* gdbarch.c: Rebuild.
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2012 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 if test -n "${garbage_at_eol}"
76 then
77 echo "Garbage at end-of-line in ${line}" 1>&2
78 kill $$
79 exit 1
80 fi
81
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
84 for r in ${read}
85 do
86 if eval test \"\${${r}}\" = \"\ \"
87 then
88 eval ${r}=""
89 fi
90 done
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 case "${class}" in
99 F | V | M )
100 case "${invalid_p}" in
101 "" )
102 if test -n "${predefault}"
103 then
104 #invalid_p="gdbarch->${function} == ${predefault}"
105 predicate="gdbarch->${function} != ${predefault}"
106 elif class_is_variable_p
107 then
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
110 then
111 predicate="gdbarch->${function} != NULL"
112 fi
113 ;;
114 * )
115 echo "Predicate function ${function} with invalid_p." 1>&2
116 kill $$
117 exit 1
118 ;;
119 esac
120 esac
121
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
128
129 if [ -n "${postdefault}" ]
130 then
131 fallbackdefault="${postdefault}"
132 elif [ -n "${predefault}" ]
133 then
134 fallbackdefault="${predefault}"
135 else
136 fallbackdefault="0"
137 fi
138
139 #NOT YET: See gdbarch.log for basic verification of
140 # database
141
142 break
143 fi
144 done
145 if [ -n "${class}" ]
146 then
147 true
148 else
149 false
150 fi
151 }
152
153
154 fallback_default_p ()
155 {
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
158 }
159
160 class_is_variable_p ()
161 {
162 case "${class}" in
163 *v* | *V* ) true ;;
164 * ) false ;;
165 esac
166 }
167
168 class_is_function_p ()
169 {
170 case "${class}" in
171 *f* | *F* | *m* | *M* ) true ;;
172 * ) false ;;
173 esac
174 }
175
176 class_is_multiarch_p ()
177 {
178 case "${class}" in
179 *m* | *M* ) true ;;
180 * ) false ;;
181 esac
182 }
183
184 class_is_predicate_p ()
185 {
186 case "${class}" in
187 *F* | *V* | *M* ) true ;;
188 * ) false ;;
189 esac
190 }
191
192 class_is_info_p ()
193 {
194 case "${class}" in
195 *i* ) true ;;
196 * ) false ;;
197 esac
198 }
199
200
201 # dump out/verify the doco
202 for field in ${read}
203 do
204 case ${field} in
205
206 class ) : ;;
207
208 # # -> line disable
209 # f -> function
210 # hiding a function
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
213 # v -> variable
214 # hiding a variable
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
217 # i -> set from info
218 # hiding something from the ``struct info'' object
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
223
224 returntype ) : ;;
225
226 # For functions, the return type; for variables, the data type
227
228 function ) : ;;
229
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
233
234 formal ) : ;;
235
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
240
241 actual ) : ;;
242
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
246
247 staticdefault ) : ;;
248
249 # To help with the GDB startup a static gdbarch object is
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
253
254 # If STATICDEFAULT is empty, zero is used.
255
256 predefault ) : ;;
257
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
262
263 # If PREDEFAULT is empty, zero is used.
264
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
268
269 # A zero PREDEFAULT function will force the fallback to call
270 # internal_error().
271
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
274
275 postdefault ) : ;;
276
277 # A value to assign to MEMBER of the new gdbarch object should
278 # the target architecture code fail to change the PREDEFAULT
279 # value.
280
281 # If POSTDEFAULT is empty, no post update is performed.
282
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
286
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
290 # PREDEFAULT).
291
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
293
294 # Variable declarations can refer to ``gdbarch'' which
295 # will contain the current architecture. Care should be
296 # taken.
297
298 invalid_p ) : ;;
299
300 # A predicate equation that validates MEMBER. Non-zero is
301 # returned if the code creating the new architecture failed to
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
305 # is called.
306
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
309
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
312
313 # See also PREDEFAULT and POSTDEFAULT.
314
315 print ) : ;;
316
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
319
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
322
323 garbage_at_eol ) : ;;
324
325 # Catches stray fields.
326
327 *)
328 echo "Bad field ${field}"
329 exit 1;;
330 esac
331 done
332
333
334 function_list ()
335 {
336 # See below (DOCO) for description of each field
337 cat <<EOF
338 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
339 #
340 i:int:byte_order:::BFD_ENDIAN_BIG
341 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
342 #
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344 #
345 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
346
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
354 #
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
362 # machine.
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364 # Alignment of a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367
368 # The ABI default bit-size and format for "half", "float", "double", and
369 # "long double". These bit/format pairs should eventually be combined
370 # into a single object. For the moment, just initialize them as a pair.
371 # Each format describes both the big and little endian layouts (if
372 # useful).
373
374 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
376 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
378 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
380 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
381 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
382
383 # For most targets, a pointer on the target and its representation as an
384 # address in GDB have the same size and "look the same". For such a
385 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
386 # / addr_bit will be set from it.
387 #
388 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
389 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390 # gdbarch_address_to_pointer as well.
391 #
392 # ptr_bit is the size of a pointer on the target
393 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
394 # addr_bit is the size of a target address as represented in gdb
395 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
396 #
397 # dwarf2_addr_size is the target address size as used in the Dwarf debug
398 # info. For .debug_frame FDEs, this is supposed to be the target address
399 # size from the associated CU header, and which is equivalent to the
400 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401 # Unfortunately there is no good way to determine this value. Therefore
402 # dwarf2_addr_size simply defaults to the target pointer size.
403 #
404 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405 # defined using the target's pointer size so far.
406 #
407 # Note that dwarf2_addr_size only needs to be redefined by a target if the
408 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409 # and if Dwarf versions < 4 need to be supported.
410 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
411 #
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v:int:char_signed:::1:-1:1
414 #
415 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
417 # Function for getting target's idea of a frame pointer. FIXME: GDB's
418 # whole scheme for dealing with "frames" and "frame pointers" needs a
419 # serious shakedown.
420 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
421 #
422 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
423 # Read a register into a new struct value. If the register is wholly
424 # or partly unavailable, this should call mark_value_bytes_unavailable
425 # as appropriate. If this is defined, then pseudo_register_read will
426 # never be called.
427 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
428 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
429 #
430 v:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:int:num_pseudo_regs:::0:0::0
436
437 # Assemble agent expression bytecode to collect pseudo-register REG.
438 # Return -1 if something goes wrong, 0 otherwise.
439 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
440
441 # Assemble agent expression bytecode to push the value of pseudo-register
442 # REG on the interpreter stack.
443 # Return -1 if something goes wrong, 0 otherwise.
444 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
445
446 # GDB's standard (or well known) register numbers. These can map onto
447 # a real register or a pseudo (computed) register or not be defined at
448 # all (-1).
449 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
450 v:int:sp_regnum:::-1:-1::0
451 v:int:pc_regnum:::-1:-1::0
452 v:int:ps_regnum:::-1:-1::0
453 v:int:fp0_regnum:::0:-1::0
454 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
455 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
456 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
457 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
458 # Convert from an sdb register number to an internal gdb register number.
459 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
460 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
461 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
462 m:const char *:register_name:int regnr:regnr::0
463
464 # Return the type of a register specified by the architecture. Only
465 # the register cache should call this function directly; others should
466 # use "register_type".
467 M:struct type *:register_type:int reg_nr:reg_nr
468
469 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
470 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
472 # deprecated_fp_regnum.
473 v:int:deprecated_fp_regnum:::-1:-1::0
474
475 # See gdbint.texinfo. See infcall.c.
476 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477 v:int:call_dummy_location::::AT_ENTRY_POINT::0
478 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
479
480 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
486 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
488 # setjmp/longjmp support.
489 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
490 #
491 v:int:believe_pcc_promotion:::::::
492 #
493 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
494 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
495 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
496 # Construct a value representing the contents of register REGNUM in
497 # frame FRAME, interpreted as type TYPE. The routine needs to
498 # allocate and return a struct value with all value attributes
499 # (but not the value contents) filled in.
500 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
501 #
502 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
504 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
505
506 # Return the return-value convention that will be used by FUNCTION
507 # to return a value of type VALTYPE. FUNCTION may be NULL in which
508 # case the return convention is computed based only on VALTYPE.
509 #
510 # If READBUF is not NULL, extract the return value and save it in this buffer.
511 #
512 # If WRITEBUF is not NULL, it contains a return value which will be
513 # stored into the appropriate register. This can be used when we want
514 # to force the value returned by a function (see the "return" command
515 # for instance).
516 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
517
518 # Return true if the return value of function is stored in the first hidden
519 # parameter. In theory, this feature should be language-dependent, specified
520 # by language and its ABI, such as C++. Unfortunately, compiler may
521 # implement it to a target-dependent feature. So that we need such hook here
522 # to be aware of this in GDB.
523 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
524
525 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
526 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
527 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
528 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
529 # Return the adjusted address and kind to use for Z0/Z1 packets.
530 # KIND is usually the memory length of the breakpoint, but may have a
531 # different target-specific meaning.
532 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
533 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
534 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
535 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
536 v:CORE_ADDR:decr_pc_after_break:::0:::0
537
538 # A function can be addressed by either it's "pointer" (possibly a
539 # descriptor address) or "entry point" (first executable instruction).
540 # The method "convert_from_func_ptr_addr" converting the former to the
541 # latter. gdbarch_deprecated_function_start_offset is being used to implement
542 # a simplified subset of that functionality - the function's address
543 # corresponds to the "function pointer" and the function's start
544 # corresponds to the "function entry point" - and hence is redundant.
545
546 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
547
548 # Return the remote protocol register number associated with this
549 # register. Normally the identity mapping.
550 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
551
552 # Fetch the target specific address used to represent a load module.
553 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
554 #
555 v:CORE_ADDR:frame_args_skip:::0:::0
556 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
557 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
558 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
559 # frame-base. Enable frame-base before frame-unwind.
560 F:int:frame_num_args:struct frame_info *frame:frame
561 #
562 M:CORE_ADDR:frame_align:CORE_ADDR address:address
563 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
564 v:int:frame_red_zone_size
565 #
566 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
567 # On some machines there are bits in addresses which are not really
568 # part of the address, but are used by the kernel, the hardware, etc.
569 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
570 # we get a "real" address such as one would find in a symbol table.
571 # This is used only for addresses of instructions, and even then I'm
572 # not sure it's used in all contexts. It exists to deal with there
573 # being a few stray bits in the PC which would mislead us, not as some
574 # sort of generic thing to handle alignment or segmentation (it's
575 # possible it should be in TARGET_READ_PC instead).
576 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
577 # It is not at all clear why gdbarch_smash_text_address is not folded into
578 # gdbarch_addr_bits_remove.
579 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
580
581 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
582 # indicates if the target needs software single step. An ISA method to
583 # implement it.
584 #
585 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
586 # breakpoints using the breakpoint system instead of blatting memory directly
587 # (as with rs6000).
588 #
589 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
590 # target can single step. If not, then implement single step using breakpoints.
591 #
592 # A return value of 1 means that the software_single_step breakpoints
593 # were inserted; 0 means they were not.
594 F:int:software_single_step:struct frame_info *frame:frame
595
596 # Return non-zero if the processor is executing a delay slot and a
597 # further single-step is needed before the instruction finishes.
598 M:int:single_step_through_delay:struct frame_info *frame:frame
599 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
600 # disassembler. Perhaps objdump can handle it?
601 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
602 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
603
604
605 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
606 # evaluates non-zero, this is the address where the debugger will place
607 # a step-resume breakpoint to get us past the dynamic linker.
608 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
609 # Some systems also have trampoline code for returning from shared libs.
610 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
611
612 # A target might have problems with watchpoints as soon as the stack
613 # frame of the current function has been destroyed. This mostly happens
614 # as the first action in a funtion's epilogue. in_function_epilogue_p()
615 # is defined to return a non-zero value if either the given addr is one
616 # instruction after the stack destroying instruction up to the trailing
617 # return instruction or if we can figure out that the stack frame has
618 # already been invalidated regardless of the value of addr. Targets
619 # which don't suffer from that problem could just let this functionality
620 # untouched.
621 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
622 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
623 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
624 v:int:cannot_step_breakpoint:::0:0::0
625 v:int:have_nonsteppable_watchpoint:::0:0::0
626 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
627 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
628 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
629 # Is a register in a group
630 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
631 # Fetch the pointer to the ith function argument.
632 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
633
634 # Return the appropriate register set for a core file section with
635 # name SECT_NAME and size SECT_SIZE.
636 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
637
638 # Supported register notes in a core file.
639 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
640
641 # Create core file notes
642 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
643
644 # Find core file memory regions
645 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
646
647 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
648 # core file into buffer READBUF with length LEN.
649 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
650
651 # How the core target converts a PTID from a core file to a string.
652 M:char *:core_pid_to_str:ptid_t ptid:ptid
653
654 # BFD target to use when generating a core file.
655 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
656
657 # If the elements of C++ vtables are in-place function descriptors rather
658 # than normal function pointers (which may point to code or a descriptor),
659 # set this to one.
660 v:int:vtable_function_descriptors:::0:0::0
661
662 # Set if the least significant bit of the delta is used instead of the least
663 # significant bit of the pfn for pointers to virtual member functions.
664 v:int:vbit_in_delta:::0:0::0
665
666 # Advance PC to next instruction in order to skip a permanent breakpoint.
667 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
668
669 # The maximum length of an instruction on this architecture in bytes.
670 V:ULONGEST:max_insn_length:::0:0
671
672 # Copy the instruction at FROM to TO, and make any adjustments
673 # necessary to single-step it at that address.
674 #
675 # REGS holds the state the thread's registers will have before
676 # executing the copied instruction; the PC in REGS will refer to FROM,
677 # not the copy at TO. The caller should update it to point at TO later.
678 #
679 # Return a pointer to data of the architecture's choice to be passed
680 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
681 # the instruction's effects have been completely simulated, with the
682 # resulting state written back to REGS.
683 #
684 # For a general explanation of displaced stepping and how GDB uses it,
685 # see the comments in infrun.c.
686 #
687 # The TO area is only guaranteed to have space for
688 # gdbarch_max_insn_length (arch) bytes, so this function must not
689 # write more bytes than that to that area.
690 #
691 # If you do not provide this function, GDB assumes that the
692 # architecture does not support displaced stepping.
693 #
694 # If your architecture doesn't need to adjust instructions before
695 # single-stepping them, consider using simple_displaced_step_copy_insn
696 # here.
697 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
698
699 # Return true if GDB should use hardware single-stepping to execute
700 # the displaced instruction identified by CLOSURE. If false,
701 # GDB will simply restart execution at the displaced instruction
702 # location, and it is up to the target to ensure GDB will receive
703 # control again (e.g. by placing a software breakpoint instruction
704 # into the displaced instruction buffer).
705 #
706 # The default implementation returns false on all targets that
707 # provide a gdbarch_software_single_step routine, and true otherwise.
708 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
709
710 # Fix up the state resulting from successfully single-stepping a
711 # displaced instruction, to give the result we would have gotten from
712 # stepping the instruction in its original location.
713 #
714 # REGS is the register state resulting from single-stepping the
715 # displaced instruction.
716 #
717 # CLOSURE is the result from the matching call to
718 # gdbarch_displaced_step_copy_insn.
719 #
720 # If you provide gdbarch_displaced_step_copy_insn.but not this
721 # function, then GDB assumes that no fixup is needed after
722 # single-stepping the instruction.
723 #
724 # For a general explanation of displaced stepping and how GDB uses it,
725 # see the comments in infrun.c.
726 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
727
728 # Free a closure returned by gdbarch_displaced_step_copy_insn.
729 #
730 # If you provide gdbarch_displaced_step_copy_insn, you must provide
731 # this function as well.
732 #
733 # If your architecture uses closures that don't need to be freed, then
734 # you can use simple_displaced_step_free_closure here.
735 #
736 # For a general explanation of displaced stepping and how GDB uses it,
737 # see the comments in infrun.c.
738 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
739
740 # Return the address of an appropriate place to put displaced
741 # instructions while we step over them. There need only be one such
742 # place, since we're only stepping one thread over a breakpoint at a
743 # time.
744 #
745 # For a general explanation of displaced stepping and how GDB uses it,
746 # see the comments in infrun.c.
747 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
748
749 # Relocate an instruction to execute at a different address. OLDLOC
750 # is the address in the inferior memory where the instruction to
751 # relocate is currently at. On input, TO points to the destination
752 # where we want the instruction to be copied (and possibly adjusted)
753 # to. On output, it points to one past the end of the resulting
754 # instruction(s). The effect of executing the instruction at TO shall
755 # be the same as if executing it at FROM. For example, call
756 # instructions that implicitly push the return address on the stack
757 # should be adjusted to return to the instruction after OLDLOC;
758 # relative branches, and other PC-relative instructions need the
759 # offset adjusted; etc.
760 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
761
762 # Refresh overlay mapped state for section OSECT.
763 F:void:overlay_update:struct obj_section *osect:osect
764
765 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
766
767 # Handle special encoding of static variables in stabs debug info.
768 F:const char *:static_transform_name:const char *name:name
769 # Set if the address in N_SO or N_FUN stabs may be zero.
770 v:int:sofun_address_maybe_missing:::0:0::0
771
772 # Parse the instruction at ADDR storing in the record execution log
773 # the registers REGCACHE and memory ranges that will be affected when
774 # the instruction executes, along with their current values.
775 # Return -1 if something goes wrong, 0 otherwise.
776 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
777
778 # Save process state after a signal.
779 # Return -1 if something goes wrong, 0 otherwise.
780 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
781
782 # Signal translation: translate inferior's signal (target's) number
783 # into GDB's representation. The implementation of this method must
784 # be host independent. IOW, don't rely on symbols of the NAT_FILE
785 # header (the nm-*.h files), the host <signal.h> header, or similar
786 # headers. This is mainly used when cross-debugging core files ---
787 # "Live" targets hide the translation behind the target interface
788 # (target_wait, target_resume, etc.).
789 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
790
791 # Extra signal info inspection.
792 #
793 # Return a type suitable to inspect extra signal information.
794 M:struct type *:get_siginfo_type:void:
795
796 # Record architecture-specific information from the symbol table.
797 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
798
799 # Function for the 'catch syscall' feature.
800
801 # Get architecture-specific system calls information from registers.
802 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
803
804 # SystemTap related fields and functions.
805
806 # Prefix used to mark an integer constant on the architecture's assembly
807 # For example, on x86 integer constants are written as:
808 #
809 # \$10 ;; integer constant 10
810 #
811 # in this case, this prefix would be the character \`\$\'.
812 v:const char *:stap_integer_prefix:::0:0::0:pstring (gdbarch->stap_integer_prefix)
813
814 # Suffix used to mark an integer constant on the architecture's assembly.
815 v:const char *:stap_integer_suffix:::0:0::0:pstring (gdbarch->stap_integer_suffix)
816
817 # Prefix used to mark a register name on the architecture's assembly.
818 # For example, on x86 the register name is written as:
819 #
820 # \%eax ;; register eax
821 #
822 # in this case, this prefix would be the character \`\%\'.
823 v:const char *:stap_register_prefix:::0:0::0:pstring (gdbarch->stap_register_prefix)
824
825 # Suffix used to mark a register name on the architecture's assembly
826 v:const char *:stap_register_suffix:::0:0::0:pstring (gdbarch->stap_register_suffix)
827
828 # Prefix used to mark a register indirection on the architecture's assembly.
829 # For example, on x86 the register indirection is written as:
830 #
831 # \(\%eax\) ;; indirecting eax
832 #
833 # in this case, this prefix would be the charater \`\(\'.
834 #
835 # Please note that we use the indirection prefix also for register
836 # displacement, e.g., \`4\(\%eax\)\' on x86.
837 v:const char *:stap_register_indirection_prefix:::0:0::0:pstring (gdbarch->stap_register_indirection_prefix)
838
839 # Suffix used to mark a register indirection on the architecture's assembly.
840 # For example, on x86 the register indirection is written as:
841 #
842 # \(\%eax\) ;; indirecting eax
843 #
844 # in this case, this prefix would be the charater \`\)\'.
845 #
846 # Please note that we use the indirection suffix also for register
847 # displacement, e.g., \`4\(\%eax\)\' on x86.
848 v:const char *:stap_register_indirection_suffix:::0:0::0:pstring (gdbarch->stap_register_indirection_suffix)
849
850 # Prefix used to name a register using GDB's nomenclature.
851 #
852 # For example, on PPC a register is represented by a number in the assembly
853 # language (e.g., \`10\' is the 10th general-purpose register). However,
854 # inside GDB this same register has an \`r\' appended to its name, so the 10th
855 # register would be represented as \`r10\' internally.
856 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
857
858 # Suffix used to name a register using GDB's nomenclature.
859 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
860
861 # Check if S is a single operand.
862 #
863 # Single operands can be:
864 # \- Literal integers, e.g. \`\$10\' on x86
865 # \- Register access, e.g. \`\%eax\' on x86
866 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
867 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
868 #
869 # This function should check for these patterns on the string
870 # and return 1 if some were found, or zero otherwise. Please try to match
871 # as much info as you can from the string, i.e., if you have to match
872 # something like \`\(\%\', do not match just the \`\(\'.
873 M:int:stap_is_single_operand:const char *s:s
874
875 # Function used to handle a "special case" in the parser.
876 #
877 # A "special case" is considered to be an unknown token, i.e., a token
878 # that the parser does not know how to parse. A good example of special
879 # case would be ARM's register displacement syntax:
880 #
881 # [R0, #4] ;; displacing R0 by 4
882 #
883 # Since the parser assumes that a register displacement is of the form:
884 #
885 # <number> <indirection_prefix> <register_name> <indirection_suffix>
886 #
887 # it means that it will not be able to recognize and parse this odd syntax.
888 # Therefore, we should add a special case function that will handle this token.
889 #
890 # This function should generate the proper expression form of the expression
891 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
892 # and so on). It should also return 1 if the parsing was successful, or zero
893 # if the token was not recognized as a special token (in this case, returning
894 # zero means that the special parser is deferring the parsing to the generic
895 # parser), and should advance the buffer pointer (p->arg).
896 M:int:stap_parse_special_token:struct stap_parse_info *p:p
897
898
899 # True if the list of shared libraries is one and only for all
900 # processes, as opposed to a list of shared libraries per inferior.
901 # This usually means that all processes, although may or may not share
902 # an address space, will see the same set of symbols at the same
903 # addresses.
904 v:int:has_global_solist:::0:0::0
905
906 # On some targets, even though each inferior has its own private
907 # address space, the debug interface takes care of making breakpoints
908 # visible to all address spaces automatically. For such cases,
909 # this property should be set to true.
910 v:int:has_global_breakpoints:::0:0::0
911
912 # True if inferiors share an address space (e.g., uClinux).
913 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
914
915 # True if a fast tracepoint can be set at an address.
916 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
917
918 # Return the "auto" target charset.
919 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
920 # Return the "auto" target wide charset.
921 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
922
923 # If non-empty, this is a file extension that will be opened in place
924 # of the file extension reported by the shared library list.
925 #
926 # This is most useful for toolchains that use a post-linker tool,
927 # where the names of the files run on the target differ in extension
928 # compared to the names of the files GDB should load for debug info.
929 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
930
931 # If true, the target OS has DOS-based file system semantics. That
932 # is, absolute paths include a drive name, and the backslash is
933 # considered a directory separator.
934 v:int:has_dos_based_file_system:::0:0::0
935
936 # Generate bytecodes to collect the return address in a frame.
937 # Since the bytecodes run on the target, possibly with GDB not even
938 # connected, the full unwinding machinery is not available, and
939 # typically this function will issue bytecodes for one or more likely
940 # places that the return address may be found.
941 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
942
943 # Implement the "info proc" command.
944 M:void:info_proc:char *args, enum info_proc_what what:args, what
945
946 # Iterate over all objfiles in the order that makes the most sense
947 # for the architecture to make global symbol searches.
948 #
949 # CB is a callback function where OBJFILE is the objfile to be searched,
950 # and CB_DATA a pointer to user-defined data (the same data that is passed
951 # when calling this gdbarch method). The iteration stops if this function
952 # returns nonzero.
953 #
954 # CB_DATA is a pointer to some user-defined data to be passed to
955 # the callback.
956 #
957 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
958 # inspected when the symbol search was requested.
959 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
960
961 EOF
962 }
963
964 #
965 # The .log file
966 #
967 exec > new-gdbarch.log
968 function_list | while do_read
969 do
970 cat <<EOF
971 ${class} ${returntype} ${function} ($formal)
972 EOF
973 for r in ${read}
974 do
975 eval echo \"\ \ \ \ ${r}=\${${r}}\"
976 done
977 if class_is_predicate_p && fallback_default_p
978 then
979 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
980 kill $$
981 exit 1
982 fi
983 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
984 then
985 echo "Error: postdefault is useless when invalid_p=0" 1>&2
986 kill $$
987 exit 1
988 fi
989 if class_is_multiarch_p
990 then
991 if class_is_predicate_p ; then :
992 elif test "x${predefault}" = "x"
993 then
994 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
995 kill $$
996 exit 1
997 fi
998 fi
999 echo ""
1000 done
1001
1002 exec 1>&2
1003 compare_new gdbarch.log
1004
1005
1006 copyright ()
1007 {
1008 cat <<EOF
1009 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1010 /* vi:set ro: */
1011
1012 /* Dynamic architecture support for GDB, the GNU debugger.
1013
1014 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
1015 2007, 2008, 2009 Free Software Foundation, Inc.
1016
1017 This file is part of GDB.
1018
1019 This program is free software; you can redistribute it and/or modify
1020 it under the terms of the GNU General Public License as published by
1021 the Free Software Foundation; either version 3 of the License, or
1022 (at your option) any later version.
1023
1024 This program is distributed in the hope that it will be useful,
1025 but WITHOUT ANY WARRANTY; without even the implied warranty of
1026 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1027 GNU General Public License for more details.
1028
1029 You should have received a copy of the GNU General Public License
1030 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1031
1032 /* This file was created with the aid of \`\`gdbarch.sh''.
1033
1034 The Bourne shell script \`\`gdbarch.sh'' creates the files
1035 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1036 against the existing \`\`gdbarch.[hc]''. Any differences found
1037 being reported.
1038
1039 If editing this file, please also run gdbarch.sh and merge any
1040 changes into that script. Conversely, when making sweeping changes
1041 to this file, modifying gdbarch.sh and using its output may prove
1042 easier. */
1043
1044 EOF
1045 }
1046
1047 #
1048 # The .h file
1049 #
1050
1051 exec > new-gdbarch.h
1052 copyright
1053 cat <<EOF
1054 #ifndef GDBARCH_H
1055 #define GDBARCH_H
1056
1057 struct floatformat;
1058 struct ui_file;
1059 struct frame_info;
1060 struct value;
1061 struct objfile;
1062 struct obj_section;
1063 struct minimal_symbol;
1064 struct regcache;
1065 struct reggroup;
1066 struct regset;
1067 struct disassemble_info;
1068 struct target_ops;
1069 struct obstack;
1070 struct bp_target_info;
1071 struct target_desc;
1072 struct displaced_step_closure;
1073 struct core_regset_section;
1074 struct syscall;
1075 struct agent_expr;
1076 struct axs_value;
1077 struct stap_parse_info;
1078
1079 /* The architecture associated with the connection to the target.
1080
1081 The architecture vector provides some information that is really
1082 a property of the target: The layout of certain packets, for instance;
1083 or the solib_ops vector. Etc. To differentiate architecture accesses
1084 to per-target properties from per-thread/per-frame/per-objfile properties,
1085 accesses to per-target properties should be made through target_gdbarch.
1086
1087 Eventually, when support for multiple targets is implemented in
1088 GDB, this global should be made target-specific. */
1089 extern struct gdbarch *target_gdbarch;
1090
1091 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1092 gdbarch method. */
1093
1094 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1095 (struct objfile *objfile, void *cb_data);
1096 EOF
1097
1098 # function typedef's
1099 printf "\n"
1100 printf "\n"
1101 printf "/* The following are pre-initialized by GDBARCH. */\n"
1102 function_list | while do_read
1103 do
1104 if class_is_info_p
1105 then
1106 printf "\n"
1107 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1108 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1109 fi
1110 done
1111
1112 # function typedef's
1113 printf "\n"
1114 printf "\n"
1115 printf "/* The following are initialized by the target dependent code. */\n"
1116 function_list | while do_read
1117 do
1118 if [ -n "${comment}" ]
1119 then
1120 echo "${comment}" | sed \
1121 -e '2 s,#,/*,' \
1122 -e '3,$ s,#, ,' \
1123 -e '$ s,$, */,'
1124 fi
1125
1126 if class_is_predicate_p
1127 then
1128 printf "\n"
1129 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1130 fi
1131 if class_is_variable_p
1132 then
1133 printf "\n"
1134 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1135 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1136 fi
1137 if class_is_function_p
1138 then
1139 printf "\n"
1140 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1141 then
1142 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1143 elif class_is_multiarch_p
1144 then
1145 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1146 else
1147 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1148 fi
1149 if [ "x${formal}" = "xvoid" ]
1150 then
1151 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1152 else
1153 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1154 fi
1155 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1156 fi
1157 done
1158
1159 # close it off
1160 cat <<EOF
1161
1162 /* Definition for an unknown syscall, used basically in error-cases. */
1163 #define UNKNOWN_SYSCALL (-1)
1164
1165 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1166
1167
1168 /* Mechanism for co-ordinating the selection of a specific
1169 architecture.
1170
1171 GDB targets (*-tdep.c) can register an interest in a specific
1172 architecture. Other GDB components can register a need to maintain
1173 per-architecture data.
1174
1175 The mechanisms below ensures that there is only a loose connection
1176 between the set-architecture command and the various GDB
1177 components. Each component can independently register their need
1178 to maintain architecture specific data with gdbarch.
1179
1180 Pragmatics:
1181
1182 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1183 didn't scale.
1184
1185 The more traditional mega-struct containing architecture specific
1186 data for all the various GDB components was also considered. Since
1187 GDB is built from a variable number of (fairly independent)
1188 components it was determined that the global aproach was not
1189 applicable. */
1190
1191
1192 /* Register a new architectural family with GDB.
1193
1194 Register support for the specified ARCHITECTURE with GDB. When
1195 gdbarch determines that the specified architecture has been
1196 selected, the corresponding INIT function is called.
1197
1198 --
1199
1200 The INIT function takes two parameters: INFO which contains the
1201 information available to gdbarch about the (possibly new)
1202 architecture; ARCHES which is a list of the previously created
1203 \`\`struct gdbarch'' for this architecture.
1204
1205 The INFO parameter is, as far as possible, be pre-initialized with
1206 information obtained from INFO.ABFD or the global defaults.
1207
1208 The ARCHES parameter is a linked list (sorted most recently used)
1209 of all the previously created architures for this architecture
1210 family. The (possibly NULL) ARCHES->gdbarch can used to access
1211 values from the previously selected architecture for this
1212 architecture family.
1213
1214 The INIT function shall return any of: NULL - indicating that it
1215 doesn't recognize the selected architecture; an existing \`\`struct
1216 gdbarch'' from the ARCHES list - indicating that the new
1217 architecture is just a synonym for an earlier architecture (see
1218 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1219 - that describes the selected architecture (see gdbarch_alloc()).
1220
1221 The DUMP_TDEP function shall print out all target specific values.
1222 Care should be taken to ensure that the function works in both the
1223 multi-arch and non- multi-arch cases. */
1224
1225 struct gdbarch_list
1226 {
1227 struct gdbarch *gdbarch;
1228 struct gdbarch_list *next;
1229 };
1230
1231 struct gdbarch_info
1232 {
1233 /* Use default: NULL (ZERO). */
1234 const struct bfd_arch_info *bfd_arch_info;
1235
1236 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1237 int byte_order;
1238
1239 int byte_order_for_code;
1240
1241 /* Use default: NULL (ZERO). */
1242 bfd *abfd;
1243
1244 /* Use default: NULL (ZERO). */
1245 struct gdbarch_tdep_info *tdep_info;
1246
1247 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1248 enum gdb_osabi osabi;
1249
1250 /* Use default: NULL (ZERO). */
1251 const struct target_desc *target_desc;
1252 };
1253
1254 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1255 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1256
1257 /* DEPRECATED - use gdbarch_register() */
1258 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1259
1260 extern void gdbarch_register (enum bfd_architecture architecture,
1261 gdbarch_init_ftype *,
1262 gdbarch_dump_tdep_ftype *);
1263
1264
1265 /* Return a freshly allocated, NULL terminated, array of the valid
1266 architecture names. Since architectures are registered during the
1267 _initialize phase this function only returns useful information
1268 once initialization has been completed. */
1269
1270 extern const char **gdbarch_printable_names (void);
1271
1272
1273 /* Helper function. Search the list of ARCHES for a GDBARCH that
1274 matches the information provided by INFO. */
1275
1276 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1277
1278
1279 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1280 basic initialization using values obtained from the INFO and TDEP
1281 parameters. set_gdbarch_*() functions are called to complete the
1282 initialization of the object. */
1283
1284 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1285
1286
1287 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1288 It is assumed that the caller freeds the \`\`struct
1289 gdbarch_tdep''. */
1290
1291 extern void gdbarch_free (struct gdbarch *);
1292
1293
1294 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1295 obstack. The memory is freed when the corresponding architecture
1296 is also freed. */
1297
1298 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1299 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1300 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1301
1302
1303 /* Helper function. Force an update of the current architecture.
1304
1305 The actual architecture selected is determined by INFO, \`\`(gdb) set
1306 architecture'' et.al., the existing architecture and BFD's default
1307 architecture. INFO should be initialized to zero and then selected
1308 fields should be updated.
1309
1310 Returns non-zero if the update succeeds. */
1311
1312 extern int gdbarch_update_p (struct gdbarch_info info);
1313
1314
1315 /* Helper function. Find an architecture matching info.
1316
1317 INFO should be initialized using gdbarch_info_init, relevant fields
1318 set, and then finished using gdbarch_info_fill.
1319
1320 Returns the corresponding architecture, or NULL if no matching
1321 architecture was found. */
1322
1323 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1324
1325
1326 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1327
1328 FIXME: kettenis/20031124: Of the functions that follow, only
1329 gdbarch_from_bfd is supposed to survive. The others will
1330 dissappear since in the future GDB will (hopefully) be truly
1331 multi-arch. However, for now we're still stuck with the concept of
1332 a single active architecture. */
1333
1334 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1335
1336
1337 /* Register per-architecture data-pointer.
1338
1339 Reserve space for a per-architecture data-pointer. An identifier
1340 for the reserved data-pointer is returned. That identifer should
1341 be saved in a local static variable.
1342
1343 Memory for the per-architecture data shall be allocated using
1344 gdbarch_obstack_zalloc. That memory will be deleted when the
1345 corresponding architecture object is deleted.
1346
1347 When a previously created architecture is re-selected, the
1348 per-architecture data-pointer for that previous architecture is
1349 restored. INIT() is not re-called.
1350
1351 Multiple registrarants for any architecture are allowed (and
1352 strongly encouraged). */
1353
1354 struct gdbarch_data;
1355
1356 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1357 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1358 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1359 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1360 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1361 struct gdbarch_data *data,
1362 void *pointer);
1363
1364 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1365
1366
1367 /* Set the dynamic target-system-dependent parameters (architecture,
1368 byte-order, ...) using information found in the BFD. */
1369
1370 extern void set_gdbarch_from_file (bfd *);
1371
1372
1373 /* Initialize the current architecture to the "first" one we find on
1374 our list. */
1375
1376 extern void initialize_current_architecture (void);
1377
1378 /* gdbarch trace variable */
1379 extern unsigned int gdbarch_debug;
1380
1381 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1382
1383 #endif
1384 EOF
1385 exec 1>&2
1386 #../move-if-change new-gdbarch.h gdbarch.h
1387 compare_new gdbarch.h
1388
1389
1390 #
1391 # C file
1392 #
1393
1394 exec > new-gdbarch.c
1395 copyright
1396 cat <<EOF
1397
1398 #include "defs.h"
1399 #include "arch-utils.h"
1400
1401 #include "gdbcmd.h"
1402 #include "inferior.h"
1403 #include "symcat.h"
1404
1405 #include "floatformat.h"
1406
1407 #include "gdb_assert.h"
1408 #include "gdb_string.h"
1409 #include "reggroups.h"
1410 #include "osabi.h"
1411 #include "gdb_obstack.h"
1412 #include "observer.h"
1413 #include "regcache.h"
1414 #include "objfiles.h"
1415
1416 /* Static function declarations */
1417
1418 static void alloc_gdbarch_data (struct gdbarch *);
1419
1420 /* Non-zero if we want to trace architecture code. */
1421
1422 #ifndef GDBARCH_DEBUG
1423 #define GDBARCH_DEBUG 0
1424 #endif
1425 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1426 static void
1427 show_gdbarch_debug (struct ui_file *file, int from_tty,
1428 struct cmd_list_element *c, const char *value)
1429 {
1430 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1431 }
1432
1433 static const char *
1434 pformat (const struct floatformat **format)
1435 {
1436 if (format == NULL)
1437 return "(null)";
1438 else
1439 /* Just print out one of them - this is only for diagnostics. */
1440 return format[0]->name;
1441 }
1442
1443 static const char *
1444 pstring (const char *string)
1445 {
1446 if (string == NULL)
1447 return "(null)";
1448 return string;
1449 }
1450
1451 EOF
1452
1453 # gdbarch open the gdbarch object
1454 printf "\n"
1455 printf "/* Maintain the struct gdbarch object. */\n"
1456 printf "\n"
1457 printf "struct gdbarch\n"
1458 printf "{\n"
1459 printf " /* Has this architecture been fully initialized? */\n"
1460 printf " int initialized_p;\n"
1461 printf "\n"
1462 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1463 printf " struct obstack *obstack;\n"
1464 printf "\n"
1465 printf " /* basic architectural information. */\n"
1466 function_list | while do_read
1467 do
1468 if class_is_info_p
1469 then
1470 printf " ${returntype} ${function};\n"
1471 fi
1472 done
1473 printf "\n"
1474 printf " /* target specific vector. */\n"
1475 printf " struct gdbarch_tdep *tdep;\n"
1476 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1477 printf "\n"
1478 printf " /* per-architecture data-pointers. */\n"
1479 printf " unsigned nr_data;\n"
1480 printf " void **data;\n"
1481 printf "\n"
1482 cat <<EOF
1483 /* Multi-arch values.
1484
1485 When extending this structure you must:
1486
1487 Add the field below.
1488
1489 Declare set/get functions and define the corresponding
1490 macro in gdbarch.h.
1491
1492 gdbarch_alloc(): If zero/NULL is not a suitable default,
1493 initialize the new field.
1494
1495 verify_gdbarch(): Confirm that the target updated the field
1496 correctly.
1497
1498 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1499 field is dumped out
1500
1501 \`\`startup_gdbarch()'': Append an initial value to the static
1502 variable (base values on the host's c-type system).
1503
1504 get_gdbarch(): Implement the set/get functions (probably using
1505 the macro's as shortcuts).
1506
1507 */
1508
1509 EOF
1510 function_list | while do_read
1511 do
1512 if class_is_variable_p
1513 then
1514 printf " ${returntype} ${function};\n"
1515 elif class_is_function_p
1516 then
1517 printf " gdbarch_${function}_ftype *${function};\n"
1518 fi
1519 done
1520 printf "};\n"
1521
1522 # A pre-initialized vector
1523 printf "\n"
1524 printf "\n"
1525 cat <<EOF
1526 /* The default architecture uses host values (for want of a better
1527 choice). */
1528 EOF
1529 printf "\n"
1530 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1531 printf "\n"
1532 printf "struct gdbarch startup_gdbarch =\n"
1533 printf "{\n"
1534 printf " 1, /* Always initialized. */\n"
1535 printf " NULL, /* The obstack. */\n"
1536 printf " /* basic architecture information. */\n"
1537 function_list | while do_read
1538 do
1539 if class_is_info_p
1540 then
1541 printf " ${staticdefault}, /* ${function} */\n"
1542 fi
1543 done
1544 cat <<EOF
1545 /* target specific vector and its dump routine. */
1546 NULL, NULL,
1547 /*per-architecture data-pointers. */
1548 0, NULL,
1549 /* Multi-arch values */
1550 EOF
1551 function_list | while do_read
1552 do
1553 if class_is_function_p || class_is_variable_p
1554 then
1555 printf " ${staticdefault}, /* ${function} */\n"
1556 fi
1557 done
1558 cat <<EOF
1559 /* startup_gdbarch() */
1560 };
1561
1562 struct gdbarch *target_gdbarch = &startup_gdbarch;
1563 EOF
1564
1565 # Create a new gdbarch struct
1566 cat <<EOF
1567
1568 /* Create a new \`\`struct gdbarch'' based on information provided by
1569 \`\`struct gdbarch_info''. */
1570 EOF
1571 printf "\n"
1572 cat <<EOF
1573 struct gdbarch *
1574 gdbarch_alloc (const struct gdbarch_info *info,
1575 struct gdbarch_tdep *tdep)
1576 {
1577 struct gdbarch *gdbarch;
1578
1579 /* Create an obstack for allocating all the per-architecture memory,
1580 then use that to allocate the architecture vector. */
1581 struct obstack *obstack = XMALLOC (struct obstack);
1582 obstack_init (obstack);
1583 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1584 memset (gdbarch, 0, sizeof (*gdbarch));
1585 gdbarch->obstack = obstack;
1586
1587 alloc_gdbarch_data (gdbarch);
1588
1589 gdbarch->tdep = tdep;
1590 EOF
1591 printf "\n"
1592 function_list | while do_read
1593 do
1594 if class_is_info_p
1595 then
1596 printf " gdbarch->${function} = info->${function};\n"
1597 fi
1598 done
1599 printf "\n"
1600 printf " /* Force the explicit initialization of these. */\n"
1601 function_list | while do_read
1602 do
1603 if class_is_function_p || class_is_variable_p
1604 then
1605 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1606 then
1607 printf " gdbarch->${function} = ${predefault};\n"
1608 fi
1609 fi
1610 done
1611 cat <<EOF
1612 /* gdbarch_alloc() */
1613
1614 return gdbarch;
1615 }
1616 EOF
1617
1618 # Free a gdbarch struct.
1619 printf "\n"
1620 printf "\n"
1621 cat <<EOF
1622 /* Allocate extra space using the per-architecture obstack. */
1623
1624 void *
1625 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1626 {
1627 void *data = obstack_alloc (arch->obstack, size);
1628
1629 memset (data, 0, size);
1630 return data;
1631 }
1632
1633
1634 /* Free a gdbarch struct. This should never happen in normal
1635 operation --- once you've created a gdbarch, you keep it around.
1636 However, if an architecture's init function encounters an error
1637 building the structure, it may need to clean up a partially
1638 constructed gdbarch. */
1639
1640 void
1641 gdbarch_free (struct gdbarch *arch)
1642 {
1643 struct obstack *obstack;
1644
1645 gdb_assert (arch != NULL);
1646 gdb_assert (!arch->initialized_p);
1647 obstack = arch->obstack;
1648 obstack_free (obstack, 0); /* Includes the ARCH. */
1649 xfree (obstack);
1650 }
1651 EOF
1652
1653 # verify a new architecture
1654 cat <<EOF
1655
1656
1657 /* Ensure that all values in a GDBARCH are reasonable. */
1658
1659 static void
1660 verify_gdbarch (struct gdbarch *gdbarch)
1661 {
1662 struct ui_file *log;
1663 struct cleanup *cleanups;
1664 long length;
1665 char *buf;
1666
1667 log = mem_fileopen ();
1668 cleanups = make_cleanup_ui_file_delete (log);
1669 /* fundamental */
1670 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1671 fprintf_unfiltered (log, "\n\tbyte-order");
1672 if (gdbarch->bfd_arch_info == NULL)
1673 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1674 /* Check those that need to be defined for the given multi-arch level. */
1675 EOF
1676 function_list | while do_read
1677 do
1678 if class_is_function_p || class_is_variable_p
1679 then
1680 if [ "x${invalid_p}" = "x0" ]
1681 then
1682 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1683 elif class_is_predicate_p
1684 then
1685 printf " /* Skip verify of ${function}, has predicate. */\n"
1686 # FIXME: See do_read for potential simplification
1687 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1688 then
1689 printf " if (${invalid_p})\n"
1690 printf " gdbarch->${function} = ${postdefault};\n"
1691 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1692 then
1693 printf " if (gdbarch->${function} == ${predefault})\n"
1694 printf " gdbarch->${function} = ${postdefault};\n"
1695 elif [ -n "${postdefault}" ]
1696 then
1697 printf " if (gdbarch->${function} == 0)\n"
1698 printf " gdbarch->${function} = ${postdefault};\n"
1699 elif [ -n "${invalid_p}" ]
1700 then
1701 printf " if (${invalid_p})\n"
1702 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1703 elif [ -n "${predefault}" ]
1704 then
1705 printf " if (gdbarch->${function} == ${predefault})\n"
1706 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1707 fi
1708 fi
1709 done
1710 cat <<EOF
1711 buf = ui_file_xstrdup (log, &length);
1712 make_cleanup (xfree, buf);
1713 if (length > 0)
1714 internal_error (__FILE__, __LINE__,
1715 _("verify_gdbarch: the following are invalid ...%s"),
1716 buf);
1717 do_cleanups (cleanups);
1718 }
1719 EOF
1720
1721 # dump the structure
1722 printf "\n"
1723 printf "\n"
1724 cat <<EOF
1725 /* Print out the details of the current architecture. */
1726
1727 void
1728 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1729 {
1730 const char *gdb_nm_file = "<not-defined>";
1731
1732 #if defined (GDB_NM_FILE)
1733 gdb_nm_file = GDB_NM_FILE;
1734 #endif
1735 fprintf_unfiltered (file,
1736 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1737 gdb_nm_file);
1738 EOF
1739 function_list | sort -t: -k 3 | while do_read
1740 do
1741 # First the predicate
1742 if class_is_predicate_p
1743 then
1744 printf " fprintf_unfiltered (file,\n"
1745 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1746 printf " gdbarch_${function}_p (gdbarch));\n"
1747 fi
1748 # Print the corresponding value.
1749 if class_is_function_p
1750 then
1751 printf " fprintf_unfiltered (file,\n"
1752 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1753 printf " host_address_to_string (gdbarch->${function}));\n"
1754 else
1755 # It is a variable
1756 case "${print}:${returntype}" in
1757 :CORE_ADDR )
1758 fmt="%s"
1759 print="core_addr_to_string_nz (gdbarch->${function})"
1760 ;;
1761 :* )
1762 fmt="%s"
1763 print="plongest (gdbarch->${function})"
1764 ;;
1765 * )
1766 fmt="%s"
1767 ;;
1768 esac
1769 printf " fprintf_unfiltered (file,\n"
1770 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1771 printf " ${print});\n"
1772 fi
1773 done
1774 cat <<EOF
1775 if (gdbarch->dump_tdep != NULL)
1776 gdbarch->dump_tdep (gdbarch, file);
1777 }
1778 EOF
1779
1780
1781 # GET/SET
1782 printf "\n"
1783 cat <<EOF
1784 struct gdbarch_tdep *
1785 gdbarch_tdep (struct gdbarch *gdbarch)
1786 {
1787 if (gdbarch_debug >= 2)
1788 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1789 return gdbarch->tdep;
1790 }
1791 EOF
1792 printf "\n"
1793 function_list | while do_read
1794 do
1795 if class_is_predicate_p
1796 then
1797 printf "\n"
1798 printf "int\n"
1799 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1800 printf "{\n"
1801 printf " gdb_assert (gdbarch != NULL);\n"
1802 printf " return ${predicate};\n"
1803 printf "}\n"
1804 fi
1805 if class_is_function_p
1806 then
1807 printf "\n"
1808 printf "${returntype}\n"
1809 if [ "x${formal}" = "xvoid" ]
1810 then
1811 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1812 else
1813 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1814 fi
1815 printf "{\n"
1816 printf " gdb_assert (gdbarch != NULL);\n"
1817 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1818 if class_is_predicate_p && test -n "${predefault}"
1819 then
1820 # Allow a call to a function with a predicate.
1821 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1822 fi
1823 printf " if (gdbarch_debug >= 2)\n"
1824 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1825 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1826 then
1827 if class_is_multiarch_p
1828 then
1829 params="gdbarch"
1830 else
1831 params=""
1832 fi
1833 else
1834 if class_is_multiarch_p
1835 then
1836 params="gdbarch, ${actual}"
1837 else
1838 params="${actual}"
1839 fi
1840 fi
1841 if [ "x${returntype}" = "xvoid" ]
1842 then
1843 printf " gdbarch->${function} (${params});\n"
1844 else
1845 printf " return gdbarch->${function} (${params});\n"
1846 fi
1847 printf "}\n"
1848 printf "\n"
1849 printf "void\n"
1850 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1851 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1852 printf "{\n"
1853 printf " gdbarch->${function} = ${function};\n"
1854 printf "}\n"
1855 elif class_is_variable_p
1856 then
1857 printf "\n"
1858 printf "${returntype}\n"
1859 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1860 printf "{\n"
1861 printf " gdb_assert (gdbarch != NULL);\n"
1862 if [ "x${invalid_p}" = "x0" ]
1863 then
1864 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1865 elif [ -n "${invalid_p}" ]
1866 then
1867 printf " /* Check variable is valid. */\n"
1868 printf " gdb_assert (!(${invalid_p}));\n"
1869 elif [ -n "${predefault}" ]
1870 then
1871 printf " /* Check variable changed from pre-default. */\n"
1872 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1873 fi
1874 printf " if (gdbarch_debug >= 2)\n"
1875 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1876 printf " return gdbarch->${function};\n"
1877 printf "}\n"
1878 printf "\n"
1879 printf "void\n"
1880 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1881 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1882 printf "{\n"
1883 printf " gdbarch->${function} = ${function};\n"
1884 printf "}\n"
1885 elif class_is_info_p
1886 then
1887 printf "\n"
1888 printf "${returntype}\n"
1889 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1890 printf "{\n"
1891 printf " gdb_assert (gdbarch != NULL);\n"
1892 printf " if (gdbarch_debug >= 2)\n"
1893 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1894 printf " return gdbarch->${function};\n"
1895 printf "}\n"
1896 fi
1897 done
1898
1899 # All the trailing guff
1900 cat <<EOF
1901
1902
1903 /* Keep a registry of per-architecture data-pointers required by GDB
1904 modules. */
1905
1906 struct gdbarch_data
1907 {
1908 unsigned index;
1909 int init_p;
1910 gdbarch_data_pre_init_ftype *pre_init;
1911 gdbarch_data_post_init_ftype *post_init;
1912 };
1913
1914 struct gdbarch_data_registration
1915 {
1916 struct gdbarch_data *data;
1917 struct gdbarch_data_registration *next;
1918 };
1919
1920 struct gdbarch_data_registry
1921 {
1922 unsigned nr;
1923 struct gdbarch_data_registration *registrations;
1924 };
1925
1926 struct gdbarch_data_registry gdbarch_data_registry =
1927 {
1928 0, NULL,
1929 };
1930
1931 static struct gdbarch_data *
1932 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1933 gdbarch_data_post_init_ftype *post_init)
1934 {
1935 struct gdbarch_data_registration **curr;
1936
1937 /* Append the new registration. */
1938 for (curr = &gdbarch_data_registry.registrations;
1939 (*curr) != NULL;
1940 curr = &(*curr)->next);
1941 (*curr) = XMALLOC (struct gdbarch_data_registration);
1942 (*curr)->next = NULL;
1943 (*curr)->data = XMALLOC (struct gdbarch_data);
1944 (*curr)->data->index = gdbarch_data_registry.nr++;
1945 (*curr)->data->pre_init = pre_init;
1946 (*curr)->data->post_init = post_init;
1947 (*curr)->data->init_p = 1;
1948 return (*curr)->data;
1949 }
1950
1951 struct gdbarch_data *
1952 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1953 {
1954 return gdbarch_data_register (pre_init, NULL);
1955 }
1956
1957 struct gdbarch_data *
1958 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1959 {
1960 return gdbarch_data_register (NULL, post_init);
1961 }
1962
1963 /* Create/delete the gdbarch data vector. */
1964
1965 static void
1966 alloc_gdbarch_data (struct gdbarch *gdbarch)
1967 {
1968 gdb_assert (gdbarch->data == NULL);
1969 gdbarch->nr_data = gdbarch_data_registry.nr;
1970 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1971 }
1972
1973 /* Initialize the current value of the specified per-architecture
1974 data-pointer. */
1975
1976 void
1977 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1978 struct gdbarch_data *data,
1979 void *pointer)
1980 {
1981 gdb_assert (data->index < gdbarch->nr_data);
1982 gdb_assert (gdbarch->data[data->index] == NULL);
1983 gdb_assert (data->pre_init == NULL);
1984 gdbarch->data[data->index] = pointer;
1985 }
1986
1987 /* Return the current value of the specified per-architecture
1988 data-pointer. */
1989
1990 void *
1991 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1992 {
1993 gdb_assert (data->index < gdbarch->nr_data);
1994 if (gdbarch->data[data->index] == NULL)
1995 {
1996 /* The data-pointer isn't initialized, call init() to get a
1997 value. */
1998 if (data->pre_init != NULL)
1999 /* Mid architecture creation: pass just the obstack, and not
2000 the entire architecture, as that way it isn't possible for
2001 pre-init code to refer to undefined architecture
2002 fields. */
2003 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2004 else if (gdbarch->initialized_p
2005 && data->post_init != NULL)
2006 /* Post architecture creation: pass the entire architecture
2007 (as all fields are valid), but be careful to also detect
2008 recursive references. */
2009 {
2010 gdb_assert (data->init_p);
2011 data->init_p = 0;
2012 gdbarch->data[data->index] = data->post_init (gdbarch);
2013 data->init_p = 1;
2014 }
2015 else
2016 /* The architecture initialization hasn't completed - punt -
2017 hope that the caller knows what they are doing. Once
2018 deprecated_set_gdbarch_data has been initialized, this can be
2019 changed to an internal error. */
2020 return NULL;
2021 gdb_assert (gdbarch->data[data->index] != NULL);
2022 }
2023 return gdbarch->data[data->index];
2024 }
2025
2026
2027 /* Keep a registry of the architectures known by GDB. */
2028
2029 struct gdbarch_registration
2030 {
2031 enum bfd_architecture bfd_architecture;
2032 gdbarch_init_ftype *init;
2033 gdbarch_dump_tdep_ftype *dump_tdep;
2034 struct gdbarch_list *arches;
2035 struct gdbarch_registration *next;
2036 };
2037
2038 static struct gdbarch_registration *gdbarch_registry = NULL;
2039
2040 static void
2041 append_name (const char ***buf, int *nr, const char *name)
2042 {
2043 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2044 (*buf)[*nr] = name;
2045 *nr += 1;
2046 }
2047
2048 const char **
2049 gdbarch_printable_names (void)
2050 {
2051 /* Accumulate a list of names based on the registed list of
2052 architectures. */
2053 int nr_arches = 0;
2054 const char **arches = NULL;
2055 struct gdbarch_registration *rego;
2056
2057 for (rego = gdbarch_registry;
2058 rego != NULL;
2059 rego = rego->next)
2060 {
2061 const struct bfd_arch_info *ap;
2062 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2063 if (ap == NULL)
2064 internal_error (__FILE__, __LINE__,
2065 _("gdbarch_architecture_names: multi-arch unknown"));
2066 do
2067 {
2068 append_name (&arches, &nr_arches, ap->printable_name);
2069 ap = ap->next;
2070 }
2071 while (ap != NULL);
2072 }
2073 append_name (&arches, &nr_arches, NULL);
2074 return arches;
2075 }
2076
2077
2078 void
2079 gdbarch_register (enum bfd_architecture bfd_architecture,
2080 gdbarch_init_ftype *init,
2081 gdbarch_dump_tdep_ftype *dump_tdep)
2082 {
2083 struct gdbarch_registration **curr;
2084 const struct bfd_arch_info *bfd_arch_info;
2085
2086 /* Check that BFD recognizes this architecture */
2087 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2088 if (bfd_arch_info == NULL)
2089 {
2090 internal_error (__FILE__, __LINE__,
2091 _("gdbarch: Attempt to register "
2092 "unknown architecture (%d)"),
2093 bfd_architecture);
2094 }
2095 /* Check that we haven't seen this architecture before. */
2096 for (curr = &gdbarch_registry;
2097 (*curr) != NULL;
2098 curr = &(*curr)->next)
2099 {
2100 if (bfd_architecture == (*curr)->bfd_architecture)
2101 internal_error (__FILE__, __LINE__,
2102 _("gdbarch: Duplicate registration "
2103 "of architecture (%s)"),
2104 bfd_arch_info->printable_name);
2105 }
2106 /* log it */
2107 if (gdbarch_debug)
2108 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2109 bfd_arch_info->printable_name,
2110 host_address_to_string (init));
2111 /* Append it */
2112 (*curr) = XMALLOC (struct gdbarch_registration);
2113 (*curr)->bfd_architecture = bfd_architecture;
2114 (*curr)->init = init;
2115 (*curr)->dump_tdep = dump_tdep;
2116 (*curr)->arches = NULL;
2117 (*curr)->next = NULL;
2118 }
2119
2120 void
2121 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2122 gdbarch_init_ftype *init)
2123 {
2124 gdbarch_register (bfd_architecture, init, NULL);
2125 }
2126
2127
2128 /* Look for an architecture using gdbarch_info. */
2129
2130 struct gdbarch_list *
2131 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2132 const struct gdbarch_info *info)
2133 {
2134 for (; arches != NULL; arches = arches->next)
2135 {
2136 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2137 continue;
2138 if (info->byte_order != arches->gdbarch->byte_order)
2139 continue;
2140 if (info->osabi != arches->gdbarch->osabi)
2141 continue;
2142 if (info->target_desc != arches->gdbarch->target_desc)
2143 continue;
2144 return arches;
2145 }
2146 return NULL;
2147 }
2148
2149
2150 /* Find an architecture that matches the specified INFO. Create a new
2151 architecture if needed. Return that new architecture. */
2152
2153 struct gdbarch *
2154 gdbarch_find_by_info (struct gdbarch_info info)
2155 {
2156 struct gdbarch *new_gdbarch;
2157 struct gdbarch_registration *rego;
2158
2159 /* Fill in missing parts of the INFO struct using a number of
2160 sources: "set ..."; INFOabfd supplied; and the global
2161 defaults. */
2162 gdbarch_info_fill (&info);
2163
2164 /* Must have found some sort of architecture. */
2165 gdb_assert (info.bfd_arch_info != NULL);
2166
2167 if (gdbarch_debug)
2168 {
2169 fprintf_unfiltered (gdb_stdlog,
2170 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2171 (info.bfd_arch_info != NULL
2172 ? info.bfd_arch_info->printable_name
2173 : "(null)"));
2174 fprintf_unfiltered (gdb_stdlog,
2175 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2176 info.byte_order,
2177 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2178 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2179 : "default"));
2180 fprintf_unfiltered (gdb_stdlog,
2181 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2182 info.osabi, gdbarch_osabi_name (info.osabi));
2183 fprintf_unfiltered (gdb_stdlog,
2184 "gdbarch_find_by_info: info.abfd %s\n",
2185 host_address_to_string (info.abfd));
2186 fprintf_unfiltered (gdb_stdlog,
2187 "gdbarch_find_by_info: info.tdep_info %s\n",
2188 host_address_to_string (info.tdep_info));
2189 }
2190
2191 /* Find the tdep code that knows about this architecture. */
2192 for (rego = gdbarch_registry;
2193 rego != NULL;
2194 rego = rego->next)
2195 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2196 break;
2197 if (rego == NULL)
2198 {
2199 if (gdbarch_debug)
2200 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2201 "No matching architecture\n");
2202 return 0;
2203 }
2204
2205 /* Ask the tdep code for an architecture that matches "info". */
2206 new_gdbarch = rego->init (info, rego->arches);
2207
2208 /* Did the tdep code like it? No. Reject the change and revert to
2209 the old architecture. */
2210 if (new_gdbarch == NULL)
2211 {
2212 if (gdbarch_debug)
2213 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2214 "Target rejected architecture\n");
2215 return NULL;
2216 }
2217
2218 /* Is this a pre-existing architecture (as determined by already
2219 being initialized)? Move it to the front of the architecture
2220 list (keeping the list sorted Most Recently Used). */
2221 if (new_gdbarch->initialized_p)
2222 {
2223 struct gdbarch_list **list;
2224 struct gdbarch_list *this;
2225 if (gdbarch_debug)
2226 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2227 "Previous architecture %s (%s) selected\n",
2228 host_address_to_string (new_gdbarch),
2229 new_gdbarch->bfd_arch_info->printable_name);
2230 /* Find the existing arch in the list. */
2231 for (list = &rego->arches;
2232 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2233 list = &(*list)->next);
2234 /* It had better be in the list of architectures. */
2235 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2236 /* Unlink THIS. */
2237 this = (*list);
2238 (*list) = this->next;
2239 /* Insert THIS at the front. */
2240 this->next = rego->arches;
2241 rego->arches = this;
2242 /* Return it. */
2243 return new_gdbarch;
2244 }
2245
2246 /* It's a new architecture. */
2247 if (gdbarch_debug)
2248 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2249 "New architecture %s (%s) selected\n",
2250 host_address_to_string (new_gdbarch),
2251 new_gdbarch->bfd_arch_info->printable_name);
2252
2253 /* Insert the new architecture into the front of the architecture
2254 list (keep the list sorted Most Recently Used). */
2255 {
2256 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2257 this->next = rego->arches;
2258 this->gdbarch = new_gdbarch;
2259 rego->arches = this;
2260 }
2261
2262 /* Check that the newly installed architecture is valid. Plug in
2263 any post init values. */
2264 new_gdbarch->dump_tdep = rego->dump_tdep;
2265 verify_gdbarch (new_gdbarch);
2266 new_gdbarch->initialized_p = 1;
2267
2268 if (gdbarch_debug)
2269 gdbarch_dump (new_gdbarch, gdb_stdlog);
2270
2271 return new_gdbarch;
2272 }
2273
2274 /* Make the specified architecture current. */
2275
2276 void
2277 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2278 {
2279 gdb_assert (new_gdbarch != NULL);
2280 gdb_assert (new_gdbarch->initialized_p);
2281 target_gdbarch = new_gdbarch;
2282 observer_notify_architecture_changed (new_gdbarch);
2283 registers_changed ();
2284 }
2285
2286 extern void _initialize_gdbarch (void);
2287
2288 void
2289 _initialize_gdbarch (void)
2290 {
2291 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2292 Set architecture debugging."), _("\\
2293 Show architecture debugging."), _("\\
2294 When non-zero, architecture debugging is enabled."),
2295 NULL,
2296 show_gdbarch_debug,
2297 &setdebuglist, &showdebuglist);
2298 }
2299 EOF
2300
2301 # close things off
2302 exec 1>&2
2303 #../move-if-change new-gdbarch.c gdbarch.c
2304 compare_new gdbarch.c