2012-05-23 Pedro Alves <palves@redhat.com>
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2012 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 if test -n "${garbage_at_eol}"
76 then
77 echo "Garbage at end-of-line in ${line}" 1>&2
78 kill $$
79 exit 1
80 fi
81
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
84 for r in ${read}
85 do
86 if eval test \"\${${r}}\" = \"\ \"
87 then
88 eval ${r}=""
89 fi
90 done
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 case "${class}" in
99 F | V | M )
100 case "${invalid_p}" in
101 "" )
102 if test -n "${predefault}"
103 then
104 #invalid_p="gdbarch->${function} == ${predefault}"
105 predicate="gdbarch->${function} != ${predefault}"
106 elif class_is_variable_p
107 then
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
110 then
111 predicate="gdbarch->${function} != NULL"
112 fi
113 ;;
114 * )
115 echo "Predicate function ${function} with invalid_p." 1>&2
116 kill $$
117 exit 1
118 ;;
119 esac
120 esac
121
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
128
129 if [ -n "${postdefault}" ]
130 then
131 fallbackdefault="${postdefault}"
132 elif [ -n "${predefault}" ]
133 then
134 fallbackdefault="${predefault}"
135 else
136 fallbackdefault="0"
137 fi
138
139 #NOT YET: See gdbarch.log for basic verification of
140 # database
141
142 break
143 fi
144 done
145 if [ -n "${class}" ]
146 then
147 true
148 else
149 false
150 fi
151 }
152
153
154 fallback_default_p ()
155 {
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
158 }
159
160 class_is_variable_p ()
161 {
162 case "${class}" in
163 *v* | *V* ) true ;;
164 * ) false ;;
165 esac
166 }
167
168 class_is_function_p ()
169 {
170 case "${class}" in
171 *f* | *F* | *m* | *M* ) true ;;
172 * ) false ;;
173 esac
174 }
175
176 class_is_multiarch_p ()
177 {
178 case "${class}" in
179 *m* | *M* ) true ;;
180 * ) false ;;
181 esac
182 }
183
184 class_is_predicate_p ()
185 {
186 case "${class}" in
187 *F* | *V* | *M* ) true ;;
188 * ) false ;;
189 esac
190 }
191
192 class_is_info_p ()
193 {
194 case "${class}" in
195 *i* ) true ;;
196 * ) false ;;
197 esac
198 }
199
200
201 # dump out/verify the doco
202 for field in ${read}
203 do
204 case ${field} in
205
206 class ) : ;;
207
208 # # -> line disable
209 # f -> function
210 # hiding a function
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
213 # v -> variable
214 # hiding a variable
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
217 # i -> set from info
218 # hiding something from the ``struct info'' object
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
223
224 returntype ) : ;;
225
226 # For functions, the return type; for variables, the data type
227
228 function ) : ;;
229
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
233
234 formal ) : ;;
235
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
240
241 actual ) : ;;
242
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
246
247 staticdefault ) : ;;
248
249 # To help with the GDB startup a static gdbarch object is
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
253
254 # If STATICDEFAULT is empty, zero is used.
255
256 predefault ) : ;;
257
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
262
263 # If PREDEFAULT is empty, zero is used.
264
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
268
269 # A zero PREDEFAULT function will force the fallback to call
270 # internal_error().
271
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
274
275 postdefault ) : ;;
276
277 # A value to assign to MEMBER of the new gdbarch object should
278 # the target architecture code fail to change the PREDEFAULT
279 # value.
280
281 # If POSTDEFAULT is empty, no post update is performed.
282
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
286
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
290 # PREDEFAULT).
291
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
293
294 # Variable declarations can refer to ``gdbarch'' which
295 # will contain the current architecture. Care should be
296 # taken.
297
298 invalid_p ) : ;;
299
300 # A predicate equation that validates MEMBER. Non-zero is
301 # returned if the code creating the new architecture failed to
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
305 # is called.
306
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
309
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
312
313 # See also PREDEFAULT and POSTDEFAULT.
314
315 print ) : ;;
316
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
319
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
322
323 garbage_at_eol ) : ;;
324
325 # Catches stray fields.
326
327 *)
328 echo "Bad field ${field}"
329 exit 1;;
330 esac
331 done
332
333
334 function_list ()
335 {
336 # See below (DOCO) for description of each field
337 cat <<EOF
338 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
339 #
340 i:int:byte_order:::BFD_ENDIAN_BIG
341 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
342 #
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344 #
345 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
346
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
354 #
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
362 # machine.
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364 # Alignment of a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367
368 # The ABI default bit-size and format for "half", "float", "double", and
369 # "long double". These bit/format pairs should eventually be combined
370 # into a single object. For the moment, just initialize them as a pair.
371 # Each format describes both the big and little endian layouts (if
372 # useful).
373
374 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
376 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
378 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
380 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
381 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
382
383 # For most targets, a pointer on the target and its representation as an
384 # address in GDB have the same size and "look the same". For such a
385 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
386 # / addr_bit will be set from it.
387 #
388 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
389 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390 # gdbarch_address_to_pointer as well.
391 #
392 # ptr_bit is the size of a pointer on the target
393 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
394 # addr_bit is the size of a target address as represented in gdb
395 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
396 #
397 # dwarf2_addr_size is the target address size as used in the Dwarf debug
398 # info. For .debug_frame FDEs, this is supposed to be the target address
399 # size from the associated CU header, and which is equivalent to the
400 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401 # Unfortunately there is no good way to determine this value. Therefore
402 # dwarf2_addr_size simply defaults to the target pointer size.
403 #
404 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405 # defined using the target's pointer size so far.
406 #
407 # Note that dwarf2_addr_size only needs to be redefined by a target if the
408 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409 # and if Dwarf versions < 4 need to be supported.
410 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
411 #
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v:int:char_signed:::1:-1:1
414 #
415 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
417 # Function for getting target's idea of a frame pointer. FIXME: GDB's
418 # whole scheme for dealing with "frames" and "frame pointers" needs a
419 # serious shakedown.
420 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
421 #
422 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
423 # Read a register into a new struct value. If the register is wholly
424 # or partly unavailable, this should call mark_value_bytes_unavailable
425 # as appropriate. If this is defined, then pseudo_register_read will
426 # never be called.
427 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
428 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
429 #
430 v:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:int:num_pseudo_regs:::0:0::0
436
437 # Assemble agent expression bytecode to collect pseudo-register REG.
438 # Return -1 if something goes wrong, 0 otherwise.
439 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
440
441 # Assemble agent expression bytecode to push the value of pseudo-register
442 # REG on the interpreter stack.
443 # Return -1 if something goes wrong, 0 otherwise.
444 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
445
446 # GDB's standard (or well known) register numbers. These can map onto
447 # a real register or a pseudo (computed) register or not be defined at
448 # all (-1).
449 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
450 v:int:sp_regnum:::-1:-1::0
451 v:int:pc_regnum:::-1:-1::0
452 v:int:ps_regnum:::-1:-1::0
453 v:int:fp0_regnum:::0:-1::0
454 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
455 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
456 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
457 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
458 # Convert from an sdb register number to an internal gdb register number.
459 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
460 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
461 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
462 m:const char *:register_name:int regnr:regnr::0
463
464 # Return the type of a register specified by the architecture. Only
465 # the register cache should call this function directly; others should
466 # use "register_type".
467 M:struct type *:register_type:int reg_nr:reg_nr
468
469 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
470 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
472 # deprecated_fp_regnum.
473 v:int:deprecated_fp_regnum:::-1:-1::0
474
475 # See gdbint.texinfo. See infcall.c.
476 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477 v:int:call_dummy_location::::AT_ENTRY_POINT::0
478 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
479
480 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
486 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
488 # setjmp/longjmp support.
489 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
490 #
491 v:int:believe_pcc_promotion:::::::
492 #
493 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
494 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
495 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
496 # Construct a value representing the contents of register REGNUM in
497 # frame FRAME, interpreted as type TYPE. The routine needs to
498 # allocate and return a struct value with all value attributes
499 # (but not the value contents) filled in.
500 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
501 #
502 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
504 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
505
506 # Return the return-value convention that will be used by FUNCTION
507 # to return a value of type VALTYPE. FUNCTION may be NULL in which
508 # case the return convention is computed based only on VALTYPE.
509 #
510 # If READBUF is not NULL, extract the return value and save it in this buffer.
511 #
512 # If WRITEBUF is not NULL, it contains a return value which will be
513 # stored into the appropriate register. This can be used when we want
514 # to force the value returned by a function (see the "return" command
515 # for instance).
516 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
517
518 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
519 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
520 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
521 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
522 # Return the adjusted address and kind to use for Z0/Z1 packets.
523 # KIND is usually the memory length of the breakpoint, but may have a
524 # different target-specific meaning.
525 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
526 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
527 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
528 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
529 v:CORE_ADDR:decr_pc_after_break:::0:::0
530
531 # A function can be addressed by either it's "pointer" (possibly a
532 # descriptor address) or "entry point" (first executable instruction).
533 # The method "convert_from_func_ptr_addr" converting the former to the
534 # latter. gdbarch_deprecated_function_start_offset is being used to implement
535 # a simplified subset of that functionality - the function's address
536 # corresponds to the "function pointer" and the function's start
537 # corresponds to the "function entry point" - and hence is redundant.
538
539 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
540
541 # Return the remote protocol register number associated with this
542 # register. Normally the identity mapping.
543 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
544
545 # Fetch the target specific address used to represent a load module.
546 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
547 #
548 v:CORE_ADDR:frame_args_skip:::0:::0
549 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
550 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
551 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
552 # frame-base. Enable frame-base before frame-unwind.
553 F:int:frame_num_args:struct frame_info *frame:frame
554 #
555 M:CORE_ADDR:frame_align:CORE_ADDR address:address
556 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
557 v:int:frame_red_zone_size
558 #
559 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
560 # On some machines there are bits in addresses which are not really
561 # part of the address, but are used by the kernel, the hardware, etc.
562 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
563 # we get a "real" address such as one would find in a symbol table.
564 # This is used only for addresses of instructions, and even then I'm
565 # not sure it's used in all contexts. It exists to deal with there
566 # being a few stray bits in the PC which would mislead us, not as some
567 # sort of generic thing to handle alignment or segmentation (it's
568 # possible it should be in TARGET_READ_PC instead).
569 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
570 # It is not at all clear why gdbarch_smash_text_address is not folded into
571 # gdbarch_addr_bits_remove.
572 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
573
574 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
575 # indicates if the target needs software single step. An ISA method to
576 # implement it.
577 #
578 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
579 # breakpoints using the breakpoint system instead of blatting memory directly
580 # (as with rs6000).
581 #
582 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
583 # target can single step. If not, then implement single step using breakpoints.
584 #
585 # A return value of 1 means that the software_single_step breakpoints
586 # were inserted; 0 means they were not.
587 F:int:software_single_step:struct frame_info *frame:frame
588
589 # Return non-zero if the processor is executing a delay slot and a
590 # further single-step is needed before the instruction finishes.
591 M:int:single_step_through_delay:struct frame_info *frame:frame
592 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
593 # disassembler. Perhaps objdump can handle it?
594 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
595 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
596
597
598 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
599 # evaluates non-zero, this is the address where the debugger will place
600 # a step-resume breakpoint to get us past the dynamic linker.
601 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
602 # Some systems also have trampoline code for returning from shared libs.
603 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
604
605 # A target might have problems with watchpoints as soon as the stack
606 # frame of the current function has been destroyed. This mostly happens
607 # as the first action in a funtion's epilogue. in_function_epilogue_p()
608 # is defined to return a non-zero value if either the given addr is one
609 # instruction after the stack destroying instruction up to the trailing
610 # return instruction or if we can figure out that the stack frame has
611 # already been invalidated regardless of the value of addr. Targets
612 # which don't suffer from that problem could just let this functionality
613 # untouched.
614 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
615 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
616 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
617 v:int:cannot_step_breakpoint:::0:0::0
618 v:int:have_nonsteppable_watchpoint:::0:0::0
619 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
620 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
621 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
622 # Is a register in a group
623 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
624 # Fetch the pointer to the ith function argument.
625 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
626
627 # Return the appropriate register set for a core file section with
628 # name SECT_NAME and size SECT_SIZE.
629 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
630
631 # Supported register notes in a core file.
632 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
633
634 # Create core file notes
635 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
636
637 # Find core file memory regions
638 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
639
640 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
641 # core file into buffer READBUF with length LEN.
642 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
643
644 # How the core target converts a PTID from a core file to a string.
645 M:char *:core_pid_to_str:ptid_t ptid:ptid
646
647 # BFD target to use when generating a core file.
648 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
649
650 # If the elements of C++ vtables are in-place function descriptors rather
651 # than normal function pointers (which may point to code or a descriptor),
652 # set this to one.
653 v:int:vtable_function_descriptors:::0:0::0
654
655 # Set if the least significant bit of the delta is used instead of the least
656 # significant bit of the pfn for pointers to virtual member functions.
657 v:int:vbit_in_delta:::0:0::0
658
659 # Advance PC to next instruction in order to skip a permanent breakpoint.
660 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
661
662 # The maximum length of an instruction on this architecture in bytes.
663 V:ULONGEST:max_insn_length:::0:0
664
665 # Copy the instruction at FROM to TO, and make any adjustments
666 # necessary to single-step it at that address.
667 #
668 # REGS holds the state the thread's registers will have before
669 # executing the copied instruction; the PC in REGS will refer to FROM,
670 # not the copy at TO. The caller should update it to point at TO later.
671 #
672 # Return a pointer to data of the architecture's choice to be passed
673 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
674 # the instruction's effects have been completely simulated, with the
675 # resulting state written back to REGS.
676 #
677 # For a general explanation of displaced stepping and how GDB uses it,
678 # see the comments in infrun.c.
679 #
680 # The TO area is only guaranteed to have space for
681 # gdbarch_max_insn_length (arch) bytes, so this function must not
682 # write more bytes than that to that area.
683 #
684 # If you do not provide this function, GDB assumes that the
685 # architecture does not support displaced stepping.
686 #
687 # If your architecture doesn't need to adjust instructions before
688 # single-stepping them, consider using simple_displaced_step_copy_insn
689 # here.
690 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
691
692 # Return true if GDB should use hardware single-stepping to execute
693 # the displaced instruction identified by CLOSURE. If false,
694 # GDB will simply restart execution at the displaced instruction
695 # location, and it is up to the target to ensure GDB will receive
696 # control again (e.g. by placing a software breakpoint instruction
697 # into the displaced instruction buffer).
698 #
699 # The default implementation returns false on all targets that
700 # provide a gdbarch_software_single_step routine, and true otherwise.
701 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
702
703 # Fix up the state resulting from successfully single-stepping a
704 # displaced instruction, to give the result we would have gotten from
705 # stepping the instruction in its original location.
706 #
707 # REGS is the register state resulting from single-stepping the
708 # displaced instruction.
709 #
710 # CLOSURE is the result from the matching call to
711 # gdbarch_displaced_step_copy_insn.
712 #
713 # If you provide gdbarch_displaced_step_copy_insn.but not this
714 # function, then GDB assumes that no fixup is needed after
715 # single-stepping the instruction.
716 #
717 # For a general explanation of displaced stepping and how GDB uses it,
718 # see the comments in infrun.c.
719 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
720
721 # Free a closure returned by gdbarch_displaced_step_copy_insn.
722 #
723 # If you provide gdbarch_displaced_step_copy_insn, you must provide
724 # this function as well.
725 #
726 # If your architecture uses closures that don't need to be freed, then
727 # you can use simple_displaced_step_free_closure here.
728 #
729 # For a general explanation of displaced stepping and how GDB uses it,
730 # see the comments in infrun.c.
731 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
732
733 # Return the address of an appropriate place to put displaced
734 # instructions while we step over them. There need only be one such
735 # place, since we're only stepping one thread over a breakpoint at a
736 # time.
737 #
738 # For a general explanation of displaced stepping and how GDB uses it,
739 # see the comments in infrun.c.
740 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
741
742 # Relocate an instruction to execute at a different address. OLDLOC
743 # is the address in the inferior memory where the instruction to
744 # relocate is currently at. On input, TO points to the destination
745 # where we want the instruction to be copied (and possibly adjusted)
746 # to. On output, it points to one past the end of the resulting
747 # instruction(s). The effect of executing the instruction at TO shall
748 # be the same as if executing it at FROM. For example, call
749 # instructions that implicitly push the return address on the stack
750 # should be adjusted to return to the instruction after OLDLOC;
751 # relative branches, and other PC-relative instructions need the
752 # offset adjusted; etc.
753 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
754
755 # Refresh overlay mapped state for section OSECT.
756 F:void:overlay_update:struct obj_section *osect:osect
757
758 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
759
760 # Handle special encoding of static variables in stabs debug info.
761 F:const char *:static_transform_name:const char *name:name
762 # Set if the address in N_SO or N_FUN stabs may be zero.
763 v:int:sofun_address_maybe_missing:::0:0::0
764
765 # Parse the instruction at ADDR storing in the record execution log
766 # the registers REGCACHE and memory ranges that will be affected when
767 # the instruction executes, along with their current values.
768 # Return -1 if something goes wrong, 0 otherwise.
769 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
770
771 # Save process state after a signal.
772 # Return -1 if something goes wrong, 0 otherwise.
773 M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
774
775 # Signal translation: translate inferior's signal (host's) number into
776 # GDB's representation.
777 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
778
779 # Extra signal info inspection.
780 #
781 # Return a type suitable to inspect extra signal information.
782 M:struct type *:get_siginfo_type:void:
783
784 # Record architecture-specific information from the symbol table.
785 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
786
787 # Function for the 'catch syscall' feature.
788
789 # Get architecture-specific system calls information from registers.
790 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
791
792 # SystemTap related fields and functions.
793
794 # Prefix used to mark an integer constant on the architecture's assembly
795 # For example, on x86 integer constants are written as:
796 #
797 # \$10 ;; integer constant 10
798 #
799 # in this case, this prefix would be the character \`\$\'.
800 v:const char *:stap_integer_prefix:::0:0::0:gdbarch->stap_integer_prefix
801
802 # Suffix used to mark an integer constant on the architecture's assembly.
803 v:const char *:stap_integer_suffix:::0:0::0:gdbarch->stap_integer_suffix
804
805 # Prefix used to mark a register name on the architecture's assembly.
806 # For example, on x86 the register name is written as:
807 #
808 # \%eax ;; register eax
809 #
810 # in this case, this prefix would be the character \`\%\'.
811 v:const char *:stap_register_prefix:::0:0::0:gdbarch->stap_register_prefix
812
813 # Suffix used to mark a register name on the architecture's assembly
814 v:const char *:stap_register_suffix:::0:0::0:gdbarch->stap_register_suffix
815
816 # Prefix used to mark a register indirection on the architecture's assembly.
817 # For example, on x86 the register indirection is written as:
818 #
819 # \(\%eax\) ;; indirecting eax
820 #
821 # in this case, this prefix would be the charater \`\(\'.
822 #
823 # Please note that we use the indirection prefix also for register
824 # displacement, e.g., \`4\(\%eax\)\' on x86.
825 v:const char *:stap_register_indirection_prefix:::0:0::0:gdbarch->stap_register_indirection_prefix
826
827 # Suffix used to mark a register indirection on the architecture's assembly.
828 # For example, on x86 the register indirection is written as:
829 #
830 # \(\%eax\) ;; indirecting eax
831 #
832 # in this case, this prefix would be the charater \`\)\'.
833 #
834 # Please note that we use the indirection suffix also for register
835 # displacement, e.g., \`4\(\%eax\)\' on x86.
836 v:const char *:stap_register_indirection_suffix:::0:0::0:gdbarch->stap_register_indirection_suffix
837
838 # Prefix used to name a register using GDB's nomenclature.
839 #
840 # For example, on PPC a register is represented by a number in the assembly
841 # language (e.g., \`10\' is the 10th general-purpose register). However,
842 # inside GDB this same register has an \`r\' appended to its name, so the 10th
843 # register would be represented as \`r10\' internally.
844 v:const char *:stap_gdb_register_prefix:::0:0::0:gdbarch->stap_gdb_register_prefix
845
846 # Suffix used to name a register using GDB's nomenclature.
847 v:const char *:stap_gdb_register_suffix:::0:0::0:gdbarch->stap_gdb_register_suffix
848
849 # Check if S is a single operand.
850 #
851 # Single operands can be:
852 # \- Literal integers, e.g. \`\$10\' on x86
853 # \- Register access, e.g. \`\%eax\' on x86
854 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
855 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
856 #
857 # This function should check for these patterns on the string
858 # and return 1 if some were found, or zero otherwise. Please try to match
859 # as much info as you can from the string, i.e., if you have to match
860 # something like \`\(\%\', do not match just the \`\(\'.
861 M:int:stap_is_single_operand:const char *s:s
862
863 # Function used to handle a "special case" in the parser.
864 #
865 # A "special case" is considered to be an unknown token, i.e., a token
866 # that the parser does not know how to parse. A good example of special
867 # case would be ARM's register displacement syntax:
868 #
869 # [R0, #4] ;; displacing R0 by 4
870 #
871 # Since the parser assumes that a register displacement is of the form:
872 #
873 # <number> <indirection_prefix> <register_name> <indirection_suffix>
874 #
875 # it means that it will not be able to recognize and parse this odd syntax.
876 # Therefore, we should add a special case function that will handle this token.
877 #
878 # This function should generate the proper expression form of the expression
879 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
880 # and so on). It should also return 1 if the parsing was successful, or zero
881 # if the token was not recognized as a special token (in this case, returning
882 # zero means that the special parser is deferring the parsing to the generic
883 # parser), and should advance the buffer pointer (p->arg).
884 M:int:stap_parse_special_token:struct stap_parse_info *p:p
885
886
887 # True if the list of shared libraries is one and only for all
888 # processes, as opposed to a list of shared libraries per inferior.
889 # This usually means that all processes, although may or may not share
890 # an address space, will see the same set of symbols at the same
891 # addresses.
892 v:int:has_global_solist:::0:0::0
893
894 # On some targets, even though each inferior has its own private
895 # address space, the debug interface takes care of making breakpoints
896 # visible to all address spaces automatically. For such cases,
897 # this property should be set to true.
898 v:int:has_global_breakpoints:::0:0::0
899
900 # True if inferiors share an address space (e.g., uClinux).
901 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
902
903 # True if a fast tracepoint can be set at an address.
904 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
905
906 # Return the "auto" target charset.
907 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
908 # Return the "auto" target wide charset.
909 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
910
911 # If non-empty, this is a file extension that will be opened in place
912 # of the file extension reported by the shared library list.
913 #
914 # This is most useful for toolchains that use a post-linker tool,
915 # where the names of the files run on the target differ in extension
916 # compared to the names of the files GDB should load for debug info.
917 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
918
919 # If true, the target OS has DOS-based file system semantics. That
920 # is, absolute paths include a drive name, and the backslash is
921 # considered a directory separator.
922 v:int:has_dos_based_file_system:::0:0::0
923
924 # Generate bytecodes to collect the return address in a frame.
925 # Since the bytecodes run on the target, possibly with GDB not even
926 # connected, the full unwinding machinery is not available, and
927 # typically this function will issue bytecodes for one or more likely
928 # places that the return address may be found.
929 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
930
931 # Implement the "info proc" command.
932 M:void:info_proc:char *args, enum info_proc_what what:args, what
933
934 EOF
935 }
936
937 #
938 # The .log file
939 #
940 exec > new-gdbarch.log
941 function_list | while do_read
942 do
943 cat <<EOF
944 ${class} ${returntype} ${function} ($formal)
945 EOF
946 for r in ${read}
947 do
948 eval echo \"\ \ \ \ ${r}=\${${r}}\"
949 done
950 if class_is_predicate_p && fallback_default_p
951 then
952 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
953 kill $$
954 exit 1
955 fi
956 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
957 then
958 echo "Error: postdefault is useless when invalid_p=0" 1>&2
959 kill $$
960 exit 1
961 fi
962 if class_is_multiarch_p
963 then
964 if class_is_predicate_p ; then :
965 elif test "x${predefault}" = "x"
966 then
967 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
968 kill $$
969 exit 1
970 fi
971 fi
972 echo ""
973 done
974
975 exec 1>&2
976 compare_new gdbarch.log
977
978
979 copyright ()
980 {
981 cat <<EOF
982 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
983
984 /* Dynamic architecture support for GDB, the GNU debugger.
985
986 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
987 2007, 2008, 2009 Free Software Foundation, Inc.
988
989 This file is part of GDB.
990
991 This program is free software; you can redistribute it and/or modify
992 it under the terms of the GNU General Public License as published by
993 the Free Software Foundation; either version 3 of the License, or
994 (at your option) any later version.
995
996 This program is distributed in the hope that it will be useful,
997 but WITHOUT ANY WARRANTY; without even the implied warranty of
998 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
999 GNU General Public License for more details.
1000
1001 You should have received a copy of the GNU General Public License
1002 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1003
1004 /* This file was created with the aid of \`\`gdbarch.sh''.
1005
1006 The Bourne shell script \`\`gdbarch.sh'' creates the files
1007 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1008 against the existing \`\`gdbarch.[hc]''. Any differences found
1009 being reported.
1010
1011 If editing this file, please also run gdbarch.sh and merge any
1012 changes into that script. Conversely, when making sweeping changes
1013 to this file, modifying gdbarch.sh and using its output may prove
1014 easier. */
1015
1016 EOF
1017 }
1018
1019 #
1020 # The .h file
1021 #
1022
1023 exec > new-gdbarch.h
1024 copyright
1025 cat <<EOF
1026 #ifndef GDBARCH_H
1027 #define GDBARCH_H
1028
1029 struct floatformat;
1030 struct ui_file;
1031 struct frame_info;
1032 struct value;
1033 struct objfile;
1034 struct obj_section;
1035 struct minimal_symbol;
1036 struct regcache;
1037 struct reggroup;
1038 struct regset;
1039 struct disassemble_info;
1040 struct target_ops;
1041 struct obstack;
1042 struct bp_target_info;
1043 struct target_desc;
1044 struct displaced_step_closure;
1045 struct core_regset_section;
1046 struct syscall;
1047 struct agent_expr;
1048 struct axs_value;
1049 struct stap_parse_info;
1050
1051 /* The architecture associated with the connection to the target.
1052
1053 The architecture vector provides some information that is really
1054 a property of the target: The layout of certain packets, for instance;
1055 or the solib_ops vector. Etc. To differentiate architecture accesses
1056 to per-target properties from per-thread/per-frame/per-objfile properties,
1057 accesses to per-target properties should be made through target_gdbarch.
1058
1059 Eventually, when support for multiple targets is implemented in
1060 GDB, this global should be made target-specific. */
1061 extern struct gdbarch *target_gdbarch;
1062 EOF
1063
1064 # function typedef's
1065 printf "\n"
1066 printf "\n"
1067 printf "/* The following are pre-initialized by GDBARCH. */\n"
1068 function_list | while do_read
1069 do
1070 if class_is_info_p
1071 then
1072 printf "\n"
1073 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1074 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1075 fi
1076 done
1077
1078 # function typedef's
1079 printf "\n"
1080 printf "\n"
1081 printf "/* The following are initialized by the target dependent code. */\n"
1082 function_list | while do_read
1083 do
1084 if [ -n "${comment}" ]
1085 then
1086 echo "${comment}" | sed \
1087 -e '2 s,#,/*,' \
1088 -e '3,$ s,#, ,' \
1089 -e '$ s,$, */,'
1090 fi
1091
1092 if class_is_predicate_p
1093 then
1094 printf "\n"
1095 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1096 fi
1097 if class_is_variable_p
1098 then
1099 printf "\n"
1100 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1101 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1102 fi
1103 if class_is_function_p
1104 then
1105 printf "\n"
1106 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1107 then
1108 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1109 elif class_is_multiarch_p
1110 then
1111 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1112 else
1113 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1114 fi
1115 if [ "x${formal}" = "xvoid" ]
1116 then
1117 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1118 else
1119 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1120 fi
1121 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1122 fi
1123 done
1124
1125 # close it off
1126 cat <<EOF
1127
1128 /* Definition for an unknown syscall, used basically in error-cases. */
1129 #define UNKNOWN_SYSCALL (-1)
1130
1131 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1132
1133
1134 /* Mechanism for co-ordinating the selection of a specific
1135 architecture.
1136
1137 GDB targets (*-tdep.c) can register an interest in a specific
1138 architecture. Other GDB components can register a need to maintain
1139 per-architecture data.
1140
1141 The mechanisms below ensures that there is only a loose connection
1142 between the set-architecture command and the various GDB
1143 components. Each component can independently register their need
1144 to maintain architecture specific data with gdbarch.
1145
1146 Pragmatics:
1147
1148 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1149 didn't scale.
1150
1151 The more traditional mega-struct containing architecture specific
1152 data for all the various GDB components was also considered. Since
1153 GDB is built from a variable number of (fairly independent)
1154 components it was determined that the global aproach was not
1155 applicable. */
1156
1157
1158 /* Register a new architectural family with GDB.
1159
1160 Register support for the specified ARCHITECTURE with GDB. When
1161 gdbarch determines that the specified architecture has been
1162 selected, the corresponding INIT function is called.
1163
1164 --
1165
1166 The INIT function takes two parameters: INFO which contains the
1167 information available to gdbarch about the (possibly new)
1168 architecture; ARCHES which is a list of the previously created
1169 \`\`struct gdbarch'' for this architecture.
1170
1171 The INFO parameter is, as far as possible, be pre-initialized with
1172 information obtained from INFO.ABFD or the global defaults.
1173
1174 The ARCHES parameter is a linked list (sorted most recently used)
1175 of all the previously created architures for this architecture
1176 family. The (possibly NULL) ARCHES->gdbarch can used to access
1177 values from the previously selected architecture for this
1178 architecture family.
1179
1180 The INIT function shall return any of: NULL - indicating that it
1181 doesn't recognize the selected architecture; an existing \`\`struct
1182 gdbarch'' from the ARCHES list - indicating that the new
1183 architecture is just a synonym for an earlier architecture (see
1184 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1185 - that describes the selected architecture (see gdbarch_alloc()).
1186
1187 The DUMP_TDEP function shall print out all target specific values.
1188 Care should be taken to ensure that the function works in both the
1189 multi-arch and non- multi-arch cases. */
1190
1191 struct gdbarch_list
1192 {
1193 struct gdbarch *gdbarch;
1194 struct gdbarch_list *next;
1195 };
1196
1197 struct gdbarch_info
1198 {
1199 /* Use default: NULL (ZERO). */
1200 const struct bfd_arch_info *bfd_arch_info;
1201
1202 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1203 int byte_order;
1204
1205 int byte_order_for_code;
1206
1207 /* Use default: NULL (ZERO). */
1208 bfd *abfd;
1209
1210 /* Use default: NULL (ZERO). */
1211 struct gdbarch_tdep_info *tdep_info;
1212
1213 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1214 enum gdb_osabi osabi;
1215
1216 /* Use default: NULL (ZERO). */
1217 const struct target_desc *target_desc;
1218 };
1219
1220 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1221 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1222
1223 /* DEPRECATED - use gdbarch_register() */
1224 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1225
1226 extern void gdbarch_register (enum bfd_architecture architecture,
1227 gdbarch_init_ftype *,
1228 gdbarch_dump_tdep_ftype *);
1229
1230
1231 /* Return a freshly allocated, NULL terminated, array of the valid
1232 architecture names. Since architectures are registered during the
1233 _initialize phase this function only returns useful information
1234 once initialization has been completed. */
1235
1236 extern const char **gdbarch_printable_names (void);
1237
1238
1239 /* Helper function. Search the list of ARCHES for a GDBARCH that
1240 matches the information provided by INFO. */
1241
1242 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1243
1244
1245 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1246 basic initialization using values obtained from the INFO and TDEP
1247 parameters. set_gdbarch_*() functions are called to complete the
1248 initialization of the object. */
1249
1250 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1251
1252
1253 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1254 It is assumed that the caller freeds the \`\`struct
1255 gdbarch_tdep''. */
1256
1257 extern void gdbarch_free (struct gdbarch *);
1258
1259
1260 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1261 obstack. The memory is freed when the corresponding architecture
1262 is also freed. */
1263
1264 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1265 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1266 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1267
1268
1269 /* Helper function. Force an update of the current architecture.
1270
1271 The actual architecture selected is determined by INFO, \`\`(gdb) set
1272 architecture'' et.al., the existing architecture and BFD's default
1273 architecture. INFO should be initialized to zero and then selected
1274 fields should be updated.
1275
1276 Returns non-zero if the update succeeds. */
1277
1278 extern int gdbarch_update_p (struct gdbarch_info info);
1279
1280
1281 /* Helper function. Find an architecture matching info.
1282
1283 INFO should be initialized using gdbarch_info_init, relevant fields
1284 set, and then finished using gdbarch_info_fill.
1285
1286 Returns the corresponding architecture, or NULL if no matching
1287 architecture was found. */
1288
1289 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1290
1291
1292 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1293
1294 FIXME: kettenis/20031124: Of the functions that follow, only
1295 gdbarch_from_bfd is supposed to survive. The others will
1296 dissappear since in the future GDB will (hopefully) be truly
1297 multi-arch. However, for now we're still stuck with the concept of
1298 a single active architecture. */
1299
1300 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1301
1302
1303 /* Register per-architecture data-pointer.
1304
1305 Reserve space for a per-architecture data-pointer. An identifier
1306 for the reserved data-pointer is returned. That identifer should
1307 be saved in a local static variable.
1308
1309 Memory for the per-architecture data shall be allocated using
1310 gdbarch_obstack_zalloc. That memory will be deleted when the
1311 corresponding architecture object is deleted.
1312
1313 When a previously created architecture is re-selected, the
1314 per-architecture data-pointer for that previous architecture is
1315 restored. INIT() is not re-called.
1316
1317 Multiple registrarants for any architecture are allowed (and
1318 strongly encouraged). */
1319
1320 struct gdbarch_data;
1321
1322 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1323 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1324 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1325 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1326 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1327 struct gdbarch_data *data,
1328 void *pointer);
1329
1330 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1331
1332
1333 /* Set the dynamic target-system-dependent parameters (architecture,
1334 byte-order, ...) using information found in the BFD. */
1335
1336 extern void set_gdbarch_from_file (bfd *);
1337
1338
1339 /* Initialize the current architecture to the "first" one we find on
1340 our list. */
1341
1342 extern void initialize_current_architecture (void);
1343
1344 /* gdbarch trace variable */
1345 extern int gdbarch_debug;
1346
1347 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1348
1349 #endif
1350 EOF
1351 exec 1>&2
1352 #../move-if-change new-gdbarch.h gdbarch.h
1353 compare_new gdbarch.h
1354
1355
1356 #
1357 # C file
1358 #
1359
1360 exec > new-gdbarch.c
1361 copyright
1362 cat <<EOF
1363
1364 #include "defs.h"
1365 #include "arch-utils.h"
1366
1367 #include "gdbcmd.h"
1368 #include "inferior.h"
1369 #include "symcat.h"
1370
1371 #include "floatformat.h"
1372
1373 #include "gdb_assert.h"
1374 #include "gdb_string.h"
1375 #include "reggroups.h"
1376 #include "osabi.h"
1377 #include "gdb_obstack.h"
1378 #include "observer.h"
1379 #include "regcache.h"
1380
1381 /* Static function declarations */
1382
1383 static void alloc_gdbarch_data (struct gdbarch *);
1384
1385 /* Non-zero if we want to trace architecture code. */
1386
1387 #ifndef GDBARCH_DEBUG
1388 #define GDBARCH_DEBUG 0
1389 #endif
1390 int gdbarch_debug = GDBARCH_DEBUG;
1391 static void
1392 show_gdbarch_debug (struct ui_file *file, int from_tty,
1393 struct cmd_list_element *c, const char *value)
1394 {
1395 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1396 }
1397
1398 static const char *
1399 pformat (const struct floatformat **format)
1400 {
1401 if (format == NULL)
1402 return "(null)";
1403 else
1404 /* Just print out one of them - this is only for diagnostics. */
1405 return format[0]->name;
1406 }
1407
1408 static const char *
1409 pstring (const char *string)
1410 {
1411 if (string == NULL)
1412 return "(null)";
1413 return string;
1414 }
1415
1416 EOF
1417
1418 # gdbarch open the gdbarch object
1419 printf "\n"
1420 printf "/* Maintain the struct gdbarch object. */\n"
1421 printf "\n"
1422 printf "struct gdbarch\n"
1423 printf "{\n"
1424 printf " /* Has this architecture been fully initialized? */\n"
1425 printf " int initialized_p;\n"
1426 printf "\n"
1427 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1428 printf " struct obstack *obstack;\n"
1429 printf "\n"
1430 printf " /* basic architectural information. */\n"
1431 function_list | while do_read
1432 do
1433 if class_is_info_p
1434 then
1435 printf " ${returntype} ${function};\n"
1436 fi
1437 done
1438 printf "\n"
1439 printf " /* target specific vector. */\n"
1440 printf " struct gdbarch_tdep *tdep;\n"
1441 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1442 printf "\n"
1443 printf " /* per-architecture data-pointers. */\n"
1444 printf " unsigned nr_data;\n"
1445 printf " void **data;\n"
1446 printf "\n"
1447 printf " /* per-architecture swap-regions. */\n"
1448 printf " struct gdbarch_swap *swap;\n"
1449 printf "\n"
1450 cat <<EOF
1451 /* Multi-arch values.
1452
1453 When extending this structure you must:
1454
1455 Add the field below.
1456
1457 Declare set/get functions and define the corresponding
1458 macro in gdbarch.h.
1459
1460 gdbarch_alloc(): If zero/NULL is not a suitable default,
1461 initialize the new field.
1462
1463 verify_gdbarch(): Confirm that the target updated the field
1464 correctly.
1465
1466 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1467 field is dumped out
1468
1469 \`\`startup_gdbarch()'': Append an initial value to the static
1470 variable (base values on the host's c-type system).
1471
1472 get_gdbarch(): Implement the set/get functions (probably using
1473 the macro's as shortcuts).
1474
1475 */
1476
1477 EOF
1478 function_list | while do_read
1479 do
1480 if class_is_variable_p
1481 then
1482 printf " ${returntype} ${function};\n"
1483 elif class_is_function_p
1484 then
1485 printf " gdbarch_${function}_ftype *${function};\n"
1486 fi
1487 done
1488 printf "};\n"
1489
1490 # A pre-initialized vector
1491 printf "\n"
1492 printf "\n"
1493 cat <<EOF
1494 /* The default architecture uses host values (for want of a better
1495 choice). */
1496 EOF
1497 printf "\n"
1498 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1499 printf "\n"
1500 printf "struct gdbarch startup_gdbarch =\n"
1501 printf "{\n"
1502 printf " 1, /* Always initialized. */\n"
1503 printf " NULL, /* The obstack. */\n"
1504 printf " /* basic architecture information. */\n"
1505 function_list | while do_read
1506 do
1507 if class_is_info_p
1508 then
1509 printf " ${staticdefault}, /* ${function} */\n"
1510 fi
1511 done
1512 cat <<EOF
1513 /* target specific vector and its dump routine. */
1514 NULL, NULL,
1515 /*per-architecture data-pointers and swap regions. */
1516 0, NULL, NULL,
1517 /* Multi-arch values */
1518 EOF
1519 function_list | while do_read
1520 do
1521 if class_is_function_p || class_is_variable_p
1522 then
1523 printf " ${staticdefault}, /* ${function} */\n"
1524 fi
1525 done
1526 cat <<EOF
1527 /* startup_gdbarch() */
1528 };
1529
1530 struct gdbarch *target_gdbarch = &startup_gdbarch;
1531 EOF
1532
1533 # Create a new gdbarch struct
1534 cat <<EOF
1535
1536 /* Create a new \`\`struct gdbarch'' based on information provided by
1537 \`\`struct gdbarch_info''. */
1538 EOF
1539 printf "\n"
1540 cat <<EOF
1541 struct gdbarch *
1542 gdbarch_alloc (const struct gdbarch_info *info,
1543 struct gdbarch_tdep *tdep)
1544 {
1545 struct gdbarch *gdbarch;
1546
1547 /* Create an obstack for allocating all the per-architecture memory,
1548 then use that to allocate the architecture vector. */
1549 struct obstack *obstack = XMALLOC (struct obstack);
1550 obstack_init (obstack);
1551 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1552 memset (gdbarch, 0, sizeof (*gdbarch));
1553 gdbarch->obstack = obstack;
1554
1555 alloc_gdbarch_data (gdbarch);
1556
1557 gdbarch->tdep = tdep;
1558 EOF
1559 printf "\n"
1560 function_list | while do_read
1561 do
1562 if class_is_info_p
1563 then
1564 printf " gdbarch->${function} = info->${function};\n"
1565 fi
1566 done
1567 printf "\n"
1568 printf " /* Force the explicit initialization of these. */\n"
1569 function_list | while do_read
1570 do
1571 if class_is_function_p || class_is_variable_p
1572 then
1573 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1574 then
1575 printf " gdbarch->${function} = ${predefault};\n"
1576 fi
1577 fi
1578 done
1579 cat <<EOF
1580 /* gdbarch_alloc() */
1581
1582 return gdbarch;
1583 }
1584 EOF
1585
1586 # Free a gdbarch struct.
1587 printf "\n"
1588 printf "\n"
1589 cat <<EOF
1590 /* Allocate extra space using the per-architecture obstack. */
1591
1592 void *
1593 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1594 {
1595 void *data = obstack_alloc (arch->obstack, size);
1596
1597 memset (data, 0, size);
1598 return data;
1599 }
1600
1601
1602 /* Free a gdbarch struct. This should never happen in normal
1603 operation --- once you've created a gdbarch, you keep it around.
1604 However, if an architecture's init function encounters an error
1605 building the structure, it may need to clean up a partially
1606 constructed gdbarch. */
1607
1608 void
1609 gdbarch_free (struct gdbarch *arch)
1610 {
1611 struct obstack *obstack;
1612
1613 gdb_assert (arch != NULL);
1614 gdb_assert (!arch->initialized_p);
1615 obstack = arch->obstack;
1616 obstack_free (obstack, 0); /* Includes the ARCH. */
1617 xfree (obstack);
1618 }
1619 EOF
1620
1621 # verify a new architecture
1622 cat <<EOF
1623
1624
1625 /* Ensure that all values in a GDBARCH are reasonable. */
1626
1627 static void
1628 verify_gdbarch (struct gdbarch *gdbarch)
1629 {
1630 struct ui_file *log;
1631 struct cleanup *cleanups;
1632 long length;
1633 char *buf;
1634
1635 log = mem_fileopen ();
1636 cleanups = make_cleanup_ui_file_delete (log);
1637 /* fundamental */
1638 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1639 fprintf_unfiltered (log, "\n\tbyte-order");
1640 if (gdbarch->bfd_arch_info == NULL)
1641 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1642 /* Check those that need to be defined for the given multi-arch level. */
1643 EOF
1644 function_list | while do_read
1645 do
1646 if class_is_function_p || class_is_variable_p
1647 then
1648 if [ "x${invalid_p}" = "x0" ]
1649 then
1650 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1651 elif class_is_predicate_p
1652 then
1653 printf " /* Skip verify of ${function}, has predicate. */\n"
1654 # FIXME: See do_read for potential simplification
1655 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1656 then
1657 printf " if (${invalid_p})\n"
1658 printf " gdbarch->${function} = ${postdefault};\n"
1659 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1660 then
1661 printf " if (gdbarch->${function} == ${predefault})\n"
1662 printf " gdbarch->${function} = ${postdefault};\n"
1663 elif [ -n "${postdefault}" ]
1664 then
1665 printf " if (gdbarch->${function} == 0)\n"
1666 printf " gdbarch->${function} = ${postdefault};\n"
1667 elif [ -n "${invalid_p}" ]
1668 then
1669 printf " if (${invalid_p})\n"
1670 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1671 elif [ -n "${predefault}" ]
1672 then
1673 printf " if (gdbarch->${function} == ${predefault})\n"
1674 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1675 fi
1676 fi
1677 done
1678 cat <<EOF
1679 buf = ui_file_xstrdup (log, &length);
1680 make_cleanup (xfree, buf);
1681 if (length > 0)
1682 internal_error (__FILE__, __LINE__,
1683 _("verify_gdbarch: the following are invalid ...%s"),
1684 buf);
1685 do_cleanups (cleanups);
1686 }
1687 EOF
1688
1689 # dump the structure
1690 printf "\n"
1691 printf "\n"
1692 cat <<EOF
1693 /* Print out the details of the current architecture. */
1694
1695 void
1696 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1697 {
1698 const char *gdb_nm_file = "<not-defined>";
1699
1700 #if defined (GDB_NM_FILE)
1701 gdb_nm_file = GDB_NM_FILE;
1702 #endif
1703 fprintf_unfiltered (file,
1704 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1705 gdb_nm_file);
1706 EOF
1707 function_list | sort -t: -k 3 | while do_read
1708 do
1709 # First the predicate
1710 if class_is_predicate_p
1711 then
1712 printf " fprintf_unfiltered (file,\n"
1713 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1714 printf " gdbarch_${function}_p (gdbarch));\n"
1715 fi
1716 # Print the corresponding value.
1717 if class_is_function_p
1718 then
1719 printf " fprintf_unfiltered (file,\n"
1720 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1721 printf " host_address_to_string (gdbarch->${function}));\n"
1722 else
1723 # It is a variable
1724 case "${print}:${returntype}" in
1725 :CORE_ADDR )
1726 fmt="%s"
1727 print="core_addr_to_string_nz (gdbarch->${function})"
1728 ;;
1729 :* )
1730 fmt="%s"
1731 print="plongest (gdbarch->${function})"
1732 ;;
1733 * )
1734 fmt="%s"
1735 ;;
1736 esac
1737 printf " fprintf_unfiltered (file,\n"
1738 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1739 printf " ${print});\n"
1740 fi
1741 done
1742 cat <<EOF
1743 if (gdbarch->dump_tdep != NULL)
1744 gdbarch->dump_tdep (gdbarch, file);
1745 }
1746 EOF
1747
1748
1749 # GET/SET
1750 printf "\n"
1751 cat <<EOF
1752 struct gdbarch_tdep *
1753 gdbarch_tdep (struct gdbarch *gdbarch)
1754 {
1755 if (gdbarch_debug >= 2)
1756 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1757 return gdbarch->tdep;
1758 }
1759 EOF
1760 printf "\n"
1761 function_list | while do_read
1762 do
1763 if class_is_predicate_p
1764 then
1765 printf "\n"
1766 printf "int\n"
1767 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1768 printf "{\n"
1769 printf " gdb_assert (gdbarch != NULL);\n"
1770 printf " return ${predicate};\n"
1771 printf "}\n"
1772 fi
1773 if class_is_function_p
1774 then
1775 printf "\n"
1776 printf "${returntype}\n"
1777 if [ "x${formal}" = "xvoid" ]
1778 then
1779 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1780 else
1781 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1782 fi
1783 printf "{\n"
1784 printf " gdb_assert (gdbarch != NULL);\n"
1785 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1786 if class_is_predicate_p && test -n "${predefault}"
1787 then
1788 # Allow a call to a function with a predicate.
1789 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1790 fi
1791 printf " if (gdbarch_debug >= 2)\n"
1792 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1793 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1794 then
1795 if class_is_multiarch_p
1796 then
1797 params="gdbarch"
1798 else
1799 params=""
1800 fi
1801 else
1802 if class_is_multiarch_p
1803 then
1804 params="gdbarch, ${actual}"
1805 else
1806 params="${actual}"
1807 fi
1808 fi
1809 if [ "x${returntype}" = "xvoid" ]
1810 then
1811 printf " gdbarch->${function} (${params});\n"
1812 else
1813 printf " return gdbarch->${function} (${params});\n"
1814 fi
1815 printf "}\n"
1816 printf "\n"
1817 printf "void\n"
1818 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1819 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1820 printf "{\n"
1821 printf " gdbarch->${function} = ${function};\n"
1822 printf "}\n"
1823 elif class_is_variable_p
1824 then
1825 printf "\n"
1826 printf "${returntype}\n"
1827 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1828 printf "{\n"
1829 printf " gdb_assert (gdbarch != NULL);\n"
1830 if [ "x${invalid_p}" = "x0" ]
1831 then
1832 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1833 elif [ -n "${invalid_p}" ]
1834 then
1835 printf " /* Check variable is valid. */\n"
1836 printf " gdb_assert (!(${invalid_p}));\n"
1837 elif [ -n "${predefault}" ]
1838 then
1839 printf " /* Check variable changed from pre-default. */\n"
1840 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1841 fi
1842 printf " if (gdbarch_debug >= 2)\n"
1843 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1844 printf " return gdbarch->${function};\n"
1845 printf "}\n"
1846 printf "\n"
1847 printf "void\n"
1848 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1849 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1850 printf "{\n"
1851 printf " gdbarch->${function} = ${function};\n"
1852 printf "}\n"
1853 elif class_is_info_p
1854 then
1855 printf "\n"
1856 printf "${returntype}\n"
1857 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1858 printf "{\n"
1859 printf " gdb_assert (gdbarch != NULL);\n"
1860 printf " if (gdbarch_debug >= 2)\n"
1861 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1862 printf " return gdbarch->${function};\n"
1863 printf "}\n"
1864 fi
1865 done
1866
1867 # All the trailing guff
1868 cat <<EOF
1869
1870
1871 /* Keep a registry of per-architecture data-pointers required by GDB
1872 modules. */
1873
1874 struct gdbarch_data
1875 {
1876 unsigned index;
1877 int init_p;
1878 gdbarch_data_pre_init_ftype *pre_init;
1879 gdbarch_data_post_init_ftype *post_init;
1880 };
1881
1882 struct gdbarch_data_registration
1883 {
1884 struct gdbarch_data *data;
1885 struct gdbarch_data_registration *next;
1886 };
1887
1888 struct gdbarch_data_registry
1889 {
1890 unsigned nr;
1891 struct gdbarch_data_registration *registrations;
1892 };
1893
1894 struct gdbarch_data_registry gdbarch_data_registry =
1895 {
1896 0, NULL,
1897 };
1898
1899 static struct gdbarch_data *
1900 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1901 gdbarch_data_post_init_ftype *post_init)
1902 {
1903 struct gdbarch_data_registration **curr;
1904
1905 /* Append the new registration. */
1906 for (curr = &gdbarch_data_registry.registrations;
1907 (*curr) != NULL;
1908 curr = &(*curr)->next);
1909 (*curr) = XMALLOC (struct gdbarch_data_registration);
1910 (*curr)->next = NULL;
1911 (*curr)->data = XMALLOC (struct gdbarch_data);
1912 (*curr)->data->index = gdbarch_data_registry.nr++;
1913 (*curr)->data->pre_init = pre_init;
1914 (*curr)->data->post_init = post_init;
1915 (*curr)->data->init_p = 1;
1916 return (*curr)->data;
1917 }
1918
1919 struct gdbarch_data *
1920 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1921 {
1922 return gdbarch_data_register (pre_init, NULL);
1923 }
1924
1925 struct gdbarch_data *
1926 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1927 {
1928 return gdbarch_data_register (NULL, post_init);
1929 }
1930
1931 /* Create/delete the gdbarch data vector. */
1932
1933 static void
1934 alloc_gdbarch_data (struct gdbarch *gdbarch)
1935 {
1936 gdb_assert (gdbarch->data == NULL);
1937 gdbarch->nr_data = gdbarch_data_registry.nr;
1938 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1939 }
1940
1941 /* Initialize the current value of the specified per-architecture
1942 data-pointer. */
1943
1944 void
1945 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1946 struct gdbarch_data *data,
1947 void *pointer)
1948 {
1949 gdb_assert (data->index < gdbarch->nr_data);
1950 gdb_assert (gdbarch->data[data->index] == NULL);
1951 gdb_assert (data->pre_init == NULL);
1952 gdbarch->data[data->index] = pointer;
1953 }
1954
1955 /* Return the current value of the specified per-architecture
1956 data-pointer. */
1957
1958 void *
1959 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1960 {
1961 gdb_assert (data->index < gdbarch->nr_data);
1962 if (gdbarch->data[data->index] == NULL)
1963 {
1964 /* The data-pointer isn't initialized, call init() to get a
1965 value. */
1966 if (data->pre_init != NULL)
1967 /* Mid architecture creation: pass just the obstack, and not
1968 the entire architecture, as that way it isn't possible for
1969 pre-init code to refer to undefined architecture
1970 fields. */
1971 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1972 else if (gdbarch->initialized_p
1973 && data->post_init != NULL)
1974 /* Post architecture creation: pass the entire architecture
1975 (as all fields are valid), but be careful to also detect
1976 recursive references. */
1977 {
1978 gdb_assert (data->init_p);
1979 data->init_p = 0;
1980 gdbarch->data[data->index] = data->post_init (gdbarch);
1981 data->init_p = 1;
1982 }
1983 else
1984 /* The architecture initialization hasn't completed - punt -
1985 hope that the caller knows what they are doing. Once
1986 deprecated_set_gdbarch_data has been initialized, this can be
1987 changed to an internal error. */
1988 return NULL;
1989 gdb_assert (gdbarch->data[data->index] != NULL);
1990 }
1991 return gdbarch->data[data->index];
1992 }
1993
1994
1995 /* Keep a registry of the architectures known by GDB. */
1996
1997 struct gdbarch_registration
1998 {
1999 enum bfd_architecture bfd_architecture;
2000 gdbarch_init_ftype *init;
2001 gdbarch_dump_tdep_ftype *dump_tdep;
2002 struct gdbarch_list *arches;
2003 struct gdbarch_registration *next;
2004 };
2005
2006 static struct gdbarch_registration *gdbarch_registry = NULL;
2007
2008 static void
2009 append_name (const char ***buf, int *nr, const char *name)
2010 {
2011 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2012 (*buf)[*nr] = name;
2013 *nr += 1;
2014 }
2015
2016 const char **
2017 gdbarch_printable_names (void)
2018 {
2019 /* Accumulate a list of names based on the registed list of
2020 architectures. */
2021 int nr_arches = 0;
2022 const char **arches = NULL;
2023 struct gdbarch_registration *rego;
2024
2025 for (rego = gdbarch_registry;
2026 rego != NULL;
2027 rego = rego->next)
2028 {
2029 const struct bfd_arch_info *ap;
2030 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2031 if (ap == NULL)
2032 internal_error (__FILE__, __LINE__,
2033 _("gdbarch_architecture_names: multi-arch unknown"));
2034 do
2035 {
2036 append_name (&arches, &nr_arches, ap->printable_name);
2037 ap = ap->next;
2038 }
2039 while (ap != NULL);
2040 }
2041 append_name (&arches, &nr_arches, NULL);
2042 return arches;
2043 }
2044
2045
2046 void
2047 gdbarch_register (enum bfd_architecture bfd_architecture,
2048 gdbarch_init_ftype *init,
2049 gdbarch_dump_tdep_ftype *dump_tdep)
2050 {
2051 struct gdbarch_registration **curr;
2052 const struct bfd_arch_info *bfd_arch_info;
2053
2054 /* Check that BFD recognizes this architecture */
2055 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2056 if (bfd_arch_info == NULL)
2057 {
2058 internal_error (__FILE__, __LINE__,
2059 _("gdbarch: Attempt to register "
2060 "unknown architecture (%d)"),
2061 bfd_architecture);
2062 }
2063 /* Check that we haven't seen this architecture before. */
2064 for (curr = &gdbarch_registry;
2065 (*curr) != NULL;
2066 curr = &(*curr)->next)
2067 {
2068 if (bfd_architecture == (*curr)->bfd_architecture)
2069 internal_error (__FILE__, __LINE__,
2070 _("gdbarch: Duplicate registration "
2071 "of architecture (%s)"),
2072 bfd_arch_info->printable_name);
2073 }
2074 /* log it */
2075 if (gdbarch_debug)
2076 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2077 bfd_arch_info->printable_name,
2078 host_address_to_string (init));
2079 /* Append it */
2080 (*curr) = XMALLOC (struct gdbarch_registration);
2081 (*curr)->bfd_architecture = bfd_architecture;
2082 (*curr)->init = init;
2083 (*curr)->dump_tdep = dump_tdep;
2084 (*curr)->arches = NULL;
2085 (*curr)->next = NULL;
2086 }
2087
2088 void
2089 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2090 gdbarch_init_ftype *init)
2091 {
2092 gdbarch_register (bfd_architecture, init, NULL);
2093 }
2094
2095
2096 /* Look for an architecture using gdbarch_info. */
2097
2098 struct gdbarch_list *
2099 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2100 const struct gdbarch_info *info)
2101 {
2102 for (; arches != NULL; arches = arches->next)
2103 {
2104 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2105 continue;
2106 if (info->byte_order != arches->gdbarch->byte_order)
2107 continue;
2108 if (info->osabi != arches->gdbarch->osabi)
2109 continue;
2110 if (info->target_desc != arches->gdbarch->target_desc)
2111 continue;
2112 return arches;
2113 }
2114 return NULL;
2115 }
2116
2117
2118 /* Find an architecture that matches the specified INFO. Create a new
2119 architecture if needed. Return that new architecture. */
2120
2121 struct gdbarch *
2122 gdbarch_find_by_info (struct gdbarch_info info)
2123 {
2124 struct gdbarch *new_gdbarch;
2125 struct gdbarch_registration *rego;
2126
2127 /* Fill in missing parts of the INFO struct using a number of
2128 sources: "set ..."; INFOabfd supplied; and the global
2129 defaults. */
2130 gdbarch_info_fill (&info);
2131
2132 /* Must have found some sort of architecture. */
2133 gdb_assert (info.bfd_arch_info != NULL);
2134
2135 if (gdbarch_debug)
2136 {
2137 fprintf_unfiltered (gdb_stdlog,
2138 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2139 (info.bfd_arch_info != NULL
2140 ? info.bfd_arch_info->printable_name
2141 : "(null)"));
2142 fprintf_unfiltered (gdb_stdlog,
2143 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2144 info.byte_order,
2145 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2146 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2147 : "default"));
2148 fprintf_unfiltered (gdb_stdlog,
2149 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2150 info.osabi, gdbarch_osabi_name (info.osabi));
2151 fprintf_unfiltered (gdb_stdlog,
2152 "gdbarch_find_by_info: info.abfd %s\n",
2153 host_address_to_string (info.abfd));
2154 fprintf_unfiltered (gdb_stdlog,
2155 "gdbarch_find_by_info: info.tdep_info %s\n",
2156 host_address_to_string (info.tdep_info));
2157 }
2158
2159 /* Find the tdep code that knows about this architecture. */
2160 for (rego = gdbarch_registry;
2161 rego != NULL;
2162 rego = rego->next)
2163 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2164 break;
2165 if (rego == NULL)
2166 {
2167 if (gdbarch_debug)
2168 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2169 "No matching architecture\n");
2170 return 0;
2171 }
2172
2173 /* Ask the tdep code for an architecture that matches "info". */
2174 new_gdbarch = rego->init (info, rego->arches);
2175
2176 /* Did the tdep code like it? No. Reject the change and revert to
2177 the old architecture. */
2178 if (new_gdbarch == NULL)
2179 {
2180 if (gdbarch_debug)
2181 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2182 "Target rejected architecture\n");
2183 return NULL;
2184 }
2185
2186 /* Is this a pre-existing architecture (as determined by already
2187 being initialized)? Move it to the front of the architecture
2188 list (keeping the list sorted Most Recently Used). */
2189 if (new_gdbarch->initialized_p)
2190 {
2191 struct gdbarch_list **list;
2192 struct gdbarch_list *this;
2193 if (gdbarch_debug)
2194 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2195 "Previous architecture %s (%s) selected\n",
2196 host_address_to_string (new_gdbarch),
2197 new_gdbarch->bfd_arch_info->printable_name);
2198 /* Find the existing arch in the list. */
2199 for (list = &rego->arches;
2200 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2201 list = &(*list)->next);
2202 /* It had better be in the list of architectures. */
2203 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2204 /* Unlink THIS. */
2205 this = (*list);
2206 (*list) = this->next;
2207 /* Insert THIS at the front. */
2208 this->next = rego->arches;
2209 rego->arches = this;
2210 /* Return it. */
2211 return new_gdbarch;
2212 }
2213
2214 /* It's a new architecture. */
2215 if (gdbarch_debug)
2216 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2217 "New architecture %s (%s) selected\n",
2218 host_address_to_string (new_gdbarch),
2219 new_gdbarch->bfd_arch_info->printable_name);
2220
2221 /* Insert the new architecture into the front of the architecture
2222 list (keep the list sorted Most Recently Used). */
2223 {
2224 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2225 this->next = rego->arches;
2226 this->gdbarch = new_gdbarch;
2227 rego->arches = this;
2228 }
2229
2230 /* Check that the newly installed architecture is valid. Plug in
2231 any post init values. */
2232 new_gdbarch->dump_tdep = rego->dump_tdep;
2233 verify_gdbarch (new_gdbarch);
2234 new_gdbarch->initialized_p = 1;
2235
2236 if (gdbarch_debug)
2237 gdbarch_dump (new_gdbarch, gdb_stdlog);
2238
2239 return new_gdbarch;
2240 }
2241
2242 /* Make the specified architecture current. */
2243
2244 void
2245 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2246 {
2247 gdb_assert (new_gdbarch != NULL);
2248 gdb_assert (new_gdbarch->initialized_p);
2249 target_gdbarch = new_gdbarch;
2250 observer_notify_architecture_changed (new_gdbarch);
2251 registers_changed ();
2252 }
2253
2254 extern void _initialize_gdbarch (void);
2255
2256 void
2257 _initialize_gdbarch (void)
2258 {
2259 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2260 Set architecture debugging."), _("\\
2261 Show architecture debugging."), _("\\
2262 When non-zero, architecture debugging is enabled."),
2263 NULL,
2264 show_gdbarch_debug,
2265 &setdebuglist, &showdebuglist);
2266 }
2267 EOF
2268
2269 # close things off
2270 exec 1>&2
2271 #../move-if-change new-gdbarch.c gdbarch.c
2272 compare_new gdbarch.c