gdb
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009, 2010 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=C ; export LANG
26 LC_ALL=C ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double". These bit/format pairs should eventually be combined into
368 # a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same". For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
383 #
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386 # as well.
387 #
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392 #
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
395 #
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 # serious shakedown.
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402 #
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405 #
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
412
413 # GDB's standard (or well known) register numbers. These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
415 # all (-1).
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 # Return the adjusted address and kind to use for Z0/Z1 packets.
490 # KIND is usually the memory length of the breakpoint, but may have a
491 # different target-specific meaning.
492 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
493 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
494 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
495 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
496 v:CORE_ADDR:decr_pc_after_break:::0:::0
497
498 # A function can be addressed by either it's "pointer" (possibly a
499 # descriptor address) or "entry point" (first executable instruction).
500 # The method "convert_from_func_ptr_addr" converting the former to the
501 # latter. gdbarch_deprecated_function_start_offset is being used to implement
502 # a simplified subset of that functionality - the function's address
503 # corresponds to the "function pointer" and the function's start
504 # corresponds to the "function entry point" - and hence is redundant.
505
506 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
507
508 # Return the remote protocol register number associated with this
509 # register. Normally the identity mapping.
510 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
511
512 # Fetch the target specific address used to represent a load module.
513 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
514 #
515 v:CORE_ADDR:frame_args_skip:::0:::0
516 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
517 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
518 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
519 # frame-base. Enable frame-base before frame-unwind.
520 F:int:frame_num_args:struct frame_info *frame:frame
521 #
522 M:CORE_ADDR:frame_align:CORE_ADDR address:address
523 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
524 v:int:frame_red_zone_size
525 #
526 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
527 # On some machines there are bits in addresses which are not really
528 # part of the address, but are used by the kernel, the hardware, etc.
529 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
530 # we get a "real" address such as one would find in a symbol table.
531 # This is used only for addresses of instructions, and even then I'm
532 # not sure it's used in all contexts. It exists to deal with there
533 # being a few stray bits in the PC which would mislead us, not as some
534 # sort of generic thing to handle alignment or segmentation (it's
535 # possible it should be in TARGET_READ_PC instead).
536 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
537 # It is not at all clear why gdbarch_smash_text_address is not folded into
538 # gdbarch_addr_bits_remove.
539 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
540
541 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
542 # indicates if the target needs software single step. An ISA method to
543 # implement it.
544 #
545 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
546 # breakpoints using the breakpoint system instead of blatting memory directly
547 # (as with rs6000).
548 #
549 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
550 # target can single step. If not, then implement single step using breakpoints.
551 #
552 # A return value of 1 means that the software_single_step breakpoints
553 # were inserted; 0 means they were not.
554 F:int:software_single_step:struct frame_info *frame:frame
555
556 # Return non-zero if the processor is executing a delay slot and a
557 # further single-step is needed before the instruction finishes.
558 M:int:single_step_through_delay:struct frame_info *frame:frame
559 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
560 # disassembler. Perhaps objdump can handle it?
561 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
562 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
563
564
565 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
566 # evaluates non-zero, this is the address where the debugger will place
567 # a step-resume breakpoint to get us past the dynamic linker.
568 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
569 # Some systems also have trampoline code for returning from shared libs.
570 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
571
572 # A target might have problems with watchpoints as soon as the stack
573 # frame of the current function has been destroyed. This mostly happens
574 # as the first action in a funtion's epilogue. in_function_epilogue_p()
575 # is defined to return a non-zero value if either the given addr is one
576 # instruction after the stack destroying instruction up to the trailing
577 # return instruction or if we can figure out that the stack frame has
578 # already been invalidated regardless of the value of addr. Targets
579 # which don't suffer from that problem could just let this functionality
580 # untouched.
581 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
582 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
583 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
584 v:int:cannot_step_breakpoint:::0:0::0
585 v:int:have_nonsteppable_watchpoint:::0:0::0
586 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
587 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
588 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
589 # Is a register in a group
590 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
591 # Fetch the pointer to the ith function argument.
592 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
593
594 # Return the appropriate register set for a core file section with
595 # name SECT_NAME and size SECT_SIZE.
596 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
597
598 # When creating core dumps, some systems encode the PID in addition
599 # to the LWP id in core file register section names. In those cases, the
600 # "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
601 # is set to true for such architectures; false if "XXX" represents an LWP
602 # or thread id with no special encoding.
603 v:int:core_reg_section_encodes_pid:::0:0::0
604
605 # Supported register notes in a core file.
606 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
607
608 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
609 # core file into buffer READBUF with length LEN.
610 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
611
612 # How the core_stratum layer converts a PTID from a core file to a
613 # string.
614 M:char *:core_pid_to_str:ptid_t ptid:ptid
615
616 # BFD target to use when generating a core file.
617 V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
618
619 # If the elements of C++ vtables are in-place function descriptors rather
620 # than normal function pointers (which may point to code or a descriptor),
621 # set this to one.
622 v:int:vtable_function_descriptors:::0:0::0
623
624 # Set if the least significant bit of the delta is used instead of the least
625 # significant bit of the pfn for pointers to virtual member functions.
626 v:int:vbit_in_delta:::0:0::0
627
628 # Advance PC to next instruction in order to skip a permanent breakpoint.
629 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
630
631 # The maximum length of an instruction on this architecture.
632 V:ULONGEST:max_insn_length:::0:0
633
634 # Copy the instruction at FROM to TO, and make any adjustments
635 # necessary to single-step it at that address.
636 #
637 # REGS holds the state the thread's registers will have before
638 # executing the copied instruction; the PC in REGS will refer to FROM,
639 # not the copy at TO. The caller should update it to point at TO later.
640 #
641 # Return a pointer to data of the architecture's choice to be passed
642 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
643 # the instruction's effects have been completely simulated, with the
644 # resulting state written back to REGS.
645 #
646 # For a general explanation of displaced stepping and how GDB uses it,
647 # see the comments in infrun.c.
648 #
649 # The TO area is only guaranteed to have space for
650 # gdbarch_max_insn_length (arch) bytes, so this function must not
651 # write more bytes than that to that area.
652 #
653 # If you do not provide this function, GDB assumes that the
654 # architecture does not support displaced stepping.
655 #
656 # If your architecture doesn't need to adjust instructions before
657 # single-stepping them, consider using simple_displaced_step_copy_insn
658 # here.
659 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
660
661 # Return true if GDB should use hardware single-stepping to execute
662 # the displaced instruction identified by CLOSURE. If false,
663 # GDB will simply restart execution at the displaced instruction
664 # location, and it is up to the target to ensure GDB will receive
665 # control again (e.g. by placing a software breakpoint instruction
666 # into the displaced instruction buffer).
667 #
668 # The default implementation returns false on all targets that
669 # provide a gdbarch_software_single_step routine, and true otherwise.
670 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
671
672 # Fix up the state resulting from successfully single-stepping a
673 # displaced instruction, to give the result we would have gotten from
674 # stepping the instruction in its original location.
675 #
676 # REGS is the register state resulting from single-stepping the
677 # displaced instruction.
678 #
679 # CLOSURE is the result from the matching call to
680 # gdbarch_displaced_step_copy_insn.
681 #
682 # If you provide gdbarch_displaced_step_copy_insn.but not this
683 # function, then GDB assumes that no fixup is needed after
684 # single-stepping the instruction.
685 #
686 # For a general explanation of displaced stepping and how GDB uses it,
687 # see the comments in infrun.c.
688 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
689
690 # Free a closure returned by gdbarch_displaced_step_copy_insn.
691 #
692 # If you provide gdbarch_displaced_step_copy_insn, you must provide
693 # this function as well.
694 #
695 # If your architecture uses closures that don't need to be freed, then
696 # you can use simple_displaced_step_free_closure here.
697 #
698 # For a general explanation of displaced stepping and how GDB uses it,
699 # see the comments in infrun.c.
700 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
701
702 # Return the address of an appropriate place to put displaced
703 # instructions while we step over them. There need only be one such
704 # place, since we're only stepping one thread over a breakpoint at a
705 # time.
706 #
707 # For a general explanation of displaced stepping and how GDB uses it,
708 # see the comments in infrun.c.
709 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
710
711 # Refresh overlay mapped state for section OSECT.
712 F:void:overlay_update:struct obj_section *osect:osect
713
714 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
715
716 # Handle special encoding of static variables in stabs debug info.
717 F:char *:static_transform_name:char *name:name
718 # Set if the address in N_SO or N_FUN stabs may be zero.
719 v:int:sofun_address_maybe_missing:::0:0::0
720
721 # Parse the instruction at ADDR storing in the record execution log
722 # the registers REGCACHE and memory ranges that will be affected when
723 # the instruction executes, along with their current values.
724 # Return -1 if something goes wrong, 0 otherwise.
725 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
726
727 # Save process state after a signal.
728 # Return -1 if something goes wrong, 0 otherwise.
729 M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
730
731 # Signal translation: translate inferior's signal (host's) number into
732 # GDB's representation.
733 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
734 # Signal translation: translate GDB's signal number into inferior's host
735 # signal number.
736 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
737
738 # Extra signal info inspection.
739 #
740 # Return a type suitable to inspect extra signal information.
741 M:struct type *:get_siginfo_type:void:
742
743 # Record architecture-specific information from the symbol table.
744 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
745
746 # Function for the 'catch syscall' feature.
747
748 # Get architecture-specific system calls information from registers.
749 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
750
751 # True if the list of shared libraries is one and only for all
752 # processes, as opposed to a list of shared libraries per inferior.
753 # This usually means that all processes, although may or may not share
754 # an address space, will see the same set of symbols at the same
755 # addresses.
756 v:int:has_global_solist:::0:0::0
757
758 # On some targets, even though each inferior has its own private
759 # address space, the debug interface takes care of making breakpoints
760 # visible to all address spaces automatically. For such cases,
761 # this property should be set to true.
762 v:int:has_global_breakpoints:::0:0::0
763
764 # True if inferiors share an address space (e.g., uClinux).
765 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
766
767 # True if a fast tracepoint can be set at an address.
768 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
769
770 # Not NULL if a target has additonal field for qSupported.
771 v:const char *:qsupported:::0:0::0:gdbarch->qsupported
772
773 # Return the "auto" target charset.
774 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
775 # Return the "auto" target wide charset.
776 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
777 EOF
778 }
779
780 #
781 # The .log file
782 #
783 exec > new-gdbarch.log
784 function_list | while do_read
785 do
786 cat <<EOF
787 ${class} ${returntype} ${function} ($formal)
788 EOF
789 for r in ${read}
790 do
791 eval echo \"\ \ \ \ ${r}=\${${r}}\"
792 done
793 if class_is_predicate_p && fallback_default_p
794 then
795 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
796 kill $$
797 exit 1
798 fi
799 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
800 then
801 echo "Error: postdefault is useless when invalid_p=0" 1>&2
802 kill $$
803 exit 1
804 fi
805 if class_is_multiarch_p
806 then
807 if class_is_predicate_p ; then :
808 elif test "x${predefault}" = "x"
809 then
810 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
811 kill $$
812 exit 1
813 fi
814 fi
815 echo ""
816 done
817
818 exec 1>&2
819 compare_new gdbarch.log
820
821
822 copyright ()
823 {
824 cat <<EOF
825 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
826
827 /* Dynamic architecture support for GDB, the GNU debugger.
828
829 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
830 2007, 2008, 2009 Free Software Foundation, Inc.
831
832 This file is part of GDB.
833
834 This program is free software; you can redistribute it and/or modify
835 it under the terms of the GNU General Public License as published by
836 the Free Software Foundation; either version 3 of the License, or
837 (at your option) any later version.
838
839 This program is distributed in the hope that it will be useful,
840 but WITHOUT ANY WARRANTY; without even the implied warranty of
841 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
842 GNU General Public License for more details.
843
844 You should have received a copy of the GNU General Public License
845 along with this program. If not, see <http://www.gnu.org/licenses/>. */
846
847 /* This file was created with the aid of \`\`gdbarch.sh''.
848
849 The Bourne shell script \`\`gdbarch.sh'' creates the files
850 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
851 against the existing \`\`gdbarch.[hc]''. Any differences found
852 being reported.
853
854 If editing this file, please also run gdbarch.sh and merge any
855 changes into that script. Conversely, when making sweeping changes
856 to this file, modifying gdbarch.sh and using its output may prove
857 easier. */
858
859 EOF
860 }
861
862 #
863 # The .h file
864 #
865
866 exec > new-gdbarch.h
867 copyright
868 cat <<EOF
869 #ifndef GDBARCH_H
870 #define GDBARCH_H
871
872 struct floatformat;
873 struct ui_file;
874 struct frame_info;
875 struct value;
876 struct objfile;
877 struct obj_section;
878 struct minimal_symbol;
879 struct regcache;
880 struct reggroup;
881 struct regset;
882 struct disassemble_info;
883 struct target_ops;
884 struct obstack;
885 struct bp_target_info;
886 struct target_desc;
887 struct displaced_step_closure;
888 struct core_regset_section;
889 struct syscall;
890
891 /* The architecture associated with the connection to the target.
892
893 The architecture vector provides some information that is really
894 a property of the target: The layout of certain packets, for instance;
895 or the solib_ops vector. Etc. To differentiate architecture accesses
896 to per-target properties from per-thread/per-frame/per-objfile properties,
897 accesses to per-target properties should be made through target_gdbarch.
898
899 Eventually, when support for multiple targets is implemented in
900 GDB, this global should be made target-specific. */
901 extern struct gdbarch *target_gdbarch;
902 EOF
903
904 # function typedef's
905 printf "\n"
906 printf "\n"
907 printf "/* The following are pre-initialized by GDBARCH. */\n"
908 function_list | while do_read
909 do
910 if class_is_info_p
911 then
912 printf "\n"
913 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
914 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
915 fi
916 done
917
918 # function typedef's
919 printf "\n"
920 printf "\n"
921 printf "/* The following are initialized by the target dependent code. */\n"
922 function_list | while do_read
923 do
924 if [ -n "${comment}" ]
925 then
926 echo "${comment}" | sed \
927 -e '2 s,#,/*,' \
928 -e '3,$ s,#, ,' \
929 -e '$ s,$, */,'
930 fi
931
932 if class_is_predicate_p
933 then
934 printf "\n"
935 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
936 fi
937 if class_is_variable_p
938 then
939 printf "\n"
940 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
941 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
942 fi
943 if class_is_function_p
944 then
945 printf "\n"
946 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
947 then
948 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
949 elif class_is_multiarch_p
950 then
951 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
952 else
953 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
954 fi
955 if [ "x${formal}" = "xvoid" ]
956 then
957 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
958 else
959 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
960 fi
961 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
962 fi
963 done
964
965 # close it off
966 cat <<EOF
967
968 /* Definition for an unknown syscall, used basically in error-cases. */
969 #define UNKNOWN_SYSCALL (-1)
970
971 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
972
973
974 /* Mechanism for co-ordinating the selection of a specific
975 architecture.
976
977 GDB targets (*-tdep.c) can register an interest in a specific
978 architecture. Other GDB components can register a need to maintain
979 per-architecture data.
980
981 The mechanisms below ensures that there is only a loose connection
982 between the set-architecture command and the various GDB
983 components. Each component can independently register their need
984 to maintain architecture specific data with gdbarch.
985
986 Pragmatics:
987
988 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
989 didn't scale.
990
991 The more traditional mega-struct containing architecture specific
992 data for all the various GDB components was also considered. Since
993 GDB is built from a variable number of (fairly independent)
994 components it was determined that the global aproach was not
995 applicable. */
996
997
998 /* Register a new architectural family with GDB.
999
1000 Register support for the specified ARCHITECTURE with GDB. When
1001 gdbarch determines that the specified architecture has been
1002 selected, the corresponding INIT function is called.
1003
1004 --
1005
1006 The INIT function takes two parameters: INFO which contains the
1007 information available to gdbarch about the (possibly new)
1008 architecture; ARCHES which is a list of the previously created
1009 \`\`struct gdbarch'' for this architecture.
1010
1011 The INFO parameter is, as far as possible, be pre-initialized with
1012 information obtained from INFO.ABFD or the global defaults.
1013
1014 The ARCHES parameter is a linked list (sorted most recently used)
1015 of all the previously created architures for this architecture
1016 family. The (possibly NULL) ARCHES->gdbarch can used to access
1017 values from the previously selected architecture for this
1018 architecture family.
1019
1020 The INIT function shall return any of: NULL - indicating that it
1021 doesn't recognize the selected architecture; an existing \`\`struct
1022 gdbarch'' from the ARCHES list - indicating that the new
1023 architecture is just a synonym for an earlier architecture (see
1024 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1025 - that describes the selected architecture (see gdbarch_alloc()).
1026
1027 The DUMP_TDEP function shall print out all target specific values.
1028 Care should be taken to ensure that the function works in both the
1029 multi-arch and non- multi-arch cases. */
1030
1031 struct gdbarch_list
1032 {
1033 struct gdbarch *gdbarch;
1034 struct gdbarch_list *next;
1035 };
1036
1037 struct gdbarch_info
1038 {
1039 /* Use default: NULL (ZERO). */
1040 const struct bfd_arch_info *bfd_arch_info;
1041
1042 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1043 int byte_order;
1044
1045 int byte_order_for_code;
1046
1047 /* Use default: NULL (ZERO). */
1048 bfd *abfd;
1049
1050 /* Use default: NULL (ZERO). */
1051 struct gdbarch_tdep_info *tdep_info;
1052
1053 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1054 enum gdb_osabi osabi;
1055
1056 /* Use default: NULL (ZERO). */
1057 const struct target_desc *target_desc;
1058 };
1059
1060 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1061 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1062
1063 /* DEPRECATED - use gdbarch_register() */
1064 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1065
1066 extern void gdbarch_register (enum bfd_architecture architecture,
1067 gdbarch_init_ftype *,
1068 gdbarch_dump_tdep_ftype *);
1069
1070
1071 /* Return a freshly allocated, NULL terminated, array of the valid
1072 architecture names. Since architectures are registered during the
1073 _initialize phase this function only returns useful information
1074 once initialization has been completed. */
1075
1076 extern const char **gdbarch_printable_names (void);
1077
1078
1079 /* Helper function. Search the list of ARCHES for a GDBARCH that
1080 matches the information provided by INFO. */
1081
1082 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1083
1084
1085 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1086 basic initialization using values obtained from the INFO and TDEP
1087 parameters. set_gdbarch_*() functions are called to complete the
1088 initialization of the object. */
1089
1090 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1091
1092
1093 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1094 It is assumed that the caller freeds the \`\`struct
1095 gdbarch_tdep''. */
1096
1097 extern void gdbarch_free (struct gdbarch *);
1098
1099
1100 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1101 obstack. The memory is freed when the corresponding architecture
1102 is also freed. */
1103
1104 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1105 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1106 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1107
1108
1109 /* Helper function. Force an update of the current architecture.
1110
1111 The actual architecture selected is determined by INFO, \`\`(gdb) set
1112 architecture'' et.al., the existing architecture and BFD's default
1113 architecture. INFO should be initialized to zero and then selected
1114 fields should be updated.
1115
1116 Returns non-zero if the update succeeds */
1117
1118 extern int gdbarch_update_p (struct gdbarch_info info);
1119
1120
1121 /* Helper function. Find an architecture matching info.
1122
1123 INFO should be initialized using gdbarch_info_init, relevant fields
1124 set, and then finished using gdbarch_info_fill.
1125
1126 Returns the corresponding architecture, or NULL if no matching
1127 architecture was found. */
1128
1129 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1130
1131
1132 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1133
1134 FIXME: kettenis/20031124: Of the functions that follow, only
1135 gdbarch_from_bfd is supposed to survive. The others will
1136 dissappear since in the future GDB will (hopefully) be truly
1137 multi-arch. However, for now we're still stuck with the concept of
1138 a single active architecture. */
1139
1140 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1141
1142
1143 /* Register per-architecture data-pointer.
1144
1145 Reserve space for a per-architecture data-pointer. An identifier
1146 for the reserved data-pointer is returned. That identifer should
1147 be saved in a local static variable.
1148
1149 Memory for the per-architecture data shall be allocated using
1150 gdbarch_obstack_zalloc. That memory will be deleted when the
1151 corresponding architecture object is deleted.
1152
1153 When a previously created architecture is re-selected, the
1154 per-architecture data-pointer for that previous architecture is
1155 restored. INIT() is not re-called.
1156
1157 Multiple registrarants for any architecture are allowed (and
1158 strongly encouraged). */
1159
1160 struct gdbarch_data;
1161
1162 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1163 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1164 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1165 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1166 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1167 struct gdbarch_data *data,
1168 void *pointer);
1169
1170 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1171
1172
1173 /* Set the dynamic target-system-dependent parameters (architecture,
1174 byte-order, ...) using information found in the BFD */
1175
1176 extern void set_gdbarch_from_file (bfd *);
1177
1178
1179 /* Initialize the current architecture to the "first" one we find on
1180 our list. */
1181
1182 extern void initialize_current_architecture (void);
1183
1184 /* gdbarch trace variable */
1185 extern int gdbarch_debug;
1186
1187 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1188
1189 #endif
1190 EOF
1191 exec 1>&2
1192 #../move-if-change new-gdbarch.h gdbarch.h
1193 compare_new gdbarch.h
1194
1195
1196 #
1197 # C file
1198 #
1199
1200 exec > new-gdbarch.c
1201 copyright
1202 cat <<EOF
1203
1204 #include "defs.h"
1205 #include "arch-utils.h"
1206
1207 #include "gdbcmd.h"
1208 #include "inferior.h"
1209 #include "symcat.h"
1210
1211 #include "floatformat.h"
1212
1213 #include "gdb_assert.h"
1214 #include "gdb_string.h"
1215 #include "reggroups.h"
1216 #include "osabi.h"
1217 #include "gdb_obstack.h"
1218 #include "observer.h"
1219 #include "regcache.h"
1220
1221 /* Static function declarations */
1222
1223 static void alloc_gdbarch_data (struct gdbarch *);
1224
1225 /* Non-zero if we want to trace architecture code. */
1226
1227 #ifndef GDBARCH_DEBUG
1228 #define GDBARCH_DEBUG 0
1229 #endif
1230 int gdbarch_debug = GDBARCH_DEBUG;
1231 static void
1232 show_gdbarch_debug (struct ui_file *file, int from_tty,
1233 struct cmd_list_element *c, const char *value)
1234 {
1235 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1236 }
1237
1238 static const char *
1239 pformat (const struct floatformat **format)
1240 {
1241 if (format == NULL)
1242 return "(null)";
1243 else
1244 /* Just print out one of them - this is only for diagnostics. */
1245 return format[0]->name;
1246 }
1247
1248 EOF
1249
1250 # gdbarch open the gdbarch object
1251 printf "\n"
1252 printf "/* Maintain the struct gdbarch object */\n"
1253 printf "\n"
1254 printf "struct gdbarch\n"
1255 printf "{\n"
1256 printf " /* Has this architecture been fully initialized? */\n"
1257 printf " int initialized_p;\n"
1258 printf "\n"
1259 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1260 printf " struct obstack *obstack;\n"
1261 printf "\n"
1262 printf " /* basic architectural information */\n"
1263 function_list | while do_read
1264 do
1265 if class_is_info_p
1266 then
1267 printf " ${returntype} ${function};\n"
1268 fi
1269 done
1270 printf "\n"
1271 printf " /* target specific vector. */\n"
1272 printf " struct gdbarch_tdep *tdep;\n"
1273 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1274 printf "\n"
1275 printf " /* per-architecture data-pointers */\n"
1276 printf " unsigned nr_data;\n"
1277 printf " void **data;\n"
1278 printf "\n"
1279 printf " /* per-architecture swap-regions */\n"
1280 printf " struct gdbarch_swap *swap;\n"
1281 printf "\n"
1282 cat <<EOF
1283 /* Multi-arch values.
1284
1285 When extending this structure you must:
1286
1287 Add the field below.
1288
1289 Declare set/get functions and define the corresponding
1290 macro in gdbarch.h.
1291
1292 gdbarch_alloc(): If zero/NULL is not a suitable default,
1293 initialize the new field.
1294
1295 verify_gdbarch(): Confirm that the target updated the field
1296 correctly.
1297
1298 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1299 field is dumped out
1300
1301 \`\`startup_gdbarch()'': Append an initial value to the static
1302 variable (base values on the host's c-type system).
1303
1304 get_gdbarch(): Implement the set/get functions (probably using
1305 the macro's as shortcuts).
1306
1307 */
1308
1309 EOF
1310 function_list | while do_read
1311 do
1312 if class_is_variable_p
1313 then
1314 printf " ${returntype} ${function};\n"
1315 elif class_is_function_p
1316 then
1317 printf " gdbarch_${function}_ftype *${function};\n"
1318 fi
1319 done
1320 printf "};\n"
1321
1322 # A pre-initialized vector
1323 printf "\n"
1324 printf "\n"
1325 cat <<EOF
1326 /* The default architecture uses host values (for want of a better
1327 choice). */
1328 EOF
1329 printf "\n"
1330 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1331 printf "\n"
1332 printf "struct gdbarch startup_gdbarch =\n"
1333 printf "{\n"
1334 printf " 1, /* Always initialized. */\n"
1335 printf " NULL, /* The obstack. */\n"
1336 printf " /* basic architecture information */\n"
1337 function_list | while do_read
1338 do
1339 if class_is_info_p
1340 then
1341 printf " ${staticdefault}, /* ${function} */\n"
1342 fi
1343 done
1344 cat <<EOF
1345 /* target specific vector and its dump routine */
1346 NULL, NULL,
1347 /*per-architecture data-pointers and swap regions */
1348 0, NULL, NULL,
1349 /* Multi-arch values */
1350 EOF
1351 function_list | while do_read
1352 do
1353 if class_is_function_p || class_is_variable_p
1354 then
1355 printf " ${staticdefault}, /* ${function} */\n"
1356 fi
1357 done
1358 cat <<EOF
1359 /* startup_gdbarch() */
1360 };
1361
1362 struct gdbarch *target_gdbarch = &startup_gdbarch;
1363 EOF
1364
1365 # Create a new gdbarch struct
1366 cat <<EOF
1367
1368 /* Create a new \`\`struct gdbarch'' based on information provided by
1369 \`\`struct gdbarch_info''. */
1370 EOF
1371 printf "\n"
1372 cat <<EOF
1373 struct gdbarch *
1374 gdbarch_alloc (const struct gdbarch_info *info,
1375 struct gdbarch_tdep *tdep)
1376 {
1377 struct gdbarch *gdbarch;
1378
1379 /* Create an obstack for allocating all the per-architecture memory,
1380 then use that to allocate the architecture vector. */
1381 struct obstack *obstack = XMALLOC (struct obstack);
1382 obstack_init (obstack);
1383 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1384 memset (gdbarch, 0, sizeof (*gdbarch));
1385 gdbarch->obstack = obstack;
1386
1387 alloc_gdbarch_data (gdbarch);
1388
1389 gdbarch->tdep = tdep;
1390 EOF
1391 printf "\n"
1392 function_list | while do_read
1393 do
1394 if class_is_info_p
1395 then
1396 printf " gdbarch->${function} = info->${function};\n"
1397 fi
1398 done
1399 printf "\n"
1400 printf " /* Force the explicit initialization of these. */\n"
1401 function_list | while do_read
1402 do
1403 if class_is_function_p || class_is_variable_p
1404 then
1405 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1406 then
1407 printf " gdbarch->${function} = ${predefault};\n"
1408 fi
1409 fi
1410 done
1411 cat <<EOF
1412 /* gdbarch_alloc() */
1413
1414 return gdbarch;
1415 }
1416 EOF
1417
1418 # Free a gdbarch struct.
1419 printf "\n"
1420 printf "\n"
1421 cat <<EOF
1422 /* Allocate extra space using the per-architecture obstack. */
1423
1424 void *
1425 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1426 {
1427 void *data = obstack_alloc (arch->obstack, size);
1428 memset (data, 0, size);
1429 return data;
1430 }
1431
1432
1433 /* Free a gdbarch struct. This should never happen in normal
1434 operation --- once you've created a gdbarch, you keep it around.
1435 However, if an architecture's init function encounters an error
1436 building the structure, it may need to clean up a partially
1437 constructed gdbarch. */
1438
1439 void
1440 gdbarch_free (struct gdbarch *arch)
1441 {
1442 struct obstack *obstack;
1443 gdb_assert (arch != NULL);
1444 gdb_assert (!arch->initialized_p);
1445 obstack = arch->obstack;
1446 obstack_free (obstack, 0); /* Includes the ARCH. */
1447 xfree (obstack);
1448 }
1449 EOF
1450
1451 # verify a new architecture
1452 cat <<EOF
1453
1454
1455 /* Ensure that all values in a GDBARCH are reasonable. */
1456
1457 static void
1458 verify_gdbarch (struct gdbarch *gdbarch)
1459 {
1460 struct ui_file *log;
1461 struct cleanup *cleanups;
1462 long length;
1463 char *buf;
1464 log = mem_fileopen ();
1465 cleanups = make_cleanup_ui_file_delete (log);
1466 /* fundamental */
1467 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1468 fprintf_unfiltered (log, "\n\tbyte-order");
1469 if (gdbarch->bfd_arch_info == NULL)
1470 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1471 /* Check those that need to be defined for the given multi-arch level. */
1472 EOF
1473 function_list | while do_read
1474 do
1475 if class_is_function_p || class_is_variable_p
1476 then
1477 if [ "x${invalid_p}" = "x0" ]
1478 then
1479 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1480 elif class_is_predicate_p
1481 then
1482 printf " /* Skip verify of ${function}, has predicate */\n"
1483 # FIXME: See do_read for potential simplification
1484 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1485 then
1486 printf " if (${invalid_p})\n"
1487 printf " gdbarch->${function} = ${postdefault};\n"
1488 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1489 then
1490 printf " if (gdbarch->${function} == ${predefault})\n"
1491 printf " gdbarch->${function} = ${postdefault};\n"
1492 elif [ -n "${postdefault}" ]
1493 then
1494 printf " if (gdbarch->${function} == 0)\n"
1495 printf " gdbarch->${function} = ${postdefault};\n"
1496 elif [ -n "${invalid_p}" ]
1497 then
1498 printf " if (${invalid_p})\n"
1499 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1500 elif [ -n "${predefault}" ]
1501 then
1502 printf " if (gdbarch->${function} == ${predefault})\n"
1503 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1504 fi
1505 fi
1506 done
1507 cat <<EOF
1508 buf = ui_file_xstrdup (log, &length);
1509 make_cleanup (xfree, buf);
1510 if (length > 0)
1511 internal_error (__FILE__, __LINE__,
1512 _("verify_gdbarch: the following are invalid ...%s"),
1513 buf);
1514 do_cleanups (cleanups);
1515 }
1516 EOF
1517
1518 # dump the structure
1519 printf "\n"
1520 printf "\n"
1521 cat <<EOF
1522 /* Print out the details of the current architecture. */
1523
1524 void
1525 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1526 {
1527 const char *gdb_nm_file = "<not-defined>";
1528 #if defined (GDB_NM_FILE)
1529 gdb_nm_file = GDB_NM_FILE;
1530 #endif
1531 fprintf_unfiltered (file,
1532 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1533 gdb_nm_file);
1534 EOF
1535 function_list | sort -t: -k 3 | while do_read
1536 do
1537 # First the predicate
1538 if class_is_predicate_p
1539 then
1540 printf " fprintf_unfiltered (file,\n"
1541 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1542 printf " gdbarch_${function}_p (gdbarch));\n"
1543 fi
1544 # Print the corresponding value.
1545 if class_is_function_p
1546 then
1547 printf " fprintf_unfiltered (file,\n"
1548 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1549 printf " host_address_to_string (gdbarch->${function}));\n"
1550 else
1551 # It is a variable
1552 case "${print}:${returntype}" in
1553 :CORE_ADDR )
1554 fmt="%s"
1555 print="core_addr_to_string_nz (gdbarch->${function})"
1556 ;;
1557 :* )
1558 fmt="%s"
1559 print="plongest (gdbarch->${function})"
1560 ;;
1561 * )
1562 fmt="%s"
1563 ;;
1564 esac
1565 printf " fprintf_unfiltered (file,\n"
1566 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1567 printf " ${print});\n"
1568 fi
1569 done
1570 cat <<EOF
1571 if (gdbarch->dump_tdep != NULL)
1572 gdbarch->dump_tdep (gdbarch, file);
1573 }
1574 EOF
1575
1576
1577 # GET/SET
1578 printf "\n"
1579 cat <<EOF
1580 struct gdbarch_tdep *
1581 gdbarch_tdep (struct gdbarch *gdbarch)
1582 {
1583 if (gdbarch_debug >= 2)
1584 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1585 return gdbarch->tdep;
1586 }
1587 EOF
1588 printf "\n"
1589 function_list | while do_read
1590 do
1591 if class_is_predicate_p
1592 then
1593 printf "\n"
1594 printf "int\n"
1595 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1596 printf "{\n"
1597 printf " gdb_assert (gdbarch != NULL);\n"
1598 printf " return ${predicate};\n"
1599 printf "}\n"
1600 fi
1601 if class_is_function_p
1602 then
1603 printf "\n"
1604 printf "${returntype}\n"
1605 if [ "x${formal}" = "xvoid" ]
1606 then
1607 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1608 else
1609 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1610 fi
1611 printf "{\n"
1612 printf " gdb_assert (gdbarch != NULL);\n"
1613 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1614 if class_is_predicate_p && test -n "${predefault}"
1615 then
1616 # Allow a call to a function with a predicate.
1617 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1618 fi
1619 printf " if (gdbarch_debug >= 2)\n"
1620 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1621 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1622 then
1623 if class_is_multiarch_p
1624 then
1625 params="gdbarch"
1626 else
1627 params=""
1628 fi
1629 else
1630 if class_is_multiarch_p
1631 then
1632 params="gdbarch, ${actual}"
1633 else
1634 params="${actual}"
1635 fi
1636 fi
1637 if [ "x${returntype}" = "xvoid" ]
1638 then
1639 printf " gdbarch->${function} (${params});\n"
1640 else
1641 printf " return gdbarch->${function} (${params});\n"
1642 fi
1643 printf "}\n"
1644 printf "\n"
1645 printf "void\n"
1646 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1647 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1648 printf "{\n"
1649 printf " gdbarch->${function} = ${function};\n"
1650 printf "}\n"
1651 elif class_is_variable_p
1652 then
1653 printf "\n"
1654 printf "${returntype}\n"
1655 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1656 printf "{\n"
1657 printf " gdb_assert (gdbarch != NULL);\n"
1658 if [ "x${invalid_p}" = "x0" ]
1659 then
1660 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1661 elif [ -n "${invalid_p}" ]
1662 then
1663 printf " /* Check variable is valid. */\n"
1664 printf " gdb_assert (!(${invalid_p}));\n"
1665 elif [ -n "${predefault}" ]
1666 then
1667 printf " /* Check variable changed from pre-default. */\n"
1668 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1669 fi
1670 printf " if (gdbarch_debug >= 2)\n"
1671 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1672 printf " return gdbarch->${function};\n"
1673 printf "}\n"
1674 printf "\n"
1675 printf "void\n"
1676 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1677 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1678 printf "{\n"
1679 printf " gdbarch->${function} = ${function};\n"
1680 printf "}\n"
1681 elif class_is_info_p
1682 then
1683 printf "\n"
1684 printf "${returntype}\n"
1685 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1686 printf "{\n"
1687 printf " gdb_assert (gdbarch != NULL);\n"
1688 printf " if (gdbarch_debug >= 2)\n"
1689 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1690 printf " return gdbarch->${function};\n"
1691 printf "}\n"
1692 fi
1693 done
1694
1695 # All the trailing guff
1696 cat <<EOF
1697
1698
1699 /* Keep a registry of per-architecture data-pointers required by GDB
1700 modules. */
1701
1702 struct gdbarch_data
1703 {
1704 unsigned index;
1705 int init_p;
1706 gdbarch_data_pre_init_ftype *pre_init;
1707 gdbarch_data_post_init_ftype *post_init;
1708 };
1709
1710 struct gdbarch_data_registration
1711 {
1712 struct gdbarch_data *data;
1713 struct gdbarch_data_registration *next;
1714 };
1715
1716 struct gdbarch_data_registry
1717 {
1718 unsigned nr;
1719 struct gdbarch_data_registration *registrations;
1720 };
1721
1722 struct gdbarch_data_registry gdbarch_data_registry =
1723 {
1724 0, NULL,
1725 };
1726
1727 static struct gdbarch_data *
1728 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1729 gdbarch_data_post_init_ftype *post_init)
1730 {
1731 struct gdbarch_data_registration **curr;
1732 /* Append the new registraration. */
1733 for (curr = &gdbarch_data_registry.registrations;
1734 (*curr) != NULL;
1735 curr = &(*curr)->next);
1736 (*curr) = XMALLOC (struct gdbarch_data_registration);
1737 (*curr)->next = NULL;
1738 (*curr)->data = XMALLOC (struct gdbarch_data);
1739 (*curr)->data->index = gdbarch_data_registry.nr++;
1740 (*curr)->data->pre_init = pre_init;
1741 (*curr)->data->post_init = post_init;
1742 (*curr)->data->init_p = 1;
1743 return (*curr)->data;
1744 }
1745
1746 struct gdbarch_data *
1747 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1748 {
1749 return gdbarch_data_register (pre_init, NULL);
1750 }
1751
1752 struct gdbarch_data *
1753 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1754 {
1755 return gdbarch_data_register (NULL, post_init);
1756 }
1757
1758 /* Create/delete the gdbarch data vector. */
1759
1760 static void
1761 alloc_gdbarch_data (struct gdbarch *gdbarch)
1762 {
1763 gdb_assert (gdbarch->data == NULL);
1764 gdbarch->nr_data = gdbarch_data_registry.nr;
1765 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1766 }
1767
1768 /* Initialize the current value of the specified per-architecture
1769 data-pointer. */
1770
1771 void
1772 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1773 struct gdbarch_data *data,
1774 void *pointer)
1775 {
1776 gdb_assert (data->index < gdbarch->nr_data);
1777 gdb_assert (gdbarch->data[data->index] == NULL);
1778 gdb_assert (data->pre_init == NULL);
1779 gdbarch->data[data->index] = pointer;
1780 }
1781
1782 /* Return the current value of the specified per-architecture
1783 data-pointer. */
1784
1785 void *
1786 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1787 {
1788 gdb_assert (data->index < gdbarch->nr_data);
1789 if (gdbarch->data[data->index] == NULL)
1790 {
1791 /* The data-pointer isn't initialized, call init() to get a
1792 value. */
1793 if (data->pre_init != NULL)
1794 /* Mid architecture creation: pass just the obstack, and not
1795 the entire architecture, as that way it isn't possible for
1796 pre-init code to refer to undefined architecture
1797 fields. */
1798 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1799 else if (gdbarch->initialized_p
1800 && data->post_init != NULL)
1801 /* Post architecture creation: pass the entire architecture
1802 (as all fields are valid), but be careful to also detect
1803 recursive references. */
1804 {
1805 gdb_assert (data->init_p);
1806 data->init_p = 0;
1807 gdbarch->data[data->index] = data->post_init (gdbarch);
1808 data->init_p = 1;
1809 }
1810 else
1811 /* The architecture initialization hasn't completed - punt -
1812 hope that the caller knows what they are doing. Once
1813 deprecated_set_gdbarch_data has been initialized, this can be
1814 changed to an internal error. */
1815 return NULL;
1816 gdb_assert (gdbarch->data[data->index] != NULL);
1817 }
1818 return gdbarch->data[data->index];
1819 }
1820
1821
1822 /* Keep a registry of the architectures known by GDB. */
1823
1824 struct gdbarch_registration
1825 {
1826 enum bfd_architecture bfd_architecture;
1827 gdbarch_init_ftype *init;
1828 gdbarch_dump_tdep_ftype *dump_tdep;
1829 struct gdbarch_list *arches;
1830 struct gdbarch_registration *next;
1831 };
1832
1833 static struct gdbarch_registration *gdbarch_registry = NULL;
1834
1835 static void
1836 append_name (const char ***buf, int *nr, const char *name)
1837 {
1838 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1839 (*buf)[*nr] = name;
1840 *nr += 1;
1841 }
1842
1843 const char **
1844 gdbarch_printable_names (void)
1845 {
1846 /* Accumulate a list of names based on the registed list of
1847 architectures. */
1848 enum bfd_architecture a;
1849 int nr_arches = 0;
1850 const char **arches = NULL;
1851 struct gdbarch_registration *rego;
1852 for (rego = gdbarch_registry;
1853 rego != NULL;
1854 rego = rego->next)
1855 {
1856 const struct bfd_arch_info *ap;
1857 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1858 if (ap == NULL)
1859 internal_error (__FILE__, __LINE__,
1860 _("gdbarch_architecture_names: multi-arch unknown"));
1861 do
1862 {
1863 append_name (&arches, &nr_arches, ap->printable_name);
1864 ap = ap->next;
1865 }
1866 while (ap != NULL);
1867 }
1868 append_name (&arches, &nr_arches, NULL);
1869 return arches;
1870 }
1871
1872
1873 void
1874 gdbarch_register (enum bfd_architecture bfd_architecture,
1875 gdbarch_init_ftype *init,
1876 gdbarch_dump_tdep_ftype *dump_tdep)
1877 {
1878 struct gdbarch_registration **curr;
1879 const struct bfd_arch_info *bfd_arch_info;
1880 /* Check that BFD recognizes this architecture */
1881 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1882 if (bfd_arch_info == NULL)
1883 {
1884 internal_error (__FILE__, __LINE__,
1885 _("gdbarch: Attempt to register unknown architecture (%d)"),
1886 bfd_architecture);
1887 }
1888 /* Check that we haven't seen this architecture before */
1889 for (curr = &gdbarch_registry;
1890 (*curr) != NULL;
1891 curr = &(*curr)->next)
1892 {
1893 if (bfd_architecture == (*curr)->bfd_architecture)
1894 internal_error (__FILE__, __LINE__,
1895 _("gdbarch: Duplicate registraration of architecture (%s)"),
1896 bfd_arch_info->printable_name);
1897 }
1898 /* log it */
1899 if (gdbarch_debug)
1900 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1901 bfd_arch_info->printable_name,
1902 host_address_to_string (init));
1903 /* Append it */
1904 (*curr) = XMALLOC (struct gdbarch_registration);
1905 (*curr)->bfd_architecture = bfd_architecture;
1906 (*curr)->init = init;
1907 (*curr)->dump_tdep = dump_tdep;
1908 (*curr)->arches = NULL;
1909 (*curr)->next = NULL;
1910 }
1911
1912 void
1913 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1914 gdbarch_init_ftype *init)
1915 {
1916 gdbarch_register (bfd_architecture, init, NULL);
1917 }
1918
1919
1920 /* Look for an architecture using gdbarch_info. */
1921
1922 struct gdbarch_list *
1923 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1924 const struct gdbarch_info *info)
1925 {
1926 for (; arches != NULL; arches = arches->next)
1927 {
1928 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1929 continue;
1930 if (info->byte_order != arches->gdbarch->byte_order)
1931 continue;
1932 if (info->osabi != arches->gdbarch->osabi)
1933 continue;
1934 if (info->target_desc != arches->gdbarch->target_desc)
1935 continue;
1936 return arches;
1937 }
1938 return NULL;
1939 }
1940
1941
1942 /* Find an architecture that matches the specified INFO. Create a new
1943 architecture if needed. Return that new architecture. */
1944
1945 struct gdbarch *
1946 gdbarch_find_by_info (struct gdbarch_info info)
1947 {
1948 struct gdbarch *new_gdbarch;
1949 struct gdbarch_registration *rego;
1950
1951 /* Fill in missing parts of the INFO struct using a number of
1952 sources: "set ..."; INFOabfd supplied; and the global
1953 defaults. */
1954 gdbarch_info_fill (&info);
1955
1956 /* Must have found some sort of architecture. */
1957 gdb_assert (info.bfd_arch_info != NULL);
1958
1959 if (gdbarch_debug)
1960 {
1961 fprintf_unfiltered (gdb_stdlog,
1962 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
1963 (info.bfd_arch_info != NULL
1964 ? info.bfd_arch_info->printable_name
1965 : "(null)"));
1966 fprintf_unfiltered (gdb_stdlog,
1967 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
1968 info.byte_order,
1969 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1970 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1971 : "default"));
1972 fprintf_unfiltered (gdb_stdlog,
1973 "gdbarch_find_by_info: info.osabi %d (%s)\n",
1974 info.osabi, gdbarch_osabi_name (info.osabi));
1975 fprintf_unfiltered (gdb_stdlog,
1976 "gdbarch_find_by_info: info.abfd %s\n",
1977 host_address_to_string (info.abfd));
1978 fprintf_unfiltered (gdb_stdlog,
1979 "gdbarch_find_by_info: info.tdep_info %s\n",
1980 host_address_to_string (info.tdep_info));
1981 }
1982
1983 /* Find the tdep code that knows about this architecture. */
1984 for (rego = gdbarch_registry;
1985 rego != NULL;
1986 rego = rego->next)
1987 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1988 break;
1989 if (rego == NULL)
1990 {
1991 if (gdbarch_debug)
1992 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
1993 "No matching architecture\n");
1994 return 0;
1995 }
1996
1997 /* Ask the tdep code for an architecture that matches "info". */
1998 new_gdbarch = rego->init (info, rego->arches);
1999
2000 /* Did the tdep code like it? No. Reject the change and revert to
2001 the old architecture. */
2002 if (new_gdbarch == NULL)
2003 {
2004 if (gdbarch_debug)
2005 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2006 "Target rejected architecture\n");
2007 return NULL;
2008 }
2009
2010 /* Is this a pre-existing architecture (as determined by already
2011 being initialized)? Move it to the front of the architecture
2012 list (keeping the list sorted Most Recently Used). */
2013 if (new_gdbarch->initialized_p)
2014 {
2015 struct gdbarch_list **list;
2016 struct gdbarch_list *this;
2017 if (gdbarch_debug)
2018 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2019 "Previous architecture %s (%s) selected\n",
2020 host_address_to_string (new_gdbarch),
2021 new_gdbarch->bfd_arch_info->printable_name);
2022 /* Find the existing arch in the list. */
2023 for (list = &rego->arches;
2024 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2025 list = &(*list)->next);
2026 /* It had better be in the list of architectures. */
2027 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2028 /* Unlink THIS. */
2029 this = (*list);
2030 (*list) = this->next;
2031 /* Insert THIS at the front. */
2032 this->next = rego->arches;
2033 rego->arches = this;
2034 /* Return it. */
2035 return new_gdbarch;
2036 }
2037
2038 /* It's a new architecture. */
2039 if (gdbarch_debug)
2040 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2041 "New architecture %s (%s) selected\n",
2042 host_address_to_string (new_gdbarch),
2043 new_gdbarch->bfd_arch_info->printable_name);
2044
2045 /* Insert the new architecture into the front of the architecture
2046 list (keep the list sorted Most Recently Used). */
2047 {
2048 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2049 this->next = rego->arches;
2050 this->gdbarch = new_gdbarch;
2051 rego->arches = this;
2052 }
2053
2054 /* Check that the newly installed architecture is valid. Plug in
2055 any post init values. */
2056 new_gdbarch->dump_tdep = rego->dump_tdep;
2057 verify_gdbarch (new_gdbarch);
2058 new_gdbarch->initialized_p = 1;
2059
2060 if (gdbarch_debug)
2061 gdbarch_dump (new_gdbarch, gdb_stdlog);
2062
2063 return new_gdbarch;
2064 }
2065
2066 /* Make the specified architecture current. */
2067
2068 void
2069 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2070 {
2071 gdb_assert (new_gdbarch != NULL);
2072 gdb_assert (new_gdbarch->initialized_p);
2073 target_gdbarch = new_gdbarch;
2074 observer_notify_architecture_changed (new_gdbarch);
2075 registers_changed ();
2076 }
2077
2078 extern void _initialize_gdbarch (void);
2079
2080 void
2081 _initialize_gdbarch (void)
2082 {
2083 struct cmd_list_element *c;
2084
2085 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2086 Set architecture debugging."), _("\\
2087 Show architecture debugging."), _("\\
2088 When non-zero, architecture debugging is enabled."),
2089 NULL,
2090 show_gdbarch_debug,
2091 &setdebuglist, &showdebuglist);
2092 }
2093 EOF
2094
2095 # close things off
2096 exec 1>&2
2097 #../move-if-change new-gdbarch.c gdbarch.c
2098 compare_new gdbarch.c