2003-06-07 Andrew Cagney <cagney@redhat.com>
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # This is simply not needed. See value_of_builtin_frame_fp_reg and
432 # call_function_by_hand.
433 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
434 f:2:TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
435 # The dummy call frame SP should be set by push_dummy_call.
436 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
437 # Function for getting target's idea of a frame pointer. FIXME: GDB's
438 # whole scheme for dealing with "frames" and "frame pointers" needs a
439 # serious shakedown.
440 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
441 #
442 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
443 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
444 #
445 v:2:NUM_REGS:int:num_regs::::0:-1
446 # This macro gives the number of pseudo-registers that live in the
447 # register namespace but do not get fetched or stored on the target.
448 # These pseudo-registers may be aliases for other registers,
449 # combinations of other registers, or they may be computed by GDB.
450 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
451
452 # GDB's standard (or well known) register numbers. These can map onto
453 # a real register or a pseudo (computed) register or not be defined at
454 # all (-1).
455 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
456 # This is simply not needed. See value_of_builtin_frame_fp_reg and
457 # call_function_by_hand.
458 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
459 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
460 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
461 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
462 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
463 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
464 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
465 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
466 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
467 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
468 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
469 # Convert from an sdb register number to an internal gdb register number.
470 # This should be defined in tm.h, if REGISTER_NAMES is not set up
471 # to map one to one onto the sdb register numbers.
472 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
473 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
474 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
475 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
476 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
477 # NOTE: cagney/2002-05-02: This function with predicate has a valid
478 # (callable) initial value. As a consequence, even when the predicate
479 # is false, the corresponding function works. This simplifies the
480 # migration process - old code, calling REGISTER_BYTE, doesn't need to
481 # be modified.
482 F::REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
483 # The methods REGISTER_VIRTUAL_TYPE, REGISTER_VIRTUAL_SIZE and
484 # REGISTER_RAW_SIZE are all being replaced by REGISTER_TYPE.
485 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
486 # The methods DEPRECATED_MAX_REGISTER_RAW_SIZE and
487 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE are all being replaced by
488 # MAX_REGISTER_SIZE (a constant).
489 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
490 # The methods REGISTER_VIRTUAL_TYPE, REGISTER_VIRTUAL_SIZE and
491 # REGISTER_RAW_SIZE are all being replaced by REGISTER_TYPE.
492 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
493 # The methods DEPRECATED_MAX_REGISTER_RAW_SIZE and
494 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE are all being replaced by
495 # MAX_REGISTER_SIZE (a constant).
496 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
497 # The methods REGISTER_VIRTUAL_TYPE, REGISTER_VIRTUAL_SIZE and
498 # REGISTER_RAW_SIZE are all being replaced by REGISTER_TYPE.
499 F:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
500 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
501 #
502 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
503 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
504 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
505 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
506 # MAP a GDB RAW register number onto a simulator register number. See
507 # also include/...-sim.h.
508 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
509 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
510 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
511 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
512 # setjmp/longjmp support.
513 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
514 #
515 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
516 # much better but at least they are vaguely consistent). The headers
517 # and body contain convoluted #if/#else sequences for determine how
518 # things should be compiled. Instead of trying to mimic that
519 # behaviour here (and hence entrench it further) gdbarch simply
520 # reqires that these methods be set up from the word go. This also
521 # avoids any potential problems with moving beyond multi-arch partial.
522 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
523 # Replaced by push_dummy_code.
524 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
525 # Replaced by push_dummy_code.
526 f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0
527 # Replaced by push_dummy_code.
528 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
529 # Replaced by push_dummy_code.
530 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
531 # Replaced by push_dummy_code.
532 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
533 # NOTE: cagney/2002-11-24: This function with predicate has a valid
534 # (callable) initial value. As a consequence, even when the predicate
535 # is false, the corresponding function works. This simplifies the
536 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
537 # doesn't need to be modified.
538 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
539 # Replaced by push_dummy_code.
540 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
541 # Replaced by push_dummy_code.
542 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
543 # Replaced by push_dummy_code.
544 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust::::0
545 # Replaced by push_dummy_code.
546 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
547 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
548 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr:
549 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
550 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
551 #
552 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
553 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
554 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
555 #
556 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
557 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
558 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
559 #
560 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
561 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
562 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
563 #
564 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
565 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
566 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
567 #
568 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
569 # Replaced by PUSH_DUMMY_CALL
570 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
571 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
572 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
573 # NOTE: This can be handled directly in push_dummy_call.
574 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
575 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-:::0
576 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
577 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
578 #
579 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
580 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
581 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
582 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
583 #
584 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
585 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
586 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
587 #
588 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame:::0
589 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
590 #
591 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
592 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
593 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
594 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
595 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
596 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
597 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
598 f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
599 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
600 #
601 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
602 #
603 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
604 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
605 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame::0:0
606 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
607 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
608 # note, per UNWIND_PC's doco, that while the two have similar
609 # interfaces they have very different underlying implementations.
610 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi::0:0
611 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame:
612 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
613 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
614 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
615 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
616 #
617 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
618 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
619 # NOTE: cagney/2003-03-24: This is better handled by PUSH_ARGUMENTS.
620 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
621 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
622 # FIXME: kettenis/2003-03-08: This should be replaced by a function
623 # parametrized with (at least) the regcache.
624 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
625 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info::0:0
626 v:2:PARM_BOUNDARY:int:parm_boundary
627 #
628 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
629 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
630 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
631 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
632 # On some machines there are bits in addresses which are not really
633 # part of the address, but are used by the kernel, the hardware, etc.
634 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
635 # we get a "real" address such as one would find in a symbol table.
636 # This is used only for addresses of instructions, and even then I'm
637 # not sure it's used in all contexts. It exists to deal with there
638 # being a few stray bits in the PC which would mislead us, not as some
639 # sort of generic thing to handle alignment or segmentation (it's
640 # possible it should be in TARGET_READ_PC instead).
641 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
642 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
643 # ADDR_BITS_REMOVE.
644 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
645 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
646 # the target needs software single step. An ISA method to implement it.
647 #
648 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
649 # using the breakpoint system instead of blatting memory directly (as with rs6000).
650 #
651 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
652 # single step. If not, then implement single step using breakpoints.
653 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
654 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
655 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
656
657
658 # For SVR4 shared libraries, each call goes through a small piece of
659 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
660 # to nonzero if we are currently stopped in one of these.
661 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
662
663 # Some systems also have trampoline code for returning from shared libs.
664 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
665
666 # Sigtramp is a routine that the kernel calls (which then calls the
667 # signal handler). On most machines it is a library routine that is
668 # linked into the executable.
669 #
670 # This macro, given a program counter value and the name of the
671 # function in which that PC resides (which can be null if the name is
672 # not known), returns nonzero if the PC and name show that we are in
673 # sigtramp.
674 #
675 # On most machines just see if the name is sigtramp (and if we have
676 # no name, assume we are not in sigtramp).
677 #
678 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
679 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
680 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
681 # own local NAME lookup.
682 #
683 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
684 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
685 # does not.
686 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
687 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
688 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
689 # A target might have problems with watchpoints as soon as the stack
690 # frame of the current function has been destroyed. This mostly happens
691 # as the first action in a funtion's epilogue. in_function_epilogue_p()
692 # is defined to return a non-zero value if either the given addr is one
693 # instruction after the stack destroying instruction up to the trailing
694 # return instruction or if we can figure out that the stack frame has
695 # already been invalidated regardless of the value of addr. Targets
696 # which don't suffer from that problem could just let this functionality
697 # untouched.
698 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
699 # Given a vector of command-line arguments, return a newly allocated
700 # string which, when passed to the create_inferior function, will be
701 # parsed (on Unix systems, by the shell) to yield the same vector.
702 # This function should call error() if the argument vector is not
703 # representable for this target or if this target does not support
704 # command-line arguments.
705 # ARGC is the number of elements in the vector.
706 # ARGV is an array of strings, one per argument.
707 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
708 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
709 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
710 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
711 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
712 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
713 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
714 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
715 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
716 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
717 # Is a register in a group
718 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
719 # Fetch the pointer to the ith function argument.
720 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type:::::::::
721 EOF
722 }
723
724 #
725 # The .log file
726 #
727 exec > new-gdbarch.log
728 function_list | while do_read
729 do
730 cat <<EOF
731 ${class} ${macro}(${actual})
732 ${returntype} ${function} ($formal)${attrib}
733 EOF
734 for r in ${read}
735 do
736 eval echo \"\ \ \ \ ${r}=\${${r}}\"
737 done
738 if class_is_predicate_p && fallback_default_p
739 then
740 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
741 kill $$
742 exit 1
743 fi
744 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
745 then
746 echo "Error: postdefault is useless when invalid_p=0" 1>&2
747 kill $$
748 exit 1
749 fi
750 if class_is_multiarch_p
751 then
752 if class_is_predicate_p ; then :
753 elif test "x${predefault}" = "x"
754 then
755 echo "Error: pure multi-arch function must have a predefault" 1>&2
756 kill $$
757 exit 1
758 fi
759 fi
760 echo ""
761 done
762
763 exec 1>&2
764 compare_new gdbarch.log
765
766
767 copyright ()
768 {
769 cat <<EOF
770 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
771
772 /* Dynamic architecture support for GDB, the GNU debugger.
773 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
774
775 This file is part of GDB.
776
777 This program is free software; you can redistribute it and/or modify
778 it under the terms of the GNU General Public License as published by
779 the Free Software Foundation; either version 2 of the License, or
780 (at your option) any later version.
781
782 This program is distributed in the hope that it will be useful,
783 but WITHOUT ANY WARRANTY; without even the implied warranty of
784 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
785 GNU General Public License for more details.
786
787 You should have received a copy of the GNU General Public License
788 along with this program; if not, write to the Free Software
789 Foundation, Inc., 59 Temple Place - Suite 330,
790 Boston, MA 02111-1307, USA. */
791
792 /* This file was created with the aid of \`\`gdbarch.sh''.
793
794 The Bourne shell script \`\`gdbarch.sh'' creates the files
795 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
796 against the existing \`\`gdbarch.[hc]''. Any differences found
797 being reported.
798
799 If editing this file, please also run gdbarch.sh and merge any
800 changes into that script. Conversely, when making sweeping changes
801 to this file, modifying gdbarch.sh and using its output may prove
802 easier. */
803
804 EOF
805 }
806
807 #
808 # The .h file
809 #
810
811 exec > new-gdbarch.h
812 copyright
813 cat <<EOF
814 #ifndef GDBARCH_H
815 #define GDBARCH_H
816
817 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
818 #if !GDB_MULTI_ARCH
819 /* Pull in function declarations refered to, indirectly, via macros. */
820 #include "inferior.h" /* For unsigned_address_to_pointer(). */
821 #include "symfile.h" /* For entry_point_address(). */
822 #endif
823
824 struct floatformat;
825 struct ui_file;
826 struct frame_info;
827 struct value;
828 struct objfile;
829 struct minimal_symbol;
830 struct regcache;
831 struct reggroup;
832
833 extern struct gdbarch *current_gdbarch;
834
835
836 /* If any of the following are defined, the target wasn't correctly
837 converted. */
838
839 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
840 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
841 #endif
842 EOF
843
844 # function typedef's
845 printf "\n"
846 printf "\n"
847 printf "/* The following are pre-initialized by GDBARCH. */\n"
848 function_list | while do_read
849 do
850 if class_is_info_p
851 then
852 printf "\n"
853 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
854 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
855 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
856 printf "#error \"Non multi-arch definition of ${macro}\"\n"
857 printf "#endif\n"
858 printf "#if !defined (${macro})\n"
859 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
860 printf "#endif\n"
861 fi
862 done
863
864 # function typedef's
865 printf "\n"
866 printf "\n"
867 printf "/* The following are initialized by the target dependent code. */\n"
868 function_list | while do_read
869 do
870 if [ -n "${comment}" ]
871 then
872 echo "${comment}" | sed \
873 -e '2 s,#,/*,' \
874 -e '3,$ s,#, ,' \
875 -e '$ s,$, */,'
876 fi
877 if class_is_multiarch_p
878 then
879 if class_is_predicate_p
880 then
881 printf "\n"
882 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
883 fi
884 else
885 if class_is_predicate_p
886 then
887 printf "\n"
888 printf "#if defined (${macro})\n"
889 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
890 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
891 printf "#if !defined (${macro}_P)\n"
892 printf "#define ${macro}_P() (1)\n"
893 printf "#endif\n"
894 printf "#endif\n"
895 printf "\n"
896 printf "/* Default predicate for non- multi-arch targets. */\n"
897 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
898 printf "#define ${macro}_P() (0)\n"
899 printf "#endif\n"
900 printf "\n"
901 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
902 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
903 printf "#error \"Non multi-arch definition of ${macro}\"\n"
904 printf "#endif\n"
905 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
906 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
907 printf "#endif\n"
908 fi
909 fi
910 if class_is_variable_p
911 then
912 if fallback_default_p || class_is_predicate_p
913 then
914 printf "\n"
915 printf "/* Default (value) for non- multi-arch platforms. */\n"
916 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
917 echo "#define ${macro} (${fallbackdefault})" \
918 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
919 printf "#endif\n"
920 fi
921 printf "\n"
922 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
923 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
924 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
925 printf "#error \"Non multi-arch definition of ${macro}\"\n"
926 printf "#endif\n"
927 printf "#if !defined (${macro})\n"
928 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
929 printf "#endif\n"
930 fi
931 if class_is_function_p
932 then
933 if class_is_multiarch_p ; then :
934 elif fallback_default_p || class_is_predicate_p
935 then
936 printf "\n"
937 printf "/* Default (function) for non- multi-arch platforms. */\n"
938 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
939 if [ "x${fallbackdefault}" = "x0" ]
940 then
941 if [ "x${actual}" = "x-" ]
942 then
943 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
944 else
945 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
946 fi
947 else
948 # FIXME: Should be passing current_gdbarch through!
949 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
950 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
951 fi
952 printf "#endif\n"
953 fi
954 printf "\n"
955 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
956 then
957 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
958 elif class_is_multiarch_p
959 then
960 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
961 else
962 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
963 fi
964 if [ "x${formal}" = "xvoid" ]
965 then
966 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
967 else
968 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
969 fi
970 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
971 if class_is_multiarch_p ; then :
972 else
973 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
974 printf "#error \"Non multi-arch definition of ${macro}\"\n"
975 printf "#endif\n"
976 if [ "x${actual}" = "x" ]
977 then
978 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
979 elif [ "x${actual}" = "x-" ]
980 then
981 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
982 else
983 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
984 fi
985 printf "#if !defined (${macro})\n"
986 if [ "x${actual}" = "x" ]
987 then
988 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
989 elif [ "x${actual}" = "x-" ]
990 then
991 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
992 else
993 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
994 fi
995 printf "#endif\n"
996 fi
997 fi
998 done
999
1000 # close it off
1001 cat <<EOF
1002
1003 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1004
1005
1006 /* Mechanism for co-ordinating the selection of a specific
1007 architecture.
1008
1009 GDB targets (*-tdep.c) can register an interest in a specific
1010 architecture. Other GDB components can register a need to maintain
1011 per-architecture data.
1012
1013 The mechanisms below ensures that there is only a loose connection
1014 between the set-architecture command and the various GDB
1015 components. Each component can independently register their need
1016 to maintain architecture specific data with gdbarch.
1017
1018 Pragmatics:
1019
1020 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1021 didn't scale.
1022
1023 The more traditional mega-struct containing architecture specific
1024 data for all the various GDB components was also considered. Since
1025 GDB is built from a variable number of (fairly independent)
1026 components it was determined that the global aproach was not
1027 applicable. */
1028
1029
1030 /* Register a new architectural family with GDB.
1031
1032 Register support for the specified ARCHITECTURE with GDB. When
1033 gdbarch determines that the specified architecture has been
1034 selected, the corresponding INIT function is called.
1035
1036 --
1037
1038 The INIT function takes two parameters: INFO which contains the
1039 information available to gdbarch about the (possibly new)
1040 architecture; ARCHES which is a list of the previously created
1041 \`\`struct gdbarch'' for this architecture.
1042
1043 The INFO parameter is, as far as possible, be pre-initialized with
1044 information obtained from INFO.ABFD or the previously selected
1045 architecture.
1046
1047 The ARCHES parameter is a linked list (sorted most recently used)
1048 of all the previously created architures for this architecture
1049 family. The (possibly NULL) ARCHES->gdbarch can used to access
1050 values from the previously selected architecture for this
1051 architecture family. The global \`\`current_gdbarch'' shall not be
1052 used.
1053
1054 The INIT function shall return any of: NULL - indicating that it
1055 doesn't recognize the selected architecture; an existing \`\`struct
1056 gdbarch'' from the ARCHES list - indicating that the new
1057 architecture is just a synonym for an earlier architecture (see
1058 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1059 - that describes the selected architecture (see gdbarch_alloc()).
1060
1061 The DUMP_TDEP function shall print out all target specific values.
1062 Care should be taken to ensure that the function works in both the
1063 multi-arch and non- multi-arch cases. */
1064
1065 struct gdbarch_list
1066 {
1067 struct gdbarch *gdbarch;
1068 struct gdbarch_list *next;
1069 };
1070
1071 struct gdbarch_info
1072 {
1073 /* Use default: NULL (ZERO). */
1074 const struct bfd_arch_info *bfd_arch_info;
1075
1076 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1077 int byte_order;
1078
1079 /* Use default: NULL (ZERO). */
1080 bfd *abfd;
1081
1082 /* Use default: NULL (ZERO). */
1083 struct gdbarch_tdep_info *tdep_info;
1084
1085 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1086 enum gdb_osabi osabi;
1087 };
1088
1089 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1090 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1091
1092 /* DEPRECATED - use gdbarch_register() */
1093 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1094
1095 extern void gdbarch_register (enum bfd_architecture architecture,
1096 gdbarch_init_ftype *,
1097 gdbarch_dump_tdep_ftype *);
1098
1099
1100 /* Return a freshly allocated, NULL terminated, array of the valid
1101 architecture names. Since architectures are registered during the
1102 _initialize phase this function only returns useful information
1103 once initialization has been completed. */
1104
1105 extern const char **gdbarch_printable_names (void);
1106
1107
1108 /* Helper function. Search the list of ARCHES for a GDBARCH that
1109 matches the information provided by INFO. */
1110
1111 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1112
1113
1114 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1115 basic initialization using values obtained from the INFO andTDEP
1116 parameters. set_gdbarch_*() functions are called to complete the
1117 initialization of the object. */
1118
1119 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1120
1121
1122 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1123 It is assumed that the caller freeds the \`\`struct
1124 gdbarch_tdep''. */
1125
1126 extern void gdbarch_free (struct gdbarch *);
1127
1128
1129 /* Helper function. Force an update of the current architecture.
1130
1131 The actual architecture selected is determined by INFO, \`\`(gdb) set
1132 architecture'' et.al., the existing architecture and BFD's default
1133 architecture. INFO should be initialized to zero and then selected
1134 fields should be updated.
1135
1136 Returns non-zero if the update succeeds */
1137
1138 extern int gdbarch_update_p (struct gdbarch_info info);
1139
1140
1141
1142 /* Register per-architecture data-pointer.
1143
1144 Reserve space for a per-architecture data-pointer. An identifier
1145 for the reserved data-pointer is returned. That identifer should
1146 be saved in a local static variable.
1147
1148 The per-architecture data-pointer is either initialized explicitly
1149 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1150 gdbarch_data()). FREE() is called to delete either an existing
1151 data-pointer overridden by set_gdbarch_data() or when the
1152 architecture object is being deleted.
1153
1154 When a previously created architecture is re-selected, the
1155 per-architecture data-pointer for that previous architecture is
1156 restored. INIT() is not re-called.
1157
1158 Multiple registrarants for any architecture are allowed (and
1159 strongly encouraged). */
1160
1161 struct gdbarch_data;
1162
1163 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1164 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1165 void *pointer);
1166 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1167 gdbarch_data_free_ftype *free);
1168 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1169 struct gdbarch_data *data,
1170 void *pointer);
1171
1172 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1173
1174
1175 /* Register per-architecture memory region.
1176
1177 Provide a memory-region swap mechanism. Per-architecture memory
1178 region are created. These memory regions are swapped whenever the
1179 architecture is changed. For a new architecture, the memory region
1180 is initialized with zero (0) and the INIT function is called.
1181
1182 Memory regions are swapped / initialized in the order that they are
1183 registered. NULL DATA and/or INIT values can be specified.
1184
1185 New code should use register_gdbarch_data(). */
1186
1187 typedef void (gdbarch_swap_ftype) (void);
1188 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1189 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1190
1191
1192
1193 /* The target-system-dependent byte order is dynamic */
1194
1195 extern int target_byte_order;
1196 #ifndef TARGET_BYTE_ORDER
1197 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1198 #endif
1199
1200 extern int target_byte_order_auto;
1201 #ifndef TARGET_BYTE_ORDER_AUTO
1202 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1203 #endif
1204
1205
1206
1207 /* The target-system-dependent BFD architecture is dynamic */
1208
1209 extern int target_architecture_auto;
1210 #ifndef TARGET_ARCHITECTURE_AUTO
1211 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1212 #endif
1213
1214 extern const struct bfd_arch_info *target_architecture;
1215 #ifndef TARGET_ARCHITECTURE
1216 #define TARGET_ARCHITECTURE (target_architecture + 0)
1217 #endif
1218
1219
1220 /* The target-system-dependent disassembler is semi-dynamic */
1221
1222 /* Use gdb_disassemble, and gdbarch_print_insn instead. */
1223 extern int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info*);
1224
1225 /* Use set_gdbarch_print_insn instead. */
1226 extern disassemble_info deprecated_tm_print_insn_info;
1227
1228 /* Set the dynamic target-system-dependent parameters (architecture,
1229 byte-order, ...) using information found in the BFD */
1230
1231 extern void set_gdbarch_from_file (bfd *);
1232
1233
1234 /* Initialize the current architecture to the "first" one we find on
1235 our list. */
1236
1237 extern void initialize_current_architecture (void);
1238
1239 /* For non-multiarched targets, do any initialization of the default
1240 gdbarch object necessary after the _initialize_MODULE functions
1241 have run. */
1242 extern void initialize_non_multiarch (void);
1243
1244 /* gdbarch trace variable */
1245 extern int gdbarch_debug;
1246
1247 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1248
1249 #endif
1250 EOF
1251 exec 1>&2
1252 #../move-if-change new-gdbarch.h gdbarch.h
1253 compare_new gdbarch.h
1254
1255
1256 #
1257 # C file
1258 #
1259
1260 exec > new-gdbarch.c
1261 copyright
1262 cat <<EOF
1263
1264 #include "defs.h"
1265 #include "arch-utils.h"
1266
1267 #if GDB_MULTI_ARCH
1268 #include "gdbcmd.h"
1269 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1270 #else
1271 /* Just include everything in sight so that the every old definition
1272 of macro is visible. */
1273 #include "gdb_string.h"
1274 #include <ctype.h>
1275 #include "symtab.h"
1276 #include "frame.h"
1277 #include "inferior.h"
1278 #include "breakpoint.h"
1279 #include "gdb_wait.h"
1280 #include "gdbcore.h"
1281 #include "gdbcmd.h"
1282 #include "target.h"
1283 #include "gdbthread.h"
1284 #include "annotate.h"
1285 #include "symfile.h" /* for overlay functions */
1286 #include "value.h" /* For old tm.h/nm.h macros. */
1287 #endif
1288 #include "symcat.h"
1289
1290 #include "floatformat.h"
1291
1292 #include "gdb_assert.h"
1293 #include "gdb_string.h"
1294 #include "gdb-events.h"
1295 #include "reggroups.h"
1296 #include "osabi.h"
1297 #include "symfile.h" /* For entry_point_address. */
1298
1299 /* Static function declarations */
1300
1301 static void verify_gdbarch (struct gdbarch *gdbarch);
1302 static void alloc_gdbarch_data (struct gdbarch *);
1303 static void free_gdbarch_data (struct gdbarch *);
1304 static void init_gdbarch_swap (struct gdbarch *);
1305 static void clear_gdbarch_swap (struct gdbarch *);
1306 static void swapout_gdbarch_swap (struct gdbarch *);
1307 static void swapin_gdbarch_swap (struct gdbarch *);
1308
1309 /* Non-zero if we want to trace architecture code. */
1310
1311 #ifndef GDBARCH_DEBUG
1312 #define GDBARCH_DEBUG 0
1313 #endif
1314 int gdbarch_debug = GDBARCH_DEBUG;
1315
1316 EOF
1317
1318 # gdbarch open the gdbarch object
1319 printf "\n"
1320 printf "/* Maintain the struct gdbarch object */\n"
1321 printf "\n"
1322 printf "struct gdbarch\n"
1323 printf "{\n"
1324 printf " /* Has this architecture been fully initialized? */\n"
1325 printf " int initialized_p;\n"
1326 printf " /* basic architectural information */\n"
1327 function_list | while do_read
1328 do
1329 if class_is_info_p
1330 then
1331 printf " ${returntype} ${function};\n"
1332 fi
1333 done
1334 printf "\n"
1335 printf " /* target specific vector. */\n"
1336 printf " struct gdbarch_tdep *tdep;\n"
1337 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1338 printf "\n"
1339 printf " /* per-architecture data-pointers */\n"
1340 printf " unsigned nr_data;\n"
1341 printf " void **data;\n"
1342 printf "\n"
1343 printf " /* per-architecture swap-regions */\n"
1344 printf " struct gdbarch_swap *swap;\n"
1345 printf "\n"
1346 cat <<EOF
1347 /* Multi-arch values.
1348
1349 When extending this structure you must:
1350
1351 Add the field below.
1352
1353 Declare set/get functions and define the corresponding
1354 macro in gdbarch.h.
1355
1356 gdbarch_alloc(): If zero/NULL is not a suitable default,
1357 initialize the new field.
1358
1359 verify_gdbarch(): Confirm that the target updated the field
1360 correctly.
1361
1362 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1363 field is dumped out
1364
1365 \`\`startup_gdbarch()'': Append an initial value to the static
1366 variable (base values on the host's c-type system).
1367
1368 get_gdbarch(): Implement the set/get functions (probably using
1369 the macro's as shortcuts).
1370
1371 */
1372
1373 EOF
1374 function_list | while do_read
1375 do
1376 if class_is_variable_p
1377 then
1378 printf " ${returntype} ${function};\n"
1379 elif class_is_function_p
1380 then
1381 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1382 fi
1383 done
1384 printf "};\n"
1385
1386 # A pre-initialized vector
1387 printf "\n"
1388 printf "\n"
1389 cat <<EOF
1390 /* The default architecture uses host values (for want of a better
1391 choice). */
1392 EOF
1393 printf "\n"
1394 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1395 printf "\n"
1396 printf "struct gdbarch startup_gdbarch =\n"
1397 printf "{\n"
1398 printf " 1, /* Always initialized. */\n"
1399 printf " /* basic architecture information */\n"
1400 function_list | while do_read
1401 do
1402 if class_is_info_p
1403 then
1404 printf " ${staticdefault}, /* ${function} */\n"
1405 fi
1406 done
1407 cat <<EOF
1408 /* target specific vector and its dump routine */
1409 NULL, NULL,
1410 /*per-architecture data-pointers and swap regions */
1411 0, NULL, NULL,
1412 /* Multi-arch values */
1413 EOF
1414 function_list | while do_read
1415 do
1416 if class_is_function_p || class_is_variable_p
1417 then
1418 printf " ${staticdefault}, /* ${function} */\n"
1419 fi
1420 done
1421 cat <<EOF
1422 /* startup_gdbarch() */
1423 };
1424
1425 struct gdbarch *current_gdbarch = &startup_gdbarch;
1426
1427 /* Do any initialization needed for a non-multiarch configuration
1428 after the _initialize_MODULE functions have been run. */
1429 void
1430 initialize_non_multiarch (void)
1431 {
1432 alloc_gdbarch_data (&startup_gdbarch);
1433 /* Ensure that all swap areas are zeroed so that they again think
1434 they are starting from scratch. */
1435 clear_gdbarch_swap (&startup_gdbarch);
1436 init_gdbarch_swap (&startup_gdbarch);
1437 }
1438 EOF
1439
1440 # Create a new gdbarch struct
1441 printf "\n"
1442 printf "\n"
1443 cat <<EOF
1444 /* Create a new \`\`struct gdbarch'' based on information provided by
1445 \`\`struct gdbarch_info''. */
1446 EOF
1447 printf "\n"
1448 cat <<EOF
1449 struct gdbarch *
1450 gdbarch_alloc (const struct gdbarch_info *info,
1451 struct gdbarch_tdep *tdep)
1452 {
1453 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1454 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1455 the current local architecture and not the previous global
1456 architecture. This ensures that the new architectures initial
1457 values are not influenced by the previous architecture. Once
1458 everything is parameterised with gdbarch, this will go away. */
1459 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1460 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1461
1462 alloc_gdbarch_data (current_gdbarch);
1463
1464 current_gdbarch->tdep = tdep;
1465 EOF
1466 printf "\n"
1467 function_list | while do_read
1468 do
1469 if class_is_info_p
1470 then
1471 printf " current_gdbarch->${function} = info->${function};\n"
1472 fi
1473 done
1474 printf "\n"
1475 printf " /* Force the explicit initialization of these. */\n"
1476 function_list | while do_read
1477 do
1478 if class_is_function_p || class_is_variable_p
1479 then
1480 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1481 then
1482 printf " current_gdbarch->${function} = ${predefault};\n"
1483 fi
1484 fi
1485 done
1486 cat <<EOF
1487 /* gdbarch_alloc() */
1488
1489 return current_gdbarch;
1490 }
1491 EOF
1492
1493 # Free a gdbarch struct.
1494 printf "\n"
1495 printf "\n"
1496 cat <<EOF
1497 /* Free a gdbarch struct. This should never happen in normal
1498 operation --- once you've created a gdbarch, you keep it around.
1499 However, if an architecture's init function encounters an error
1500 building the structure, it may need to clean up a partially
1501 constructed gdbarch. */
1502
1503 void
1504 gdbarch_free (struct gdbarch *arch)
1505 {
1506 gdb_assert (arch != NULL);
1507 free_gdbarch_data (arch);
1508 xfree (arch);
1509 }
1510 EOF
1511
1512 # verify a new architecture
1513 printf "\n"
1514 printf "\n"
1515 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1516 printf "\n"
1517 cat <<EOF
1518 static void
1519 verify_gdbarch (struct gdbarch *gdbarch)
1520 {
1521 struct ui_file *log;
1522 struct cleanup *cleanups;
1523 long dummy;
1524 char *buf;
1525 /* Only perform sanity checks on a multi-arch target. */
1526 if (!GDB_MULTI_ARCH)
1527 return;
1528 log = mem_fileopen ();
1529 cleanups = make_cleanup_ui_file_delete (log);
1530 /* fundamental */
1531 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1532 fprintf_unfiltered (log, "\n\tbyte-order");
1533 if (gdbarch->bfd_arch_info == NULL)
1534 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1535 /* Check those that need to be defined for the given multi-arch level. */
1536 EOF
1537 function_list | while do_read
1538 do
1539 if class_is_function_p || class_is_variable_p
1540 then
1541 if [ "x${invalid_p}" = "x0" ]
1542 then
1543 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1544 elif class_is_predicate_p
1545 then
1546 printf " /* Skip verify of ${function}, has predicate */\n"
1547 # FIXME: See do_read for potential simplification
1548 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1549 then
1550 printf " if (${invalid_p})\n"
1551 printf " gdbarch->${function} = ${postdefault};\n"
1552 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1553 then
1554 printf " if (gdbarch->${function} == ${predefault})\n"
1555 printf " gdbarch->${function} = ${postdefault};\n"
1556 elif [ -n "${postdefault}" ]
1557 then
1558 printf " if (gdbarch->${function} == 0)\n"
1559 printf " gdbarch->${function} = ${postdefault};\n"
1560 elif [ -n "${invalid_p}" ]
1561 then
1562 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1563 printf " && (${invalid_p}))\n"
1564 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1565 elif [ -n "${predefault}" ]
1566 then
1567 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1568 printf " && (gdbarch->${function} == ${predefault}))\n"
1569 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1570 fi
1571 fi
1572 done
1573 cat <<EOF
1574 buf = ui_file_xstrdup (log, &dummy);
1575 make_cleanup (xfree, buf);
1576 if (strlen (buf) > 0)
1577 internal_error (__FILE__, __LINE__,
1578 "verify_gdbarch: the following are invalid ...%s",
1579 buf);
1580 do_cleanups (cleanups);
1581 }
1582 EOF
1583
1584 # dump the structure
1585 printf "\n"
1586 printf "\n"
1587 cat <<EOF
1588 /* Print out the details of the current architecture. */
1589
1590 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1591 just happens to match the global variable \`\`current_gdbarch''. That
1592 way macros refering to that variable get the local and not the global
1593 version - ulgh. Once everything is parameterised with gdbarch, this
1594 will go away. */
1595
1596 void
1597 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1598 {
1599 fprintf_unfiltered (file,
1600 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1601 GDB_MULTI_ARCH);
1602 EOF
1603 function_list | sort -t: -k 3 | while do_read
1604 do
1605 # First the predicate
1606 if class_is_predicate_p
1607 then
1608 if class_is_multiarch_p
1609 then
1610 printf " if (GDB_MULTI_ARCH)\n"
1611 printf " fprintf_unfiltered (file,\n"
1612 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1613 printf " gdbarch_${function}_p (current_gdbarch));\n"
1614 else
1615 printf "#ifdef ${macro}_P\n"
1616 printf " fprintf_unfiltered (file,\n"
1617 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1618 printf " \"${macro}_P()\",\n"
1619 printf " XSTRING (${macro}_P ()));\n"
1620 printf " fprintf_unfiltered (file,\n"
1621 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1622 printf " ${macro}_P ());\n"
1623 printf "#endif\n"
1624 fi
1625 fi
1626 # multiarch functions don't have macros.
1627 if class_is_multiarch_p
1628 then
1629 printf " if (GDB_MULTI_ARCH)\n"
1630 printf " fprintf_unfiltered (file,\n"
1631 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1632 printf " (long) current_gdbarch->${function});\n"
1633 continue
1634 fi
1635 # Print the macro definition.
1636 printf "#ifdef ${macro}\n"
1637 if [ "x${returntype}" = "xvoid" ]
1638 then
1639 printf "#if GDB_MULTI_ARCH\n"
1640 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1641 fi
1642 if class_is_function_p
1643 then
1644 printf " fprintf_unfiltered (file,\n"
1645 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1646 printf " \"${macro}(${actual})\",\n"
1647 printf " XSTRING (${macro} (${actual})));\n"
1648 else
1649 printf " fprintf_unfiltered (file,\n"
1650 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1651 printf " XSTRING (${macro}));\n"
1652 fi
1653 # Print the architecture vector value
1654 if [ "x${returntype}" = "xvoid" ]
1655 then
1656 printf "#endif\n"
1657 fi
1658 if [ "x${print_p}" = "x()" ]
1659 then
1660 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1661 elif [ "x${print_p}" = "x0" ]
1662 then
1663 printf " /* skip print of ${macro}, print_p == 0. */\n"
1664 elif [ -n "${print_p}" ]
1665 then
1666 printf " if (${print_p})\n"
1667 printf " fprintf_unfiltered (file,\n"
1668 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1669 printf " ${print});\n"
1670 elif class_is_function_p
1671 then
1672 printf " if (GDB_MULTI_ARCH)\n"
1673 printf " fprintf_unfiltered (file,\n"
1674 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1675 printf " (long) current_gdbarch->${function}\n"
1676 printf " /*${macro} ()*/);\n"
1677 else
1678 printf " fprintf_unfiltered (file,\n"
1679 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1680 printf " ${print});\n"
1681 fi
1682 printf "#endif\n"
1683 done
1684 cat <<EOF
1685 if (current_gdbarch->dump_tdep != NULL)
1686 current_gdbarch->dump_tdep (current_gdbarch, file);
1687 }
1688 EOF
1689
1690
1691 # GET/SET
1692 printf "\n"
1693 cat <<EOF
1694 struct gdbarch_tdep *
1695 gdbarch_tdep (struct gdbarch *gdbarch)
1696 {
1697 if (gdbarch_debug >= 2)
1698 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1699 return gdbarch->tdep;
1700 }
1701 EOF
1702 printf "\n"
1703 function_list | while do_read
1704 do
1705 if class_is_predicate_p
1706 then
1707 printf "\n"
1708 printf "int\n"
1709 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1710 printf "{\n"
1711 printf " gdb_assert (gdbarch != NULL);\n"
1712 if [ -n "${predicate}" ]
1713 then
1714 printf " return ${predicate};\n"
1715 else
1716 printf " return gdbarch->${function} != 0;\n"
1717 fi
1718 printf "}\n"
1719 fi
1720 if class_is_function_p
1721 then
1722 printf "\n"
1723 printf "${returntype}\n"
1724 if [ "x${formal}" = "xvoid" ]
1725 then
1726 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1727 else
1728 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1729 fi
1730 printf "{\n"
1731 printf " gdb_assert (gdbarch != NULL);\n"
1732 printf " if (gdbarch->${function} == 0)\n"
1733 printf " internal_error (__FILE__, __LINE__,\n"
1734 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1735 if class_is_predicate_p && test -n "${predicate}"
1736 then
1737 # Allow a call to a function with a predicate.
1738 printf " /* Ignore predicate (${predicate}). */\n"
1739 fi
1740 printf " if (gdbarch_debug >= 2)\n"
1741 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1742 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1743 then
1744 if class_is_multiarch_p
1745 then
1746 params="gdbarch"
1747 else
1748 params=""
1749 fi
1750 else
1751 if class_is_multiarch_p
1752 then
1753 params="gdbarch, ${actual}"
1754 else
1755 params="${actual}"
1756 fi
1757 fi
1758 if [ "x${returntype}" = "xvoid" ]
1759 then
1760 printf " gdbarch->${function} (${params});\n"
1761 else
1762 printf " return gdbarch->${function} (${params});\n"
1763 fi
1764 printf "}\n"
1765 printf "\n"
1766 printf "void\n"
1767 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1768 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1769 printf "{\n"
1770 printf " gdbarch->${function} = ${function};\n"
1771 printf "}\n"
1772 elif class_is_variable_p
1773 then
1774 printf "\n"
1775 printf "${returntype}\n"
1776 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1777 printf "{\n"
1778 printf " gdb_assert (gdbarch != NULL);\n"
1779 if [ "x${invalid_p}" = "x0" ]
1780 then
1781 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1782 elif [ -n "${invalid_p}" ]
1783 then
1784 printf " if (${invalid_p})\n"
1785 printf " internal_error (__FILE__, __LINE__,\n"
1786 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1787 elif [ -n "${predefault}" ]
1788 then
1789 printf " if (gdbarch->${function} == ${predefault})\n"
1790 printf " internal_error (__FILE__, __LINE__,\n"
1791 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1792 fi
1793 printf " if (gdbarch_debug >= 2)\n"
1794 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1795 printf " return gdbarch->${function};\n"
1796 printf "}\n"
1797 printf "\n"
1798 printf "void\n"
1799 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1800 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1801 printf "{\n"
1802 printf " gdbarch->${function} = ${function};\n"
1803 printf "}\n"
1804 elif class_is_info_p
1805 then
1806 printf "\n"
1807 printf "${returntype}\n"
1808 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1809 printf "{\n"
1810 printf " gdb_assert (gdbarch != NULL);\n"
1811 printf " if (gdbarch_debug >= 2)\n"
1812 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1813 printf " return gdbarch->${function};\n"
1814 printf "}\n"
1815 fi
1816 done
1817
1818 # All the trailing guff
1819 cat <<EOF
1820
1821
1822 /* Keep a registry of per-architecture data-pointers required by GDB
1823 modules. */
1824
1825 struct gdbarch_data
1826 {
1827 unsigned index;
1828 int init_p;
1829 gdbarch_data_init_ftype *init;
1830 gdbarch_data_free_ftype *free;
1831 };
1832
1833 struct gdbarch_data_registration
1834 {
1835 struct gdbarch_data *data;
1836 struct gdbarch_data_registration *next;
1837 };
1838
1839 struct gdbarch_data_registry
1840 {
1841 unsigned nr;
1842 struct gdbarch_data_registration *registrations;
1843 };
1844
1845 struct gdbarch_data_registry gdbarch_data_registry =
1846 {
1847 0, NULL,
1848 };
1849
1850 struct gdbarch_data *
1851 register_gdbarch_data (gdbarch_data_init_ftype *init,
1852 gdbarch_data_free_ftype *free)
1853 {
1854 struct gdbarch_data_registration **curr;
1855 /* Append the new registraration. */
1856 for (curr = &gdbarch_data_registry.registrations;
1857 (*curr) != NULL;
1858 curr = &(*curr)->next);
1859 (*curr) = XMALLOC (struct gdbarch_data_registration);
1860 (*curr)->next = NULL;
1861 (*curr)->data = XMALLOC (struct gdbarch_data);
1862 (*curr)->data->index = gdbarch_data_registry.nr++;
1863 (*curr)->data->init = init;
1864 (*curr)->data->init_p = 1;
1865 (*curr)->data->free = free;
1866 return (*curr)->data;
1867 }
1868
1869
1870 /* Create/delete the gdbarch data vector. */
1871
1872 static void
1873 alloc_gdbarch_data (struct gdbarch *gdbarch)
1874 {
1875 gdb_assert (gdbarch->data == NULL);
1876 gdbarch->nr_data = gdbarch_data_registry.nr;
1877 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1878 }
1879
1880 static void
1881 free_gdbarch_data (struct gdbarch *gdbarch)
1882 {
1883 struct gdbarch_data_registration *rego;
1884 gdb_assert (gdbarch->data != NULL);
1885 for (rego = gdbarch_data_registry.registrations;
1886 rego != NULL;
1887 rego = rego->next)
1888 {
1889 struct gdbarch_data *data = rego->data;
1890 gdb_assert (data->index < gdbarch->nr_data);
1891 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1892 {
1893 data->free (gdbarch, gdbarch->data[data->index]);
1894 gdbarch->data[data->index] = NULL;
1895 }
1896 }
1897 xfree (gdbarch->data);
1898 gdbarch->data = NULL;
1899 }
1900
1901
1902 /* Initialize the current value of the specified per-architecture
1903 data-pointer. */
1904
1905 void
1906 set_gdbarch_data (struct gdbarch *gdbarch,
1907 struct gdbarch_data *data,
1908 void *pointer)
1909 {
1910 gdb_assert (data->index < gdbarch->nr_data);
1911 if (gdbarch->data[data->index] != NULL)
1912 {
1913 gdb_assert (data->free != NULL);
1914 data->free (gdbarch, gdbarch->data[data->index]);
1915 }
1916 gdbarch->data[data->index] = pointer;
1917 }
1918
1919 /* Return the current value of the specified per-architecture
1920 data-pointer. */
1921
1922 void *
1923 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1924 {
1925 gdb_assert (data->index < gdbarch->nr_data);
1926 /* The data-pointer isn't initialized, call init() to get a value but
1927 only if the architecture initializaiton has completed. Otherwise
1928 punt - hope that the caller knows what they are doing. */
1929 if (gdbarch->data[data->index] == NULL
1930 && gdbarch->initialized_p)
1931 {
1932 /* Be careful to detect an initialization cycle. */
1933 gdb_assert (data->init_p);
1934 data->init_p = 0;
1935 gdb_assert (data->init != NULL);
1936 gdbarch->data[data->index] = data->init (gdbarch);
1937 data->init_p = 1;
1938 gdb_assert (gdbarch->data[data->index] != NULL);
1939 }
1940 return gdbarch->data[data->index];
1941 }
1942
1943
1944
1945 /* Keep a registry of swapped data required by GDB modules. */
1946
1947 struct gdbarch_swap
1948 {
1949 void *swap;
1950 struct gdbarch_swap_registration *source;
1951 struct gdbarch_swap *next;
1952 };
1953
1954 struct gdbarch_swap_registration
1955 {
1956 void *data;
1957 unsigned long sizeof_data;
1958 gdbarch_swap_ftype *init;
1959 struct gdbarch_swap_registration *next;
1960 };
1961
1962 struct gdbarch_swap_registry
1963 {
1964 int nr;
1965 struct gdbarch_swap_registration *registrations;
1966 };
1967
1968 struct gdbarch_swap_registry gdbarch_swap_registry =
1969 {
1970 0, NULL,
1971 };
1972
1973 void
1974 register_gdbarch_swap (void *data,
1975 unsigned long sizeof_data,
1976 gdbarch_swap_ftype *init)
1977 {
1978 struct gdbarch_swap_registration **rego;
1979 for (rego = &gdbarch_swap_registry.registrations;
1980 (*rego) != NULL;
1981 rego = &(*rego)->next);
1982 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1983 (*rego)->next = NULL;
1984 (*rego)->init = init;
1985 (*rego)->data = data;
1986 (*rego)->sizeof_data = sizeof_data;
1987 }
1988
1989 static void
1990 clear_gdbarch_swap (struct gdbarch *gdbarch)
1991 {
1992 struct gdbarch_swap *curr;
1993 for (curr = gdbarch->swap;
1994 curr != NULL;
1995 curr = curr->next)
1996 {
1997 memset (curr->source->data, 0, curr->source->sizeof_data);
1998 }
1999 }
2000
2001 static void
2002 init_gdbarch_swap (struct gdbarch *gdbarch)
2003 {
2004 struct gdbarch_swap_registration *rego;
2005 struct gdbarch_swap **curr = &gdbarch->swap;
2006 for (rego = gdbarch_swap_registry.registrations;
2007 rego != NULL;
2008 rego = rego->next)
2009 {
2010 if (rego->data != NULL)
2011 {
2012 (*curr) = XMALLOC (struct gdbarch_swap);
2013 (*curr)->source = rego;
2014 (*curr)->swap = xmalloc (rego->sizeof_data);
2015 (*curr)->next = NULL;
2016 curr = &(*curr)->next;
2017 }
2018 if (rego->init != NULL)
2019 rego->init ();
2020 }
2021 }
2022
2023 static void
2024 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2025 {
2026 struct gdbarch_swap *curr;
2027 for (curr = gdbarch->swap;
2028 curr != NULL;
2029 curr = curr->next)
2030 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2031 }
2032
2033 static void
2034 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2035 {
2036 struct gdbarch_swap *curr;
2037 for (curr = gdbarch->swap;
2038 curr != NULL;
2039 curr = curr->next)
2040 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2041 }
2042
2043
2044 /* Keep a registry of the architectures known by GDB. */
2045
2046 struct gdbarch_registration
2047 {
2048 enum bfd_architecture bfd_architecture;
2049 gdbarch_init_ftype *init;
2050 gdbarch_dump_tdep_ftype *dump_tdep;
2051 struct gdbarch_list *arches;
2052 struct gdbarch_registration *next;
2053 };
2054
2055 static struct gdbarch_registration *gdbarch_registry = NULL;
2056
2057 static void
2058 append_name (const char ***buf, int *nr, const char *name)
2059 {
2060 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2061 (*buf)[*nr] = name;
2062 *nr += 1;
2063 }
2064
2065 const char **
2066 gdbarch_printable_names (void)
2067 {
2068 if (GDB_MULTI_ARCH)
2069 {
2070 /* Accumulate a list of names based on the registed list of
2071 architectures. */
2072 enum bfd_architecture a;
2073 int nr_arches = 0;
2074 const char **arches = NULL;
2075 struct gdbarch_registration *rego;
2076 for (rego = gdbarch_registry;
2077 rego != NULL;
2078 rego = rego->next)
2079 {
2080 const struct bfd_arch_info *ap;
2081 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2082 if (ap == NULL)
2083 internal_error (__FILE__, __LINE__,
2084 "gdbarch_architecture_names: multi-arch unknown");
2085 do
2086 {
2087 append_name (&arches, &nr_arches, ap->printable_name);
2088 ap = ap->next;
2089 }
2090 while (ap != NULL);
2091 }
2092 append_name (&arches, &nr_arches, NULL);
2093 return arches;
2094 }
2095 else
2096 /* Just return all the architectures that BFD knows. Assume that
2097 the legacy architecture framework supports them. */
2098 return bfd_arch_list ();
2099 }
2100
2101
2102 void
2103 gdbarch_register (enum bfd_architecture bfd_architecture,
2104 gdbarch_init_ftype *init,
2105 gdbarch_dump_tdep_ftype *dump_tdep)
2106 {
2107 struct gdbarch_registration **curr;
2108 const struct bfd_arch_info *bfd_arch_info;
2109 /* Check that BFD recognizes this architecture */
2110 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2111 if (bfd_arch_info == NULL)
2112 {
2113 internal_error (__FILE__, __LINE__,
2114 "gdbarch: Attempt to register unknown architecture (%d)",
2115 bfd_architecture);
2116 }
2117 /* Check that we haven't seen this architecture before */
2118 for (curr = &gdbarch_registry;
2119 (*curr) != NULL;
2120 curr = &(*curr)->next)
2121 {
2122 if (bfd_architecture == (*curr)->bfd_architecture)
2123 internal_error (__FILE__, __LINE__,
2124 "gdbarch: Duplicate registraration of architecture (%s)",
2125 bfd_arch_info->printable_name);
2126 }
2127 /* log it */
2128 if (gdbarch_debug)
2129 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2130 bfd_arch_info->printable_name,
2131 (long) init);
2132 /* Append it */
2133 (*curr) = XMALLOC (struct gdbarch_registration);
2134 (*curr)->bfd_architecture = bfd_architecture;
2135 (*curr)->init = init;
2136 (*curr)->dump_tdep = dump_tdep;
2137 (*curr)->arches = NULL;
2138 (*curr)->next = NULL;
2139 /* When non- multi-arch, install whatever target dump routine we've
2140 been provided - hopefully that routine has been written correctly
2141 and works regardless of multi-arch. */
2142 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2143 && startup_gdbarch.dump_tdep == NULL)
2144 startup_gdbarch.dump_tdep = dump_tdep;
2145 }
2146
2147 void
2148 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2149 gdbarch_init_ftype *init)
2150 {
2151 gdbarch_register (bfd_architecture, init, NULL);
2152 }
2153
2154
2155 /* Look for an architecture using gdbarch_info. Base search on only
2156 BFD_ARCH_INFO and BYTE_ORDER. */
2157
2158 struct gdbarch_list *
2159 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2160 const struct gdbarch_info *info)
2161 {
2162 for (; arches != NULL; arches = arches->next)
2163 {
2164 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2165 continue;
2166 if (info->byte_order != arches->gdbarch->byte_order)
2167 continue;
2168 if (info->osabi != arches->gdbarch->osabi)
2169 continue;
2170 return arches;
2171 }
2172 return NULL;
2173 }
2174
2175
2176 /* Update the current architecture. Return ZERO if the update request
2177 failed. */
2178
2179 int
2180 gdbarch_update_p (struct gdbarch_info info)
2181 {
2182 struct gdbarch *new_gdbarch;
2183 struct gdbarch *old_gdbarch;
2184 struct gdbarch_registration *rego;
2185
2186 /* Fill in missing parts of the INFO struct using a number of
2187 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2188
2189 /* \`\`(gdb) set architecture ...'' */
2190 if (info.bfd_arch_info == NULL
2191 && !TARGET_ARCHITECTURE_AUTO)
2192 info.bfd_arch_info = TARGET_ARCHITECTURE;
2193 if (info.bfd_arch_info == NULL
2194 && info.abfd != NULL
2195 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2196 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2197 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2198 if (info.bfd_arch_info == NULL)
2199 info.bfd_arch_info = TARGET_ARCHITECTURE;
2200
2201 /* \`\`(gdb) set byte-order ...'' */
2202 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2203 && !TARGET_BYTE_ORDER_AUTO)
2204 info.byte_order = TARGET_BYTE_ORDER;
2205 /* From the INFO struct. */
2206 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2207 && info.abfd != NULL)
2208 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2209 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2210 : BFD_ENDIAN_UNKNOWN);
2211 /* From the current target. */
2212 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2213 info.byte_order = TARGET_BYTE_ORDER;
2214
2215 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2216 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2217 info.osabi = gdbarch_lookup_osabi (info.abfd);
2218 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2219 info.osabi = current_gdbarch->osabi;
2220
2221 /* Must have found some sort of architecture. */
2222 gdb_assert (info.bfd_arch_info != NULL);
2223
2224 if (gdbarch_debug)
2225 {
2226 fprintf_unfiltered (gdb_stdlog,
2227 "gdbarch_update: info.bfd_arch_info %s\n",
2228 (info.bfd_arch_info != NULL
2229 ? info.bfd_arch_info->printable_name
2230 : "(null)"));
2231 fprintf_unfiltered (gdb_stdlog,
2232 "gdbarch_update: info.byte_order %d (%s)\n",
2233 info.byte_order,
2234 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2235 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2236 : "default"));
2237 fprintf_unfiltered (gdb_stdlog,
2238 "gdbarch_update: info.osabi %d (%s)\n",
2239 info.osabi, gdbarch_osabi_name (info.osabi));
2240 fprintf_unfiltered (gdb_stdlog,
2241 "gdbarch_update: info.abfd 0x%lx\n",
2242 (long) info.abfd);
2243 fprintf_unfiltered (gdb_stdlog,
2244 "gdbarch_update: info.tdep_info 0x%lx\n",
2245 (long) info.tdep_info);
2246 }
2247
2248 /* Find the target that knows about this architecture. */
2249 for (rego = gdbarch_registry;
2250 rego != NULL;
2251 rego = rego->next)
2252 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2253 break;
2254 if (rego == NULL)
2255 {
2256 if (gdbarch_debug)
2257 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2258 return 0;
2259 }
2260
2261 /* Swap the data belonging to the old target out setting the
2262 installed data to zero. This stops the ->init() function trying
2263 to refer to the previous architecture's global data structures. */
2264 swapout_gdbarch_swap (current_gdbarch);
2265 clear_gdbarch_swap (current_gdbarch);
2266
2267 /* Save the previously selected architecture, setting the global to
2268 NULL. This stops ->init() trying to use the previous
2269 architecture's configuration. The previous architecture may not
2270 even be of the same architecture family. The most recent
2271 architecture of the same family is found at the head of the
2272 rego->arches list. */
2273 old_gdbarch = current_gdbarch;
2274 current_gdbarch = NULL;
2275
2276 /* Ask the target for a replacement architecture. */
2277 new_gdbarch = rego->init (info, rego->arches);
2278
2279 /* Did the target like it? No. Reject the change and revert to the
2280 old architecture. */
2281 if (new_gdbarch == NULL)
2282 {
2283 if (gdbarch_debug)
2284 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2285 swapin_gdbarch_swap (old_gdbarch);
2286 current_gdbarch = old_gdbarch;
2287 return 0;
2288 }
2289
2290 /* Did the architecture change? No. Oops, put the old architecture
2291 back. */
2292 if (old_gdbarch == new_gdbarch)
2293 {
2294 if (gdbarch_debug)
2295 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2296 (long) new_gdbarch,
2297 new_gdbarch->bfd_arch_info->printable_name);
2298 swapin_gdbarch_swap (old_gdbarch);
2299 current_gdbarch = old_gdbarch;
2300 return 1;
2301 }
2302
2303 /* Is this a pre-existing architecture? Yes. Move it to the front
2304 of the list of architectures (keeping the list sorted Most
2305 Recently Used) and then copy it in. */
2306 {
2307 struct gdbarch_list **list;
2308 for (list = &rego->arches;
2309 (*list) != NULL;
2310 list = &(*list)->next)
2311 {
2312 if ((*list)->gdbarch == new_gdbarch)
2313 {
2314 struct gdbarch_list *this;
2315 if (gdbarch_debug)
2316 fprintf_unfiltered (gdb_stdlog,
2317 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2318 (long) new_gdbarch,
2319 new_gdbarch->bfd_arch_info->printable_name);
2320 /* Unlink this. */
2321 this = (*list);
2322 (*list) = this->next;
2323 /* Insert in the front. */
2324 this->next = rego->arches;
2325 rego->arches = this;
2326 /* Copy the new architecture in. */
2327 current_gdbarch = new_gdbarch;
2328 swapin_gdbarch_swap (new_gdbarch);
2329 architecture_changed_event ();
2330 return 1;
2331 }
2332 }
2333 }
2334
2335 /* Prepend this new architecture to the architecture list (keep the
2336 list sorted Most Recently Used). */
2337 {
2338 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2339 this->next = rego->arches;
2340 this->gdbarch = new_gdbarch;
2341 rego->arches = this;
2342 }
2343
2344 /* Switch to this new architecture marking it initialized. */
2345 current_gdbarch = new_gdbarch;
2346 current_gdbarch->initialized_p = 1;
2347 if (gdbarch_debug)
2348 {
2349 fprintf_unfiltered (gdb_stdlog,
2350 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2351 (long) new_gdbarch,
2352 new_gdbarch->bfd_arch_info->printable_name);
2353 }
2354
2355 /* Check that the newly installed architecture is valid. Plug in
2356 any post init values. */
2357 new_gdbarch->dump_tdep = rego->dump_tdep;
2358 verify_gdbarch (new_gdbarch);
2359
2360 /* Initialize the per-architecture memory (swap) areas.
2361 CURRENT_GDBARCH must be update before these modules are
2362 called. */
2363 init_gdbarch_swap (new_gdbarch);
2364
2365 /* Initialize the per-architecture data. CURRENT_GDBARCH
2366 must be updated before these modules are called. */
2367 architecture_changed_event ();
2368
2369 if (gdbarch_debug)
2370 gdbarch_dump (current_gdbarch, gdb_stdlog);
2371
2372 return 1;
2373 }
2374
2375
2376 /* Disassembler */
2377
2378 /* Pointer to the target-dependent disassembly function. */
2379 int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info *);
2380
2381 extern void _initialize_gdbarch (void);
2382
2383 void
2384 _initialize_gdbarch (void)
2385 {
2386 struct cmd_list_element *c;
2387
2388 add_show_from_set (add_set_cmd ("arch",
2389 class_maintenance,
2390 var_zinteger,
2391 (char *)&gdbarch_debug,
2392 "Set architecture debugging.\\n\\
2393 When non-zero, architecture debugging is enabled.", &setdebuglist),
2394 &showdebuglist);
2395 c = add_set_cmd ("archdebug",
2396 class_maintenance,
2397 var_zinteger,
2398 (char *)&gdbarch_debug,
2399 "Set architecture debugging.\\n\\
2400 When non-zero, architecture debugging is enabled.", &setlist);
2401
2402 deprecate_cmd (c, "set debug arch");
2403 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2404 }
2405 EOF
2406
2407 # close things off
2408 exec 1>&2
2409 #../move-if-change new-gdbarch.c gdbarch.c
2410 compare_new gdbarch.c