2038 void
2039 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2040 {
2041 gdb_assert (new_gdbarch != NULL);
2042 gdb_assert (current_gdbarch != NULL);
2043 gdb_assert (new_gdbarch->initialized_p);
2044 current_gdbarch = new_gdbarch;
2045 target_gdbarch = new_gdbarch;
2046 observer_notify_architecture_changed (new_gdbarch);
2047 registers_changed ();
2048 }
2049
2050 extern void _initialize_gdbarch (void);
2051
2052 void
2053 _initialize_gdbarch (void)
2054 {
2055 struct cmd_list_element *c;
2056
2057 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2058 Set architecture debugging."), _("\\
2059 Show architecture debugging."), _("\\
2060 When non-zero, architecture debugging is enabled."),
2061 NULL,
2062 show_gdbarch_debug,
2063 &setdebuglist, &showdebuglist);
2064 }
2065 EOF
2066
2067 # close things off
2068 exec 1>&2
2069 #../move-if-change new-gdbarch.c gdbarch.c
2070 compare_new gdbarch.c