* gdbarch.sh: Include "regcache.h" into gdbarch.c.
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
322 # (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::paddr_d ((long) gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double". These bit/format pairs should eventually be combined into
368 # a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same". For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
383 #
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386 # as well.
387 #
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392 #
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
395 #
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 # serious shakedown.
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402 #
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405 #
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
412
413 # GDB's standard (or well known) register numbers. These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
415 # all (-1).
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
490 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
492 v:CORE_ADDR:decr_pc_after_break:::0:::0
493
494 # A function can be addressed by either it's "pointer" (possibly a
495 # descriptor address) or "entry point" (first executable instruction).
496 # The method "convert_from_func_ptr_addr" converting the former to the
497 # latter. gdbarch_deprecated_function_start_offset is being used to implement
498 # a simplified subset of that functionality - the function's address
499 # corresponds to the "function pointer" and the function's start
500 # corresponds to the "function entry point" - and hence is redundant.
501
502 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
503
504 # Return the remote protocol register number associated with this
505 # register. Normally the identity mapping.
506 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
507
508 # Fetch the target specific address used to represent a load module.
509 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
510 #
511 v:CORE_ADDR:frame_args_skip:::0:::0
512 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
514 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515 # frame-base. Enable frame-base before frame-unwind.
516 F:int:frame_num_args:struct frame_info *frame:frame
517 #
518 M:CORE_ADDR:frame_align:CORE_ADDR address:address
519 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520 v:int:frame_red_zone_size
521 #
522 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
523 # On some machines there are bits in addresses which are not really
524 # part of the address, but are used by the kernel, the hardware, etc.
525 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
526 # we get a "real" address such as one would find in a symbol table.
527 # This is used only for addresses of instructions, and even then I'm
528 # not sure it's used in all contexts. It exists to deal with there
529 # being a few stray bits in the PC which would mislead us, not as some
530 # sort of generic thing to handle alignment or segmentation (it's
531 # possible it should be in TARGET_READ_PC instead).
532 f:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
533 # It is not at all clear why gdbarch_smash_text_address is not folded into
534 # gdbarch_addr_bits_remove.
535 f:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
536
537 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
538 # indicates if the target needs software single step. An ISA method to
539 # implement it.
540 #
541 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542 # breakpoints using the breakpoint system instead of blatting memory directly
543 # (as with rs6000).
544 #
545 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546 # target can single step. If not, then implement single step using breakpoints.
547 #
548 # A return value of 1 means that the software_single_step breakpoints
549 # were inserted; 0 means they were not.
550 F:int:software_single_step:struct frame_info *frame:frame
551
552 # Return non-zero if the processor is executing a delay slot and a
553 # further single-step is needed before the instruction finishes.
554 M:int:single_step_through_delay:struct frame_info *frame:frame
555 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
556 # disassembler. Perhaps objdump can handle it?
557 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
559
560
561 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
562 # evaluates non-zero, this is the address where the debugger will place
563 # a step-resume breakpoint to get us past the dynamic linker.
564 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
565 # Some systems also have trampoline code for returning from shared libs.
566 f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
567
568 # A target might have problems with watchpoints as soon as the stack
569 # frame of the current function has been destroyed. This mostly happens
570 # as the first action in a funtion's epilogue. in_function_epilogue_p()
571 # is defined to return a non-zero value if either the given addr is one
572 # instruction after the stack destroying instruction up to the trailing
573 # return instruction or if we can figure out that the stack frame has
574 # already been invalidated regardless of the value of addr. Targets
575 # which don't suffer from that problem could just let this functionality
576 # untouched.
577 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
578 # Given a vector of command-line arguments, return a newly allocated
579 # string which, when passed to the create_inferior function, will be
580 # parsed (on Unix systems, by the shell) to yield the same vector.
581 # This function should call error() if the argument vector is not
582 # representable for this target or if this target does not support
583 # command-line arguments.
584 # ARGC is the number of elements in the vector.
585 # ARGV is an array of strings, one per argument.
586 m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
587 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
588 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
589 v:const char *:name_of_malloc:::"malloc":"malloc"::0:gdbarch->name_of_malloc
590 v:int:cannot_step_breakpoint:::0:0::0
591 v:int:have_nonsteppable_watchpoint:::0:0::0
592 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
593 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
594 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
595 # Is a register in a group
596 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
597 # Fetch the pointer to the ith function argument.
598 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
599
600 # Return the appropriate register set for a core file section with
601 # name SECT_NAME and size SECT_SIZE.
602 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
603
604 # Supported register notes in a core file.
605 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
606
607 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
608 # core file into buffer READBUF with length LEN.
609 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
610
611 # If the elements of C++ vtables are in-place function descriptors rather
612 # than normal function pointers (which may point to code or a descriptor),
613 # set this to one.
614 v:int:vtable_function_descriptors:::0:0::0
615
616 # Set if the least significant bit of the delta is used instead of the least
617 # significant bit of the pfn for pointers to virtual member functions.
618 v:int:vbit_in_delta:::0:0::0
619
620 # Advance PC to next instruction in order to skip a permanent breakpoint.
621 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
622
623 # The maximum length of an instruction on this architecture.
624 V:ULONGEST:max_insn_length:::0:0
625
626 # Copy the instruction at FROM to TO, and make any adjustments
627 # necessary to single-step it at that address.
628 #
629 # REGS holds the state the thread's registers will have before
630 # executing the copied instruction; the PC in REGS will refer to FROM,
631 # not the copy at TO. The caller should update it to point at TO later.
632 #
633 # Return a pointer to data of the architecture's choice to be passed
634 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
635 # the instruction's effects have been completely simulated, with the
636 # resulting state written back to REGS.
637 #
638 # For a general explanation of displaced stepping and how GDB uses it,
639 # see the comments in infrun.c.
640 #
641 # The TO area is only guaranteed to have space for
642 # gdbarch_max_insn_length (arch) bytes, so this function must not
643 # write more bytes than that to that area.
644 #
645 # If you do not provide this function, GDB assumes that the
646 # architecture does not support displaced stepping.
647 #
648 # If your architecture doesn't need to adjust instructions before
649 # single-stepping them, consider using simple_displaced_step_copy_insn
650 # here.
651 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
652
653 # Fix up the state resulting from successfully single-stepping a
654 # displaced instruction, to give the result we would have gotten from
655 # stepping the instruction in its original location.
656 #
657 # REGS is the register state resulting from single-stepping the
658 # displaced instruction.
659 #
660 # CLOSURE is the result from the matching call to
661 # gdbarch_displaced_step_copy_insn.
662 #
663 # If you provide gdbarch_displaced_step_copy_insn.but not this
664 # function, then GDB assumes that no fixup is needed after
665 # single-stepping the instruction.
666 #
667 # For a general explanation of displaced stepping and how GDB uses it,
668 # see the comments in infrun.c.
669 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
670
671 # Free a closure returned by gdbarch_displaced_step_copy_insn.
672 #
673 # If you provide gdbarch_displaced_step_copy_insn, you must provide
674 # this function as well.
675 #
676 # If your architecture uses closures that don't need to be freed, then
677 # you can use simple_displaced_step_free_closure here.
678 #
679 # For a general explanation of displaced stepping and how GDB uses it,
680 # see the comments in infrun.c.
681 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
682
683 # Return the address of an appropriate place to put displaced
684 # instructions while we step over them. There need only be one such
685 # place, since we're only stepping one thread over a breakpoint at a
686 # time.
687 #
688 # For a general explanation of displaced stepping and how GDB uses it,
689 # see the comments in infrun.c.
690 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
691
692 # Refresh overlay mapped state for section OSECT.
693 F:void:overlay_update:struct obj_section *osect:osect
694
695 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
696
697 # Handle special encoding of static variables in stabs debug info.
698 F:char *:static_transform_name:char *name:name
699 # Set if the address in N_SO or N_FUN stabs may be zero.
700 v:int:sofun_address_maybe_missing:::0:0::0
701
702 # Signal translation: translate inferior's signal (host's) number into
703 # GDB's representation.
704 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
705 # Signal translation: translate GDB's signal number into inferior's host
706 # signal number.
707 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
708
709 # Record architecture-specific information from the symbol table.
710 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
711 EOF
712 }
713
714 #
715 # The .log file
716 #
717 exec > new-gdbarch.log
718 function_list | while do_read
719 do
720 cat <<EOF
721 ${class} ${returntype} ${function} ($formal)
722 EOF
723 for r in ${read}
724 do
725 eval echo \"\ \ \ \ ${r}=\${${r}}\"
726 done
727 if class_is_predicate_p && fallback_default_p
728 then
729 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
730 kill $$
731 exit 1
732 fi
733 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
734 then
735 echo "Error: postdefault is useless when invalid_p=0" 1>&2
736 kill $$
737 exit 1
738 fi
739 if class_is_multiarch_p
740 then
741 if class_is_predicate_p ; then :
742 elif test "x${predefault}" = "x"
743 then
744 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
745 kill $$
746 exit 1
747 fi
748 fi
749 echo ""
750 done
751
752 exec 1>&2
753 compare_new gdbarch.log
754
755
756 copyright ()
757 {
758 cat <<EOF
759 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
760
761 /* Dynamic architecture support for GDB, the GNU debugger.
762
763 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
764 Free Software Foundation, Inc.
765
766 This file is part of GDB.
767
768 This program is free software; you can redistribute it and/or modify
769 it under the terms of the GNU General Public License as published by
770 the Free Software Foundation; either version 3 of the License, or
771 (at your option) any later version.
772
773 This program is distributed in the hope that it will be useful,
774 but WITHOUT ANY WARRANTY; without even the implied warranty of
775 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
776 GNU General Public License for more details.
777
778 You should have received a copy of the GNU General Public License
779 along with this program. If not, see <http://www.gnu.org/licenses/>. */
780
781 /* This file was created with the aid of \`\`gdbarch.sh''.
782
783 The Bourne shell script \`\`gdbarch.sh'' creates the files
784 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
785 against the existing \`\`gdbarch.[hc]''. Any differences found
786 being reported.
787
788 If editing this file, please also run gdbarch.sh and merge any
789 changes into that script. Conversely, when making sweeping changes
790 to this file, modifying gdbarch.sh and using its output may prove
791 easier. */
792
793 EOF
794 }
795
796 #
797 # The .h file
798 #
799
800 exec > new-gdbarch.h
801 copyright
802 cat <<EOF
803 #ifndef GDBARCH_H
804 #define GDBARCH_H
805
806 struct floatformat;
807 struct ui_file;
808 struct frame_info;
809 struct value;
810 struct objfile;
811 struct obj_section;
812 struct minimal_symbol;
813 struct regcache;
814 struct reggroup;
815 struct regset;
816 struct disassemble_info;
817 struct target_ops;
818 struct obstack;
819 struct bp_target_info;
820 struct target_desc;
821 struct displaced_step_closure;
822 struct core_regset_section;
823
824 extern struct gdbarch *current_gdbarch;
825 EOF
826
827 # function typedef's
828 printf "\n"
829 printf "\n"
830 printf "/* The following are pre-initialized by GDBARCH. */\n"
831 function_list | while do_read
832 do
833 if class_is_info_p
834 then
835 printf "\n"
836 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
837 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
838 fi
839 done
840
841 # function typedef's
842 printf "\n"
843 printf "\n"
844 printf "/* The following are initialized by the target dependent code. */\n"
845 function_list | while do_read
846 do
847 if [ -n "${comment}" ]
848 then
849 echo "${comment}" | sed \
850 -e '2 s,#,/*,' \
851 -e '3,$ s,#, ,' \
852 -e '$ s,$, */,'
853 fi
854
855 if class_is_predicate_p
856 then
857 printf "\n"
858 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
859 fi
860 if class_is_variable_p
861 then
862 printf "\n"
863 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
864 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
865 fi
866 if class_is_function_p
867 then
868 printf "\n"
869 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
870 then
871 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
872 elif class_is_multiarch_p
873 then
874 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
875 else
876 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
877 fi
878 if [ "x${formal}" = "xvoid" ]
879 then
880 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
881 else
882 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
883 fi
884 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
885 fi
886 done
887
888 # close it off
889 cat <<EOF
890
891 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
892
893
894 /* Mechanism for co-ordinating the selection of a specific
895 architecture.
896
897 GDB targets (*-tdep.c) can register an interest in a specific
898 architecture. Other GDB components can register a need to maintain
899 per-architecture data.
900
901 The mechanisms below ensures that there is only a loose connection
902 between the set-architecture command and the various GDB
903 components. Each component can independently register their need
904 to maintain architecture specific data with gdbarch.
905
906 Pragmatics:
907
908 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
909 didn't scale.
910
911 The more traditional mega-struct containing architecture specific
912 data for all the various GDB components was also considered. Since
913 GDB is built from a variable number of (fairly independent)
914 components it was determined that the global aproach was not
915 applicable. */
916
917
918 /* Register a new architectural family with GDB.
919
920 Register support for the specified ARCHITECTURE with GDB. When
921 gdbarch determines that the specified architecture has been
922 selected, the corresponding INIT function is called.
923
924 --
925
926 The INIT function takes two parameters: INFO which contains the
927 information available to gdbarch about the (possibly new)
928 architecture; ARCHES which is a list of the previously created
929 \`\`struct gdbarch'' for this architecture.
930
931 The INFO parameter is, as far as possible, be pre-initialized with
932 information obtained from INFO.ABFD or the global defaults.
933
934 The ARCHES parameter is a linked list (sorted most recently used)
935 of all the previously created architures for this architecture
936 family. The (possibly NULL) ARCHES->gdbarch can used to access
937 values from the previously selected architecture for this
938 architecture family. The global \`\`current_gdbarch'' shall not be
939 used.
940
941 The INIT function shall return any of: NULL - indicating that it
942 doesn't recognize the selected architecture; an existing \`\`struct
943 gdbarch'' from the ARCHES list - indicating that the new
944 architecture is just a synonym for an earlier architecture (see
945 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
946 - that describes the selected architecture (see gdbarch_alloc()).
947
948 The DUMP_TDEP function shall print out all target specific values.
949 Care should be taken to ensure that the function works in both the
950 multi-arch and non- multi-arch cases. */
951
952 struct gdbarch_list
953 {
954 struct gdbarch *gdbarch;
955 struct gdbarch_list *next;
956 };
957
958 struct gdbarch_info
959 {
960 /* Use default: NULL (ZERO). */
961 const struct bfd_arch_info *bfd_arch_info;
962
963 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
964 int byte_order;
965
966 int byte_order_for_code;
967
968 /* Use default: NULL (ZERO). */
969 bfd *abfd;
970
971 /* Use default: NULL (ZERO). */
972 struct gdbarch_tdep_info *tdep_info;
973
974 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
975 enum gdb_osabi osabi;
976
977 /* Use default: NULL (ZERO). */
978 const struct target_desc *target_desc;
979 };
980
981 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
982 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
983
984 /* DEPRECATED - use gdbarch_register() */
985 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
986
987 extern void gdbarch_register (enum bfd_architecture architecture,
988 gdbarch_init_ftype *,
989 gdbarch_dump_tdep_ftype *);
990
991
992 /* Return a freshly allocated, NULL terminated, array of the valid
993 architecture names. Since architectures are registered during the
994 _initialize phase this function only returns useful information
995 once initialization has been completed. */
996
997 extern const char **gdbarch_printable_names (void);
998
999
1000 /* Helper function. Search the list of ARCHES for a GDBARCH that
1001 matches the information provided by INFO. */
1002
1003 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1004
1005
1006 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1007 basic initialization using values obtained from the INFO and TDEP
1008 parameters. set_gdbarch_*() functions are called to complete the
1009 initialization of the object. */
1010
1011 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1012
1013
1014 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1015 It is assumed that the caller freeds the \`\`struct
1016 gdbarch_tdep''. */
1017
1018 extern void gdbarch_free (struct gdbarch *);
1019
1020
1021 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1022 obstack. The memory is freed when the corresponding architecture
1023 is also freed. */
1024
1025 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1026 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1027 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1028
1029
1030 /* Helper function. Force an update of the current architecture.
1031
1032 The actual architecture selected is determined by INFO, \`\`(gdb) set
1033 architecture'' et.al., the existing architecture and BFD's default
1034 architecture. INFO should be initialized to zero and then selected
1035 fields should be updated.
1036
1037 Returns non-zero if the update succeeds */
1038
1039 extern int gdbarch_update_p (struct gdbarch_info info);
1040
1041
1042 /* Helper function. Find an architecture matching info.
1043
1044 INFO should be initialized using gdbarch_info_init, relevant fields
1045 set, and then finished using gdbarch_info_fill.
1046
1047 Returns the corresponding architecture, or NULL if no matching
1048 architecture was found. "current_gdbarch" is not updated. */
1049
1050 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1051
1052
1053 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1054
1055 FIXME: kettenis/20031124: Of the functions that follow, only
1056 gdbarch_from_bfd is supposed to survive. The others will
1057 dissappear since in the future GDB will (hopefully) be truly
1058 multi-arch. However, for now we're still stuck with the concept of
1059 a single active architecture. */
1060
1061 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1062
1063
1064 /* Register per-architecture data-pointer.
1065
1066 Reserve space for a per-architecture data-pointer. An identifier
1067 for the reserved data-pointer is returned. That identifer should
1068 be saved in a local static variable.
1069
1070 Memory for the per-architecture data shall be allocated using
1071 gdbarch_obstack_zalloc. That memory will be deleted when the
1072 corresponding architecture object is deleted.
1073
1074 When a previously created architecture is re-selected, the
1075 per-architecture data-pointer for that previous architecture is
1076 restored. INIT() is not re-called.
1077
1078 Multiple registrarants for any architecture are allowed (and
1079 strongly encouraged). */
1080
1081 struct gdbarch_data;
1082
1083 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1084 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1085 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1086 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1087 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1088 struct gdbarch_data *data,
1089 void *pointer);
1090
1091 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1092
1093
1094 /* Set the dynamic target-system-dependent parameters (architecture,
1095 byte-order, ...) using information found in the BFD */
1096
1097 extern void set_gdbarch_from_file (bfd *);
1098
1099
1100 /* Initialize the current architecture to the "first" one we find on
1101 our list. */
1102
1103 extern void initialize_current_architecture (void);
1104
1105 /* gdbarch trace variable */
1106 extern int gdbarch_debug;
1107
1108 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1109
1110 #endif
1111 EOF
1112 exec 1>&2
1113 #../move-if-change new-gdbarch.h gdbarch.h
1114 compare_new gdbarch.h
1115
1116
1117 #
1118 # C file
1119 #
1120
1121 exec > new-gdbarch.c
1122 copyright
1123 cat <<EOF
1124
1125 #include "defs.h"
1126 #include "arch-utils.h"
1127
1128 #include "gdbcmd.h"
1129 #include "inferior.h"
1130 #include "symcat.h"
1131
1132 #include "floatformat.h"
1133
1134 #include "gdb_assert.h"
1135 #include "gdb_string.h"
1136 #include "reggroups.h"
1137 #include "osabi.h"
1138 #include "gdb_obstack.h"
1139 #include "observer.h"
1140 #include "regcache.h"
1141
1142 /* Static function declarations */
1143
1144 static void alloc_gdbarch_data (struct gdbarch *);
1145
1146 /* Non-zero if we want to trace architecture code. */
1147
1148 #ifndef GDBARCH_DEBUG
1149 #define GDBARCH_DEBUG 0
1150 #endif
1151 int gdbarch_debug = GDBARCH_DEBUG;
1152 static void
1153 show_gdbarch_debug (struct ui_file *file, int from_tty,
1154 struct cmd_list_element *c, const char *value)
1155 {
1156 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1157 }
1158
1159 static const char *
1160 pformat (const struct floatformat **format)
1161 {
1162 if (format == NULL)
1163 return "(null)";
1164 else
1165 /* Just print out one of them - this is only for diagnostics. */
1166 return format[0]->name;
1167 }
1168
1169 EOF
1170
1171 # gdbarch open the gdbarch object
1172 printf "\n"
1173 printf "/* Maintain the struct gdbarch object */\n"
1174 printf "\n"
1175 printf "struct gdbarch\n"
1176 printf "{\n"
1177 printf " /* Has this architecture been fully initialized? */\n"
1178 printf " int initialized_p;\n"
1179 printf "\n"
1180 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1181 printf " struct obstack *obstack;\n"
1182 printf "\n"
1183 printf " /* basic architectural information */\n"
1184 function_list | while do_read
1185 do
1186 if class_is_info_p
1187 then
1188 printf " ${returntype} ${function};\n"
1189 fi
1190 done
1191 printf "\n"
1192 printf " /* target specific vector. */\n"
1193 printf " struct gdbarch_tdep *tdep;\n"
1194 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1195 printf "\n"
1196 printf " /* per-architecture data-pointers */\n"
1197 printf " unsigned nr_data;\n"
1198 printf " void **data;\n"
1199 printf "\n"
1200 printf " /* per-architecture swap-regions */\n"
1201 printf " struct gdbarch_swap *swap;\n"
1202 printf "\n"
1203 cat <<EOF
1204 /* Multi-arch values.
1205
1206 When extending this structure you must:
1207
1208 Add the field below.
1209
1210 Declare set/get functions and define the corresponding
1211 macro in gdbarch.h.
1212
1213 gdbarch_alloc(): If zero/NULL is not a suitable default,
1214 initialize the new field.
1215
1216 verify_gdbarch(): Confirm that the target updated the field
1217 correctly.
1218
1219 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1220 field is dumped out
1221
1222 \`\`startup_gdbarch()'': Append an initial value to the static
1223 variable (base values on the host's c-type system).
1224
1225 get_gdbarch(): Implement the set/get functions (probably using
1226 the macro's as shortcuts).
1227
1228 */
1229
1230 EOF
1231 function_list | while do_read
1232 do
1233 if class_is_variable_p
1234 then
1235 printf " ${returntype} ${function};\n"
1236 elif class_is_function_p
1237 then
1238 printf " gdbarch_${function}_ftype *${function};\n"
1239 fi
1240 done
1241 printf "};\n"
1242
1243 # A pre-initialized vector
1244 printf "\n"
1245 printf "\n"
1246 cat <<EOF
1247 /* The default architecture uses host values (for want of a better
1248 choice). */
1249 EOF
1250 printf "\n"
1251 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1252 printf "\n"
1253 printf "struct gdbarch startup_gdbarch =\n"
1254 printf "{\n"
1255 printf " 1, /* Always initialized. */\n"
1256 printf " NULL, /* The obstack. */\n"
1257 printf " /* basic architecture information */\n"
1258 function_list | while do_read
1259 do
1260 if class_is_info_p
1261 then
1262 printf " ${staticdefault}, /* ${function} */\n"
1263 fi
1264 done
1265 cat <<EOF
1266 /* target specific vector and its dump routine */
1267 NULL, NULL,
1268 /*per-architecture data-pointers and swap regions */
1269 0, NULL, NULL,
1270 /* Multi-arch values */
1271 EOF
1272 function_list | while do_read
1273 do
1274 if class_is_function_p || class_is_variable_p
1275 then
1276 printf " ${staticdefault}, /* ${function} */\n"
1277 fi
1278 done
1279 cat <<EOF
1280 /* startup_gdbarch() */
1281 };
1282
1283 struct gdbarch *current_gdbarch = &startup_gdbarch;
1284 EOF
1285
1286 # Create a new gdbarch struct
1287 cat <<EOF
1288
1289 /* Create a new \`\`struct gdbarch'' based on information provided by
1290 \`\`struct gdbarch_info''. */
1291 EOF
1292 printf "\n"
1293 cat <<EOF
1294 struct gdbarch *
1295 gdbarch_alloc (const struct gdbarch_info *info,
1296 struct gdbarch_tdep *tdep)
1297 {
1298 struct gdbarch *gdbarch;
1299
1300 /* Create an obstack for allocating all the per-architecture memory,
1301 then use that to allocate the architecture vector. */
1302 struct obstack *obstack = XMALLOC (struct obstack);
1303 obstack_init (obstack);
1304 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1305 memset (gdbarch, 0, sizeof (*gdbarch));
1306 gdbarch->obstack = obstack;
1307
1308 alloc_gdbarch_data (gdbarch);
1309
1310 gdbarch->tdep = tdep;
1311 EOF
1312 printf "\n"
1313 function_list | while do_read
1314 do
1315 if class_is_info_p
1316 then
1317 printf " gdbarch->${function} = info->${function};\n"
1318 fi
1319 done
1320 printf "\n"
1321 printf " /* Force the explicit initialization of these. */\n"
1322 function_list | while do_read
1323 do
1324 if class_is_function_p || class_is_variable_p
1325 then
1326 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1327 then
1328 printf " gdbarch->${function} = ${predefault};\n"
1329 fi
1330 fi
1331 done
1332 cat <<EOF
1333 /* gdbarch_alloc() */
1334
1335 return gdbarch;
1336 }
1337 EOF
1338
1339 # Free a gdbarch struct.
1340 printf "\n"
1341 printf "\n"
1342 cat <<EOF
1343 /* Allocate extra space using the per-architecture obstack. */
1344
1345 void *
1346 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1347 {
1348 void *data = obstack_alloc (arch->obstack, size);
1349 memset (data, 0, size);
1350 return data;
1351 }
1352
1353
1354 /* Free a gdbarch struct. This should never happen in normal
1355 operation --- once you've created a gdbarch, you keep it around.
1356 However, if an architecture's init function encounters an error
1357 building the structure, it may need to clean up a partially
1358 constructed gdbarch. */
1359
1360 void
1361 gdbarch_free (struct gdbarch *arch)
1362 {
1363 struct obstack *obstack;
1364 gdb_assert (arch != NULL);
1365 gdb_assert (!arch->initialized_p);
1366 obstack = arch->obstack;
1367 obstack_free (obstack, 0); /* Includes the ARCH. */
1368 xfree (obstack);
1369 }
1370 EOF
1371
1372 # verify a new architecture
1373 cat <<EOF
1374
1375
1376 /* Ensure that all values in a GDBARCH are reasonable. */
1377
1378 static void
1379 verify_gdbarch (struct gdbarch *gdbarch)
1380 {
1381 struct ui_file *log;
1382 struct cleanup *cleanups;
1383 long dummy;
1384 char *buf;
1385 log = mem_fileopen ();
1386 cleanups = make_cleanup_ui_file_delete (log);
1387 /* fundamental */
1388 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1389 fprintf_unfiltered (log, "\n\tbyte-order");
1390 if (gdbarch->bfd_arch_info == NULL)
1391 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1392 /* Check those that need to be defined for the given multi-arch level. */
1393 EOF
1394 function_list | while do_read
1395 do
1396 if class_is_function_p || class_is_variable_p
1397 then
1398 if [ "x${invalid_p}" = "x0" ]
1399 then
1400 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1401 elif class_is_predicate_p
1402 then
1403 printf " /* Skip verify of ${function}, has predicate */\n"
1404 # FIXME: See do_read for potential simplification
1405 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1406 then
1407 printf " if (${invalid_p})\n"
1408 printf " gdbarch->${function} = ${postdefault};\n"
1409 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1410 then
1411 printf " if (gdbarch->${function} == ${predefault})\n"
1412 printf " gdbarch->${function} = ${postdefault};\n"
1413 elif [ -n "${postdefault}" ]
1414 then
1415 printf " if (gdbarch->${function} == 0)\n"
1416 printf " gdbarch->${function} = ${postdefault};\n"
1417 elif [ -n "${invalid_p}" ]
1418 then
1419 printf " if (${invalid_p})\n"
1420 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1421 elif [ -n "${predefault}" ]
1422 then
1423 printf " if (gdbarch->${function} == ${predefault})\n"
1424 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1425 fi
1426 fi
1427 done
1428 cat <<EOF
1429 buf = ui_file_xstrdup (log, &dummy);
1430 make_cleanup (xfree, buf);
1431 if (strlen (buf) > 0)
1432 internal_error (__FILE__, __LINE__,
1433 _("verify_gdbarch: the following are invalid ...%s"),
1434 buf);
1435 do_cleanups (cleanups);
1436 }
1437 EOF
1438
1439 # dump the structure
1440 printf "\n"
1441 printf "\n"
1442 cat <<EOF
1443 /* Print out the details of the current architecture. */
1444
1445 void
1446 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1447 {
1448 const char *gdb_nm_file = "<not-defined>";
1449 #if defined (GDB_NM_FILE)
1450 gdb_nm_file = GDB_NM_FILE;
1451 #endif
1452 fprintf_unfiltered (file,
1453 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1454 gdb_nm_file);
1455 EOF
1456 function_list | sort -t: -k 3 | while do_read
1457 do
1458 # First the predicate
1459 if class_is_predicate_p
1460 then
1461 printf " fprintf_unfiltered (file,\n"
1462 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1463 printf " gdbarch_${function}_p (gdbarch));\n"
1464 fi
1465 # Print the corresponding value.
1466 if class_is_function_p
1467 then
1468 printf " fprintf_unfiltered (file,\n"
1469 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1470 printf " (long) gdbarch->${function});\n"
1471 else
1472 # It is a variable
1473 case "${print}:${returntype}" in
1474 :CORE_ADDR )
1475 fmt="0x%s"
1476 print="paddr_nz (gdbarch->${function})"
1477 ;;
1478 :* )
1479 fmt="%s"
1480 print="paddr_d (gdbarch->${function})"
1481 ;;
1482 * )
1483 fmt="%s"
1484 ;;
1485 esac
1486 printf " fprintf_unfiltered (file,\n"
1487 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1488 printf " ${print});\n"
1489 fi
1490 done
1491 cat <<EOF
1492 if (gdbarch->dump_tdep != NULL)
1493 gdbarch->dump_tdep (gdbarch, file);
1494 }
1495 EOF
1496
1497
1498 # GET/SET
1499 printf "\n"
1500 cat <<EOF
1501 struct gdbarch_tdep *
1502 gdbarch_tdep (struct gdbarch *gdbarch)
1503 {
1504 if (gdbarch_debug >= 2)
1505 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1506 return gdbarch->tdep;
1507 }
1508 EOF
1509 printf "\n"
1510 function_list | while do_read
1511 do
1512 if class_is_predicate_p
1513 then
1514 printf "\n"
1515 printf "int\n"
1516 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1517 printf "{\n"
1518 printf " gdb_assert (gdbarch != NULL);\n"
1519 printf " return ${predicate};\n"
1520 printf "}\n"
1521 fi
1522 if class_is_function_p
1523 then
1524 printf "\n"
1525 printf "${returntype}\n"
1526 if [ "x${formal}" = "xvoid" ]
1527 then
1528 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1529 else
1530 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1531 fi
1532 printf "{\n"
1533 printf " gdb_assert (gdbarch != NULL);\n"
1534 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1535 if class_is_predicate_p && test -n "${predefault}"
1536 then
1537 # Allow a call to a function with a predicate.
1538 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1539 fi
1540 printf " if (gdbarch_debug >= 2)\n"
1541 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1542 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1543 then
1544 if class_is_multiarch_p
1545 then
1546 params="gdbarch"
1547 else
1548 params=""
1549 fi
1550 else
1551 if class_is_multiarch_p
1552 then
1553 params="gdbarch, ${actual}"
1554 else
1555 params="${actual}"
1556 fi
1557 fi
1558 if [ "x${returntype}" = "xvoid" ]
1559 then
1560 printf " gdbarch->${function} (${params});\n"
1561 else
1562 printf " return gdbarch->${function} (${params});\n"
1563 fi
1564 printf "}\n"
1565 printf "\n"
1566 printf "void\n"
1567 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1568 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1569 printf "{\n"
1570 printf " gdbarch->${function} = ${function};\n"
1571 printf "}\n"
1572 elif class_is_variable_p
1573 then
1574 printf "\n"
1575 printf "${returntype}\n"
1576 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1577 printf "{\n"
1578 printf " gdb_assert (gdbarch != NULL);\n"
1579 if [ "x${invalid_p}" = "x0" ]
1580 then
1581 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1582 elif [ -n "${invalid_p}" ]
1583 then
1584 printf " /* Check variable is valid. */\n"
1585 printf " gdb_assert (!(${invalid_p}));\n"
1586 elif [ -n "${predefault}" ]
1587 then
1588 printf " /* Check variable changed from pre-default. */\n"
1589 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1590 fi
1591 printf " if (gdbarch_debug >= 2)\n"
1592 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1593 printf " return gdbarch->${function};\n"
1594 printf "}\n"
1595 printf "\n"
1596 printf "void\n"
1597 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1598 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1599 printf "{\n"
1600 printf " gdbarch->${function} = ${function};\n"
1601 printf "}\n"
1602 elif class_is_info_p
1603 then
1604 printf "\n"
1605 printf "${returntype}\n"
1606 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1607 printf "{\n"
1608 printf " gdb_assert (gdbarch != NULL);\n"
1609 printf " if (gdbarch_debug >= 2)\n"
1610 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1611 printf " return gdbarch->${function};\n"
1612 printf "}\n"
1613 fi
1614 done
1615
1616 # All the trailing guff
1617 cat <<EOF
1618
1619
1620 /* Keep a registry of per-architecture data-pointers required by GDB
1621 modules. */
1622
1623 struct gdbarch_data
1624 {
1625 unsigned index;
1626 int init_p;
1627 gdbarch_data_pre_init_ftype *pre_init;
1628 gdbarch_data_post_init_ftype *post_init;
1629 };
1630
1631 struct gdbarch_data_registration
1632 {
1633 struct gdbarch_data *data;
1634 struct gdbarch_data_registration *next;
1635 };
1636
1637 struct gdbarch_data_registry
1638 {
1639 unsigned nr;
1640 struct gdbarch_data_registration *registrations;
1641 };
1642
1643 struct gdbarch_data_registry gdbarch_data_registry =
1644 {
1645 0, NULL,
1646 };
1647
1648 static struct gdbarch_data *
1649 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1650 gdbarch_data_post_init_ftype *post_init)
1651 {
1652 struct gdbarch_data_registration **curr;
1653 /* Append the new registraration. */
1654 for (curr = &gdbarch_data_registry.registrations;
1655 (*curr) != NULL;
1656 curr = &(*curr)->next);
1657 (*curr) = XMALLOC (struct gdbarch_data_registration);
1658 (*curr)->next = NULL;
1659 (*curr)->data = XMALLOC (struct gdbarch_data);
1660 (*curr)->data->index = gdbarch_data_registry.nr++;
1661 (*curr)->data->pre_init = pre_init;
1662 (*curr)->data->post_init = post_init;
1663 (*curr)->data->init_p = 1;
1664 return (*curr)->data;
1665 }
1666
1667 struct gdbarch_data *
1668 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1669 {
1670 return gdbarch_data_register (pre_init, NULL);
1671 }
1672
1673 struct gdbarch_data *
1674 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1675 {
1676 return gdbarch_data_register (NULL, post_init);
1677 }
1678
1679 /* Create/delete the gdbarch data vector. */
1680
1681 static void
1682 alloc_gdbarch_data (struct gdbarch *gdbarch)
1683 {
1684 gdb_assert (gdbarch->data == NULL);
1685 gdbarch->nr_data = gdbarch_data_registry.nr;
1686 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1687 }
1688
1689 /* Initialize the current value of the specified per-architecture
1690 data-pointer. */
1691
1692 void
1693 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1694 struct gdbarch_data *data,
1695 void *pointer)
1696 {
1697 gdb_assert (data->index < gdbarch->nr_data);
1698 gdb_assert (gdbarch->data[data->index] == NULL);
1699 gdb_assert (data->pre_init == NULL);
1700 gdbarch->data[data->index] = pointer;
1701 }
1702
1703 /* Return the current value of the specified per-architecture
1704 data-pointer. */
1705
1706 void *
1707 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1708 {
1709 gdb_assert (data->index < gdbarch->nr_data);
1710 if (gdbarch->data[data->index] == NULL)
1711 {
1712 /* The data-pointer isn't initialized, call init() to get a
1713 value. */
1714 if (data->pre_init != NULL)
1715 /* Mid architecture creation: pass just the obstack, and not
1716 the entire architecture, as that way it isn't possible for
1717 pre-init code to refer to undefined architecture
1718 fields. */
1719 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1720 else if (gdbarch->initialized_p
1721 && data->post_init != NULL)
1722 /* Post architecture creation: pass the entire architecture
1723 (as all fields are valid), but be careful to also detect
1724 recursive references. */
1725 {
1726 gdb_assert (data->init_p);
1727 data->init_p = 0;
1728 gdbarch->data[data->index] = data->post_init (gdbarch);
1729 data->init_p = 1;
1730 }
1731 else
1732 /* The architecture initialization hasn't completed - punt -
1733 hope that the caller knows what they are doing. Once
1734 deprecated_set_gdbarch_data has been initialized, this can be
1735 changed to an internal error. */
1736 return NULL;
1737 gdb_assert (gdbarch->data[data->index] != NULL);
1738 }
1739 return gdbarch->data[data->index];
1740 }
1741
1742
1743 /* Keep a registry of the architectures known by GDB. */
1744
1745 struct gdbarch_registration
1746 {
1747 enum bfd_architecture bfd_architecture;
1748 gdbarch_init_ftype *init;
1749 gdbarch_dump_tdep_ftype *dump_tdep;
1750 struct gdbarch_list *arches;
1751 struct gdbarch_registration *next;
1752 };
1753
1754 static struct gdbarch_registration *gdbarch_registry = NULL;
1755
1756 static void
1757 append_name (const char ***buf, int *nr, const char *name)
1758 {
1759 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1760 (*buf)[*nr] = name;
1761 *nr += 1;
1762 }
1763
1764 const char **
1765 gdbarch_printable_names (void)
1766 {
1767 /* Accumulate a list of names based on the registed list of
1768 architectures. */
1769 enum bfd_architecture a;
1770 int nr_arches = 0;
1771 const char **arches = NULL;
1772 struct gdbarch_registration *rego;
1773 for (rego = gdbarch_registry;
1774 rego != NULL;
1775 rego = rego->next)
1776 {
1777 const struct bfd_arch_info *ap;
1778 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1779 if (ap == NULL)
1780 internal_error (__FILE__, __LINE__,
1781 _("gdbarch_architecture_names: multi-arch unknown"));
1782 do
1783 {
1784 append_name (&arches, &nr_arches, ap->printable_name);
1785 ap = ap->next;
1786 }
1787 while (ap != NULL);
1788 }
1789 append_name (&arches, &nr_arches, NULL);
1790 return arches;
1791 }
1792
1793
1794 void
1795 gdbarch_register (enum bfd_architecture bfd_architecture,
1796 gdbarch_init_ftype *init,
1797 gdbarch_dump_tdep_ftype *dump_tdep)
1798 {
1799 struct gdbarch_registration **curr;
1800 const struct bfd_arch_info *bfd_arch_info;
1801 /* Check that BFD recognizes this architecture */
1802 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1803 if (bfd_arch_info == NULL)
1804 {
1805 internal_error (__FILE__, __LINE__,
1806 _("gdbarch: Attempt to register unknown architecture (%d)"),
1807 bfd_architecture);
1808 }
1809 /* Check that we haven't seen this architecture before */
1810 for (curr = &gdbarch_registry;
1811 (*curr) != NULL;
1812 curr = &(*curr)->next)
1813 {
1814 if (bfd_architecture == (*curr)->bfd_architecture)
1815 internal_error (__FILE__, __LINE__,
1816 _("gdbarch: Duplicate registraration of architecture (%s)"),
1817 bfd_arch_info->printable_name);
1818 }
1819 /* log it */
1820 if (gdbarch_debug)
1821 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1822 bfd_arch_info->printable_name,
1823 (long) init);
1824 /* Append it */
1825 (*curr) = XMALLOC (struct gdbarch_registration);
1826 (*curr)->bfd_architecture = bfd_architecture;
1827 (*curr)->init = init;
1828 (*curr)->dump_tdep = dump_tdep;
1829 (*curr)->arches = NULL;
1830 (*curr)->next = NULL;
1831 }
1832
1833 void
1834 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1835 gdbarch_init_ftype *init)
1836 {
1837 gdbarch_register (bfd_architecture, init, NULL);
1838 }
1839
1840
1841 /* Look for an architecture using gdbarch_info. */
1842
1843 struct gdbarch_list *
1844 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1845 const struct gdbarch_info *info)
1846 {
1847 for (; arches != NULL; arches = arches->next)
1848 {
1849 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1850 continue;
1851 if (info->byte_order != arches->gdbarch->byte_order)
1852 continue;
1853 if (info->osabi != arches->gdbarch->osabi)
1854 continue;
1855 if (info->target_desc != arches->gdbarch->target_desc)
1856 continue;
1857 return arches;
1858 }
1859 return NULL;
1860 }
1861
1862
1863 /* Find an architecture that matches the specified INFO. Create a new
1864 architecture if needed. Return that new architecture. Assumes
1865 that there is no current architecture. */
1866
1867 static struct gdbarch *
1868 find_arch_by_info (struct gdbarch_info info)
1869 {
1870 struct gdbarch *new_gdbarch;
1871 struct gdbarch_registration *rego;
1872
1873 /* The existing architecture has been swapped out - all this code
1874 works from a clean slate. */
1875 gdb_assert (current_gdbarch == NULL);
1876
1877 /* Fill in missing parts of the INFO struct using a number of
1878 sources: "set ..."; INFOabfd supplied; and the global
1879 defaults. */
1880 gdbarch_info_fill (&info);
1881
1882 /* Must have found some sort of architecture. */
1883 gdb_assert (info.bfd_arch_info != NULL);
1884
1885 if (gdbarch_debug)
1886 {
1887 fprintf_unfiltered (gdb_stdlog,
1888 "find_arch_by_info: info.bfd_arch_info %s\n",
1889 (info.bfd_arch_info != NULL
1890 ? info.bfd_arch_info->printable_name
1891 : "(null)"));
1892 fprintf_unfiltered (gdb_stdlog,
1893 "find_arch_by_info: info.byte_order %d (%s)\n",
1894 info.byte_order,
1895 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1896 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1897 : "default"));
1898 fprintf_unfiltered (gdb_stdlog,
1899 "find_arch_by_info: info.osabi %d (%s)\n",
1900 info.osabi, gdbarch_osabi_name (info.osabi));
1901 fprintf_unfiltered (gdb_stdlog,
1902 "find_arch_by_info: info.abfd 0x%lx\n",
1903 (long) info.abfd);
1904 fprintf_unfiltered (gdb_stdlog,
1905 "find_arch_by_info: info.tdep_info 0x%lx\n",
1906 (long) info.tdep_info);
1907 }
1908
1909 /* Find the tdep code that knows about this architecture. */
1910 for (rego = gdbarch_registry;
1911 rego != NULL;
1912 rego = rego->next)
1913 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1914 break;
1915 if (rego == NULL)
1916 {
1917 if (gdbarch_debug)
1918 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1919 "No matching architecture\n");
1920 return 0;
1921 }
1922
1923 /* Ask the tdep code for an architecture that matches "info". */
1924 new_gdbarch = rego->init (info, rego->arches);
1925
1926 /* Did the tdep code like it? No. Reject the change and revert to
1927 the old architecture. */
1928 if (new_gdbarch == NULL)
1929 {
1930 if (gdbarch_debug)
1931 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1932 "Target rejected architecture\n");
1933 return NULL;
1934 }
1935
1936 /* Is this a pre-existing architecture (as determined by already
1937 being initialized)? Move it to the front of the architecture
1938 list (keeping the list sorted Most Recently Used). */
1939 if (new_gdbarch->initialized_p)
1940 {
1941 struct gdbarch_list **list;
1942 struct gdbarch_list *this;
1943 if (gdbarch_debug)
1944 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1945 "Previous architecture 0x%08lx (%s) selected\n",
1946 (long) new_gdbarch,
1947 new_gdbarch->bfd_arch_info->printable_name);
1948 /* Find the existing arch in the list. */
1949 for (list = &rego->arches;
1950 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1951 list = &(*list)->next);
1952 /* It had better be in the list of architectures. */
1953 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1954 /* Unlink THIS. */
1955 this = (*list);
1956 (*list) = this->next;
1957 /* Insert THIS at the front. */
1958 this->next = rego->arches;
1959 rego->arches = this;
1960 /* Return it. */
1961 return new_gdbarch;
1962 }
1963
1964 /* It's a new architecture. */
1965 if (gdbarch_debug)
1966 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1967 "New architecture 0x%08lx (%s) selected\n",
1968 (long) new_gdbarch,
1969 new_gdbarch->bfd_arch_info->printable_name);
1970
1971 /* Insert the new architecture into the front of the architecture
1972 list (keep the list sorted Most Recently Used). */
1973 {
1974 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1975 this->next = rego->arches;
1976 this->gdbarch = new_gdbarch;
1977 rego->arches = this;
1978 }
1979
1980 /* Check that the newly installed architecture is valid. Plug in
1981 any post init values. */
1982 new_gdbarch->dump_tdep = rego->dump_tdep;
1983 verify_gdbarch (new_gdbarch);
1984 new_gdbarch->initialized_p = 1;
1985
1986 if (gdbarch_debug)
1987 gdbarch_dump (new_gdbarch, gdb_stdlog);
1988
1989 return new_gdbarch;
1990 }
1991
1992 struct gdbarch *
1993 gdbarch_find_by_info (struct gdbarch_info info)
1994 {
1995 struct gdbarch *new_gdbarch;
1996
1997 /* Save the previously selected architecture, setting the global to
1998 NULL. This stops things like gdbarch->init() trying to use the
1999 previous architecture's configuration. The previous architecture
2000 may not even be of the same architecture family. The most recent
2001 architecture of the same family is found at the head of the
2002 rego->arches list. */
2003 struct gdbarch *old_gdbarch = current_gdbarch;
2004 current_gdbarch = NULL;
2005
2006 /* Find the specified architecture. */
2007 new_gdbarch = find_arch_by_info (info);
2008
2009 /* Restore the existing architecture. */
2010 gdb_assert (current_gdbarch == NULL);
2011 current_gdbarch = old_gdbarch;
2012
2013 return new_gdbarch;
2014 }
2015
2016 /* Make the specified architecture current. */
2017
2018 void
2019 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2020 {
2021 gdb_assert (new_gdbarch != NULL);
2022 gdb_assert (current_gdbarch != NULL);
2023 gdb_assert (new_gdbarch->initialized_p);
2024 current_gdbarch = new_gdbarch;
2025 observer_notify_architecture_changed (new_gdbarch);
2026 registers_changed ();
2027 }
2028
2029 extern void _initialize_gdbarch (void);
2030
2031 void
2032 _initialize_gdbarch (void)
2033 {
2034 struct cmd_list_element *c;
2035
2036 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2037 Set architecture debugging."), _("\\
2038 Show architecture debugging."), _("\\
2039 When non-zero, architecture debugging is enabled."),
2040 NULL,
2041 show_gdbarch_debug,
2042 &setdebuglist, &showdebuglist);
2043 }
2044 EOF
2045
2046 # close things off
2047 exec 1>&2
2048 #../move-if-change new-gdbarch.c gdbarch.c
2049 compare_new gdbarch.c