* gdbarch.sh (GET_LONGJMP_TARGET): Add rule.
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -u ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 case "${level}" in
80 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
81 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
82 "" ) ;;
83 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
84 esac
85
86 case "${class}" in
87 m ) staticdefault="${predefault}" ;;
88 M ) staticdefault="0" ;;
89 * ) test "${staticdefault}" || staticdefault=0 ;;
90 esac
91 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
92 # multi-arch defaults.
93 # test "${predefault}" || predefault=0
94
95 # come up with a format, use a few guesses for variables
96 case ":${class}:${fmt}:${print}:" in
97 :[vV]::: )
98 if [ "${returntype}" = int ]
99 then
100 fmt="%d"
101 print="${macro}"
102 elif [ "${returntype}" = long ]
103 then
104 fmt="%ld"
105 print="${macro}"
106 fi
107 ;;
108 esac
109 test "${fmt}" || fmt="%ld"
110 test "${print}" || print="(long) ${macro}"
111
112 case "${invalid_p}" in
113 0 ) valid_p=1 ;;
114 "" )
115 if [ -n "${predefault}" ]
116 then
117 #invalid_p="gdbarch->${function} == ${predefault}"
118 valid_p="gdbarch->${function} != ${predefault}"
119 else
120 #invalid_p="gdbarch->${function} == 0"
121 valid_p="gdbarch->${function} != 0"
122 fi
123 ;;
124 * ) valid_p="!(${invalid_p})"
125 esac
126
127 # PREDEFAULT is a valid fallback definition of MEMBER when
128 # multi-arch is not enabled. This ensures that the
129 # default value, when multi-arch is the same as the
130 # default value when not multi-arch. POSTDEFAULT is
131 # always a valid definition of MEMBER as this again
132 # ensures consistency.
133
134 if [ -n "${postdefault}" ]
135 then
136 fallbackdefault="${postdefault}"
137 elif [ -n "${predefault}" ]
138 then
139 fallbackdefault="${predefault}"
140 else
141 fallbackdefault="0"
142 fi
143
144 #NOT YET: See gdbarch.log for basic verification of
145 # database
146
147 break
148 fi
149 done
150 if [ -n "${class}" ]
151 then
152 true
153 else
154 false
155 fi
156 }
157
158
159 fallback_default_p ()
160 {
161 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
162 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
163 }
164
165 class_is_variable_p ()
166 {
167 case "${class}" in
168 *v* | *V* ) true ;;
169 * ) false ;;
170 esac
171 }
172
173 class_is_function_p ()
174 {
175 case "${class}" in
176 *f* | *F* | *m* | *M* ) true ;;
177 * ) false ;;
178 esac
179 }
180
181 class_is_multiarch_p ()
182 {
183 case "${class}" in
184 *m* | *M* ) true ;;
185 * ) false ;;
186 esac
187 }
188
189 class_is_predicate_p ()
190 {
191 case "${class}" in
192 *F* | *V* | *M* ) true ;;
193 * ) false ;;
194 esac
195 }
196
197 class_is_info_p ()
198 {
199 case "${class}" in
200 *i* ) true ;;
201 * ) false ;;
202 esac
203 }
204
205
206 # dump out/verify the doco
207 for field in ${read}
208 do
209 case ${field} in
210
211 class ) : ;;
212
213 # # -> line disable
214 # f -> function
215 # hiding a function
216 # F -> function + predicate
217 # hiding a function + predicate to test function validity
218 # v -> variable
219 # hiding a variable
220 # V -> variable + predicate
221 # hiding a variable + predicate to test variables validity
222 # i -> set from info
223 # hiding something from the ``struct info'' object
224 # m -> multi-arch function
225 # hiding a multi-arch function (parameterised with the architecture)
226 # M -> multi-arch function + predicate
227 # hiding a multi-arch function + predicate to test function validity
228
229 level ) : ;;
230
231 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
232 # LEVEL is a predicate on checking that a given method is
233 # initialized (using INVALID_P).
234
235 macro ) : ;;
236
237 # The name of the MACRO that this method is to be accessed by.
238
239 returntype ) : ;;
240
241 # For functions, the return type; for variables, the data type
242
243 function ) : ;;
244
245 # For functions, the member function name; for variables, the
246 # variable name. Member function names are always prefixed with
247 # ``gdbarch_'' for name-space purity.
248
249 formal ) : ;;
250
251 # The formal argument list. It is assumed that the formal
252 # argument list includes the actual name of each list element.
253 # A function with no arguments shall have ``void'' as the
254 # formal argument list.
255
256 actual ) : ;;
257
258 # The list of actual arguments. The arguments specified shall
259 # match the FORMAL list given above. Functions with out
260 # arguments leave this blank.
261
262 attrib ) : ;;
263
264 # Any GCC attributes that should be attached to the function
265 # declaration. At present this field is unused.
266
267 staticdefault ) : ;;
268
269 # To help with the GDB startup a static gdbarch object is
270 # created. STATICDEFAULT is the value to insert into that
271 # static gdbarch object. Since this a static object only
272 # simple expressions can be used.
273
274 # If STATICDEFAULT is empty, zero is used.
275
276 predefault ) : ;;
277
278 # An initial value to assign to MEMBER of the freshly
279 # malloc()ed gdbarch object. After initialization, the
280 # freshly malloc()ed object is passed to the target
281 # architecture code for further updates.
282
283 # If PREDEFAULT is empty, zero is used.
284
285 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
286 # INVALID_P are specified, PREDEFAULT will be used as the
287 # default for the non- multi-arch target.
288
289 # A zero PREDEFAULT function will force the fallback to call
290 # internal_error().
291
292 # Variable declarations can refer to ``gdbarch'' which will
293 # contain the current architecture. Care should be taken.
294
295 postdefault ) : ;;
296
297 # A value to assign to MEMBER of the new gdbarch object should
298 # the target architecture code fail to change the PREDEFAULT
299 # value.
300
301 # If POSTDEFAULT is empty, no post update is performed.
302
303 # If both INVALID_P and POSTDEFAULT are non-empty then
304 # INVALID_P will be used to determine if MEMBER should be
305 # changed to POSTDEFAULT.
306
307 # If a non-empty POSTDEFAULT and a zero INVALID_P are
308 # specified, POSTDEFAULT will be used as the default for the
309 # non- multi-arch target (regardless of the value of
310 # PREDEFAULT).
311
312 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
313
314 # Variable declarations can refer to ``gdbarch'' which will
315 # contain the current architecture. Care should be taken.
316
317 invalid_p ) : ;;
318
319 # A predicate equation that validates MEMBER. Non-zero is
320 # returned if the code creating the new architecture failed to
321 # initialize MEMBER or the initialized the member is invalid.
322 # If POSTDEFAULT is non-empty then MEMBER will be updated to
323 # that value. If POSTDEFAULT is empty then internal_error()
324 # is called.
325
326 # If INVALID_P is empty, a check that MEMBER is no longer
327 # equal to PREDEFAULT is used.
328
329 # The expression ``0'' disables the INVALID_P check making
330 # PREDEFAULT a legitimate value.
331
332 # See also PREDEFAULT and POSTDEFAULT.
333
334 fmt ) : ;;
335
336 # printf style format string that can be used to print out the
337 # MEMBER. Sometimes "%s" is useful. For functions, this is
338 # ignored and the function address is printed.
339
340 # If FMT is empty, ``%ld'' is used.
341
342 print ) : ;;
343
344 # An optional equation that casts MEMBER to a value suitable
345 # for formatting by FMT.
346
347 # If PRINT is empty, ``(long)'' is used.
348
349 print_p ) : ;;
350
351 # An optional indicator for any predicte to wrap around the
352 # print member code.
353
354 # () -> Call a custom function to do the dump.
355 # exp -> Wrap print up in ``if (${print_p}) ...
356 # ``'' -> No predicate
357
358 # If PRINT_P is empty, ``1'' is always used.
359
360 description ) : ;;
361
362 # Currently unused.
363
364 *)
365 echo "Bad field ${field}"
366 exit 1;;
367 esac
368 done
369
370
371 function_list ()
372 {
373 # See below (DOCO) for description of each field
374 cat <<EOF
375 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
376 #
377 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
378 # Number of bits in a char or unsigned char for the target machine.
379 # Just like CHAR_BIT in <limits.h> but describes the target machine.
380 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
381 #
382 # Number of bits in a short or unsigned short for the target machine.
383 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
384 # Number of bits in an int or unsigned int for the target machine.
385 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
386 # Number of bits in a long or unsigned long for the target machine.
387 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
388 # Number of bits in a long long or unsigned long long for the target
389 # machine.
390 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
391 # Number of bits in a float for the target machine.
392 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
393 # Number of bits in a double for the target machine.
394 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
395 # Number of bits in a long double for the target machine.
396 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
397 # For most targets, a pointer on the target and its representation as an
398 # address in GDB have the same size and "look the same". For such a
399 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
400 # / addr_bit will be set from it.
401 #
402 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
403 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
404 #
405 # ptr_bit is the size of a pointer on the target
406 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
407 # addr_bit is the size of a target address as represented in gdb
408 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
409 # Number of bits in a BFD_VMA for the target object file format.
410 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
411 #
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
414 #
415 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
416 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
417 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
418 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
419 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
420 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
421 # Function for getting target's idea of a frame pointer. FIXME: GDB's
422 # whole scheme for dealing with "frames" and "frame pointers" needs a
423 # serious shakedown.
424 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
425 #
426 M:::void:register_read:int regnum, char *buf:regnum, buf:
427 M:::void:register_write:int regnum, char *buf:regnum, buf:
428 #
429 v:2:NUM_REGS:int:num_regs::::0:-1
430 # This macro gives the number of pseudo-registers that live in the
431 # register namespace but do not get fetched or stored on the target.
432 # These pseudo-registers may be aliases for other registers,
433 # combinations of other registers, or they may be computed by GDB.
434 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
435 v:2:SP_REGNUM:int:sp_regnum::::0:-1
436 v:2:FP_REGNUM:int:fp_regnum::::0:-1
437 v:2:PC_REGNUM:int:pc_regnum::::0:-1
438 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
439 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
440 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
441 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
442 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
443 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
444 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
445 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
446 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
447 # Convert from an sdb register number to an internal gdb register number.
448 # This should be defined in tm.h, if REGISTER_NAMES is not set up
449 # to map one to one onto the sdb register numbers.
450 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
451 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
452 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
453 v:2:REGISTER_SIZE:int:register_size::::0:-1
454 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
455 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
456 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_raw_size:0
457 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
458 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_virtual_size:0
459 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
460 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
461 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
462 f:2:PRINT_FLOAT_INFO:void:print_float_info:void::::default_print_float_info::0
463 # MAP a GDB RAW register number onto a simulator register number. See
464 # also include/...-sim.h.
465 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
466 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
467 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
468 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
469 # setjmp/longjmp support.
470 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
471 #
472 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
473 # much better but at least they are vaguely consistent). The headers
474 # and body contain convoluted #if/#else sequences for determine how
475 # things should be compiled. Instead of trying to mimic that
476 # behaviour here (and hence entrench it further) gdbarch simply
477 # reqires that these methods be set up from the word go. This also
478 # avoids any potential problems with moving beyond multi-arch partial.
479 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
480 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
481 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
482 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
483 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
484 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
485 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
486 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
487 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
488 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
489 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
490 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
491 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
492 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
493 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
494 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
495 #
496 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
497 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
498 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
499 # GET_SAVED_REGISTER is like DUMMY_FRAMES. It is at level one as the
500 # old code has strange #ifdef interaction. So far no one has found
501 # that default_get_saved_register() is the default they are after.
502 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
503 #
504 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
505 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
506 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
507 # This function is called when the value of a pseudo-register needs to
508 # be updated. Typically it will be defined on a per-architecture
509 # basis.
510 F:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:
511 # This function is called when the value of a pseudo-register needs to
512 # be set or stored. Typically it will be defined on a
513 # per-architecture basis.
514 F:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:
515 #
516 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
517 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
518 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
519 #
520 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
521 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
522 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
523 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
524 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
525 f:2:POP_FRAME:void:pop_frame:void:-:::0
526 #
527 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
528 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
529 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
530 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
531 #
532 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
533 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
534 #
535 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
536 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
537 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
538 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
539 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
540 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
541 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
542 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
543 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
544 #
545 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
546 #
547 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
548 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
549 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
550 # See comments on DUMMY_FRAME for why this is required at level 1.
551 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
552 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
553 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
554 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
555 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
556 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
557 #
558 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
559 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
560 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
561 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
562 v:2:PARM_BOUNDARY:int:parm_boundary
563 #
564 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
565 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
566 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
567 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
568 # On some machines there are bits in addresses which are not really
569 # part of the address, but are used by the kernel, the hardware, etc.
570 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
571 # we get a "real" address such as one would find in a symbol table.
572 # This is used only for addresses of instructions, and even then I'm
573 # not sure it's used in all contexts. It exists to deal with there
574 # being a few stray bits in the PC which would mislead us, not as some
575 # sort of generic thing to handle alignment or segmentation (it's
576 # possible it should be in TARGET_READ_PC instead).
577 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
578 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
579 # ADDR_BITS_REMOVE.
580 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
581 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
582 # the target needs software single step. An ISA method to implement it.
583 #
584 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
585 # using the breakpoint system instead of blatting memory directly (as with rs6000).
586 #
587 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
588 # single step. If not, then implement single step using breakpoints.
589 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
590 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
591 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
592 # For SVR4 shared libraries, each call goes through a small piece of
593 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
594 # to nonzero if we are current stopped in one of these.
595 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
596 # A target might have problems with watchpoints as soon as the stack
597 # frame of the current function has been destroyed. This mostly happens
598 # as the first action in a funtion's epilogue. in_function_epilogue_p()
599 # is defined to return a non-zero value if either the given addr is one
600 # instruction after the stack destroying instruction up to the trailing
601 # return instruction or if we can figure out that the stack frame has
602 # already been invalidated regardless of the value of addr. Targets
603 # which don't suffer from that problem could just let this functionality
604 # untouched.
605 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
606 # Given a vector of command-line arguments, return a newly allocated
607 # string which, when passed to the create_inferior function, will be
608 # parsed (on Unix systems, by the shell) to yield the same vector.
609 # This function should call error() if the argument vector is not
610 # representable for this target or if this target does not support
611 # command-line arguments.
612 # ARGC is the number of elements in the vector.
613 # ARGV is an array of strings, one per argument.
614 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
615 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
616 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
617 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
618 EOF
619 }
620
621 #
622 # The .log file
623 #
624 exec > new-gdbarch.log
625 function_list | while do_read
626 do
627 cat <<EOF
628 ${class} ${macro}(${actual})
629 ${returntype} ${function} ($formal)${attrib}
630 EOF
631 for r in ${read}
632 do
633 eval echo \"\ \ \ \ ${r}=\${${r}}\"
634 done
635 # #fallbackdefault=${fallbackdefault}
636 # #valid_p=${valid_p}
637 #EOF
638 if class_is_predicate_p && fallback_default_p
639 then
640 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
641 kill $$
642 exit 1
643 fi
644 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
645 then
646 echo "Error: postdefault is useless when invalid_p=0" 1>&2
647 kill $$
648 exit 1
649 fi
650 if class_is_multiarch_p
651 then
652 if class_is_predicate_p ; then :
653 elif test "x${predefault}" = "x"
654 then
655 echo "Error: pure multi-arch function must have a predefault" 1>&2
656 kill $$
657 exit 1
658 fi
659 fi
660 echo ""
661 done
662
663 exec 1>&2
664 compare_new gdbarch.log
665
666
667 copyright ()
668 {
669 cat <<EOF
670 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
671
672 /* Dynamic architecture support for GDB, the GNU debugger.
673 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
674
675 This file is part of GDB.
676
677 This program is free software; you can redistribute it and/or modify
678 it under the terms of the GNU General Public License as published by
679 the Free Software Foundation; either version 2 of the License, or
680 (at your option) any later version.
681
682 This program is distributed in the hope that it will be useful,
683 but WITHOUT ANY WARRANTY; without even the implied warranty of
684 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
685 GNU General Public License for more details.
686
687 You should have received a copy of the GNU General Public License
688 along with this program; if not, write to the Free Software
689 Foundation, Inc., 59 Temple Place - Suite 330,
690 Boston, MA 02111-1307, USA. */
691
692 /* This file was created with the aid of \`\`gdbarch.sh''.
693
694 The Bourne shell script \`\`gdbarch.sh'' creates the files
695 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
696 against the existing \`\`gdbarch.[hc]''. Any differences found
697 being reported.
698
699 If editing this file, please also run gdbarch.sh and merge any
700 changes into that script. Conversely, when making sweeping changes
701 to this file, modifying gdbarch.sh and using its output may prove
702 easier. */
703
704 EOF
705 }
706
707 #
708 # The .h file
709 #
710
711 exec > new-gdbarch.h
712 copyright
713 cat <<EOF
714 #ifndef GDBARCH_H
715 #define GDBARCH_H
716
717 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
718 #if !GDB_MULTI_ARCH
719 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
720 #endif
721
722 struct frame_info;
723 struct value;
724 struct objfile;
725 struct minimal_symbol;
726
727 extern struct gdbarch *current_gdbarch;
728
729
730 /* If any of the following are defined, the target wasn't correctly
731 converted. */
732
733 #if GDB_MULTI_ARCH
734 #if defined (EXTRA_FRAME_INFO)
735 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
736 #endif
737 #endif
738
739 #if GDB_MULTI_ARCH
740 #if defined (FRAME_FIND_SAVED_REGS)
741 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
742 #endif
743 #endif
744
745 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
746 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
747 #endif
748 EOF
749
750 # function typedef's
751 printf "\n"
752 printf "\n"
753 printf "/* The following are pre-initialized by GDBARCH. */\n"
754 function_list | while do_read
755 do
756 if class_is_info_p
757 then
758 printf "\n"
759 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
760 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
761 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
762 printf "#error \"Non multi-arch definition of ${macro}\"\n"
763 printf "#endif\n"
764 printf "#if GDB_MULTI_ARCH\n"
765 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
766 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
767 printf "#endif\n"
768 printf "#endif\n"
769 fi
770 done
771
772 # function typedef's
773 printf "\n"
774 printf "\n"
775 printf "/* The following are initialized by the target dependent code. */\n"
776 function_list | while do_read
777 do
778 if [ -n "${comment}" ]
779 then
780 echo "${comment}" | sed \
781 -e '2 s,#,/*,' \
782 -e '3,$ s,#, ,' \
783 -e '$ s,$, */,'
784 fi
785 if class_is_multiarch_p
786 then
787 if class_is_predicate_p
788 then
789 printf "\n"
790 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
791 fi
792 else
793 if class_is_predicate_p
794 then
795 printf "\n"
796 printf "#if defined (${macro})\n"
797 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
798 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
799 printf "#if !defined (${macro}_P)\n"
800 printf "#define ${macro}_P() (1)\n"
801 printf "#endif\n"
802 printf "#endif\n"
803 printf "\n"
804 printf "/* Default predicate for non- multi-arch targets. */\n"
805 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
806 printf "#define ${macro}_P() (0)\n"
807 printf "#endif\n"
808 printf "\n"
809 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
810 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
811 printf "#error \"Non multi-arch definition of ${macro}\"\n"
812 printf "#endif\n"
813 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
814 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
815 printf "#endif\n"
816 fi
817 fi
818 if class_is_variable_p
819 then
820 if fallback_default_p || class_is_predicate_p
821 then
822 printf "\n"
823 printf "/* Default (value) for non- multi-arch platforms. */\n"
824 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
825 echo "#define ${macro} (${fallbackdefault})" \
826 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
827 printf "#endif\n"
828 fi
829 printf "\n"
830 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
831 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
832 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
833 printf "#error \"Non multi-arch definition of ${macro}\"\n"
834 printf "#endif\n"
835 printf "#if GDB_MULTI_ARCH\n"
836 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
837 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
838 printf "#endif\n"
839 printf "#endif\n"
840 fi
841 if class_is_function_p
842 then
843 if class_is_multiarch_p ; then :
844 elif fallback_default_p || class_is_predicate_p
845 then
846 printf "\n"
847 printf "/* Default (function) for non- multi-arch platforms. */\n"
848 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
849 if [ "x${fallbackdefault}" = "x0" ]
850 then
851 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
852 else
853 # FIXME: Should be passing current_gdbarch through!
854 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
855 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
856 fi
857 printf "#endif\n"
858 fi
859 printf "\n"
860 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
861 then
862 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
863 elif class_is_multiarch_p
864 then
865 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
866 else
867 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
868 fi
869 if [ "x${formal}" = "xvoid" ]
870 then
871 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
872 else
873 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
874 fi
875 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
876 if class_is_multiarch_p ; then :
877 else
878 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
879 printf "#error \"Non multi-arch definition of ${macro}\"\n"
880 printf "#endif\n"
881 printf "#if GDB_MULTI_ARCH\n"
882 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
883 if [ "x${actual}" = "x" ]
884 then
885 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
886 elif [ "x${actual}" = "x-" ]
887 then
888 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
889 else
890 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
891 fi
892 printf "#endif\n"
893 printf "#endif\n"
894 fi
895 fi
896 done
897
898 # close it off
899 cat <<EOF
900
901 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
902
903
904 /* Mechanism for co-ordinating the selection of a specific
905 architecture.
906
907 GDB targets (*-tdep.c) can register an interest in a specific
908 architecture. Other GDB components can register a need to maintain
909 per-architecture data.
910
911 The mechanisms below ensures that there is only a loose connection
912 between the set-architecture command and the various GDB
913 components. Each component can independently register their need
914 to maintain architecture specific data with gdbarch.
915
916 Pragmatics:
917
918 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
919 didn't scale.
920
921 The more traditional mega-struct containing architecture specific
922 data for all the various GDB components was also considered. Since
923 GDB is built from a variable number of (fairly independent)
924 components it was determined that the global aproach was not
925 applicable. */
926
927
928 /* Register a new architectural family with GDB.
929
930 Register support for the specified ARCHITECTURE with GDB. When
931 gdbarch determines that the specified architecture has been
932 selected, the corresponding INIT function is called.
933
934 --
935
936 The INIT function takes two parameters: INFO which contains the
937 information available to gdbarch about the (possibly new)
938 architecture; ARCHES which is a list of the previously created
939 \`\`struct gdbarch'' for this architecture.
940
941 The INIT function parameter INFO shall, as far as possible, be
942 pre-initialized with information obtained from INFO.ABFD or
943 previously selected architecture (if similar).
944
945 The INIT function shall return any of: NULL - indicating that it
946 doesn't recognize the selected architecture; an existing \`\`struct
947 gdbarch'' from the ARCHES list - indicating that the new
948 architecture is just a synonym for an earlier architecture (see
949 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
950 - that describes the selected architecture (see gdbarch_alloc()).
951
952 The DUMP_TDEP function shall print out all target specific values.
953 Care should be taken to ensure that the function works in both the
954 multi-arch and non- multi-arch cases. */
955
956 struct gdbarch_list
957 {
958 struct gdbarch *gdbarch;
959 struct gdbarch_list *next;
960 };
961
962 struct gdbarch_info
963 {
964 /* Use default: NULL (ZERO). */
965 const struct bfd_arch_info *bfd_arch_info;
966
967 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
968 int byte_order;
969
970 /* Use default: NULL (ZERO). */
971 bfd *abfd;
972
973 /* Use default: NULL (ZERO). */
974 struct gdbarch_tdep_info *tdep_info;
975 };
976
977 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
978 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
979
980 /* DEPRECATED - use gdbarch_register() */
981 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
982
983 extern void gdbarch_register (enum bfd_architecture architecture,
984 gdbarch_init_ftype *,
985 gdbarch_dump_tdep_ftype *);
986
987
988 /* Return a freshly allocated, NULL terminated, array of the valid
989 architecture names. Since architectures are registered during the
990 _initialize phase this function only returns useful information
991 once initialization has been completed. */
992
993 extern const char **gdbarch_printable_names (void);
994
995
996 /* Helper function. Search the list of ARCHES for a GDBARCH that
997 matches the information provided by INFO. */
998
999 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1000
1001
1002 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1003 basic initialization using values obtained from the INFO andTDEP
1004 parameters. set_gdbarch_*() functions are called to complete the
1005 initialization of the object. */
1006
1007 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1008
1009
1010 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1011 It is assumed that the caller freeds the \`\`struct
1012 gdbarch_tdep''. */
1013
1014 extern void gdbarch_free (struct gdbarch *);
1015
1016
1017 /* Helper function. Force an update of the current architecture.
1018
1019 The actual architecture selected is determined by INFO, \`\`(gdb) set
1020 architecture'' et.al., the existing architecture and BFD's default
1021 architecture. INFO should be initialized to zero and then selected
1022 fields should be updated.
1023
1024 Returns non-zero if the update succeeds */
1025
1026 extern int gdbarch_update_p (struct gdbarch_info info);
1027
1028
1029
1030 /* Register per-architecture data-pointer.
1031
1032 Reserve space for a per-architecture data-pointer. An identifier
1033 for the reserved data-pointer is returned. That identifer should
1034 be saved in a local static variable.
1035
1036 The per-architecture data-pointer can be initialized in one of two
1037 ways: The value can be set explicitly using a call to
1038 set_gdbarch_data(); the value can be set implicitly using the value
1039 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
1040 called after the basic architecture vector has been created.
1041
1042 When a previously created architecture is re-selected, the
1043 per-architecture data-pointer for that previous architecture is
1044 restored. INIT() is not called.
1045
1046 During initialization, multiple assignments of the data-pointer are
1047 allowed, non-NULL values are deleted by calling FREE(). If the
1048 architecture is deleted using gdbarch_free() all non-NULL data
1049 pointers are also deleted using FREE().
1050
1051 Multiple registrarants for any architecture are allowed (and
1052 strongly encouraged). */
1053
1054 struct gdbarch_data;
1055
1056 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1057 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1058 void *pointer);
1059 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1060 gdbarch_data_free_ftype *free);
1061 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1062 struct gdbarch_data *data,
1063 void *pointer);
1064
1065 extern void *gdbarch_data (struct gdbarch_data*);
1066
1067
1068 /* Register per-architecture memory region.
1069
1070 Provide a memory-region swap mechanism. Per-architecture memory
1071 region are created. These memory regions are swapped whenever the
1072 architecture is changed. For a new architecture, the memory region
1073 is initialized with zero (0) and the INIT function is called.
1074
1075 Memory regions are swapped / initialized in the order that they are
1076 registered. NULL DATA and/or INIT values can be specified.
1077
1078 New code should use register_gdbarch_data(). */
1079
1080 typedef void (gdbarch_swap_ftype) (void);
1081 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1082 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1083
1084
1085
1086 /* The target-system-dependent byte order is dynamic */
1087
1088 extern int target_byte_order;
1089 #ifndef TARGET_BYTE_ORDER
1090 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1091 #endif
1092
1093 extern int target_byte_order_auto;
1094 #ifndef TARGET_BYTE_ORDER_AUTO
1095 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1096 #endif
1097
1098
1099
1100 /* The target-system-dependent BFD architecture is dynamic */
1101
1102 extern int target_architecture_auto;
1103 #ifndef TARGET_ARCHITECTURE_AUTO
1104 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1105 #endif
1106
1107 extern const struct bfd_arch_info *target_architecture;
1108 #ifndef TARGET_ARCHITECTURE
1109 #define TARGET_ARCHITECTURE (target_architecture + 0)
1110 #endif
1111
1112
1113 /* The target-system-dependent disassembler is semi-dynamic */
1114
1115 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1116 unsigned int len, disassemble_info *info);
1117
1118 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1119 disassemble_info *info);
1120
1121 extern void dis_asm_print_address (bfd_vma addr,
1122 disassemble_info *info);
1123
1124 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1125 extern disassemble_info tm_print_insn_info;
1126 #ifndef TARGET_PRINT_INSN_INFO
1127 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1128 #endif
1129
1130
1131
1132 /* Set the dynamic target-system-dependent parameters (architecture,
1133 byte-order, ...) using information found in the BFD */
1134
1135 extern void set_gdbarch_from_file (bfd *);
1136
1137
1138 /* Initialize the current architecture to the "first" one we find on
1139 our list. */
1140
1141 extern void initialize_current_architecture (void);
1142
1143 /* For non-multiarched targets, do any initialization of the default
1144 gdbarch object necessary after the _initialize_MODULE functions
1145 have run. */
1146 extern void initialize_non_multiarch ();
1147
1148 /* gdbarch trace variable */
1149 extern int gdbarch_debug;
1150
1151 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1152
1153 #endif
1154 EOF
1155 exec 1>&2
1156 #../move-if-change new-gdbarch.h gdbarch.h
1157 compare_new gdbarch.h
1158
1159
1160 #
1161 # C file
1162 #
1163
1164 exec > new-gdbarch.c
1165 copyright
1166 cat <<EOF
1167
1168 #include "defs.h"
1169 #include "arch-utils.h"
1170
1171 #if GDB_MULTI_ARCH
1172 #include "gdbcmd.h"
1173 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1174 #else
1175 /* Just include everything in sight so that the every old definition
1176 of macro is visible. */
1177 #include "gdb_string.h"
1178 #include <ctype.h>
1179 #include "symtab.h"
1180 #include "frame.h"
1181 #include "inferior.h"
1182 #include "breakpoint.h"
1183 #include "gdb_wait.h"
1184 #include "gdbcore.h"
1185 #include "gdbcmd.h"
1186 #include "target.h"
1187 #include "gdbthread.h"
1188 #include "annotate.h"
1189 #include "symfile.h" /* for overlay functions */
1190 #include "value.h" /* For old tm.h/nm.h macros. */
1191 #endif
1192 #include "symcat.h"
1193
1194 #include "floatformat.h"
1195
1196 #include "gdb_assert.h"
1197 #include "gdb-events.h"
1198
1199 /* Static function declarations */
1200
1201 static void verify_gdbarch (struct gdbarch *gdbarch);
1202 static void alloc_gdbarch_data (struct gdbarch *);
1203 static void init_gdbarch_data (struct gdbarch *);
1204 static void free_gdbarch_data (struct gdbarch *);
1205 static void init_gdbarch_swap (struct gdbarch *);
1206 static void swapout_gdbarch_swap (struct gdbarch *);
1207 static void swapin_gdbarch_swap (struct gdbarch *);
1208
1209 /* Convenience macro for allocting typesafe memory. */
1210
1211 #ifndef XMALLOC
1212 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1213 #endif
1214
1215
1216 /* Non-zero if we want to trace architecture code. */
1217
1218 #ifndef GDBARCH_DEBUG
1219 #define GDBARCH_DEBUG 0
1220 #endif
1221 int gdbarch_debug = GDBARCH_DEBUG;
1222
1223 EOF
1224
1225 # gdbarch open the gdbarch object
1226 printf "\n"
1227 printf "/* Maintain the struct gdbarch object */\n"
1228 printf "\n"
1229 printf "struct gdbarch\n"
1230 printf "{\n"
1231 printf " /* basic architectural information */\n"
1232 function_list | while do_read
1233 do
1234 if class_is_info_p
1235 then
1236 printf " ${returntype} ${function};\n"
1237 fi
1238 done
1239 printf "\n"
1240 printf " /* target specific vector. */\n"
1241 printf " struct gdbarch_tdep *tdep;\n"
1242 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1243 printf "\n"
1244 printf " /* per-architecture data-pointers */\n"
1245 printf " unsigned nr_data;\n"
1246 printf " void **data;\n"
1247 printf "\n"
1248 printf " /* per-architecture swap-regions */\n"
1249 printf " struct gdbarch_swap *swap;\n"
1250 printf "\n"
1251 cat <<EOF
1252 /* Multi-arch values.
1253
1254 When extending this structure you must:
1255
1256 Add the field below.
1257
1258 Declare set/get functions and define the corresponding
1259 macro in gdbarch.h.
1260
1261 gdbarch_alloc(): If zero/NULL is not a suitable default,
1262 initialize the new field.
1263
1264 verify_gdbarch(): Confirm that the target updated the field
1265 correctly.
1266
1267 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1268 field is dumped out
1269
1270 \`\`startup_gdbarch()'': Append an initial value to the static
1271 variable (base values on the host's c-type system).
1272
1273 get_gdbarch(): Implement the set/get functions (probably using
1274 the macro's as shortcuts).
1275
1276 */
1277
1278 EOF
1279 function_list | while do_read
1280 do
1281 if class_is_variable_p
1282 then
1283 printf " ${returntype} ${function};\n"
1284 elif class_is_function_p
1285 then
1286 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1287 fi
1288 done
1289 printf "};\n"
1290
1291 # A pre-initialized vector
1292 printf "\n"
1293 printf "\n"
1294 cat <<EOF
1295 /* The default architecture uses host values (for want of a better
1296 choice). */
1297 EOF
1298 printf "\n"
1299 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1300 printf "\n"
1301 printf "struct gdbarch startup_gdbarch =\n"
1302 printf "{\n"
1303 printf " /* basic architecture information */\n"
1304 function_list | while do_read
1305 do
1306 if class_is_info_p
1307 then
1308 printf " ${staticdefault},\n"
1309 fi
1310 done
1311 cat <<EOF
1312 /* target specific vector and its dump routine */
1313 NULL, NULL,
1314 /*per-architecture data-pointers and swap regions */
1315 0, NULL, NULL,
1316 /* Multi-arch values */
1317 EOF
1318 function_list | while do_read
1319 do
1320 if class_is_function_p || class_is_variable_p
1321 then
1322 printf " ${staticdefault},\n"
1323 fi
1324 done
1325 cat <<EOF
1326 /* startup_gdbarch() */
1327 };
1328
1329 struct gdbarch *current_gdbarch = &startup_gdbarch;
1330
1331 /* Do any initialization needed for a non-multiarch configuration
1332 after the _initialize_MODULE functions have been run. */
1333 void
1334 initialize_non_multiarch ()
1335 {
1336 alloc_gdbarch_data (&startup_gdbarch);
1337 init_gdbarch_data (&startup_gdbarch);
1338 }
1339 EOF
1340
1341 # Create a new gdbarch struct
1342 printf "\n"
1343 printf "\n"
1344 cat <<EOF
1345 /* Create a new \`\`struct gdbarch'' based on information provided by
1346 \`\`struct gdbarch_info''. */
1347 EOF
1348 printf "\n"
1349 cat <<EOF
1350 struct gdbarch *
1351 gdbarch_alloc (const struct gdbarch_info *info,
1352 struct gdbarch_tdep *tdep)
1353 {
1354 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1355 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1356 the current local architecture and not the previous global
1357 architecture. This ensures that the new architectures initial
1358 values are not influenced by the previous architecture. Once
1359 everything is parameterised with gdbarch, this will go away. */
1360 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1361 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1362
1363 alloc_gdbarch_data (current_gdbarch);
1364
1365 current_gdbarch->tdep = tdep;
1366 EOF
1367 printf "\n"
1368 function_list | while do_read
1369 do
1370 if class_is_info_p
1371 then
1372 printf " current_gdbarch->${function} = info->${function};\n"
1373 fi
1374 done
1375 printf "\n"
1376 printf " /* Force the explicit initialization of these. */\n"
1377 function_list | while do_read
1378 do
1379 if class_is_function_p || class_is_variable_p
1380 then
1381 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1382 then
1383 printf " current_gdbarch->${function} = ${predefault};\n"
1384 fi
1385 fi
1386 done
1387 cat <<EOF
1388 /* gdbarch_alloc() */
1389
1390 return current_gdbarch;
1391 }
1392 EOF
1393
1394 # Free a gdbarch struct.
1395 printf "\n"
1396 printf "\n"
1397 cat <<EOF
1398 /* Free a gdbarch struct. This should never happen in normal
1399 operation --- once you've created a gdbarch, you keep it around.
1400 However, if an architecture's init function encounters an error
1401 building the structure, it may need to clean up a partially
1402 constructed gdbarch. */
1403
1404 void
1405 gdbarch_free (struct gdbarch *arch)
1406 {
1407 gdb_assert (arch != NULL);
1408 free_gdbarch_data (arch);
1409 xfree (arch);
1410 }
1411 EOF
1412
1413 # verify a new architecture
1414 printf "\n"
1415 printf "\n"
1416 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1417 printf "\n"
1418 cat <<EOF
1419 static void
1420 verify_gdbarch (struct gdbarch *gdbarch)
1421 {
1422 struct ui_file *log;
1423 struct cleanup *cleanups;
1424 long dummy;
1425 char *buf;
1426 /* Only perform sanity checks on a multi-arch target. */
1427 if (!GDB_MULTI_ARCH)
1428 return;
1429 log = mem_fileopen ();
1430 cleanups = make_cleanup_ui_file_delete (log);
1431 /* fundamental */
1432 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1433 fprintf_unfiltered (log, "\n\tbyte-order");
1434 if (gdbarch->bfd_arch_info == NULL)
1435 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1436 /* Check those that need to be defined for the given multi-arch level. */
1437 EOF
1438 function_list | while do_read
1439 do
1440 if class_is_function_p || class_is_variable_p
1441 then
1442 if [ "x${invalid_p}" = "x0" ]
1443 then
1444 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1445 elif class_is_predicate_p
1446 then
1447 printf " /* Skip verify of ${function}, has predicate */\n"
1448 # FIXME: See do_read for potential simplification
1449 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1450 then
1451 printf " if (${invalid_p})\n"
1452 printf " gdbarch->${function} = ${postdefault};\n"
1453 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1454 then
1455 printf " if (gdbarch->${function} == ${predefault})\n"
1456 printf " gdbarch->${function} = ${postdefault};\n"
1457 elif [ -n "${postdefault}" ]
1458 then
1459 printf " if (gdbarch->${function} == 0)\n"
1460 printf " gdbarch->${function} = ${postdefault};\n"
1461 elif [ -n "${invalid_p}" ]
1462 then
1463 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1464 printf " && (${invalid_p}))\n"
1465 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1466 elif [ -n "${predefault}" ]
1467 then
1468 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1469 printf " && (gdbarch->${function} == ${predefault}))\n"
1470 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1471 fi
1472 fi
1473 done
1474 cat <<EOF
1475 buf = ui_file_xstrdup (log, &dummy);
1476 make_cleanup (xfree, buf);
1477 if (strlen (buf) > 0)
1478 internal_error (__FILE__, __LINE__,
1479 "verify_gdbarch: the following are invalid ...%s",
1480 buf);
1481 do_cleanups (cleanups);
1482 }
1483 EOF
1484
1485 # dump the structure
1486 printf "\n"
1487 printf "\n"
1488 cat <<EOF
1489 /* Print out the details of the current architecture. */
1490
1491 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1492 just happens to match the global variable \`\`current_gdbarch''. That
1493 way macros refering to that variable get the local and not the global
1494 version - ulgh. Once everything is parameterised with gdbarch, this
1495 will go away. */
1496
1497 void
1498 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1499 {
1500 fprintf_unfiltered (file,
1501 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1502 GDB_MULTI_ARCH);
1503 EOF
1504 function_list | sort -t: +2 | while do_read
1505 do
1506 # multiarch functions don't have macros.
1507 if class_is_multiarch_p
1508 then
1509 printf " if (GDB_MULTI_ARCH)\n"
1510 printf " fprintf_unfiltered (file,\n"
1511 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1512 printf " (long) current_gdbarch->${function});\n"
1513 continue
1514 fi
1515 # Print the macro definition.
1516 printf "#ifdef ${macro}\n"
1517 if [ "x${returntype}" = "xvoid" ]
1518 then
1519 printf "#if GDB_MULTI_ARCH\n"
1520 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1521 fi
1522 if class_is_function_p
1523 then
1524 printf " fprintf_unfiltered (file,\n"
1525 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1526 printf " \"${macro}(${actual})\",\n"
1527 printf " XSTRING (${macro} (${actual})));\n"
1528 else
1529 printf " fprintf_unfiltered (file,\n"
1530 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1531 printf " XSTRING (${macro}));\n"
1532 fi
1533 # Print the architecture vector value
1534 if [ "x${returntype}" = "xvoid" ]
1535 then
1536 printf "#endif\n"
1537 fi
1538 if [ "x${print_p}" = "x()" ]
1539 then
1540 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1541 elif [ "x${print_p}" = "x0" ]
1542 then
1543 printf " /* skip print of ${macro}, print_p == 0. */\n"
1544 elif [ -n "${print_p}" ]
1545 then
1546 printf " if (${print_p})\n"
1547 printf " fprintf_unfiltered (file,\n"
1548 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1549 printf " ${print});\n"
1550 elif class_is_function_p
1551 then
1552 printf " if (GDB_MULTI_ARCH)\n"
1553 printf " fprintf_unfiltered (file,\n"
1554 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1555 printf " (long) current_gdbarch->${function}\n"
1556 printf " /*${macro} ()*/);\n"
1557 else
1558 printf " fprintf_unfiltered (file,\n"
1559 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1560 printf " ${print});\n"
1561 fi
1562 printf "#endif\n"
1563 done
1564 cat <<EOF
1565 if (current_gdbarch->dump_tdep != NULL)
1566 current_gdbarch->dump_tdep (current_gdbarch, file);
1567 }
1568 EOF
1569
1570
1571 # GET/SET
1572 printf "\n"
1573 cat <<EOF
1574 struct gdbarch_tdep *
1575 gdbarch_tdep (struct gdbarch *gdbarch)
1576 {
1577 if (gdbarch_debug >= 2)
1578 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1579 return gdbarch->tdep;
1580 }
1581 EOF
1582 printf "\n"
1583 function_list | while do_read
1584 do
1585 if class_is_predicate_p
1586 then
1587 printf "\n"
1588 printf "int\n"
1589 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1590 printf "{\n"
1591 if [ -n "${valid_p}" ]
1592 then
1593 printf " return ${valid_p};\n"
1594 else
1595 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1596 fi
1597 printf "}\n"
1598 fi
1599 if class_is_function_p
1600 then
1601 printf "\n"
1602 printf "${returntype}\n"
1603 if [ "x${formal}" = "xvoid" ]
1604 then
1605 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1606 else
1607 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1608 fi
1609 printf "{\n"
1610 printf " if (gdbarch->${function} == 0)\n"
1611 printf " internal_error (__FILE__, __LINE__,\n"
1612 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1613 printf " if (gdbarch_debug >= 2)\n"
1614 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1615 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1616 then
1617 if class_is_multiarch_p
1618 then
1619 params="gdbarch"
1620 else
1621 params=""
1622 fi
1623 else
1624 if class_is_multiarch_p
1625 then
1626 params="gdbarch, ${actual}"
1627 else
1628 params="${actual}"
1629 fi
1630 fi
1631 if [ "x${returntype}" = "xvoid" ]
1632 then
1633 printf " gdbarch->${function} (${params});\n"
1634 else
1635 printf " return gdbarch->${function} (${params});\n"
1636 fi
1637 printf "}\n"
1638 printf "\n"
1639 printf "void\n"
1640 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1641 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1642 printf "{\n"
1643 printf " gdbarch->${function} = ${function};\n"
1644 printf "}\n"
1645 elif class_is_variable_p
1646 then
1647 printf "\n"
1648 printf "${returntype}\n"
1649 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1650 printf "{\n"
1651 if [ "x${invalid_p}" = "x0" ]
1652 then
1653 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1654 elif [ -n "${invalid_p}" ]
1655 then
1656 printf " if (${invalid_p})\n"
1657 printf " internal_error (__FILE__, __LINE__,\n"
1658 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1659 elif [ -n "${predefault}" ]
1660 then
1661 printf " if (gdbarch->${function} == ${predefault})\n"
1662 printf " internal_error (__FILE__, __LINE__,\n"
1663 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1664 fi
1665 printf " if (gdbarch_debug >= 2)\n"
1666 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1667 printf " return gdbarch->${function};\n"
1668 printf "}\n"
1669 printf "\n"
1670 printf "void\n"
1671 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1672 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1673 printf "{\n"
1674 printf " gdbarch->${function} = ${function};\n"
1675 printf "}\n"
1676 elif class_is_info_p
1677 then
1678 printf "\n"
1679 printf "${returntype}\n"
1680 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1681 printf "{\n"
1682 printf " if (gdbarch_debug >= 2)\n"
1683 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1684 printf " return gdbarch->${function};\n"
1685 printf "}\n"
1686 fi
1687 done
1688
1689 # All the trailing guff
1690 cat <<EOF
1691
1692
1693 /* Keep a registry of per-architecture data-pointers required by GDB
1694 modules. */
1695
1696 struct gdbarch_data
1697 {
1698 unsigned index;
1699 gdbarch_data_init_ftype *init;
1700 gdbarch_data_free_ftype *free;
1701 };
1702
1703 struct gdbarch_data_registration
1704 {
1705 struct gdbarch_data *data;
1706 struct gdbarch_data_registration *next;
1707 };
1708
1709 struct gdbarch_data_registry
1710 {
1711 unsigned nr;
1712 struct gdbarch_data_registration *registrations;
1713 };
1714
1715 struct gdbarch_data_registry gdbarch_data_registry =
1716 {
1717 0, NULL,
1718 };
1719
1720 struct gdbarch_data *
1721 register_gdbarch_data (gdbarch_data_init_ftype *init,
1722 gdbarch_data_free_ftype *free)
1723 {
1724 struct gdbarch_data_registration **curr;
1725 for (curr = &gdbarch_data_registry.registrations;
1726 (*curr) != NULL;
1727 curr = &(*curr)->next);
1728 (*curr) = XMALLOC (struct gdbarch_data_registration);
1729 (*curr)->next = NULL;
1730 (*curr)->data = XMALLOC (struct gdbarch_data);
1731 (*curr)->data->index = gdbarch_data_registry.nr++;
1732 (*curr)->data->init = init;
1733 (*curr)->data->free = free;
1734 return (*curr)->data;
1735 }
1736
1737
1738 /* Walk through all the registered users initializing each in turn. */
1739
1740 static void
1741 init_gdbarch_data (struct gdbarch *gdbarch)
1742 {
1743 struct gdbarch_data_registration *rego;
1744 for (rego = gdbarch_data_registry.registrations;
1745 rego != NULL;
1746 rego = rego->next)
1747 {
1748 struct gdbarch_data *data = rego->data;
1749 gdb_assert (data->index < gdbarch->nr_data);
1750 if (data->init != NULL)
1751 {
1752 void *pointer = data->init (gdbarch);
1753 set_gdbarch_data (gdbarch, data, pointer);
1754 }
1755 }
1756 }
1757
1758 /* Create/delete the gdbarch data vector. */
1759
1760 static void
1761 alloc_gdbarch_data (struct gdbarch *gdbarch)
1762 {
1763 gdb_assert (gdbarch->data == NULL);
1764 gdbarch->nr_data = gdbarch_data_registry.nr;
1765 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1766 }
1767
1768 static void
1769 free_gdbarch_data (struct gdbarch *gdbarch)
1770 {
1771 struct gdbarch_data_registration *rego;
1772 gdb_assert (gdbarch->data != NULL);
1773 for (rego = gdbarch_data_registry.registrations;
1774 rego != NULL;
1775 rego = rego->next)
1776 {
1777 struct gdbarch_data *data = rego->data;
1778 gdb_assert (data->index < gdbarch->nr_data);
1779 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1780 {
1781 data->free (gdbarch, gdbarch->data[data->index]);
1782 gdbarch->data[data->index] = NULL;
1783 }
1784 }
1785 xfree (gdbarch->data);
1786 gdbarch->data = NULL;
1787 }
1788
1789
1790 /* Initialize the current value of thee specified per-architecture
1791 data-pointer. */
1792
1793 void
1794 set_gdbarch_data (struct gdbarch *gdbarch,
1795 struct gdbarch_data *data,
1796 void *pointer)
1797 {
1798 gdb_assert (data->index < gdbarch->nr_data);
1799 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1800 data->free (gdbarch, gdbarch->data[data->index]);
1801 gdbarch->data[data->index] = pointer;
1802 }
1803
1804 /* Return the current value of the specified per-architecture
1805 data-pointer. */
1806
1807 void *
1808 gdbarch_data (struct gdbarch_data *data)
1809 {
1810 gdb_assert (data->index < current_gdbarch->nr_data);
1811 return current_gdbarch->data[data->index];
1812 }
1813
1814
1815
1816 /* Keep a registry of swapped data required by GDB modules. */
1817
1818 struct gdbarch_swap
1819 {
1820 void *swap;
1821 struct gdbarch_swap_registration *source;
1822 struct gdbarch_swap *next;
1823 };
1824
1825 struct gdbarch_swap_registration
1826 {
1827 void *data;
1828 unsigned long sizeof_data;
1829 gdbarch_swap_ftype *init;
1830 struct gdbarch_swap_registration *next;
1831 };
1832
1833 struct gdbarch_swap_registry
1834 {
1835 int nr;
1836 struct gdbarch_swap_registration *registrations;
1837 };
1838
1839 struct gdbarch_swap_registry gdbarch_swap_registry =
1840 {
1841 0, NULL,
1842 };
1843
1844 void
1845 register_gdbarch_swap (void *data,
1846 unsigned long sizeof_data,
1847 gdbarch_swap_ftype *init)
1848 {
1849 struct gdbarch_swap_registration **rego;
1850 for (rego = &gdbarch_swap_registry.registrations;
1851 (*rego) != NULL;
1852 rego = &(*rego)->next);
1853 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1854 (*rego)->next = NULL;
1855 (*rego)->init = init;
1856 (*rego)->data = data;
1857 (*rego)->sizeof_data = sizeof_data;
1858 }
1859
1860
1861 static void
1862 init_gdbarch_swap (struct gdbarch *gdbarch)
1863 {
1864 struct gdbarch_swap_registration *rego;
1865 struct gdbarch_swap **curr = &gdbarch->swap;
1866 for (rego = gdbarch_swap_registry.registrations;
1867 rego != NULL;
1868 rego = rego->next)
1869 {
1870 if (rego->data != NULL)
1871 {
1872 (*curr) = XMALLOC (struct gdbarch_swap);
1873 (*curr)->source = rego;
1874 (*curr)->swap = xmalloc (rego->sizeof_data);
1875 (*curr)->next = NULL;
1876 memset (rego->data, 0, rego->sizeof_data);
1877 curr = &(*curr)->next;
1878 }
1879 if (rego->init != NULL)
1880 rego->init ();
1881 }
1882 }
1883
1884 static void
1885 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1886 {
1887 struct gdbarch_swap *curr;
1888 for (curr = gdbarch->swap;
1889 curr != NULL;
1890 curr = curr->next)
1891 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1892 }
1893
1894 static void
1895 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1896 {
1897 struct gdbarch_swap *curr;
1898 for (curr = gdbarch->swap;
1899 curr != NULL;
1900 curr = curr->next)
1901 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1902 }
1903
1904
1905 /* Keep a registry of the architectures known by GDB. */
1906
1907 struct gdbarch_registration
1908 {
1909 enum bfd_architecture bfd_architecture;
1910 gdbarch_init_ftype *init;
1911 gdbarch_dump_tdep_ftype *dump_tdep;
1912 struct gdbarch_list *arches;
1913 struct gdbarch_registration *next;
1914 };
1915
1916 static struct gdbarch_registration *gdbarch_registry = NULL;
1917
1918 static void
1919 append_name (const char ***buf, int *nr, const char *name)
1920 {
1921 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1922 (*buf)[*nr] = name;
1923 *nr += 1;
1924 }
1925
1926 const char **
1927 gdbarch_printable_names (void)
1928 {
1929 if (GDB_MULTI_ARCH)
1930 {
1931 /* Accumulate a list of names based on the registed list of
1932 architectures. */
1933 enum bfd_architecture a;
1934 int nr_arches = 0;
1935 const char **arches = NULL;
1936 struct gdbarch_registration *rego;
1937 for (rego = gdbarch_registry;
1938 rego != NULL;
1939 rego = rego->next)
1940 {
1941 const struct bfd_arch_info *ap;
1942 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1943 if (ap == NULL)
1944 internal_error (__FILE__, __LINE__,
1945 "gdbarch_architecture_names: multi-arch unknown");
1946 do
1947 {
1948 append_name (&arches, &nr_arches, ap->printable_name);
1949 ap = ap->next;
1950 }
1951 while (ap != NULL);
1952 }
1953 append_name (&arches, &nr_arches, NULL);
1954 return arches;
1955 }
1956 else
1957 /* Just return all the architectures that BFD knows. Assume that
1958 the legacy architecture framework supports them. */
1959 return bfd_arch_list ();
1960 }
1961
1962
1963 void
1964 gdbarch_register (enum bfd_architecture bfd_architecture,
1965 gdbarch_init_ftype *init,
1966 gdbarch_dump_tdep_ftype *dump_tdep)
1967 {
1968 struct gdbarch_registration **curr;
1969 const struct bfd_arch_info *bfd_arch_info;
1970 /* Check that BFD recognizes this architecture */
1971 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1972 if (bfd_arch_info == NULL)
1973 {
1974 internal_error (__FILE__, __LINE__,
1975 "gdbarch: Attempt to register unknown architecture (%d)",
1976 bfd_architecture);
1977 }
1978 /* Check that we haven't seen this architecture before */
1979 for (curr = &gdbarch_registry;
1980 (*curr) != NULL;
1981 curr = &(*curr)->next)
1982 {
1983 if (bfd_architecture == (*curr)->bfd_architecture)
1984 internal_error (__FILE__, __LINE__,
1985 "gdbarch: Duplicate registraration of architecture (%s)",
1986 bfd_arch_info->printable_name);
1987 }
1988 /* log it */
1989 if (gdbarch_debug)
1990 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1991 bfd_arch_info->printable_name,
1992 (long) init);
1993 /* Append it */
1994 (*curr) = XMALLOC (struct gdbarch_registration);
1995 (*curr)->bfd_architecture = bfd_architecture;
1996 (*curr)->init = init;
1997 (*curr)->dump_tdep = dump_tdep;
1998 (*curr)->arches = NULL;
1999 (*curr)->next = NULL;
2000 /* When non- multi-arch, install whatever target dump routine we've
2001 been provided - hopefully that routine has been written correctly
2002 and works regardless of multi-arch. */
2003 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2004 && startup_gdbarch.dump_tdep == NULL)
2005 startup_gdbarch.dump_tdep = dump_tdep;
2006 }
2007
2008 void
2009 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2010 gdbarch_init_ftype *init)
2011 {
2012 gdbarch_register (bfd_architecture, init, NULL);
2013 }
2014
2015
2016 /* Look for an architecture using gdbarch_info. Base search on only
2017 BFD_ARCH_INFO and BYTE_ORDER. */
2018
2019 struct gdbarch_list *
2020 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2021 const struct gdbarch_info *info)
2022 {
2023 for (; arches != NULL; arches = arches->next)
2024 {
2025 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2026 continue;
2027 if (info->byte_order != arches->gdbarch->byte_order)
2028 continue;
2029 return arches;
2030 }
2031 return NULL;
2032 }
2033
2034
2035 /* Update the current architecture. Return ZERO if the update request
2036 failed. */
2037
2038 int
2039 gdbarch_update_p (struct gdbarch_info info)
2040 {
2041 struct gdbarch *new_gdbarch;
2042 struct gdbarch_list **list;
2043 struct gdbarch_registration *rego;
2044
2045 /* Fill in missing parts of the INFO struct using a number of
2046 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2047
2048 /* \`\`(gdb) set architecture ...'' */
2049 if (info.bfd_arch_info == NULL
2050 && !TARGET_ARCHITECTURE_AUTO)
2051 info.bfd_arch_info = TARGET_ARCHITECTURE;
2052 if (info.bfd_arch_info == NULL
2053 && info.abfd != NULL
2054 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2055 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2056 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2057 if (info.bfd_arch_info == NULL)
2058 info.bfd_arch_info = TARGET_ARCHITECTURE;
2059
2060 /* \`\`(gdb) set byte-order ...'' */
2061 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2062 && !TARGET_BYTE_ORDER_AUTO)
2063 info.byte_order = TARGET_BYTE_ORDER;
2064 /* From the INFO struct. */
2065 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2066 && info.abfd != NULL)
2067 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2068 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2069 : BFD_ENDIAN_UNKNOWN);
2070 /* From the current target. */
2071 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2072 info.byte_order = TARGET_BYTE_ORDER;
2073
2074 /* Must have found some sort of architecture. */
2075 gdb_assert (info.bfd_arch_info != NULL);
2076
2077 if (gdbarch_debug)
2078 {
2079 fprintf_unfiltered (gdb_stdlog,
2080 "gdbarch_update: info.bfd_arch_info %s\n",
2081 (info.bfd_arch_info != NULL
2082 ? info.bfd_arch_info->printable_name
2083 : "(null)"));
2084 fprintf_unfiltered (gdb_stdlog,
2085 "gdbarch_update: info.byte_order %d (%s)\n",
2086 info.byte_order,
2087 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2088 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2089 : "default"));
2090 fprintf_unfiltered (gdb_stdlog,
2091 "gdbarch_update: info.abfd 0x%lx\n",
2092 (long) info.abfd);
2093 fprintf_unfiltered (gdb_stdlog,
2094 "gdbarch_update: info.tdep_info 0x%lx\n",
2095 (long) info.tdep_info);
2096 }
2097
2098 /* Find the target that knows about this architecture. */
2099 for (rego = gdbarch_registry;
2100 rego != NULL;
2101 rego = rego->next)
2102 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2103 break;
2104 if (rego == NULL)
2105 {
2106 if (gdbarch_debug)
2107 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2108 return 0;
2109 }
2110
2111 /* Ask the target for a replacement architecture. */
2112 new_gdbarch = rego->init (info, rego->arches);
2113
2114 /* Did the target like it? No. Reject the change. */
2115 if (new_gdbarch == NULL)
2116 {
2117 if (gdbarch_debug)
2118 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2119 return 0;
2120 }
2121
2122 /* Did the architecture change? No. Do nothing. */
2123 if (current_gdbarch == new_gdbarch)
2124 {
2125 if (gdbarch_debug)
2126 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2127 (long) new_gdbarch,
2128 new_gdbarch->bfd_arch_info->printable_name);
2129 return 1;
2130 }
2131
2132 /* Swap all data belonging to the old target out */
2133 swapout_gdbarch_swap (current_gdbarch);
2134
2135 /* Is this a pre-existing architecture? Yes. Swap it in. */
2136 for (list = &rego->arches;
2137 (*list) != NULL;
2138 list = &(*list)->next)
2139 {
2140 if ((*list)->gdbarch == new_gdbarch)
2141 {
2142 if (gdbarch_debug)
2143 fprintf_unfiltered (gdb_stdlog,
2144 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2145 (long) new_gdbarch,
2146 new_gdbarch->bfd_arch_info->printable_name);
2147 current_gdbarch = new_gdbarch;
2148 swapin_gdbarch_swap (new_gdbarch);
2149 architecture_changed_event ();
2150 return 1;
2151 }
2152 }
2153
2154 /* Append this new architecture to this targets list. */
2155 (*list) = XMALLOC (struct gdbarch_list);
2156 (*list)->next = NULL;
2157 (*list)->gdbarch = new_gdbarch;
2158
2159 /* Switch to this new architecture. Dump it out. */
2160 current_gdbarch = new_gdbarch;
2161 if (gdbarch_debug)
2162 {
2163 fprintf_unfiltered (gdb_stdlog,
2164 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2165 (long) new_gdbarch,
2166 new_gdbarch->bfd_arch_info->printable_name);
2167 }
2168
2169 /* Check that the newly installed architecture is valid. Plug in
2170 any post init values. */
2171 new_gdbarch->dump_tdep = rego->dump_tdep;
2172 verify_gdbarch (new_gdbarch);
2173
2174 /* Initialize the per-architecture memory (swap) areas.
2175 CURRENT_GDBARCH must be update before these modules are
2176 called. */
2177 init_gdbarch_swap (new_gdbarch);
2178
2179 /* Initialize the per-architecture data-pointer of all parties that
2180 registered an interest in this architecture. CURRENT_GDBARCH
2181 must be updated before these modules are called. */
2182 init_gdbarch_data (new_gdbarch);
2183 architecture_changed_event ();
2184
2185 if (gdbarch_debug)
2186 gdbarch_dump (current_gdbarch, gdb_stdlog);
2187
2188 return 1;
2189 }
2190
2191
2192 /* Disassembler */
2193
2194 /* Pointer to the target-dependent disassembly function. */
2195 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2196 disassemble_info tm_print_insn_info;
2197
2198
2199 extern void _initialize_gdbarch (void);
2200
2201 void
2202 _initialize_gdbarch (void)
2203 {
2204 struct cmd_list_element *c;
2205
2206 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2207 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2208 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2209 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2210 tm_print_insn_info.print_address_func = dis_asm_print_address;
2211
2212 add_show_from_set (add_set_cmd ("arch",
2213 class_maintenance,
2214 var_zinteger,
2215 (char *)&gdbarch_debug,
2216 "Set architecture debugging.\\n\\
2217 When non-zero, architecture debugging is enabled.", &setdebuglist),
2218 &showdebuglist);
2219 c = add_set_cmd ("archdebug",
2220 class_maintenance,
2221 var_zinteger,
2222 (char *)&gdbarch_debug,
2223 "Set architecture debugging.\\n\\
2224 When non-zero, architecture debugging is enabled.", &setlist);
2225
2226 deprecate_cmd (c, "set debug arch");
2227 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2228 }
2229 EOF
2230
2231 # close things off
2232 exec 1>&2
2233 #../move-if-change new-gdbarch.c gdbarch.c
2234 compare_new gdbarch.c