add infcall_mmap and gcc_target_options gdbarch methods
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2014 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
476
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
492 #
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
495
496 #
497 v:int:believe_pcc_promotion:::::::
498 #
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
507 #
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
511
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
515 #
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
517 #
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
521 # for instance).
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
523
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 # On some platforms, a single function may provide multiple entry points,
534 # e.g. one that is used for function-pointer calls and a different one
535 # that is used for direct function calls.
536 # In order to ensure that breakpoints set on the function will trigger
537 # no matter via which entry point the function is entered, a platform
538 # may provide the skip_entrypoint callback. It is called with IP set
539 # to the main entry point of a function (as determined by the symbol table),
540 # and should return the address of the innermost entry point, where the
541 # actual breakpoint needs to be set. Note that skip_entrypoint is used
542 # by GDB common code even when debugging optimized code, where skip_prologue
543 # is not used.
544 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
546 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
547 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
548 # Return the adjusted address and kind to use for Z0/Z1 packets.
549 # KIND is usually the memory length of the breakpoint, but may have a
550 # different target-specific meaning.
551 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
552 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
553 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
555 v:CORE_ADDR:decr_pc_after_break:::0:::0
556
557 # A function can be addressed by either it's "pointer" (possibly a
558 # descriptor address) or "entry point" (first executable instruction).
559 # The method "convert_from_func_ptr_addr" converting the former to the
560 # latter. gdbarch_deprecated_function_start_offset is being used to implement
561 # a simplified subset of that functionality - the function's address
562 # corresponds to the "function pointer" and the function's start
563 # corresponds to the "function entry point" - and hence is redundant.
564
565 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
566
567 # Return the remote protocol register number associated with this
568 # register. Normally the identity mapping.
569 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
570
571 # Fetch the target specific address used to represent a load module.
572 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
573 #
574 v:CORE_ADDR:frame_args_skip:::0:::0
575 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
577 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578 # frame-base. Enable frame-base before frame-unwind.
579 F:int:frame_num_args:struct frame_info *frame:frame
580 #
581 M:CORE_ADDR:frame_align:CORE_ADDR address:address
582 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583 v:int:frame_red_zone_size
584 #
585 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
586 # On some machines there are bits in addresses which are not really
587 # part of the address, but are used by the kernel, the hardware, etc.
588 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
589 # we get a "real" address such as one would find in a symbol table.
590 # This is used only for addresses of instructions, and even then I'm
591 # not sure it's used in all contexts. It exists to deal with there
592 # being a few stray bits in the PC which would mislead us, not as some
593 # sort of generic thing to handle alignment or segmentation (it's
594 # possible it should be in TARGET_READ_PC instead).
595 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
596
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
598 # indicates if the target needs software single step. An ISA method to
599 # implement it.
600 #
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602 # breakpoints using the breakpoint system instead of blatting memory directly
603 # (as with rs6000).
604 #
605 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606 # target can single step. If not, then implement single step using breakpoints.
607 #
608 # A return value of 1 means that the software_single_step breakpoints
609 # were inserted; 0 means they were not.
610 F:int:software_single_step:struct frame_info *frame:frame
611
612 # Return non-zero if the processor is executing a delay slot and a
613 # further single-step is needed before the instruction finishes.
614 M:int:single_step_through_delay:struct frame_info *frame:frame
615 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
616 # disassembler. Perhaps objdump can handle it?
617 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
619
620
621 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
622 # evaluates non-zero, this is the address where the debugger will place
623 # a step-resume breakpoint to get us past the dynamic linker.
624 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
625 # Some systems also have trampoline code for returning from shared libs.
626 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
627
628 # A target might have problems with watchpoints as soon as the stack
629 # frame of the current function has been destroyed. This mostly happens
630 # as the first action in a funtion's epilogue. in_function_epilogue_p()
631 # is defined to return a non-zero value if either the given addr is one
632 # instruction after the stack destroying instruction up to the trailing
633 # return instruction or if we can figure out that the stack frame has
634 # already been invalidated regardless of the value of addr. Targets
635 # which don't suffer from that problem could just let this functionality
636 # untouched.
637 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
638 # Process an ELF symbol in the minimal symbol table in a backend-specific
639 # way. Normally this hook is supposed to do nothing, however if required,
640 # then this hook can be used to apply tranformations to symbols that are
641 # considered special in some way. For example the MIPS backend uses it
642 # to interpret \`st_other' information to mark compressed code symbols so
643 # that they can be treated in the appropriate manner in the processing of
644 # the main symbol table and DWARF-2 records.
645 F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
646 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
647 # Process a symbol in the main symbol table in a backend-specific way.
648 # Normally this hook is supposed to do nothing, however if required,
649 # then this hook can be used to apply tranformations to symbols that
650 # are considered special in some way. This is currently used by the
651 # MIPS backend to make sure compressed code symbols have the ISA bit
652 # set. This in turn is needed for symbol values seen in GDB to match
653 # the values used at the runtime by the program itself, for function
654 # and label references.
655 f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
656 # Adjust the address retrieved from a DWARF-2 record other than a line
657 # entry in a backend-specific way. Normally this hook is supposed to
658 # return the address passed unchanged, however if that is incorrect for
659 # any reason, then this hook can be used to fix the address up in the
660 # required manner. This is currently used by the MIPS backend to make
661 # sure addresses in FDE, range records, etc. referring to compressed
662 # code have the ISA bit set, matching line information and the symbol
663 # table.
664 f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
665 # Adjust the address updated by a line entry in a backend-specific way.
666 # Normally this hook is supposed to return the address passed unchanged,
667 # however in the case of inconsistencies in these records, this hook can
668 # be used to fix them up in the required manner. This is currently used
669 # by the MIPS backend to make sure all line addresses in compressed code
670 # are presented with the ISA bit set, which is not always the case. This
671 # in turn ensures breakpoint addresses are correctly matched against the
672 # stop PC.
673 f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
674 v:int:cannot_step_breakpoint:::0:0::0
675 v:int:have_nonsteppable_watchpoint:::0:0::0
676 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
677 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
678
679 # Return the appropriate type_flags for the supplied address class.
680 # This function should return 1 if the address class was recognized and
681 # type_flags was set, zero otherwise.
682 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
683 # Is a register in a group
684 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
685 # Fetch the pointer to the ith function argument.
686 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
687
688 # Iterate over all supported register notes in a core file. For each
689 # supported register note section, the iterator must call CB and pass
690 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
691 # the supported register note sections based on the current register
692 # values. Otherwise it should enumerate all supported register note
693 # sections.
694 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
695
696 # Create core file notes
697 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
698
699 # The elfcore writer hook to use to write Linux prpsinfo notes to core
700 # files. Most Linux architectures use the same prpsinfo32 or
701 # prpsinfo64 layouts, and so won't need to provide this hook, as we
702 # call the Linux generic routines in bfd to write prpsinfo notes by
703 # default.
704 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
705
706 # Find core file memory regions
707 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
708
709 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
710 # core file into buffer READBUF with length LEN. Return the number of bytes read
711 # (zero indicates failure).
712 # failed, otherwise, return the red length of READBUF.
713 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
714
715 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
716 # libraries list from core file into buffer READBUF with length LEN.
717 # Return the number of bytes read (zero indicates failure).
718 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
719
720 # How the core target converts a PTID from a core file to a string.
721 M:char *:core_pid_to_str:ptid_t ptid:ptid
722
723 # BFD target to use when generating a core file.
724 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
725
726 # If the elements of C++ vtables are in-place function descriptors rather
727 # than normal function pointers (which may point to code or a descriptor),
728 # set this to one.
729 v:int:vtable_function_descriptors:::0:0::0
730
731 # Set if the least significant bit of the delta is used instead of the least
732 # significant bit of the pfn for pointers to virtual member functions.
733 v:int:vbit_in_delta:::0:0::0
734
735 # Advance PC to next instruction in order to skip a permanent breakpoint.
736 f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
737
738 # The maximum length of an instruction on this architecture in bytes.
739 V:ULONGEST:max_insn_length:::0:0
740
741 # Copy the instruction at FROM to TO, and make any adjustments
742 # necessary to single-step it at that address.
743 #
744 # REGS holds the state the thread's registers will have before
745 # executing the copied instruction; the PC in REGS will refer to FROM,
746 # not the copy at TO. The caller should update it to point at TO later.
747 #
748 # Return a pointer to data of the architecture's choice to be passed
749 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
750 # the instruction's effects have been completely simulated, with the
751 # resulting state written back to REGS.
752 #
753 # For a general explanation of displaced stepping and how GDB uses it,
754 # see the comments in infrun.c.
755 #
756 # The TO area is only guaranteed to have space for
757 # gdbarch_max_insn_length (arch) bytes, so this function must not
758 # write more bytes than that to that area.
759 #
760 # If you do not provide this function, GDB assumes that the
761 # architecture does not support displaced stepping.
762 #
763 # If your architecture doesn't need to adjust instructions before
764 # single-stepping them, consider using simple_displaced_step_copy_insn
765 # here.
766 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
767
768 # Return true if GDB should use hardware single-stepping to execute
769 # the displaced instruction identified by CLOSURE. If false,
770 # GDB will simply restart execution at the displaced instruction
771 # location, and it is up to the target to ensure GDB will receive
772 # control again (e.g. by placing a software breakpoint instruction
773 # into the displaced instruction buffer).
774 #
775 # The default implementation returns false on all targets that
776 # provide a gdbarch_software_single_step routine, and true otherwise.
777 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
778
779 # Fix up the state resulting from successfully single-stepping a
780 # displaced instruction, to give the result we would have gotten from
781 # stepping the instruction in its original location.
782 #
783 # REGS is the register state resulting from single-stepping the
784 # displaced instruction.
785 #
786 # CLOSURE is the result from the matching call to
787 # gdbarch_displaced_step_copy_insn.
788 #
789 # If you provide gdbarch_displaced_step_copy_insn.but not this
790 # function, then GDB assumes that no fixup is needed after
791 # single-stepping the instruction.
792 #
793 # For a general explanation of displaced stepping and how GDB uses it,
794 # see the comments in infrun.c.
795 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
796
797 # Free a closure returned by gdbarch_displaced_step_copy_insn.
798 #
799 # If you provide gdbarch_displaced_step_copy_insn, you must provide
800 # this function as well.
801 #
802 # If your architecture uses closures that don't need to be freed, then
803 # you can use simple_displaced_step_free_closure here.
804 #
805 # For a general explanation of displaced stepping and how GDB uses it,
806 # see the comments in infrun.c.
807 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
808
809 # Return the address of an appropriate place to put displaced
810 # instructions while we step over them. There need only be one such
811 # place, since we're only stepping one thread over a breakpoint at a
812 # time.
813 #
814 # For a general explanation of displaced stepping and how GDB uses it,
815 # see the comments in infrun.c.
816 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
817
818 # Relocate an instruction to execute at a different address. OLDLOC
819 # is the address in the inferior memory where the instruction to
820 # relocate is currently at. On input, TO points to the destination
821 # where we want the instruction to be copied (and possibly adjusted)
822 # to. On output, it points to one past the end of the resulting
823 # instruction(s). The effect of executing the instruction at TO shall
824 # be the same as if executing it at FROM. For example, call
825 # instructions that implicitly push the return address on the stack
826 # should be adjusted to return to the instruction after OLDLOC;
827 # relative branches, and other PC-relative instructions need the
828 # offset adjusted; etc.
829 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
830
831 # Refresh overlay mapped state for section OSECT.
832 F:void:overlay_update:struct obj_section *osect:osect
833
834 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
835
836 # Handle special encoding of static variables in stabs debug info.
837 F:const char *:static_transform_name:const char *name:name
838 # Set if the address in N_SO or N_FUN stabs may be zero.
839 v:int:sofun_address_maybe_missing:::0:0::0
840
841 # Parse the instruction at ADDR storing in the record execution log
842 # the registers REGCACHE and memory ranges that will be affected when
843 # the instruction executes, along with their current values.
844 # Return -1 if something goes wrong, 0 otherwise.
845 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
846
847 # Save process state after a signal.
848 # Return -1 if something goes wrong, 0 otherwise.
849 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
850
851 # Signal translation: translate inferior's signal (target's) number
852 # into GDB's representation. The implementation of this method must
853 # be host independent. IOW, don't rely on symbols of the NAT_FILE
854 # header (the nm-*.h files), the host <signal.h> header, or similar
855 # headers. This is mainly used when cross-debugging core files ---
856 # "Live" targets hide the translation behind the target interface
857 # (target_wait, target_resume, etc.).
858 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
859
860 # Signal translation: translate the GDB's internal signal number into
861 # the inferior's signal (target's) representation. The implementation
862 # of this method must be host independent. IOW, don't rely on symbols
863 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
864 # header, or similar headers.
865 # Return the target signal number if found, or -1 if the GDB internal
866 # signal number is invalid.
867 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
868
869 # Extra signal info inspection.
870 #
871 # Return a type suitable to inspect extra signal information.
872 M:struct type *:get_siginfo_type:void:
873
874 # Record architecture-specific information from the symbol table.
875 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
876
877 # Function for the 'catch syscall' feature.
878
879 # Get architecture-specific system calls information from registers.
880 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
881
882 # The filename of the XML syscall for this architecture.
883 v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
884
885 # Information about system calls from this architecture
886 v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
887
888 # SystemTap related fields and functions.
889
890 # A NULL-terminated array of prefixes used to mark an integer constant
891 # on the architecture's assembly.
892 # For example, on x86 integer constants are written as:
893 #
894 # \$10 ;; integer constant 10
895 #
896 # in this case, this prefix would be the character \`\$\'.
897 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
898
899 # A NULL-terminated array of suffixes used to mark an integer constant
900 # on the architecture's assembly.
901 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
902
903 # A NULL-terminated array of prefixes used to mark a register name on
904 # the architecture's assembly.
905 # For example, on x86 the register name is written as:
906 #
907 # \%eax ;; register eax
908 #
909 # in this case, this prefix would be the character \`\%\'.
910 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
911
912 # A NULL-terminated array of suffixes used to mark a register name on
913 # the architecture's assembly.
914 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
915
916 # A NULL-terminated array of prefixes used to mark a register
917 # indirection on the architecture's assembly.
918 # For example, on x86 the register indirection is written as:
919 #
920 # \(\%eax\) ;; indirecting eax
921 #
922 # in this case, this prefix would be the charater \`\(\'.
923 #
924 # Please note that we use the indirection prefix also for register
925 # displacement, e.g., \`4\(\%eax\)\' on x86.
926 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
927
928 # A NULL-terminated array of suffixes used to mark a register
929 # indirection on the architecture's assembly.
930 # For example, on x86 the register indirection is written as:
931 #
932 # \(\%eax\) ;; indirecting eax
933 #
934 # in this case, this prefix would be the charater \`\)\'.
935 #
936 # Please note that we use the indirection suffix also for register
937 # displacement, e.g., \`4\(\%eax\)\' on x86.
938 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
939
940 # Prefix(es) used to name a register using GDB's nomenclature.
941 #
942 # For example, on PPC a register is represented by a number in the assembly
943 # language (e.g., \`10\' is the 10th general-purpose register). However,
944 # inside GDB this same register has an \`r\' appended to its name, so the 10th
945 # register would be represented as \`r10\' internally.
946 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
947
948 # Suffix used to name a register using GDB's nomenclature.
949 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
950
951 # Check if S is a single operand.
952 #
953 # Single operands can be:
954 # \- Literal integers, e.g. \`\$10\' on x86
955 # \- Register access, e.g. \`\%eax\' on x86
956 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
957 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
958 #
959 # This function should check for these patterns on the string
960 # and return 1 if some were found, or zero otherwise. Please try to match
961 # as much info as you can from the string, i.e., if you have to match
962 # something like \`\(\%\', do not match just the \`\(\'.
963 M:int:stap_is_single_operand:const char *s:s
964
965 # Function used to handle a "special case" in the parser.
966 #
967 # A "special case" is considered to be an unknown token, i.e., a token
968 # that the parser does not know how to parse. A good example of special
969 # case would be ARM's register displacement syntax:
970 #
971 # [R0, #4] ;; displacing R0 by 4
972 #
973 # Since the parser assumes that a register displacement is of the form:
974 #
975 # <number> <indirection_prefix> <register_name> <indirection_suffix>
976 #
977 # it means that it will not be able to recognize and parse this odd syntax.
978 # Therefore, we should add a special case function that will handle this token.
979 #
980 # This function should generate the proper expression form of the expression
981 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
982 # and so on). It should also return 1 if the parsing was successful, or zero
983 # if the token was not recognized as a special token (in this case, returning
984 # zero means that the special parser is deferring the parsing to the generic
985 # parser), and should advance the buffer pointer (p->arg).
986 M:int:stap_parse_special_token:struct stap_parse_info *p:p
987
988
989 # True if the list of shared libraries is one and only for all
990 # processes, as opposed to a list of shared libraries per inferior.
991 # This usually means that all processes, although may or may not share
992 # an address space, will see the same set of symbols at the same
993 # addresses.
994 v:int:has_global_solist:::0:0::0
995
996 # On some targets, even though each inferior has its own private
997 # address space, the debug interface takes care of making breakpoints
998 # visible to all address spaces automatically. For such cases,
999 # this property should be set to true.
1000 v:int:has_global_breakpoints:::0:0::0
1001
1002 # True if inferiors share an address space (e.g., uClinux).
1003 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
1004
1005 # True if a fast tracepoint can be set at an address.
1006 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
1007
1008 # Return the "auto" target charset.
1009 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1010 # Return the "auto" target wide charset.
1011 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
1012
1013 # If non-empty, this is a file extension that will be opened in place
1014 # of the file extension reported by the shared library list.
1015 #
1016 # This is most useful for toolchains that use a post-linker tool,
1017 # where the names of the files run on the target differ in extension
1018 # compared to the names of the files GDB should load for debug info.
1019 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
1020
1021 # If true, the target OS has DOS-based file system semantics. That
1022 # is, absolute paths include a drive name, and the backslash is
1023 # considered a directory separator.
1024 v:int:has_dos_based_file_system:::0:0::0
1025
1026 # Generate bytecodes to collect the return address in a frame.
1027 # Since the bytecodes run on the target, possibly with GDB not even
1028 # connected, the full unwinding machinery is not available, and
1029 # typically this function will issue bytecodes for one or more likely
1030 # places that the return address may be found.
1031 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1032
1033 # Implement the "info proc" command.
1034 M:void:info_proc:const char *args, enum info_proc_what what:args, what
1035
1036 # Implement the "info proc" command for core files. Noe that there
1037 # are two "info_proc"-like methods on gdbarch -- one for core files,
1038 # one for live targets.
1039 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1040
1041 # Iterate over all objfiles in the order that makes the most sense
1042 # for the architecture to make global symbol searches.
1043 #
1044 # CB is a callback function where OBJFILE is the objfile to be searched,
1045 # and CB_DATA a pointer to user-defined data (the same data that is passed
1046 # when calling this gdbarch method). The iteration stops if this function
1047 # returns nonzero.
1048 #
1049 # CB_DATA is a pointer to some user-defined data to be passed to
1050 # the callback.
1051 #
1052 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1053 # inspected when the symbol search was requested.
1054 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1055
1056 # Ravenscar arch-dependent ops.
1057 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1058
1059 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1060 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1061
1062 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1063 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1064
1065 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1066 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1067
1068 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1069 # Return 0 if *READPTR is already at the end of the buffer.
1070 # Return -1 if there is insufficient buffer for a whole entry.
1071 # Return 1 if an entry was read into *TYPEP and *VALP.
1072 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1073
1074 # Find the address range of the current inferior's vsyscall/vDSO, and
1075 # write it to *RANGE. If the vsyscall's length can't be determined, a
1076 # range with zero length is returned. Returns true if the vsyscall is
1077 # found, false otherwise.
1078 m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1079
1080 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1081 # PROT has GDB_MMAP_PROT_* bitmask format.
1082 # Throw an error if it is not possible. Returned address is always valid.
1083 f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1084
1085 # Return string (caller has to use xfree for it) with options for GCC
1086 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1087 # These options are put before CU's DW_AT_producer compilation options so that
1088 # they can override it. Method may also return NULL.
1089 m:char *:gcc_target_options:void:::default_gcc_target_options::0
1090 EOF
1091 }
1092
1093 #
1094 # The .log file
1095 #
1096 exec > new-gdbarch.log
1097 function_list | while do_read
1098 do
1099 cat <<EOF
1100 ${class} ${returntype} ${function} ($formal)
1101 EOF
1102 for r in ${read}
1103 do
1104 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1105 done
1106 if class_is_predicate_p && fallback_default_p
1107 then
1108 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1109 kill $$
1110 exit 1
1111 fi
1112 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1113 then
1114 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1115 kill $$
1116 exit 1
1117 fi
1118 if class_is_multiarch_p
1119 then
1120 if class_is_predicate_p ; then :
1121 elif test "x${predefault}" = "x"
1122 then
1123 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1124 kill $$
1125 exit 1
1126 fi
1127 fi
1128 echo ""
1129 done
1130
1131 exec 1>&2
1132 compare_new gdbarch.log
1133
1134
1135 copyright ()
1136 {
1137 cat <<EOF
1138 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1139 /* vi:set ro: */
1140
1141 /* Dynamic architecture support for GDB, the GNU debugger.
1142
1143 Copyright (C) 1998-2014 Free Software Foundation, Inc.
1144
1145 This file is part of GDB.
1146
1147 This program is free software; you can redistribute it and/or modify
1148 it under the terms of the GNU General Public License as published by
1149 the Free Software Foundation; either version 3 of the License, or
1150 (at your option) any later version.
1151
1152 This program is distributed in the hope that it will be useful,
1153 but WITHOUT ANY WARRANTY; without even the implied warranty of
1154 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1155 GNU General Public License for more details.
1156
1157 You should have received a copy of the GNU General Public License
1158 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1159
1160 /* This file was created with the aid of \`\`gdbarch.sh''.
1161
1162 The Bourne shell script \`\`gdbarch.sh'' creates the files
1163 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1164 against the existing \`\`gdbarch.[hc]''. Any differences found
1165 being reported.
1166
1167 If editing this file, please also run gdbarch.sh and merge any
1168 changes into that script. Conversely, when making sweeping changes
1169 to this file, modifying gdbarch.sh and using its output may prove
1170 easier. */
1171
1172 EOF
1173 }
1174
1175 #
1176 # The .h file
1177 #
1178
1179 exec > new-gdbarch.h
1180 copyright
1181 cat <<EOF
1182 #ifndef GDBARCH_H
1183 #define GDBARCH_H
1184
1185 #include "frame.h"
1186
1187 struct floatformat;
1188 struct ui_file;
1189 struct value;
1190 struct objfile;
1191 struct obj_section;
1192 struct minimal_symbol;
1193 struct regcache;
1194 struct reggroup;
1195 struct regset;
1196 struct disassemble_info;
1197 struct target_ops;
1198 struct obstack;
1199 struct bp_target_info;
1200 struct target_desc;
1201 struct objfile;
1202 struct symbol;
1203 struct displaced_step_closure;
1204 struct core_regset_section;
1205 struct syscall;
1206 struct agent_expr;
1207 struct axs_value;
1208 struct stap_parse_info;
1209 struct ravenscar_arch_ops;
1210 struct elf_internal_linux_prpsinfo;
1211 struct mem_range;
1212 struct syscalls_info;
1213
1214 /* The architecture associated with the inferior through the
1215 connection to the target.
1216
1217 The architecture vector provides some information that is really a
1218 property of the inferior, accessed through a particular target:
1219 ptrace operations; the layout of certain RSP packets; the solib_ops
1220 vector; etc. To differentiate architecture accesses to
1221 per-inferior/target properties from
1222 per-thread/per-frame/per-objfile properties, accesses to
1223 per-inferior/target properties should be made through this
1224 gdbarch. */
1225
1226 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1227 extern struct gdbarch *target_gdbarch (void);
1228
1229 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1230 gdbarch method. */
1231
1232 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1233 (struct objfile *objfile, void *cb_data);
1234
1235 typedef void (iterate_over_regset_sections_cb)
1236 (const char *sect_name, int size, const struct regset *regset,
1237 const char *human_name, void *cb_data);
1238 EOF
1239
1240 # function typedef's
1241 printf "\n"
1242 printf "\n"
1243 printf "/* The following are pre-initialized by GDBARCH. */\n"
1244 function_list | while do_read
1245 do
1246 if class_is_info_p
1247 then
1248 printf "\n"
1249 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1250 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1251 fi
1252 done
1253
1254 # function typedef's
1255 printf "\n"
1256 printf "\n"
1257 printf "/* The following are initialized by the target dependent code. */\n"
1258 function_list | while do_read
1259 do
1260 if [ -n "${comment}" ]
1261 then
1262 echo "${comment}" | sed \
1263 -e '2 s,#,/*,' \
1264 -e '3,$ s,#, ,' \
1265 -e '$ s,$, */,'
1266 fi
1267
1268 if class_is_predicate_p
1269 then
1270 printf "\n"
1271 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1272 fi
1273 if class_is_variable_p
1274 then
1275 printf "\n"
1276 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1277 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1278 fi
1279 if class_is_function_p
1280 then
1281 printf "\n"
1282 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1283 then
1284 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1285 elif class_is_multiarch_p
1286 then
1287 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1288 else
1289 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1290 fi
1291 if [ "x${formal}" = "xvoid" ]
1292 then
1293 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1294 else
1295 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1296 fi
1297 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1298 fi
1299 done
1300
1301 # close it off
1302 cat <<EOF
1303
1304 /* Definition for an unknown syscall, used basically in error-cases. */
1305 #define UNKNOWN_SYSCALL (-1)
1306
1307 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1308
1309
1310 /* Mechanism for co-ordinating the selection of a specific
1311 architecture.
1312
1313 GDB targets (*-tdep.c) can register an interest in a specific
1314 architecture. Other GDB components can register a need to maintain
1315 per-architecture data.
1316
1317 The mechanisms below ensures that there is only a loose connection
1318 between the set-architecture command and the various GDB
1319 components. Each component can independently register their need
1320 to maintain architecture specific data with gdbarch.
1321
1322 Pragmatics:
1323
1324 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1325 didn't scale.
1326
1327 The more traditional mega-struct containing architecture specific
1328 data for all the various GDB components was also considered. Since
1329 GDB is built from a variable number of (fairly independent)
1330 components it was determined that the global aproach was not
1331 applicable. */
1332
1333
1334 /* Register a new architectural family with GDB.
1335
1336 Register support for the specified ARCHITECTURE with GDB. When
1337 gdbarch determines that the specified architecture has been
1338 selected, the corresponding INIT function is called.
1339
1340 --
1341
1342 The INIT function takes two parameters: INFO which contains the
1343 information available to gdbarch about the (possibly new)
1344 architecture; ARCHES which is a list of the previously created
1345 \`\`struct gdbarch'' for this architecture.
1346
1347 The INFO parameter is, as far as possible, be pre-initialized with
1348 information obtained from INFO.ABFD or the global defaults.
1349
1350 The ARCHES parameter is a linked list (sorted most recently used)
1351 of all the previously created architures for this architecture
1352 family. The (possibly NULL) ARCHES->gdbarch can used to access
1353 values from the previously selected architecture for this
1354 architecture family.
1355
1356 The INIT function shall return any of: NULL - indicating that it
1357 doesn't recognize the selected architecture; an existing \`\`struct
1358 gdbarch'' from the ARCHES list - indicating that the new
1359 architecture is just a synonym for an earlier architecture (see
1360 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1361 - that describes the selected architecture (see gdbarch_alloc()).
1362
1363 The DUMP_TDEP function shall print out all target specific values.
1364 Care should be taken to ensure that the function works in both the
1365 multi-arch and non- multi-arch cases. */
1366
1367 struct gdbarch_list
1368 {
1369 struct gdbarch *gdbarch;
1370 struct gdbarch_list *next;
1371 };
1372
1373 struct gdbarch_info
1374 {
1375 /* Use default: NULL (ZERO). */
1376 const struct bfd_arch_info *bfd_arch_info;
1377
1378 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1379 enum bfd_endian byte_order;
1380
1381 enum bfd_endian byte_order_for_code;
1382
1383 /* Use default: NULL (ZERO). */
1384 bfd *abfd;
1385
1386 /* Use default: NULL (ZERO). */
1387 struct gdbarch_tdep_info *tdep_info;
1388
1389 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1390 enum gdb_osabi osabi;
1391
1392 /* Use default: NULL (ZERO). */
1393 const struct target_desc *target_desc;
1394 };
1395
1396 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1397 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1398
1399 /* DEPRECATED - use gdbarch_register() */
1400 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1401
1402 extern void gdbarch_register (enum bfd_architecture architecture,
1403 gdbarch_init_ftype *,
1404 gdbarch_dump_tdep_ftype *);
1405
1406
1407 /* Return a freshly allocated, NULL terminated, array of the valid
1408 architecture names. Since architectures are registered during the
1409 _initialize phase this function only returns useful information
1410 once initialization has been completed. */
1411
1412 extern const char **gdbarch_printable_names (void);
1413
1414
1415 /* Helper function. Search the list of ARCHES for a GDBARCH that
1416 matches the information provided by INFO. */
1417
1418 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1419
1420
1421 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1422 basic initialization using values obtained from the INFO and TDEP
1423 parameters. set_gdbarch_*() functions are called to complete the
1424 initialization of the object. */
1425
1426 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1427
1428
1429 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1430 It is assumed that the caller freeds the \`\`struct
1431 gdbarch_tdep''. */
1432
1433 extern void gdbarch_free (struct gdbarch *);
1434
1435
1436 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1437 obstack. The memory is freed when the corresponding architecture
1438 is also freed. */
1439
1440 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1441 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1442 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1443
1444
1445 /* Helper function. Force an update of the current architecture.
1446
1447 The actual architecture selected is determined by INFO, \`\`(gdb) set
1448 architecture'' et.al., the existing architecture and BFD's default
1449 architecture. INFO should be initialized to zero and then selected
1450 fields should be updated.
1451
1452 Returns non-zero if the update succeeds. */
1453
1454 extern int gdbarch_update_p (struct gdbarch_info info);
1455
1456
1457 /* Helper function. Find an architecture matching info.
1458
1459 INFO should be initialized using gdbarch_info_init, relevant fields
1460 set, and then finished using gdbarch_info_fill.
1461
1462 Returns the corresponding architecture, or NULL if no matching
1463 architecture was found. */
1464
1465 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1466
1467
1468 /* Helper function. Set the target gdbarch to "gdbarch". */
1469
1470 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1471
1472
1473 /* Register per-architecture data-pointer.
1474
1475 Reserve space for a per-architecture data-pointer. An identifier
1476 for the reserved data-pointer is returned. That identifer should
1477 be saved in a local static variable.
1478
1479 Memory for the per-architecture data shall be allocated using
1480 gdbarch_obstack_zalloc. That memory will be deleted when the
1481 corresponding architecture object is deleted.
1482
1483 When a previously created architecture is re-selected, the
1484 per-architecture data-pointer for that previous architecture is
1485 restored. INIT() is not re-called.
1486
1487 Multiple registrarants for any architecture are allowed (and
1488 strongly encouraged). */
1489
1490 struct gdbarch_data;
1491
1492 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1493 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1494 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1495 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1496 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1497 struct gdbarch_data *data,
1498 void *pointer);
1499
1500 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1501
1502
1503 /* Set the dynamic target-system-dependent parameters (architecture,
1504 byte-order, ...) using information found in the BFD. */
1505
1506 extern void set_gdbarch_from_file (bfd *);
1507
1508
1509 /* Initialize the current architecture to the "first" one we find on
1510 our list. */
1511
1512 extern void initialize_current_architecture (void);
1513
1514 /* gdbarch trace variable */
1515 extern unsigned int gdbarch_debug;
1516
1517 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1518
1519 #endif
1520 EOF
1521 exec 1>&2
1522 #../move-if-change new-gdbarch.h gdbarch.h
1523 compare_new gdbarch.h
1524
1525
1526 #
1527 # C file
1528 #
1529
1530 exec > new-gdbarch.c
1531 copyright
1532 cat <<EOF
1533
1534 #include "defs.h"
1535 #include "arch-utils.h"
1536
1537 #include "gdbcmd.h"
1538 #include "inferior.h"
1539 #include "symcat.h"
1540
1541 #include "floatformat.h"
1542 #include "reggroups.h"
1543 #include "osabi.h"
1544 #include "gdb_obstack.h"
1545 #include "observer.h"
1546 #include "regcache.h"
1547 #include "objfiles.h"
1548
1549 /* Static function declarations */
1550
1551 static void alloc_gdbarch_data (struct gdbarch *);
1552
1553 /* Non-zero if we want to trace architecture code. */
1554
1555 #ifndef GDBARCH_DEBUG
1556 #define GDBARCH_DEBUG 0
1557 #endif
1558 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1559 static void
1560 show_gdbarch_debug (struct ui_file *file, int from_tty,
1561 struct cmd_list_element *c, const char *value)
1562 {
1563 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1564 }
1565
1566 static const char *
1567 pformat (const struct floatformat **format)
1568 {
1569 if (format == NULL)
1570 return "(null)";
1571 else
1572 /* Just print out one of them - this is only for diagnostics. */
1573 return format[0]->name;
1574 }
1575
1576 static const char *
1577 pstring (const char *string)
1578 {
1579 if (string == NULL)
1580 return "(null)";
1581 return string;
1582 }
1583
1584 /* Helper function to print a list of strings, represented as "const
1585 char *const *". The list is printed comma-separated. */
1586
1587 static char *
1588 pstring_list (const char *const *list)
1589 {
1590 static char ret[100];
1591 const char *const *p;
1592 size_t offset = 0;
1593
1594 if (list == NULL)
1595 return "(null)";
1596
1597 ret[0] = '\0';
1598 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1599 {
1600 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1601 offset += 2 + s;
1602 }
1603
1604 if (offset > 0)
1605 {
1606 gdb_assert (offset - 2 < sizeof (ret));
1607 ret[offset - 2] = '\0';
1608 }
1609
1610 return ret;
1611 }
1612
1613 EOF
1614
1615 # gdbarch open the gdbarch object
1616 printf "\n"
1617 printf "/* Maintain the struct gdbarch object. */\n"
1618 printf "\n"
1619 printf "struct gdbarch\n"
1620 printf "{\n"
1621 printf " /* Has this architecture been fully initialized? */\n"
1622 printf " int initialized_p;\n"
1623 printf "\n"
1624 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1625 printf " struct obstack *obstack;\n"
1626 printf "\n"
1627 printf " /* basic architectural information. */\n"
1628 function_list | while do_read
1629 do
1630 if class_is_info_p
1631 then
1632 printf " ${returntype} ${function};\n"
1633 fi
1634 done
1635 printf "\n"
1636 printf " /* target specific vector. */\n"
1637 printf " struct gdbarch_tdep *tdep;\n"
1638 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1639 printf "\n"
1640 printf " /* per-architecture data-pointers. */\n"
1641 printf " unsigned nr_data;\n"
1642 printf " void **data;\n"
1643 printf "\n"
1644 cat <<EOF
1645 /* Multi-arch values.
1646
1647 When extending this structure you must:
1648
1649 Add the field below.
1650
1651 Declare set/get functions and define the corresponding
1652 macro in gdbarch.h.
1653
1654 gdbarch_alloc(): If zero/NULL is not a suitable default,
1655 initialize the new field.
1656
1657 verify_gdbarch(): Confirm that the target updated the field
1658 correctly.
1659
1660 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1661 field is dumped out
1662
1663 get_gdbarch(): Implement the set/get functions (probably using
1664 the macro's as shortcuts).
1665
1666 */
1667
1668 EOF
1669 function_list | while do_read
1670 do
1671 if class_is_variable_p
1672 then
1673 printf " ${returntype} ${function};\n"
1674 elif class_is_function_p
1675 then
1676 printf " gdbarch_${function}_ftype *${function};\n"
1677 fi
1678 done
1679 printf "};\n"
1680
1681 # Create a new gdbarch struct
1682 cat <<EOF
1683
1684 /* Create a new \`\`struct gdbarch'' based on information provided by
1685 \`\`struct gdbarch_info''. */
1686 EOF
1687 printf "\n"
1688 cat <<EOF
1689 struct gdbarch *
1690 gdbarch_alloc (const struct gdbarch_info *info,
1691 struct gdbarch_tdep *tdep)
1692 {
1693 struct gdbarch *gdbarch;
1694
1695 /* Create an obstack for allocating all the per-architecture memory,
1696 then use that to allocate the architecture vector. */
1697 struct obstack *obstack = XNEW (struct obstack);
1698 obstack_init (obstack);
1699 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1700 memset (gdbarch, 0, sizeof (*gdbarch));
1701 gdbarch->obstack = obstack;
1702
1703 alloc_gdbarch_data (gdbarch);
1704
1705 gdbarch->tdep = tdep;
1706 EOF
1707 printf "\n"
1708 function_list | while do_read
1709 do
1710 if class_is_info_p
1711 then
1712 printf " gdbarch->${function} = info->${function};\n"
1713 fi
1714 done
1715 printf "\n"
1716 printf " /* Force the explicit initialization of these. */\n"
1717 function_list | while do_read
1718 do
1719 if class_is_function_p || class_is_variable_p
1720 then
1721 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1722 then
1723 printf " gdbarch->${function} = ${predefault};\n"
1724 fi
1725 fi
1726 done
1727 cat <<EOF
1728 /* gdbarch_alloc() */
1729
1730 return gdbarch;
1731 }
1732 EOF
1733
1734 # Free a gdbarch struct.
1735 printf "\n"
1736 printf "\n"
1737 cat <<EOF
1738 /* Allocate extra space using the per-architecture obstack. */
1739
1740 void *
1741 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1742 {
1743 void *data = obstack_alloc (arch->obstack, size);
1744
1745 memset (data, 0, size);
1746 return data;
1747 }
1748
1749
1750 /* Free a gdbarch struct. This should never happen in normal
1751 operation --- once you've created a gdbarch, you keep it around.
1752 However, if an architecture's init function encounters an error
1753 building the structure, it may need to clean up a partially
1754 constructed gdbarch. */
1755
1756 void
1757 gdbarch_free (struct gdbarch *arch)
1758 {
1759 struct obstack *obstack;
1760
1761 gdb_assert (arch != NULL);
1762 gdb_assert (!arch->initialized_p);
1763 obstack = arch->obstack;
1764 obstack_free (obstack, 0); /* Includes the ARCH. */
1765 xfree (obstack);
1766 }
1767 EOF
1768
1769 # verify a new architecture
1770 cat <<EOF
1771
1772
1773 /* Ensure that all values in a GDBARCH are reasonable. */
1774
1775 static void
1776 verify_gdbarch (struct gdbarch *gdbarch)
1777 {
1778 struct ui_file *log;
1779 struct cleanup *cleanups;
1780 long length;
1781 char *buf;
1782
1783 log = mem_fileopen ();
1784 cleanups = make_cleanup_ui_file_delete (log);
1785 /* fundamental */
1786 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1787 fprintf_unfiltered (log, "\n\tbyte-order");
1788 if (gdbarch->bfd_arch_info == NULL)
1789 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1790 /* Check those that need to be defined for the given multi-arch level. */
1791 EOF
1792 function_list | while do_read
1793 do
1794 if class_is_function_p || class_is_variable_p
1795 then
1796 if [ "x${invalid_p}" = "x0" ]
1797 then
1798 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1799 elif class_is_predicate_p
1800 then
1801 printf " /* Skip verify of ${function}, has predicate. */\n"
1802 # FIXME: See do_read for potential simplification
1803 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1804 then
1805 printf " if (${invalid_p})\n"
1806 printf " gdbarch->${function} = ${postdefault};\n"
1807 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1808 then
1809 printf " if (gdbarch->${function} == ${predefault})\n"
1810 printf " gdbarch->${function} = ${postdefault};\n"
1811 elif [ -n "${postdefault}" ]
1812 then
1813 printf " if (gdbarch->${function} == 0)\n"
1814 printf " gdbarch->${function} = ${postdefault};\n"
1815 elif [ -n "${invalid_p}" ]
1816 then
1817 printf " if (${invalid_p})\n"
1818 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1819 elif [ -n "${predefault}" ]
1820 then
1821 printf " if (gdbarch->${function} == ${predefault})\n"
1822 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1823 fi
1824 fi
1825 done
1826 cat <<EOF
1827 buf = ui_file_xstrdup (log, &length);
1828 make_cleanup (xfree, buf);
1829 if (length > 0)
1830 internal_error (__FILE__, __LINE__,
1831 _("verify_gdbarch: the following are invalid ...%s"),
1832 buf);
1833 do_cleanups (cleanups);
1834 }
1835 EOF
1836
1837 # dump the structure
1838 printf "\n"
1839 printf "\n"
1840 cat <<EOF
1841 /* Print out the details of the current architecture. */
1842
1843 void
1844 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1845 {
1846 const char *gdb_nm_file = "<not-defined>";
1847
1848 #if defined (GDB_NM_FILE)
1849 gdb_nm_file = GDB_NM_FILE;
1850 #endif
1851 fprintf_unfiltered (file,
1852 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1853 gdb_nm_file);
1854 EOF
1855 function_list | sort -t: -k 3 | while do_read
1856 do
1857 # First the predicate
1858 if class_is_predicate_p
1859 then
1860 printf " fprintf_unfiltered (file,\n"
1861 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1862 printf " gdbarch_${function}_p (gdbarch));\n"
1863 fi
1864 # Print the corresponding value.
1865 if class_is_function_p
1866 then
1867 printf " fprintf_unfiltered (file,\n"
1868 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1869 printf " host_address_to_string (gdbarch->${function}));\n"
1870 else
1871 # It is a variable
1872 case "${print}:${returntype}" in
1873 :CORE_ADDR )
1874 fmt="%s"
1875 print="core_addr_to_string_nz (gdbarch->${function})"
1876 ;;
1877 :* )
1878 fmt="%s"
1879 print="plongest (gdbarch->${function})"
1880 ;;
1881 * )
1882 fmt="%s"
1883 ;;
1884 esac
1885 printf " fprintf_unfiltered (file,\n"
1886 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1887 printf " ${print});\n"
1888 fi
1889 done
1890 cat <<EOF
1891 if (gdbarch->dump_tdep != NULL)
1892 gdbarch->dump_tdep (gdbarch, file);
1893 }
1894 EOF
1895
1896
1897 # GET/SET
1898 printf "\n"
1899 cat <<EOF
1900 struct gdbarch_tdep *
1901 gdbarch_tdep (struct gdbarch *gdbarch)
1902 {
1903 if (gdbarch_debug >= 2)
1904 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1905 return gdbarch->tdep;
1906 }
1907 EOF
1908 printf "\n"
1909 function_list | while do_read
1910 do
1911 if class_is_predicate_p
1912 then
1913 printf "\n"
1914 printf "int\n"
1915 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1916 printf "{\n"
1917 printf " gdb_assert (gdbarch != NULL);\n"
1918 printf " return ${predicate};\n"
1919 printf "}\n"
1920 fi
1921 if class_is_function_p
1922 then
1923 printf "\n"
1924 printf "${returntype}\n"
1925 if [ "x${formal}" = "xvoid" ]
1926 then
1927 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1928 else
1929 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1930 fi
1931 printf "{\n"
1932 printf " gdb_assert (gdbarch != NULL);\n"
1933 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1934 if class_is_predicate_p && test -n "${predefault}"
1935 then
1936 # Allow a call to a function with a predicate.
1937 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1938 fi
1939 printf " if (gdbarch_debug >= 2)\n"
1940 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1941 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1942 then
1943 if class_is_multiarch_p
1944 then
1945 params="gdbarch"
1946 else
1947 params=""
1948 fi
1949 else
1950 if class_is_multiarch_p
1951 then
1952 params="gdbarch, ${actual}"
1953 else
1954 params="${actual}"
1955 fi
1956 fi
1957 if [ "x${returntype}" = "xvoid" ]
1958 then
1959 printf " gdbarch->${function} (${params});\n"
1960 else
1961 printf " return gdbarch->${function} (${params});\n"
1962 fi
1963 printf "}\n"
1964 printf "\n"
1965 printf "void\n"
1966 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1967 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1968 printf "{\n"
1969 printf " gdbarch->${function} = ${function};\n"
1970 printf "}\n"
1971 elif class_is_variable_p
1972 then
1973 printf "\n"
1974 printf "${returntype}\n"
1975 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1976 printf "{\n"
1977 printf " gdb_assert (gdbarch != NULL);\n"
1978 if [ "x${invalid_p}" = "x0" ]
1979 then
1980 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1981 elif [ -n "${invalid_p}" ]
1982 then
1983 printf " /* Check variable is valid. */\n"
1984 printf " gdb_assert (!(${invalid_p}));\n"
1985 elif [ -n "${predefault}" ]
1986 then
1987 printf " /* Check variable changed from pre-default. */\n"
1988 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1989 fi
1990 printf " if (gdbarch_debug >= 2)\n"
1991 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1992 printf " return gdbarch->${function};\n"
1993 printf "}\n"
1994 printf "\n"
1995 printf "void\n"
1996 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1997 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1998 printf "{\n"
1999 printf " gdbarch->${function} = ${function};\n"
2000 printf "}\n"
2001 elif class_is_info_p
2002 then
2003 printf "\n"
2004 printf "${returntype}\n"
2005 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2006 printf "{\n"
2007 printf " gdb_assert (gdbarch != NULL);\n"
2008 printf " if (gdbarch_debug >= 2)\n"
2009 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2010 printf " return gdbarch->${function};\n"
2011 printf "}\n"
2012 fi
2013 done
2014
2015 # All the trailing guff
2016 cat <<EOF
2017
2018
2019 /* Keep a registry of per-architecture data-pointers required by GDB
2020 modules. */
2021
2022 struct gdbarch_data
2023 {
2024 unsigned index;
2025 int init_p;
2026 gdbarch_data_pre_init_ftype *pre_init;
2027 gdbarch_data_post_init_ftype *post_init;
2028 };
2029
2030 struct gdbarch_data_registration
2031 {
2032 struct gdbarch_data *data;
2033 struct gdbarch_data_registration *next;
2034 };
2035
2036 struct gdbarch_data_registry
2037 {
2038 unsigned nr;
2039 struct gdbarch_data_registration *registrations;
2040 };
2041
2042 struct gdbarch_data_registry gdbarch_data_registry =
2043 {
2044 0, NULL,
2045 };
2046
2047 static struct gdbarch_data *
2048 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2049 gdbarch_data_post_init_ftype *post_init)
2050 {
2051 struct gdbarch_data_registration **curr;
2052
2053 /* Append the new registration. */
2054 for (curr = &gdbarch_data_registry.registrations;
2055 (*curr) != NULL;
2056 curr = &(*curr)->next);
2057 (*curr) = XNEW (struct gdbarch_data_registration);
2058 (*curr)->next = NULL;
2059 (*curr)->data = XNEW (struct gdbarch_data);
2060 (*curr)->data->index = gdbarch_data_registry.nr++;
2061 (*curr)->data->pre_init = pre_init;
2062 (*curr)->data->post_init = post_init;
2063 (*curr)->data->init_p = 1;
2064 return (*curr)->data;
2065 }
2066
2067 struct gdbarch_data *
2068 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2069 {
2070 return gdbarch_data_register (pre_init, NULL);
2071 }
2072
2073 struct gdbarch_data *
2074 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2075 {
2076 return gdbarch_data_register (NULL, post_init);
2077 }
2078
2079 /* Create/delete the gdbarch data vector. */
2080
2081 static void
2082 alloc_gdbarch_data (struct gdbarch *gdbarch)
2083 {
2084 gdb_assert (gdbarch->data == NULL);
2085 gdbarch->nr_data = gdbarch_data_registry.nr;
2086 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2087 }
2088
2089 /* Initialize the current value of the specified per-architecture
2090 data-pointer. */
2091
2092 void
2093 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2094 struct gdbarch_data *data,
2095 void *pointer)
2096 {
2097 gdb_assert (data->index < gdbarch->nr_data);
2098 gdb_assert (gdbarch->data[data->index] == NULL);
2099 gdb_assert (data->pre_init == NULL);
2100 gdbarch->data[data->index] = pointer;
2101 }
2102
2103 /* Return the current value of the specified per-architecture
2104 data-pointer. */
2105
2106 void *
2107 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2108 {
2109 gdb_assert (data->index < gdbarch->nr_data);
2110 if (gdbarch->data[data->index] == NULL)
2111 {
2112 /* The data-pointer isn't initialized, call init() to get a
2113 value. */
2114 if (data->pre_init != NULL)
2115 /* Mid architecture creation: pass just the obstack, and not
2116 the entire architecture, as that way it isn't possible for
2117 pre-init code to refer to undefined architecture
2118 fields. */
2119 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2120 else if (gdbarch->initialized_p
2121 && data->post_init != NULL)
2122 /* Post architecture creation: pass the entire architecture
2123 (as all fields are valid), but be careful to also detect
2124 recursive references. */
2125 {
2126 gdb_assert (data->init_p);
2127 data->init_p = 0;
2128 gdbarch->data[data->index] = data->post_init (gdbarch);
2129 data->init_p = 1;
2130 }
2131 else
2132 /* The architecture initialization hasn't completed - punt -
2133 hope that the caller knows what they are doing. Once
2134 deprecated_set_gdbarch_data has been initialized, this can be
2135 changed to an internal error. */
2136 return NULL;
2137 gdb_assert (gdbarch->data[data->index] != NULL);
2138 }
2139 return gdbarch->data[data->index];
2140 }
2141
2142
2143 /* Keep a registry of the architectures known by GDB. */
2144
2145 struct gdbarch_registration
2146 {
2147 enum bfd_architecture bfd_architecture;
2148 gdbarch_init_ftype *init;
2149 gdbarch_dump_tdep_ftype *dump_tdep;
2150 struct gdbarch_list *arches;
2151 struct gdbarch_registration *next;
2152 };
2153
2154 static struct gdbarch_registration *gdbarch_registry = NULL;
2155
2156 static void
2157 append_name (const char ***buf, int *nr, const char *name)
2158 {
2159 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2160 (*buf)[*nr] = name;
2161 *nr += 1;
2162 }
2163
2164 const char **
2165 gdbarch_printable_names (void)
2166 {
2167 /* Accumulate a list of names based on the registed list of
2168 architectures. */
2169 int nr_arches = 0;
2170 const char **arches = NULL;
2171 struct gdbarch_registration *rego;
2172
2173 for (rego = gdbarch_registry;
2174 rego != NULL;
2175 rego = rego->next)
2176 {
2177 const struct bfd_arch_info *ap;
2178 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2179 if (ap == NULL)
2180 internal_error (__FILE__, __LINE__,
2181 _("gdbarch_architecture_names: multi-arch unknown"));
2182 do
2183 {
2184 append_name (&arches, &nr_arches, ap->printable_name);
2185 ap = ap->next;
2186 }
2187 while (ap != NULL);
2188 }
2189 append_name (&arches, &nr_arches, NULL);
2190 return arches;
2191 }
2192
2193
2194 void
2195 gdbarch_register (enum bfd_architecture bfd_architecture,
2196 gdbarch_init_ftype *init,
2197 gdbarch_dump_tdep_ftype *dump_tdep)
2198 {
2199 struct gdbarch_registration **curr;
2200 const struct bfd_arch_info *bfd_arch_info;
2201
2202 /* Check that BFD recognizes this architecture */
2203 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2204 if (bfd_arch_info == NULL)
2205 {
2206 internal_error (__FILE__, __LINE__,
2207 _("gdbarch: Attempt to register "
2208 "unknown architecture (%d)"),
2209 bfd_architecture);
2210 }
2211 /* Check that we haven't seen this architecture before. */
2212 for (curr = &gdbarch_registry;
2213 (*curr) != NULL;
2214 curr = &(*curr)->next)
2215 {
2216 if (bfd_architecture == (*curr)->bfd_architecture)
2217 internal_error (__FILE__, __LINE__,
2218 _("gdbarch: Duplicate registration "
2219 "of architecture (%s)"),
2220 bfd_arch_info->printable_name);
2221 }
2222 /* log it */
2223 if (gdbarch_debug)
2224 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2225 bfd_arch_info->printable_name,
2226 host_address_to_string (init));
2227 /* Append it */
2228 (*curr) = XNEW (struct gdbarch_registration);
2229 (*curr)->bfd_architecture = bfd_architecture;
2230 (*curr)->init = init;
2231 (*curr)->dump_tdep = dump_tdep;
2232 (*curr)->arches = NULL;
2233 (*curr)->next = NULL;
2234 }
2235
2236 void
2237 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2238 gdbarch_init_ftype *init)
2239 {
2240 gdbarch_register (bfd_architecture, init, NULL);
2241 }
2242
2243
2244 /* Look for an architecture using gdbarch_info. */
2245
2246 struct gdbarch_list *
2247 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2248 const struct gdbarch_info *info)
2249 {
2250 for (; arches != NULL; arches = arches->next)
2251 {
2252 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2253 continue;
2254 if (info->byte_order != arches->gdbarch->byte_order)
2255 continue;
2256 if (info->osabi != arches->gdbarch->osabi)
2257 continue;
2258 if (info->target_desc != arches->gdbarch->target_desc)
2259 continue;
2260 return arches;
2261 }
2262 return NULL;
2263 }
2264
2265
2266 /* Find an architecture that matches the specified INFO. Create a new
2267 architecture if needed. Return that new architecture. */
2268
2269 struct gdbarch *
2270 gdbarch_find_by_info (struct gdbarch_info info)
2271 {
2272 struct gdbarch *new_gdbarch;
2273 struct gdbarch_registration *rego;
2274
2275 /* Fill in missing parts of the INFO struct using a number of
2276 sources: "set ..."; INFOabfd supplied; and the global
2277 defaults. */
2278 gdbarch_info_fill (&info);
2279
2280 /* Must have found some sort of architecture. */
2281 gdb_assert (info.bfd_arch_info != NULL);
2282
2283 if (gdbarch_debug)
2284 {
2285 fprintf_unfiltered (gdb_stdlog,
2286 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2287 (info.bfd_arch_info != NULL
2288 ? info.bfd_arch_info->printable_name
2289 : "(null)"));
2290 fprintf_unfiltered (gdb_stdlog,
2291 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2292 info.byte_order,
2293 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2294 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2295 : "default"));
2296 fprintf_unfiltered (gdb_stdlog,
2297 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2298 info.osabi, gdbarch_osabi_name (info.osabi));
2299 fprintf_unfiltered (gdb_stdlog,
2300 "gdbarch_find_by_info: info.abfd %s\n",
2301 host_address_to_string (info.abfd));
2302 fprintf_unfiltered (gdb_stdlog,
2303 "gdbarch_find_by_info: info.tdep_info %s\n",
2304 host_address_to_string (info.tdep_info));
2305 }
2306
2307 /* Find the tdep code that knows about this architecture. */
2308 for (rego = gdbarch_registry;
2309 rego != NULL;
2310 rego = rego->next)
2311 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2312 break;
2313 if (rego == NULL)
2314 {
2315 if (gdbarch_debug)
2316 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2317 "No matching architecture\n");
2318 return 0;
2319 }
2320
2321 /* Ask the tdep code for an architecture that matches "info". */
2322 new_gdbarch = rego->init (info, rego->arches);
2323
2324 /* Did the tdep code like it? No. Reject the change and revert to
2325 the old architecture. */
2326 if (new_gdbarch == NULL)
2327 {
2328 if (gdbarch_debug)
2329 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2330 "Target rejected architecture\n");
2331 return NULL;
2332 }
2333
2334 /* Is this a pre-existing architecture (as determined by already
2335 being initialized)? Move it to the front of the architecture
2336 list (keeping the list sorted Most Recently Used). */
2337 if (new_gdbarch->initialized_p)
2338 {
2339 struct gdbarch_list **list;
2340 struct gdbarch_list *this;
2341 if (gdbarch_debug)
2342 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2343 "Previous architecture %s (%s) selected\n",
2344 host_address_to_string (new_gdbarch),
2345 new_gdbarch->bfd_arch_info->printable_name);
2346 /* Find the existing arch in the list. */
2347 for (list = &rego->arches;
2348 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2349 list = &(*list)->next);
2350 /* It had better be in the list of architectures. */
2351 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2352 /* Unlink THIS. */
2353 this = (*list);
2354 (*list) = this->next;
2355 /* Insert THIS at the front. */
2356 this->next = rego->arches;
2357 rego->arches = this;
2358 /* Return it. */
2359 return new_gdbarch;
2360 }
2361
2362 /* It's a new architecture. */
2363 if (gdbarch_debug)
2364 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2365 "New architecture %s (%s) selected\n",
2366 host_address_to_string (new_gdbarch),
2367 new_gdbarch->bfd_arch_info->printable_name);
2368
2369 /* Insert the new architecture into the front of the architecture
2370 list (keep the list sorted Most Recently Used). */
2371 {
2372 struct gdbarch_list *this = XNEW (struct gdbarch_list);
2373 this->next = rego->arches;
2374 this->gdbarch = new_gdbarch;
2375 rego->arches = this;
2376 }
2377
2378 /* Check that the newly installed architecture is valid. Plug in
2379 any post init values. */
2380 new_gdbarch->dump_tdep = rego->dump_tdep;
2381 verify_gdbarch (new_gdbarch);
2382 new_gdbarch->initialized_p = 1;
2383
2384 if (gdbarch_debug)
2385 gdbarch_dump (new_gdbarch, gdb_stdlog);
2386
2387 return new_gdbarch;
2388 }
2389
2390 /* Make the specified architecture current. */
2391
2392 void
2393 set_target_gdbarch (struct gdbarch *new_gdbarch)
2394 {
2395 gdb_assert (new_gdbarch != NULL);
2396 gdb_assert (new_gdbarch->initialized_p);
2397 current_inferior ()->gdbarch = new_gdbarch;
2398 observer_notify_architecture_changed (new_gdbarch);
2399 registers_changed ();
2400 }
2401
2402 /* Return the current inferior's arch. */
2403
2404 struct gdbarch *
2405 target_gdbarch (void)
2406 {
2407 return current_inferior ()->gdbarch;
2408 }
2409
2410 extern void _initialize_gdbarch (void);
2411
2412 void
2413 _initialize_gdbarch (void)
2414 {
2415 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2416 Set architecture debugging."), _("\\
2417 Show architecture debugging."), _("\\
2418 When non-zero, architecture debugging is enabled."),
2419 NULL,
2420 show_gdbarch_debug,
2421 &setdebuglist, &showdebuglist);
2422 }
2423 EOF
2424
2425 # close things off
2426 exec 1>&2
2427 #../move-if-change new-gdbarch.c gdbarch.c
2428 compare_new gdbarch.c