22d8eb12cf196d784780b0d5dc7ee1a689971499
[binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "server.h"
21 #include "linux-low.h"
22
23 #include <sys/wait.h>
24 #include <stdio.h>
25 #include <sys/param.h>
26 #include <sys/ptrace.h>
27 #include <signal.h>
28 #include <sys/ioctl.h>
29 #include <fcntl.h>
30 #include <string.h>
31 #include <stdlib.h>
32 #include <unistd.h>
33 #include <errno.h>
34 #include <sys/syscall.h>
35 #include <sched.h>
36 #include <ctype.h>
37 #include <pwd.h>
38 #include <sys/types.h>
39 #include <dirent.h>
40 #include <sys/stat.h>
41 #include <sys/vfs.h>
42 #include <sys/uio.h>
43 #ifndef ELFMAG0
44 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
45 then ELFMAG0 will have been defined. If it didn't get included by
46 gdb_proc_service.h then including it will likely introduce a duplicate
47 definition of elf_fpregset_t. */
48 #include <elf.h>
49 #endif
50
51 #ifndef SPUFS_MAGIC
52 #define SPUFS_MAGIC 0x23c9b64e
53 #endif
54
55 #ifndef PTRACE_GETSIGINFO
56 # define PTRACE_GETSIGINFO 0x4202
57 # define PTRACE_SETSIGINFO 0x4203
58 #endif
59
60 #ifndef O_LARGEFILE
61 #define O_LARGEFILE 0
62 #endif
63
64 /* If the system headers did not provide the constants, hard-code the normal
65 values. */
66 #ifndef PTRACE_EVENT_FORK
67
68 #define PTRACE_SETOPTIONS 0x4200
69 #define PTRACE_GETEVENTMSG 0x4201
70
71 /* options set using PTRACE_SETOPTIONS */
72 #define PTRACE_O_TRACESYSGOOD 0x00000001
73 #define PTRACE_O_TRACEFORK 0x00000002
74 #define PTRACE_O_TRACEVFORK 0x00000004
75 #define PTRACE_O_TRACECLONE 0x00000008
76 #define PTRACE_O_TRACEEXEC 0x00000010
77 #define PTRACE_O_TRACEVFORKDONE 0x00000020
78 #define PTRACE_O_TRACEEXIT 0x00000040
79
80 /* Wait extended result codes for the above trace options. */
81 #define PTRACE_EVENT_FORK 1
82 #define PTRACE_EVENT_VFORK 2
83 #define PTRACE_EVENT_CLONE 3
84 #define PTRACE_EVENT_EXEC 4
85 #define PTRACE_EVENT_VFORK_DONE 5
86 #define PTRACE_EVENT_EXIT 6
87
88 #endif /* PTRACE_EVENT_FORK */
89
90 /* We can't always assume that this flag is available, but all systems
91 with the ptrace event handlers also have __WALL, so it's safe to use
92 in some contexts. */
93 #ifndef __WALL
94 #define __WALL 0x40000000 /* Wait for any child. */
95 #endif
96
97 #ifndef W_STOPCODE
98 #define W_STOPCODE(sig) ((sig) << 8 | 0x7f)
99 #endif
100
101 #ifdef __UCLIBC__
102 #if !(defined(__UCLIBC_HAS_MMU__) || defined(__ARCH_HAS_MMU__))
103 #define HAS_NOMMU
104 #endif
105 #endif
106
107 /* ``all_threads'' is keyed by the LWP ID, which we use as the GDB protocol
108 representation of the thread ID.
109
110 ``all_lwps'' is keyed by the process ID - which on Linux is (presently)
111 the same as the LWP ID.
112
113 ``all_processes'' is keyed by the "overall process ID", which
114 GNU/Linux calls tgid, "thread group ID". */
115
116 struct inferior_list all_lwps;
117
118 /* A list of all unknown processes which receive stop signals. Some other
119 process will presumably claim each of these as forked children
120 momentarily. */
121
122 struct inferior_list stopped_pids;
123
124 /* FIXME this is a bit of a hack, and could be removed. */
125 int stopping_threads;
126
127 /* FIXME make into a target method? */
128 int using_threads = 1;
129
130 /* True if we're presently stabilizing threads (moving them out of
131 jump pads). */
132 static int stabilizing_threads;
133
134 /* This flag is true iff we've just created or attached to our first
135 inferior but it has not stopped yet. As soon as it does, we need
136 to call the low target's arch_setup callback. Doing this only on
137 the first inferior avoids reinializing the architecture on every
138 inferior, and avoids messing with the register caches of the
139 already running inferiors. NOTE: this assumes all inferiors under
140 control of gdbserver have the same architecture. */
141 static int new_inferior;
142
143 static void linux_resume_one_lwp (struct lwp_info *lwp,
144 int step, int signal, siginfo_t *info);
145 static void linux_resume (struct thread_resume *resume_info, size_t n);
146 static void stop_all_lwps (int suspend, struct lwp_info *except);
147 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
148 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
149 static void *add_lwp (ptid_t ptid);
150 static int linux_stopped_by_watchpoint (void);
151 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
152 static int linux_core_of_thread (ptid_t ptid);
153 static void proceed_all_lwps (void);
154 static int finish_step_over (struct lwp_info *lwp);
155 static CORE_ADDR get_stop_pc (struct lwp_info *lwp);
156 static int kill_lwp (unsigned long lwpid, int signo);
157 static void linux_enable_event_reporting (int pid);
158
159 /* True if the low target can hardware single-step. Such targets
160 don't need a BREAKPOINT_REINSERT_ADDR callback. */
161
162 static int
163 can_hardware_single_step (void)
164 {
165 return (the_low_target.breakpoint_reinsert_addr == NULL);
166 }
167
168 /* True if the low target supports memory breakpoints. If so, we'll
169 have a GET_PC implementation. */
170
171 static int
172 supports_breakpoints (void)
173 {
174 return (the_low_target.get_pc != NULL);
175 }
176
177 /* Returns true if this target can support fast tracepoints. This
178 does not mean that the in-process agent has been loaded in the
179 inferior. */
180
181 static int
182 supports_fast_tracepoints (void)
183 {
184 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
185 }
186
187 struct pending_signals
188 {
189 int signal;
190 siginfo_t info;
191 struct pending_signals *prev;
192 };
193
194 #define PTRACE_ARG3_TYPE void *
195 #define PTRACE_ARG4_TYPE void *
196 #define PTRACE_XFER_TYPE long
197
198 #ifdef HAVE_LINUX_REGSETS
199 static char *disabled_regsets;
200 static int num_regsets;
201 #endif
202
203 /* The read/write ends of the pipe registered as waitable file in the
204 event loop. */
205 static int linux_event_pipe[2] = { -1, -1 };
206
207 /* True if we're currently in async mode. */
208 #define target_is_async_p() (linux_event_pipe[0] != -1)
209
210 static void send_sigstop (struct lwp_info *lwp);
211 static void wait_for_sigstop (struct inferior_list_entry *entry);
212
213 /* Accepts an integer PID; Returns a string representing a file that
214 can be opened to get info for the child process.
215 Space for the result is malloc'd, caller must free. */
216
217 char *
218 linux_child_pid_to_exec_file (int pid)
219 {
220 char *name1, *name2;
221
222 name1 = xmalloc (MAXPATHLEN);
223 name2 = xmalloc (MAXPATHLEN);
224 memset (name2, 0, MAXPATHLEN);
225
226 sprintf (name1, "/proc/%d/exe", pid);
227 if (readlink (name1, name2, MAXPATHLEN) > 0)
228 {
229 free (name1);
230 return name2;
231 }
232 else
233 {
234 free (name2);
235 return name1;
236 }
237 }
238
239 /* Return non-zero if HEADER is a 64-bit ELF file. */
240
241 static int
242 elf_64_header_p (const Elf64_Ehdr *header)
243 {
244 return (header->e_ident[EI_MAG0] == ELFMAG0
245 && header->e_ident[EI_MAG1] == ELFMAG1
246 && header->e_ident[EI_MAG2] == ELFMAG2
247 && header->e_ident[EI_MAG3] == ELFMAG3
248 && header->e_ident[EI_CLASS] == ELFCLASS64);
249 }
250
251 /* Return non-zero if FILE is a 64-bit ELF file,
252 zero if the file is not a 64-bit ELF file,
253 and -1 if the file is not accessible or doesn't exist. */
254
255 int
256 elf_64_file_p (const char *file)
257 {
258 Elf64_Ehdr header;
259 int fd;
260
261 fd = open (file, O_RDONLY);
262 if (fd < 0)
263 return -1;
264
265 if (read (fd, &header, sizeof (header)) != sizeof (header))
266 {
267 close (fd);
268 return 0;
269 }
270 close (fd);
271
272 return elf_64_header_p (&header);
273 }
274
275 static void
276 delete_lwp (struct lwp_info *lwp)
277 {
278 remove_thread (get_lwp_thread (lwp));
279 remove_inferior (&all_lwps, &lwp->head);
280 free (lwp->arch_private);
281 free (lwp);
282 }
283
284 /* Add a process to the common process list, and set its private
285 data. */
286
287 static struct process_info *
288 linux_add_process (int pid, int attached)
289 {
290 struct process_info *proc;
291
292 /* Is this the first process? If so, then set the arch. */
293 if (all_processes.head == NULL)
294 new_inferior = 1;
295
296 proc = add_process (pid, attached);
297 proc->private = xcalloc (1, sizeof (*proc->private));
298
299 if (the_low_target.new_process != NULL)
300 proc->private->arch_private = the_low_target.new_process ();
301
302 return proc;
303 }
304
305 /* Wrapper function for waitpid which handles EINTR, and emulates
306 __WALL for systems where that is not available. */
307
308 static int
309 my_waitpid (int pid, int *status, int flags)
310 {
311 int ret, out_errno;
312
313 if (debug_threads)
314 fprintf (stderr, "my_waitpid (%d, 0x%x)\n", pid, flags);
315
316 if (flags & __WALL)
317 {
318 sigset_t block_mask, org_mask, wake_mask;
319 int wnohang;
320
321 wnohang = (flags & WNOHANG) != 0;
322 flags &= ~(__WALL | __WCLONE);
323 flags |= WNOHANG;
324
325 /* Block all signals while here. This avoids knowing about
326 LinuxThread's signals. */
327 sigfillset (&block_mask);
328 sigprocmask (SIG_BLOCK, &block_mask, &org_mask);
329
330 /* ... except during the sigsuspend below. */
331 sigemptyset (&wake_mask);
332
333 while (1)
334 {
335 /* Since all signals are blocked, there's no need to check
336 for EINTR here. */
337 ret = waitpid (pid, status, flags);
338 out_errno = errno;
339
340 if (ret == -1 && out_errno != ECHILD)
341 break;
342 else if (ret > 0)
343 break;
344
345 if (flags & __WCLONE)
346 {
347 /* We've tried both flavors now. If WNOHANG is set,
348 there's nothing else to do, just bail out. */
349 if (wnohang)
350 break;
351
352 if (debug_threads)
353 fprintf (stderr, "blocking\n");
354
355 /* Block waiting for signals. */
356 sigsuspend (&wake_mask);
357 }
358
359 flags ^= __WCLONE;
360 }
361
362 sigprocmask (SIG_SETMASK, &org_mask, NULL);
363 }
364 else
365 {
366 do
367 ret = waitpid (pid, status, flags);
368 while (ret == -1 && errno == EINTR);
369 out_errno = errno;
370 }
371
372 if (debug_threads)
373 fprintf (stderr, "my_waitpid (%d, 0x%x): status(%x), %d\n",
374 pid, flags, status ? *status : -1, ret);
375
376 errno = out_errno;
377 return ret;
378 }
379
380 /* Handle a GNU/Linux extended wait response. If we see a clone
381 event, we need to add the new LWP to our list (and not report the
382 trap to higher layers). */
383
384 static void
385 handle_extended_wait (struct lwp_info *event_child, int wstat)
386 {
387 int event = wstat >> 16;
388 struct lwp_info *new_lwp;
389
390 if (event == PTRACE_EVENT_CLONE)
391 {
392 ptid_t ptid;
393 unsigned long new_pid;
394 int ret, status = W_STOPCODE (SIGSTOP);
395
396 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_child), 0, &new_pid);
397
398 /* If we haven't already seen the new PID stop, wait for it now. */
399 if (! pull_pid_from_list (&stopped_pids, new_pid))
400 {
401 /* The new child has a pending SIGSTOP. We can't affect it until it
402 hits the SIGSTOP, but we're already attached. */
403
404 ret = my_waitpid (new_pid, &status, __WALL);
405
406 if (ret == -1)
407 perror_with_name ("waiting for new child");
408 else if (ret != new_pid)
409 warning ("wait returned unexpected PID %d", ret);
410 else if (!WIFSTOPPED (status))
411 warning ("wait returned unexpected status 0x%x", status);
412 }
413
414 linux_enable_event_reporting (new_pid);
415
416 ptid = ptid_build (pid_of (event_child), new_pid, 0);
417 new_lwp = (struct lwp_info *) add_lwp (ptid);
418 add_thread (ptid, new_lwp);
419
420 /* Either we're going to immediately resume the new thread
421 or leave it stopped. linux_resume_one_lwp is a nop if it
422 thinks the thread is currently running, so set this first
423 before calling linux_resume_one_lwp. */
424 new_lwp->stopped = 1;
425
426 /* Normally we will get the pending SIGSTOP. But in some cases
427 we might get another signal delivered to the group first.
428 If we do get another signal, be sure not to lose it. */
429 if (WSTOPSIG (status) == SIGSTOP)
430 {
431 if (stopping_threads)
432 new_lwp->stop_pc = get_stop_pc (new_lwp);
433 else
434 linux_resume_one_lwp (new_lwp, 0, 0, NULL);
435 }
436 else
437 {
438 new_lwp->stop_expected = 1;
439
440 if (stopping_threads)
441 {
442 new_lwp->stop_pc = get_stop_pc (new_lwp);
443 new_lwp->status_pending_p = 1;
444 new_lwp->status_pending = status;
445 }
446 else
447 /* Pass the signal on. This is what GDB does - except
448 shouldn't we really report it instead? */
449 linux_resume_one_lwp (new_lwp, 0, WSTOPSIG (status), NULL);
450 }
451
452 /* Always resume the current thread. If we are stopping
453 threads, it will have a pending SIGSTOP; we may as well
454 collect it now. */
455 linux_resume_one_lwp (event_child, event_child->stepping, 0, NULL);
456 }
457 }
458
459 /* Return the PC as read from the regcache of LWP, without any
460 adjustment. */
461
462 static CORE_ADDR
463 get_pc (struct lwp_info *lwp)
464 {
465 struct thread_info *saved_inferior;
466 struct regcache *regcache;
467 CORE_ADDR pc;
468
469 if (the_low_target.get_pc == NULL)
470 return 0;
471
472 saved_inferior = current_inferior;
473 current_inferior = get_lwp_thread (lwp);
474
475 regcache = get_thread_regcache (current_inferior, 1);
476 pc = (*the_low_target.get_pc) (regcache);
477
478 if (debug_threads)
479 fprintf (stderr, "pc is 0x%lx\n", (long) pc);
480
481 current_inferior = saved_inferior;
482 return pc;
483 }
484
485 /* This function should only be called if LWP got a SIGTRAP.
486 The SIGTRAP could mean several things.
487
488 On i386, where decr_pc_after_break is non-zero:
489 If we were single-stepping this process using PTRACE_SINGLESTEP,
490 we will get only the one SIGTRAP (even if the instruction we
491 stepped over was a breakpoint). The value of $eip will be the
492 next instruction.
493 If we continue the process using PTRACE_CONT, we will get a
494 SIGTRAP when we hit a breakpoint. The value of $eip will be
495 the instruction after the breakpoint (i.e. needs to be
496 decremented). If we report the SIGTRAP to GDB, we must also
497 report the undecremented PC. If we cancel the SIGTRAP, we
498 must resume at the decremented PC.
499
500 (Presumably, not yet tested) On a non-decr_pc_after_break machine
501 with hardware or kernel single-step:
502 If we single-step over a breakpoint instruction, our PC will
503 point at the following instruction. If we continue and hit a
504 breakpoint instruction, our PC will point at the breakpoint
505 instruction. */
506
507 static CORE_ADDR
508 get_stop_pc (struct lwp_info *lwp)
509 {
510 CORE_ADDR stop_pc;
511
512 if (the_low_target.get_pc == NULL)
513 return 0;
514
515 stop_pc = get_pc (lwp);
516
517 if (WSTOPSIG (lwp->last_status) == SIGTRAP
518 && !lwp->stepping
519 && !lwp->stopped_by_watchpoint
520 && lwp->last_status >> 16 == 0)
521 stop_pc -= the_low_target.decr_pc_after_break;
522
523 if (debug_threads)
524 fprintf (stderr, "stop pc is 0x%lx\n", (long) stop_pc);
525
526 return stop_pc;
527 }
528
529 static void *
530 add_lwp (ptid_t ptid)
531 {
532 struct lwp_info *lwp;
533
534 lwp = (struct lwp_info *) xmalloc (sizeof (*lwp));
535 memset (lwp, 0, sizeof (*lwp));
536
537 lwp->head.id = ptid;
538
539 if (the_low_target.new_thread != NULL)
540 lwp->arch_private = the_low_target.new_thread ();
541
542 add_inferior_to_list (&all_lwps, &lwp->head);
543
544 return lwp;
545 }
546
547 /* Start an inferior process and returns its pid.
548 ALLARGS is a vector of program-name and args. */
549
550 static int
551 linux_create_inferior (char *program, char **allargs)
552 {
553 struct lwp_info *new_lwp;
554 int pid;
555 ptid_t ptid;
556
557 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
558 pid = vfork ();
559 #else
560 pid = fork ();
561 #endif
562 if (pid < 0)
563 perror_with_name ("fork");
564
565 if (pid == 0)
566 {
567 ptrace (PTRACE_TRACEME, 0, 0, 0);
568
569 #ifdef __SIGRTMIN /* Bionic doesn't use SIGRTMIN the way glibc does. */
570 signal (__SIGRTMIN + 1, SIG_DFL);
571 #endif
572
573 setpgid (0, 0);
574
575 execv (program, allargs);
576 if (errno == ENOENT)
577 execvp (program, allargs);
578
579 fprintf (stderr, "Cannot exec %s: %s.\n", program,
580 strerror (errno));
581 fflush (stderr);
582 _exit (0177);
583 }
584
585 linux_add_process (pid, 0);
586
587 ptid = ptid_build (pid, pid, 0);
588 new_lwp = add_lwp (ptid);
589 add_thread (ptid, new_lwp);
590 new_lwp->must_set_ptrace_flags = 1;
591
592 return pid;
593 }
594
595 /* Attach to an inferior process. */
596
597 static void
598 linux_attach_lwp_1 (unsigned long lwpid, int initial)
599 {
600 ptid_t ptid;
601 struct lwp_info *new_lwp;
602
603 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) != 0)
604 {
605 if (!initial)
606 {
607 /* If we fail to attach to an LWP, just warn. */
608 fprintf (stderr, "Cannot attach to lwp %ld: %s (%d)\n", lwpid,
609 strerror (errno), errno);
610 fflush (stderr);
611 return;
612 }
613 else
614 /* If we fail to attach to a process, report an error. */
615 error ("Cannot attach to lwp %ld: %s (%d)\n", lwpid,
616 strerror (errno), errno);
617 }
618
619 if (initial)
620 /* NOTE/FIXME: This lwp might have not been the tgid. */
621 ptid = ptid_build (lwpid, lwpid, 0);
622 else
623 {
624 /* Note that extracting the pid from the current inferior is
625 safe, since we're always called in the context of the same
626 process as this new thread. */
627 int pid = pid_of (get_thread_lwp (current_inferior));
628 ptid = ptid_build (pid, lwpid, 0);
629 }
630
631 new_lwp = (struct lwp_info *) add_lwp (ptid);
632 add_thread (ptid, new_lwp);
633
634 /* We need to wait for SIGSTOP before being able to make the next
635 ptrace call on this LWP. */
636 new_lwp->must_set_ptrace_flags = 1;
637
638 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
639 brings it to a halt.
640
641 There are several cases to consider here:
642
643 1) gdbserver has already attached to the process and is being notified
644 of a new thread that is being created.
645 In this case we should ignore that SIGSTOP and resume the
646 process. This is handled below by setting stop_expected = 1,
647 and the fact that add_thread sets last_resume_kind ==
648 resume_continue.
649
650 2) This is the first thread (the process thread), and we're attaching
651 to it via attach_inferior.
652 In this case we want the process thread to stop.
653 This is handled by having linux_attach set last_resume_kind ==
654 resume_stop after we return.
655 ??? If the process already has several threads we leave the other
656 threads running.
657
658 3) GDB is connecting to gdbserver and is requesting an enumeration of all
659 existing threads.
660 In this case we want the thread to stop.
661 FIXME: This case is currently not properly handled.
662 We should wait for the SIGSTOP but don't. Things work apparently
663 because enough time passes between when we ptrace (ATTACH) and when
664 gdb makes the next ptrace call on the thread.
665
666 On the other hand, if we are currently trying to stop all threads, we
667 should treat the new thread as if we had sent it a SIGSTOP. This works
668 because we are guaranteed that the add_lwp call above added us to the
669 end of the list, and so the new thread has not yet reached
670 wait_for_sigstop (but will). */
671 new_lwp->stop_expected = 1;
672 }
673
674 void
675 linux_attach_lwp (unsigned long lwpid)
676 {
677 linux_attach_lwp_1 (lwpid, 0);
678 }
679
680 int
681 linux_attach (unsigned long pid)
682 {
683 linux_attach_lwp_1 (pid, 1);
684 linux_add_process (pid, 1);
685
686 if (!non_stop)
687 {
688 struct thread_info *thread;
689
690 /* Don't ignore the initial SIGSTOP if we just attached to this
691 process. It will be collected by wait shortly. */
692 thread = find_thread_ptid (ptid_build (pid, pid, 0));
693 thread->last_resume_kind = resume_stop;
694 }
695
696 return 0;
697 }
698
699 struct counter
700 {
701 int pid;
702 int count;
703 };
704
705 static int
706 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
707 {
708 struct counter *counter = args;
709
710 if (ptid_get_pid (entry->id) == counter->pid)
711 {
712 if (++counter->count > 1)
713 return 1;
714 }
715
716 return 0;
717 }
718
719 static int
720 last_thread_of_process_p (struct thread_info *thread)
721 {
722 ptid_t ptid = ((struct inferior_list_entry *)thread)->id;
723 int pid = ptid_get_pid (ptid);
724 struct counter counter = { pid , 0 };
725
726 return (find_inferior (&all_threads,
727 second_thread_of_pid_p, &counter) == NULL);
728 }
729
730 /* Kill the inferior lwp. */
731
732 static int
733 linux_kill_one_lwp (struct inferior_list_entry *entry, void *args)
734 {
735 struct thread_info *thread = (struct thread_info *) entry;
736 struct lwp_info *lwp = get_thread_lwp (thread);
737 int wstat;
738 int pid = * (int *) args;
739
740 if (ptid_get_pid (entry->id) != pid)
741 return 0;
742
743 /* We avoid killing the first thread here, because of a Linux kernel (at
744 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
745 the children get a chance to be reaped, it will remain a zombie
746 forever. */
747
748 if (lwpid_of (lwp) == pid)
749 {
750 if (debug_threads)
751 fprintf (stderr, "lkop: is last of process %s\n",
752 target_pid_to_str (entry->id));
753 return 0;
754 }
755
756 do
757 {
758 ptrace (PTRACE_KILL, lwpid_of (lwp), 0, 0);
759
760 /* Make sure it died. The loop is most likely unnecessary. */
761 pid = linux_wait_for_event (lwp->head.id, &wstat, __WALL);
762 } while (pid > 0 && WIFSTOPPED (wstat));
763
764 return 0;
765 }
766
767 static int
768 linux_kill (int pid)
769 {
770 struct process_info *process;
771 struct lwp_info *lwp;
772 struct thread_info *thread;
773 int wstat;
774 int lwpid;
775
776 process = find_process_pid (pid);
777 if (process == NULL)
778 return -1;
779
780 /* If we're killing a running inferior, make sure it is stopped
781 first, as PTRACE_KILL will not work otherwise. */
782 stop_all_lwps (0, NULL);
783
784 find_inferior (&all_threads, linux_kill_one_lwp, &pid);
785
786 /* See the comment in linux_kill_one_lwp. We did not kill the first
787 thread in the list, so do so now. */
788 lwp = find_lwp_pid (pid_to_ptid (pid));
789 thread = get_lwp_thread (lwp);
790
791 if (debug_threads)
792 fprintf (stderr, "lk_1: killing lwp %ld, for pid: %d\n",
793 lwpid_of (lwp), pid);
794
795 do
796 {
797 ptrace (PTRACE_KILL, lwpid_of (lwp), 0, 0);
798
799 /* Make sure it died. The loop is most likely unnecessary. */
800 lwpid = linux_wait_for_event (lwp->head.id, &wstat, __WALL);
801 } while (lwpid > 0 && WIFSTOPPED (wstat));
802
803 the_target->mourn (process);
804
805 /* Since we presently can only stop all lwps of all processes, we
806 need to unstop lwps of other processes. */
807 unstop_all_lwps (0, NULL);
808 return 0;
809 }
810
811 static int
812 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
813 {
814 struct thread_info *thread = (struct thread_info *) entry;
815 struct lwp_info *lwp = get_thread_lwp (thread);
816 int pid = * (int *) args;
817
818 if (ptid_get_pid (entry->id) != pid)
819 return 0;
820
821 /* If this process is stopped but is expecting a SIGSTOP, then make
822 sure we take care of that now. This isn't absolutely guaranteed
823 to collect the SIGSTOP, but is fairly likely to. */
824 if (lwp->stop_expected)
825 {
826 int wstat;
827 /* Clear stop_expected, so that the SIGSTOP will be reported. */
828 lwp->stop_expected = 0;
829 linux_resume_one_lwp (lwp, 0, 0, NULL);
830 linux_wait_for_event (lwp->head.id, &wstat, __WALL);
831 }
832
833 /* Flush any pending changes to the process's registers. */
834 regcache_invalidate_one ((struct inferior_list_entry *)
835 get_lwp_thread (lwp));
836
837 /* Finally, let it resume. */
838 ptrace (PTRACE_DETACH, lwpid_of (lwp), 0, 0);
839
840 delete_lwp (lwp);
841 return 0;
842 }
843
844 static int
845 linux_detach (int pid)
846 {
847 struct process_info *process;
848
849 process = find_process_pid (pid);
850 if (process == NULL)
851 return -1;
852
853 /* Stop all threads before detaching. First, ptrace requires that
854 the thread is stopped to sucessfully detach. Second, thread_db
855 may need to uninstall thread event breakpoints from memory, which
856 only works with a stopped process anyway. */
857 stop_all_lwps (0, NULL);
858
859 #ifdef USE_THREAD_DB
860 thread_db_detach (process);
861 #endif
862
863 /* Stabilize threads (move out of jump pads). */
864 stabilize_threads ();
865
866 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
867
868 the_target->mourn (process);
869
870 /* Since we presently can only stop all lwps of all processes, we
871 need to unstop lwps of other processes. */
872 unstop_all_lwps (0, NULL);
873 return 0;
874 }
875
876 /* Remove all LWPs that belong to process PROC from the lwp list. */
877
878 static int
879 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
880 {
881 struct lwp_info *lwp = (struct lwp_info *) entry;
882 struct process_info *process = proc;
883
884 if (pid_of (lwp) == pid_of (process))
885 delete_lwp (lwp);
886
887 return 0;
888 }
889
890 static void
891 linux_mourn (struct process_info *process)
892 {
893 struct process_info_private *priv;
894
895 #ifdef USE_THREAD_DB
896 thread_db_mourn (process);
897 #endif
898
899 find_inferior (&all_lwps, delete_lwp_callback, process);
900
901 /* Freeing all private data. */
902 priv = process->private;
903 free (priv->arch_private);
904 free (priv);
905 process->private = NULL;
906
907 remove_process (process);
908 }
909
910 static void
911 linux_join (int pid)
912 {
913 int status, ret;
914 struct process_info *process;
915
916 process = find_process_pid (pid);
917 if (process == NULL)
918 return;
919
920 do {
921 ret = my_waitpid (pid, &status, 0);
922 if (WIFEXITED (status) || WIFSIGNALED (status))
923 break;
924 } while (ret != -1 || errno != ECHILD);
925 }
926
927 /* Return nonzero if the given thread is still alive. */
928 static int
929 linux_thread_alive (ptid_t ptid)
930 {
931 struct lwp_info *lwp = find_lwp_pid (ptid);
932
933 /* We assume we always know if a thread exits. If a whole process
934 exited but we still haven't been able to report it to GDB, we'll
935 hold on to the last lwp of the dead process. */
936 if (lwp != NULL)
937 return !lwp->dead;
938 else
939 return 0;
940 }
941
942 /* Return 1 if this lwp has an interesting status pending. */
943 static int
944 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
945 {
946 struct lwp_info *lwp = (struct lwp_info *) entry;
947 ptid_t ptid = * (ptid_t *) arg;
948 struct thread_info *thread;
949
950 /* Check if we're only interested in events from a specific process
951 or its lwps. */
952 if (!ptid_equal (minus_one_ptid, ptid)
953 && ptid_get_pid (ptid) != ptid_get_pid (lwp->head.id))
954 return 0;
955
956 thread = get_lwp_thread (lwp);
957
958 /* If we got a `vCont;t', but we haven't reported a stop yet, do
959 report any status pending the LWP may have. */
960 if (thread->last_resume_kind == resume_stop
961 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
962 return 0;
963
964 return lwp->status_pending_p;
965 }
966
967 static int
968 same_lwp (struct inferior_list_entry *entry, void *data)
969 {
970 ptid_t ptid = *(ptid_t *) data;
971 int lwp;
972
973 if (ptid_get_lwp (ptid) != 0)
974 lwp = ptid_get_lwp (ptid);
975 else
976 lwp = ptid_get_pid (ptid);
977
978 if (ptid_get_lwp (entry->id) == lwp)
979 return 1;
980
981 return 0;
982 }
983
984 struct lwp_info *
985 find_lwp_pid (ptid_t ptid)
986 {
987 return (struct lwp_info*) find_inferior (&all_lwps, same_lwp, &ptid);
988 }
989
990 static struct lwp_info *
991 linux_wait_for_lwp (ptid_t ptid, int *wstatp, int options)
992 {
993 int ret;
994 int to_wait_for = -1;
995 struct lwp_info *child = NULL;
996
997 if (debug_threads)
998 fprintf (stderr, "linux_wait_for_lwp: %s\n", target_pid_to_str (ptid));
999
1000 if (ptid_equal (ptid, minus_one_ptid))
1001 to_wait_for = -1; /* any child */
1002 else
1003 to_wait_for = ptid_get_lwp (ptid); /* this lwp only */
1004
1005 options |= __WALL;
1006
1007 retry:
1008
1009 ret = my_waitpid (to_wait_for, wstatp, options);
1010 if (ret == 0 || (ret == -1 && errno == ECHILD && (options & WNOHANG)))
1011 return NULL;
1012 else if (ret == -1)
1013 perror_with_name ("waitpid");
1014
1015 if (debug_threads
1016 && (!WIFSTOPPED (*wstatp)
1017 || (WSTOPSIG (*wstatp) != 32
1018 && WSTOPSIG (*wstatp) != 33)))
1019 fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp);
1020
1021 child = find_lwp_pid (pid_to_ptid (ret));
1022
1023 /* If we didn't find a process, one of two things presumably happened:
1024 - A process we started and then detached from has exited. Ignore it.
1025 - A process we are controlling has forked and the new child's stop
1026 was reported to us by the kernel. Save its PID. */
1027 if (child == NULL && WIFSTOPPED (*wstatp))
1028 {
1029 add_pid_to_list (&stopped_pids, ret);
1030 goto retry;
1031 }
1032 else if (child == NULL)
1033 goto retry;
1034
1035 child->stopped = 1;
1036
1037 child->last_status = *wstatp;
1038
1039 /* Architecture-specific setup after inferior is running.
1040 This needs to happen after we have attached to the inferior
1041 and it is stopped for the first time, but before we access
1042 any inferior registers. */
1043 if (new_inferior)
1044 {
1045 the_low_target.arch_setup ();
1046 #ifdef HAVE_LINUX_REGSETS
1047 memset (disabled_regsets, 0, num_regsets);
1048 #endif
1049 new_inferior = 0;
1050 }
1051
1052 /* Fetch the possibly triggered data watchpoint info and store it in
1053 CHILD.
1054
1055 On some archs, like x86, that use debug registers to set
1056 watchpoints, it's possible that the way to know which watched
1057 address trapped, is to check the register that is used to select
1058 which address to watch. Problem is, between setting the
1059 watchpoint and reading back which data address trapped, the user
1060 may change the set of watchpoints, and, as a consequence, GDB
1061 changes the debug registers in the inferior. To avoid reading
1062 back a stale stopped-data-address when that happens, we cache in
1063 LP the fact that a watchpoint trapped, and the corresponding data
1064 address, as soon as we see CHILD stop with a SIGTRAP. If GDB
1065 changes the debug registers meanwhile, we have the cached data we
1066 can rely on. */
1067
1068 if (WIFSTOPPED (*wstatp) && WSTOPSIG (*wstatp) == SIGTRAP)
1069 {
1070 if (the_low_target.stopped_by_watchpoint == NULL)
1071 {
1072 child->stopped_by_watchpoint = 0;
1073 }
1074 else
1075 {
1076 struct thread_info *saved_inferior;
1077
1078 saved_inferior = current_inferior;
1079 current_inferior = get_lwp_thread (child);
1080
1081 child->stopped_by_watchpoint
1082 = the_low_target.stopped_by_watchpoint ();
1083
1084 if (child->stopped_by_watchpoint)
1085 {
1086 if (the_low_target.stopped_data_address != NULL)
1087 child->stopped_data_address
1088 = the_low_target.stopped_data_address ();
1089 else
1090 child->stopped_data_address = 0;
1091 }
1092
1093 current_inferior = saved_inferior;
1094 }
1095 }
1096
1097 /* Store the STOP_PC, with adjustment applied. This depends on the
1098 architecture being defined already (so that CHILD has a valid
1099 regcache), and on LAST_STATUS being set (to check for SIGTRAP or
1100 not). */
1101 if (WIFSTOPPED (*wstatp))
1102 child->stop_pc = get_stop_pc (child);
1103
1104 if (debug_threads
1105 && WIFSTOPPED (*wstatp)
1106 && the_low_target.get_pc != NULL)
1107 {
1108 struct thread_info *saved_inferior = current_inferior;
1109 struct regcache *regcache;
1110 CORE_ADDR pc;
1111
1112 current_inferior = get_lwp_thread (child);
1113 regcache = get_thread_regcache (current_inferior, 1);
1114 pc = (*the_low_target.get_pc) (regcache);
1115 fprintf (stderr, "linux_wait_for_lwp: pc is 0x%lx\n", (long) pc);
1116 current_inferior = saved_inferior;
1117 }
1118
1119 return child;
1120 }
1121
1122 /* This function should only be called if the LWP got a SIGTRAP.
1123
1124 Handle any tracepoint steps or hits. Return true if a tracepoint
1125 event was handled, 0 otherwise. */
1126
1127 static int
1128 handle_tracepoints (struct lwp_info *lwp)
1129 {
1130 struct thread_info *tinfo = get_lwp_thread (lwp);
1131 int tpoint_related_event = 0;
1132
1133 /* If this tracepoint hit causes a tracing stop, we'll immediately
1134 uninsert tracepoints. To do this, we temporarily pause all
1135 threads, unpatch away, and then unpause threads. We need to make
1136 sure the unpausing doesn't resume LWP too. */
1137 lwp->suspended++;
1138
1139 /* And we need to be sure that any all-threads-stopping doesn't try
1140 to move threads out of the jump pads, as it could deadlock the
1141 inferior (LWP could be in the jump pad, maybe even holding the
1142 lock.) */
1143
1144 /* Do any necessary step collect actions. */
1145 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1146
1147 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1148
1149 /* See if we just hit a tracepoint and do its main collect
1150 actions. */
1151 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1152
1153 lwp->suspended--;
1154
1155 gdb_assert (lwp->suspended == 0);
1156 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1157
1158 if (tpoint_related_event)
1159 {
1160 if (debug_threads)
1161 fprintf (stderr, "got a tracepoint event\n");
1162 return 1;
1163 }
1164
1165 return 0;
1166 }
1167
1168 /* Convenience wrapper. Returns true if LWP is presently collecting a
1169 fast tracepoint. */
1170
1171 static int
1172 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1173 struct fast_tpoint_collect_status *status)
1174 {
1175 CORE_ADDR thread_area;
1176
1177 if (the_low_target.get_thread_area == NULL)
1178 return 0;
1179
1180 /* Get the thread area address. This is used to recognize which
1181 thread is which when tracing with the in-process agent library.
1182 We don't read anything from the address, and treat it as opaque;
1183 it's the address itself that we assume is unique per-thread. */
1184 if ((*the_low_target.get_thread_area) (lwpid_of (lwp), &thread_area) == -1)
1185 return 0;
1186
1187 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1188 }
1189
1190 /* The reason we resume in the caller, is because we want to be able
1191 to pass lwp->status_pending as WSTAT, and we need to clear
1192 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1193 refuses to resume. */
1194
1195 static int
1196 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
1197 {
1198 struct thread_info *saved_inferior;
1199
1200 saved_inferior = current_inferior;
1201 current_inferior = get_lwp_thread (lwp);
1202
1203 if ((wstat == NULL
1204 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
1205 && supports_fast_tracepoints ()
1206 && in_process_agent_loaded ())
1207 {
1208 struct fast_tpoint_collect_status status;
1209 int r;
1210
1211 if (debug_threads)
1212 fprintf (stderr, "\
1213 Checking whether LWP %ld needs to move out of the jump pad.\n",
1214 lwpid_of (lwp));
1215
1216 r = linux_fast_tracepoint_collecting (lwp, &status);
1217
1218 if (wstat == NULL
1219 || (WSTOPSIG (*wstat) != SIGILL
1220 && WSTOPSIG (*wstat) != SIGFPE
1221 && WSTOPSIG (*wstat) != SIGSEGV
1222 && WSTOPSIG (*wstat) != SIGBUS))
1223 {
1224 lwp->collecting_fast_tracepoint = r;
1225
1226 if (r != 0)
1227 {
1228 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
1229 {
1230 /* Haven't executed the original instruction yet.
1231 Set breakpoint there, and wait till it's hit,
1232 then single-step until exiting the jump pad. */
1233 lwp->exit_jump_pad_bkpt
1234 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
1235 }
1236
1237 if (debug_threads)
1238 fprintf (stderr, "\
1239 Checking whether LWP %ld needs to move out of the jump pad...it does\n",
1240 lwpid_of (lwp));
1241
1242 return 1;
1243 }
1244 }
1245 else
1246 {
1247 /* If we get a synchronous signal while collecting, *and*
1248 while executing the (relocated) original instruction,
1249 reset the PC to point at the tpoint address, before
1250 reporting to GDB. Otherwise, it's an IPA lib bug: just
1251 report the signal to GDB, and pray for the best. */
1252
1253 lwp->collecting_fast_tracepoint = 0;
1254
1255 if (r != 0
1256 && (status.adjusted_insn_addr <= lwp->stop_pc
1257 && lwp->stop_pc < status.adjusted_insn_addr_end))
1258 {
1259 siginfo_t info;
1260 struct regcache *regcache;
1261
1262 /* The si_addr on a few signals references the address
1263 of the faulting instruction. Adjust that as
1264 well. */
1265 if ((WSTOPSIG (*wstat) == SIGILL
1266 || WSTOPSIG (*wstat) == SIGFPE
1267 || WSTOPSIG (*wstat) == SIGBUS
1268 || WSTOPSIG (*wstat) == SIGSEGV)
1269 && ptrace (PTRACE_GETSIGINFO, lwpid_of (lwp), 0, &info) == 0
1270 /* Final check just to make sure we don't clobber
1271 the siginfo of non-kernel-sent signals. */
1272 && (uintptr_t) info.si_addr == lwp->stop_pc)
1273 {
1274 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
1275 ptrace (PTRACE_SETSIGINFO, lwpid_of (lwp), 0, &info);
1276 }
1277
1278 regcache = get_thread_regcache (get_lwp_thread (lwp), 1);
1279 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
1280 lwp->stop_pc = status.tpoint_addr;
1281
1282 /* Cancel any fast tracepoint lock this thread was
1283 holding. */
1284 force_unlock_trace_buffer ();
1285 }
1286
1287 if (lwp->exit_jump_pad_bkpt != NULL)
1288 {
1289 if (debug_threads)
1290 fprintf (stderr,
1291 "Cancelling fast exit-jump-pad: removing bkpt. "
1292 "stopping all threads momentarily.\n");
1293
1294 stop_all_lwps (1, lwp);
1295 cancel_breakpoints ();
1296
1297 delete_breakpoint (lwp->exit_jump_pad_bkpt);
1298 lwp->exit_jump_pad_bkpt = NULL;
1299
1300 unstop_all_lwps (1, lwp);
1301
1302 gdb_assert (lwp->suspended >= 0);
1303 }
1304 }
1305 }
1306
1307 if (debug_threads)
1308 fprintf (stderr, "\
1309 Checking whether LWP %ld needs to move out of the jump pad...no\n",
1310 lwpid_of (lwp));
1311 return 0;
1312 }
1313
1314 /* Enqueue one signal in the "signals to report later when out of the
1315 jump pad" list. */
1316
1317 static void
1318 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1319 {
1320 struct pending_signals *p_sig;
1321
1322 if (debug_threads)
1323 fprintf (stderr, "\
1324 Deferring signal %d for LWP %ld.\n", WSTOPSIG (*wstat), lwpid_of (lwp));
1325
1326 if (debug_threads)
1327 {
1328 struct pending_signals *sig;
1329
1330 for (sig = lwp->pending_signals_to_report;
1331 sig != NULL;
1332 sig = sig->prev)
1333 fprintf (stderr,
1334 " Already queued %d\n",
1335 sig->signal);
1336
1337 fprintf (stderr, " (no more currently queued signals)\n");
1338 }
1339
1340 p_sig = xmalloc (sizeof (*p_sig));
1341 p_sig->prev = lwp->pending_signals_to_report;
1342 p_sig->signal = WSTOPSIG (*wstat);
1343 memset (&p_sig->info, 0, sizeof (siginfo_t));
1344 ptrace (PTRACE_GETSIGINFO, lwpid_of (lwp), 0, &p_sig->info);
1345
1346 lwp->pending_signals_to_report = p_sig;
1347 }
1348
1349 /* Dequeue one signal from the "signals to report later when out of
1350 the jump pad" list. */
1351
1352 static int
1353 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1354 {
1355 if (lwp->pending_signals_to_report != NULL)
1356 {
1357 struct pending_signals **p_sig;
1358
1359 p_sig = &lwp->pending_signals_to_report;
1360 while ((*p_sig)->prev != NULL)
1361 p_sig = &(*p_sig)->prev;
1362
1363 *wstat = W_STOPCODE ((*p_sig)->signal);
1364 if ((*p_sig)->info.si_signo != 0)
1365 ptrace (PTRACE_SETSIGINFO, lwpid_of (lwp), 0, &(*p_sig)->info);
1366 free (*p_sig);
1367 *p_sig = NULL;
1368
1369 if (debug_threads)
1370 fprintf (stderr, "Reporting deferred signal %d for LWP %ld.\n",
1371 WSTOPSIG (*wstat), lwpid_of (lwp));
1372
1373 if (debug_threads)
1374 {
1375 struct pending_signals *sig;
1376
1377 for (sig = lwp->pending_signals_to_report;
1378 sig != NULL;
1379 sig = sig->prev)
1380 fprintf (stderr,
1381 " Still queued %d\n",
1382 sig->signal);
1383
1384 fprintf (stderr, " (no more queued signals)\n");
1385 }
1386
1387 return 1;
1388 }
1389
1390 return 0;
1391 }
1392
1393 /* Arrange for a breakpoint to be hit again later. We don't keep the
1394 SIGTRAP status and don't forward the SIGTRAP signal to the LWP. We
1395 will handle the current event, eventually we will resume this LWP,
1396 and this breakpoint will trap again. */
1397
1398 static int
1399 cancel_breakpoint (struct lwp_info *lwp)
1400 {
1401 struct thread_info *saved_inferior;
1402
1403 /* There's nothing to do if we don't support breakpoints. */
1404 if (!supports_breakpoints ())
1405 return 0;
1406
1407 /* breakpoint_at reads from current inferior. */
1408 saved_inferior = current_inferior;
1409 current_inferior = get_lwp_thread (lwp);
1410
1411 if ((*the_low_target.breakpoint_at) (lwp->stop_pc))
1412 {
1413 if (debug_threads)
1414 fprintf (stderr,
1415 "CB: Push back breakpoint for %s\n",
1416 target_pid_to_str (ptid_of (lwp)));
1417
1418 /* Back up the PC if necessary. */
1419 if (the_low_target.decr_pc_after_break)
1420 {
1421 struct regcache *regcache
1422 = get_thread_regcache (current_inferior, 1);
1423 (*the_low_target.set_pc) (regcache, lwp->stop_pc);
1424 }
1425
1426 current_inferior = saved_inferior;
1427 return 1;
1428 }
1429 else
1430 {
1431 if (debug_threads)
1432 fprintf (stderr,
1433 "CB: No breakpoint found at %s for [%s]\n",
1434 paddress (lwp->stop_pc),
1435 target_pid_to_str (ptid_of (lwp)));
1436 }
1437
1438 current_inferior = saved_inferior;
1439 return 0;
1440 }
1441
1442 /* When the event-loop is doing a step-over, this points at the thread
1443 being stepped. */
1444 ptid_t step_over_bkpt;
1445
1446 /* Wait for an event from child PID. If PID is -1, wait for any
1447 child. Store the stop status through the status pointer WSTAT.
1448 OPTIONS is passed to the waitpid call. Return 0 if no child stop
1449 event was found and OPTIONS contains WNOHANG. Return the PID of
1450 the stopped child otherwise. */
1451
1452 static int
1453 linux_wait_for_event_1 (ptid_t ptid, int *wstat, int options)
1454 {
1455 struct lwp_info *event_child, *requested_child;
1456
1457 event_child = NULL;
1458 requested_child = NULL;
1459
1460 /* Check for a lwp with a pending status. */
1461
1462 if (ptid_equal (ptid, minus_one_ptid)
1463 || ptid_equal (pid_to_ptid (ptid_get_pid (ptid)), ptid))
1464 {
1465 event_child = (struct lwp_info *)
1466 find_inferior (&all_lwps, status_pending_p_callback, &ptid);
1467 if (debug_threads && event_child)
1468 fprintf (stderr, "Got a pending child %ld\n", lwpid_of (event_child));
1469 }
1470 else
1471 {
1472 requested_child = find_lwp_pid (ptid);
1473
1474 if (!stopping_threads
1475 && requested_child->status_pending_p
1476 && requested_child->collecting_fast_tracepoint)
1477 {
1478 enqueue_one_deferred_signal (requested_child,
1479 &requested_child->status_pending);
1480 requested_child->status_pending_p = 0;
1481 requested_child->status_pending = 0;
1482 linux_resume_one_lwp (requested_child, 0, 0, NULL);
1483 }
1484
1485 if (requested_child->suspended
1486 && requested_child->status_pending_p)
1487 fatal ("requesting an event out of a suspended child?");
1488
1489 if (requested_child->status_pending_p)
1490 event_child = requested_child;
1491 }
1492
1493 if (event_child != NULL)
1494 {
1495 if (debug_threads)
1496 fprintf (stderr, "Got an event from pending child %ld (%04x)\n",
1497 lwpid_of (event_child), event_child->status_pending);
1498 *wstat = event_child->status_pending;
1499 event_child->status_pending_p = 0;
1500 event_child->status_pending = 0;
1501 current_inferior = get_lwp_thread (event_child);
1502 return lwpid_of (event_child);
1503 }
1504
1505 /* We only enter this loop if no process has a pending wait status. Thus
1506 any action taken in response to a wait status inside this loop is
1507 responding as soon as we detect the status, not after any pending
1508 events. */
1509 while (1)
1510 {
1511 event_child = linux_wait_for_lwp (ptid, wstat, options);
1512
1513 if ((options & WNOHANG) && event_child == NULL)
1514 {
1515 if (debug_threads)
1516 fprintf (stderr, "WNOHANG set, no event found\n");
1517 return 0;
1518 }
1519
1520 if (event_child == NULL)
1521 error ("event from unknown child");
1522
1523 current_inferior = get_lwp_thread (event_child);
1524
1525 /* Check for thread exit. */
1526 if (! WIFSTOPPED (*wstat))
1527 {
1528 if (debug_threads)
1529 fprintf (stderr, "LWP %ld exiting\n", lwpid_of (event_child));
1530
1531 /* If the last thread is exiting, just return. */
1532 if (last_thread_of_process_p (current_inferior))
1533 {
1534 if (debug_threads)
1535 fprintf (stderr, "LWP %ld is last lwp of process\n",
1536 lwpid_of (event_child));
1537 return lwpid_of (event_child);
1538 }
1539
1540 if (!non_stop)
1541 {
1542 current_inferior = (struct thread_info *) all_threads.head;
1543 if (debug_threads)
1544 fprintf (stderr, "Current inferior is now %ld\n",
1545 lwpid_of (get_thread_lwp (current_inferior)));
1546 }
1547 else
1548 {
1549 current_inferior = NULL;
1550 if (debug_threads)
1551 fprintf (stderr, "Current inferior is now <NULL>\n");
1552 }
1553
1554 /* If we were waiting for this particular child to do something...
1555 well, it did something. */
1556 if (requested_child != NULL)
1557 {
1558 int lwpid = lwpid_of (event_child);
1559
1560 /* Cancel the step-over operation --- the thread that
1561 started it is gone. */
1562 if (finish_step_over (event_child))
1563 unstop_all_lwps (1, event_child);
1564 delete_lwp (event_child);
1565 return lwpid;
1566 }
1567
1568 delete_lwp (event_child);
1569
1570 /* Wait for a more interesting event. */
1571 continue;
1572 }
1573
1574 if (event_child->must_set_ptrace_flags)
1575 {
1576 linux_enable_event_reporting (lwpid_of (event_child));
1577 event_child->must_set_ptrace_flags = 0;
1578 }
1579
1580 if (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) == SIGTRAP
1581 && *wstat >> 16 != 0)
1582 {
1583 handle_extended_wait (event_child, *wstat);
1584 continue;
1585 }
1586
1587 if (WIFSTOPPED (*wstat)
1588 && WSTOPSIG (*wstat) == SIGSTOP
1589 && event_child->stop_expected)
1590 {
1591 int should_stop;
1592
1593 if (debug_threads)
1594 fprintf (stderr, "Expected stop.\n");
1595 event_child->stop_expected = 0;
1596
1597 should_stop = (current_inferior->last_resume_kind == resume_stop
1598 || stopping_threads);
1599
1600 if (!should_stop)
1601 {
1602 linux_resume_one_lwp (event_child,
1603 event_child->stepping, 0, NULL);
1604 continue;
1605 }
1606 }
1607
1608 return lwpid_of (event_child);
1609 }
1610
1611 /* NOTREACHED */
1612 return 0;
1613 }
1614
1615 static int
1616 linux_wait_for_event (ptid_t ptid, int *wstat, int options)
1617 {
1618 ptid_t wait_ptid;
1619
1620 if (ptid_is_pid (ptid))
1621 {
1622 /* A request to wait for a specific tgid. This is not possible
1623 with waitpid, so instead, we wait for any child, and leave
1624 children we're not interested in right now with a pending
1625 status to report later. */
1626 wait_ptid = minus_one_ptid;
1627 }
1628 else
1629 wait_ptid = ptid;
1630
1631 while (1)
1632 {
1633 int event_pid;
1634
1635 event_pid = linux_wait_for_event_1 (wait_ptid, wstat, options);
1636
1637 if (event_pid > 0
1638 && ptid_is_pid (ptid) && ptid_get_pid (ptid) != event_pid)
1639 {
1640 struct lwp_info *event_child = find_lwp_pid (pid_to_ptid (event_pid));
1641
1642 if (! WIFSTOPPED (*wstat))
1643 mark_lwp_dead (event_child, *wstat);
1644 else
1645 {
1646 event_child->status_pending_p = 1;
1647 event_child->status_pending = *wstat;
1648 }
1649 }
1650 else
1651 return event_pid;
1652 }
1653 }
1654
1655
1656 /* Count the LWP's that have had events. */
1657
1658 static int
1659 count_events_callback (struct inferior_list_entry *entry, void *data)
1660 {
1661 struct lwp_info *lp = (struct lwp_info *) entry;
1662 struct thread_info *thread = get_lwp_thread (lp);
1663 int *count = data;
1664
1665 gdb_assert (count != NULL);
1666
1667 /* Count only resumed LWPs that have a SIGTRAP event pending that
1668 should be reported to GDB. */
1669 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
1670 && thread->last_resume_kind != resume_stop
1671 && lp->status_pending_p
1672 && WIFSTOPPED (lp->status_pending)
1673 && WSTOPSIG (lp->status_pending) == SIGTRAP
1674 && !breakpoint_inserted_here (lp->stop_pc))
1675 (*count)++;
1676
1677 return 0;
1678 }
1679
1680 /* Select the LWP (if any) that is currently being single-stepped. */
1681
1682 static int
1683 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
1684 {
1685 struct lwp_info *lp = (struct lwp_info *) entry;
1686 struct thread_info *thread = get_lwp_thread (lp);
1687
1688 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
1689 && thread->last_resume_kind == resume_step
1690 && lp->status_pending_p)
1691 return 1;
1692 else
1693 return 0;
1694 }
1695
1696 /* Select the Nth LWP that has had a SIGTRAP event that should be
1697 reported to GDB. */
1698
1699 static int
1700 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
1701 {
1702 struct lwp_info *lp = (struct lwp_info *) entry;
1703 struct thread_info *thread = get_lwp_thread (lp);
1704 int *selector = data;
1705
1706 gdb_assert (selector != NULL);
1707
1708 /* Select only resumed LWPs that have a SIGTRAP event pending. */
1709 if (thread->last_resume_kind != resume_stop
1710 && thread->last_status.kind == TARGET_WAITKIND_IGNORE
1711 && lp->status_pending_p
1712 && WIFSTOPPED (lp->status_pending)
1713 && WSTOPSIG (lp->status_pending) == SIGTRAP
1714 && !breakpoint_inserted_here (lp->stop_pc))
1715 if ((*selector)-- == 0)
1716 return 1;
1717
1718 return 0;
1719 }
1720
1721 static int
1722 cancel_breakpoints_callback (struct inferior_list_entry *entry, void *data)
1723 {
1724 struct lwp_info *lp = (struct lwp_info *) entry;
1725 struct thread_info *thread = get_lwp_thread (lp);
1726 struct lwp_info *event_lp = data;
1727
1728 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
1729 if (lp == event_lp)
1730 return 0;
1731
1732 /* If a LWP other than the LWP that we're reporting an event for has
1733 hit a GDB breakpoint (as opposed to some random trap signal),
1734 then just arrange for it to hit it again later. We don't keep
1735 the SIGTRAP status and don't forward the SIGTRAP signal to the
1736 LWP. We will handle the current event, eventually we will resume
1737 all LWPs, and this one will get its breakpoint trap again.
1738
1739 If we do not do this, then we run the risk that the user will
1740 delete or disable the breakpoint, but the LWP will have already
1741 tripped on it. */
1742
1743 if (thread->last_resume_kind != resume_stop
1744 && thread->last_status.kind == TARGET_WAITKIND_IGNORE
1745 && lp->status_pending_p
1746 && WIFSTOPPED (lp->status_pending)
1747 && WSTOPSIG (lp->status_pending) == SIGTRAP
1748 && !lp->stepping
1749 && !lp->stopped_by_watchpoint
1750 && cancel_breakpoint (lp))
1751 /* Throw away the SIGTRAP. */
1752 lp->status_pending_p = 0;
1753
1754 return 0;
1755 }
1756
1757 static void
1758 linux_cancel_breakpoints (void)
1759 {
1760 find_inferior (&all_lwps, cancel_breakpoints_callback, NULL);
1761 }
1762
1763 /* Select one LWP out of those that have events pending. */
1764
1765 static void
1766 select_event_lwp (struct lwp_info **orig_lp)
1767 {
1768 int num_events = 0;
1769 int random_selector;
1770 struct lwp_info *event_lp;
1771
1772 /* Give preference to any LWP that is being single-stepped. */
1773 event_lp
1774 = (struct lwp_info *) find_inferior (&all_lwps,
1775 select_singlestep_lwp_callback, NULL);
1776 if (event_lp != NULL)
1777 {
1778 if (debug_threads)
1779 fprintf (stderr,
1780 "SEL: Select single-step %s\n",
1781 target_pid_to_str (ptid_of (event_lp)));
1782 }
1783 else
1784 {
1785 /* No single-stepping LWP. Select one at random, out of those
1786 which have had SIGTRAP events. */
1787
1788 /* First see how many SIGTRAP events we have. */
1789 find_inferior (&all_lwps, count_events_callback, &num_events);
1790
1791 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
1792 random_selector = (int)
1793 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
1794
1795 if (debug_threads && num_events > 1)
1796 fprintf (stderr,
1797 "SEL: Found %d SIGTRAP events, selecting #%d\n",
1798 num_events, random_selector);
1799
1800 event_lp = (struct lwp_info *) find_inferior (&all_lwps,
1801 select_event_lwp_callback,
1802 &random_selector);
1803 }
1804
1805 if (event_lp != NULL)
1806 {
1807 /* Switch the event LWP. */
1808 *orig_lp = event_lp;
1809 }
1810 }
1811
1812 /* Decrement the suspend count of an LWP. */
1813
1814 static int
1815 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
1816 {
1817 struct lwp_info *lwp = (struct lwp_info *) entry;
1818
1819 /* Ignore EXCEPT. */
1820 if (lwp == except)
1821 return 0;
1822
1823 lwp->suspended--;
1824
1825 gdb_assert (lwp->suspended >= 0);
1826 return 0;
1827 }
1828
1829 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
1830 NULL. */
1831
1832 static void
1833 unsuspend_all_lwps (struct lwp_info *except)
1834 {
1835 find_inferior (&all_lwps, unsuspend_one_lwp, except);
1836 }
1837
1838 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
1839 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
1840 void *data);
1841 static int lwp_running (struct inferior_list_entry *entry, void *data);
1842 static ptid_t linux_wait_1 (ptid_t ptid,
1843 struct target_waitstatus *ourstatus,
1844 int target_options);
1845
1846 /* Stabilize threads (move out of jump pads).
1847
1848 If a thread is midway collecting a fast tracepoint, we need to
1849 finish the collection and move it out of the jump pad before
1850 reporting the signal.
1851
1852 This avoids recursion while collecting (when a signal arrives
1853 midway, and the signal handler itself collects), which would trash
1854 the trace buffer. In case the user set a breakpoint in a signal
1855 handler, this avoids the backtrace showing the jump pad, etc..
1856 Most importantly, there are certain things we can't do safely if
1857 threads are stopped in a jump pad (or in its callee's). For
1858 example:
1859
1860 - starting a new trace run. A thread still collecting the
1861 previous run, could trash the trace buffer when resumed. The trace
1862 buffer control structures would have been reset but the thread had
1863 no way to tell. The thread could even midway memcpy'ing to the
1864 buffer, which would mean that when resumed, it would clobber the
1865 trace buffer that had been set for a new run.
1866
1867 - we can't rewrite/reuse the jump pads for new tracepoints
1868 safely. Say you do tstart while a thread is stopped midway while
1869 collecting. When the thread is later resumed, it finishes the
1870 collection, and returns to the jump pad, to execute the original
1871 instruction that was under the tracepoint jump at the time the
1872 older run had been started. If the jump pad had been rewritten
1873 since for something else in the new run, the thread would now
1874 execute the wrong / random instructions. */
1875
1876 static void
1877 linux_stabilize_threads (void)
1878 {
1879 struct thread_info *save_inferior;
1880 struct lwp_info *lwp_stuck;
1881
1882 lwp_stuck
1883 = (struct lwp_info *) find_inferior (&all_lwps,
1884 stuck_in_jump_pad_callback, NULL);
1885 if (lwp_stuck != NULL)
1886 {
1887 fprintf (stderr, "can't stabilize, LWP %ld is stuck in jump pad\n",
1888 lwpid_of (lwp_stuck));
1889 return;
1890 }
1891
1892 save_inferior = current_inferior;
1893
1894 stabilizing_threads = 1;
1895
1896 /* Kick 'em all. */
1897 for_each_inferior (&all_lwps, move_out_of_jump_pad_callback);
1898
1899 /* Loop until all are stopped out of the jump pads. */
1900 while (find_inferior (&all_lwps, lwp_running, NULL) != NULL)
1901 {
1902 struct target_waitstatus ourstatus;
1903 struct lwp_info *lwp;
1904 ptid_t ptid;
1905 int wstat;
1906
1907 /* Note that we go through the full wait even loop. While
1908 moving threads out of jump pad, we need to be able to step
1909 over internal breakpoints and such. */
1910 ptid = linux_wait_1 (minus_one_ptid, &ourstatus, 0);
1911
1912 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
1913 {
1914 lwp = get_thread_lwp (current_inferior);
1915
1916 /* Lock it. */
1917 lwp->suspended++;
1918
1919 if (ourstatus.value.sig != TARGET_SIGNAL_0
1920 || current_inferior->last_resume_kind == resume_stop)
1921 {
1922 wstat = W_STOPCODE (target_signal_to_host (ourstatus.value.sig));
1923 enqueue_one_deferred_signal (lwp, &wstat);
1924 }
1925 }
1926 }
1927
1928 find_inferior (&all_lwps, unsuspend_one_lwp, NULL);
1929
1930 stabilizing_threads = 0;
1931
1932 current_inferior = save_inferior;
1933
1934 lwp_stuck
1935 = (struct lwp_info *) find_inferior (&all_lwps,
1936 stuck_in_jump_pad_callback, NULL);
1937 if (lwp_stuck != NULL)
1938 {
1939 if (debug_threads)
1940 fprintf (stderr, "couldn't stabilize, LWP %ld got stuck in jump pad\n",
1941 lwpid_of (lwp_stuck));
1942 }
1943 }
1944
1945 /* Wait for process, returns status. */
1946
1947 static ptid_t
1948 linux_wait_1 (ptid_t ptid,
1949 struct target_waitstatus *ourstatus, int target_options)
1950 {
1951 int w;
1952 struct lwp_info *event_child;
1953 int options;
1954 int pid;
1955 int step_over_finished;
1956 int bp_explains_trap;
1957 int maybe_internal_trap;
1958 int report_to_gdb;
1959 int trace_event;
1960
1961 /* Translate generic target options into linux options. */
1962 options = __WALL;
1963 if (target_options & TARGET_WNOHANG)
1964 options |= WNOHANG;
1965
1966 retry:
1967 bp_explains_trap = 0;
1968 trace_event = 0;
1969 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1970
1971 /* If we were only supposed to resume one thread, only wait for
1972 that thread - if it's still alive. If it died, however - which
1973 can happen if we're coming from the thread death case below -
1974 then we need to make sure we restart the other threads. We could
1975 pick a thread at random or restart all; restarting all is less
1976 arbitrary. */
1977 if (!non_stop
1978 && !ptid_equal (cont_thread, null_ptid)
1979 && !ptid_equal (cont_thread, minus_one_ptid))
1980 {
1981 struct thread_info *thread;
1982
1983 thread = (struct thread_info *) find_inferior_id (&all_threads,
1984 cont_thread);
1985
1986 /* No stepping, no signal - unless one is pending already, of course. */
1987 if (thread == NULL)
1988 {
1989 struct thread_resume resume_info;
1990 resume_info.thread = minus_one_ptid;
1991 resume_info.kind = resume_continue;
1992 resume_info.sig = 0;
1993 linux_resume (&resume_info, 1);
1994 }
1995 else
1996 ptid = cont_thread;
1997 }
1998
1999 if (ptid_equal (step_over_bkpt, null_ptid))
2000 pid = linux_wait_for_event (ptid, &w, options);
2001 else
2002 {
2003 if (debug_threads)
2004 fprintf (stderr, "step_over_bkpt set [%s], doing a blocking wait\n",
2005 target_pid_to_str (step_over_bkpt));
2006 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
2007 }
2008
2009 if (pid == 0) /* only if TARGET_WNOHANG */
2010 return null_ptid;
2011
2012 event_child = get_thread_lwp (current_inferior);
2013
2014 /* If we are waiting for a particular child, and it exited,
2015 linux_wait_for_event will return its exit status. Similarly if
2016 the last child exited. If this is not the last child, however,
2017 do not report it as exited until there is a 'thread exited' response
2018 available in the remote protocol. Instead, just wait for another event.
2019 This should be safe, because if the thread crashed we will already
2020 have reported the termination signal to GDB; that should stop any
2021 in-progress stepping operations, etc.
2022
2023 Report the exit status of the last thread to exit. This matches
2024 LinuxThreads' behavior. */
2025
2026 if (last_thread_of_process_p (current_inferior))
2027 {
2028 if (WIFEXITED (w) || WIFSIGNALED (w))
2029 {
2030 if (WIFEXITED (w))
2031 {
2032 ourstatus->kind = TARGET_WAITKIND_EXITED;
2033 ourstatus->value.integer = WEXITSTATUS (w);
2034
2035 if (debug_threads)
2036 fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
2037 }
2038 else
2039 {
2040 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2041 ourstatus->value.sig = target_signal_from_host (WTERMSIG (w));
2042
2043 if (debug_threads)
2044 fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
2045
2046 }
2047
2048 return ptid_of (event_child);
2049 }
2050 }
2051 else
2052 {
2053 if (!WIFSTOPPED (w))
2054 goto retry;
2055 }
2056
2057 /* If this event was not handled before, and is not a SIGTRAP, we
2058 report it. SIGILL and SIGSEGV are also treated as traps in case
2059 a breakpoint is inserted at the current PC. If this target does
2060 not support internal breakpoints at all, we also report the
2061 SIGTRAP without further processing; it's of no concern to us. */
2062 maybe_internal_trap
2063 = (supports_breakpoints ()
2064 && (WSTOPSIG (w) == SIGTRAP
2065 || ((WSTOPSIG (w) == SIGILL
2066 || WSTOPSIG (w) == SIGSEGV)
2067 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
2068
2069 if (maybe_internal_trap)
2070 {
2071 /* Handle anything that requires bookkeeping before deciding to
2072 report the event or continue waiting. */
2073
2074 /* First check if we can explain the SIGTRAP with an internal
2075 breakpoint, or if we should possibly report the event to GDB.
2076 Do this before anything that may remove or insert a
2077 breakpoint. */
2078 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
2079
2080 /* We have a SIGTRAP, possibly a step-over dance has just
2081 finished. If so, tweak the state machine accordingly,
2082 reinsert breakpoints and delete any reinsert (software
2083 single-step) breakpoints. */
2084 step_over_finished = finish_step_over (event_child);
2085
2086 /* Now invoke the callbacks of any internal breakpoints there. */
2087 check_breakpoints (event_child->stop_pc);
2088
2089 /* Handle tracepoint data collecting. This may overflow the
2090 trace buffer, and cause a tracing stop, removing
2091 breakpoints. */
2092 trace_event = handle_tracepoints (event_child);
2093
2094 if (bp_explains_trap)
2095 {
2096 /* If we stepped or ran into an internal breakpoint, we've
2097 already handled it. So next time we resume (from this
2098 PC), we should step over it. */
2099 if (debug_threads)
2100 fprintf (stderr, "Hit a gdbserver breakpoint.\n");
2101
2102 if (breakpoint_here (event_child->stop_pc))
2103 event_child->need_step_over = 1;
2104 }
2105 }
2106 else
2107 {
2108 /* We have some other signal, possibly a step-over dance was in
2109 progress, and it should be cancelled too. */
2110 step_over_finished = finish_step_over (event_child);
2111 }
2112
2113 /* We have all the data we need. Either report the event to GDB, or
2114 resume threads and keep waiting for more. */
2115
2116 /* If we're collecting a fast tracepoint, finish the collection and
2117 move out of the jump pad before delivering a signal. See
2118 linux_stabilize_threads. */
2119
2120 if (WIFSTOPPED (w)
2121 && WSTOPSIG (w) != SIGTRAP
2122 && supports_fast_tracepoints ()
2123 && in_process_agent_loaded ())
2124 {
2125 if (debug_threads)
2126 fprintf (stderr,
2127 "Got signal %d for LWP %ld. Check if we need "
2128 "to defer or adjust it.\n",
2129 WSTOPSIG (w), lwpid_of (event_child));
2130
2131 /* Allow debugging the jump pad itself. */
2132 if (current_inferior->last_resume_kind != resume_step
2133 && maybe_move_out_of_jump_pad (event_child, &w))
2134 {
2135 enqueue_one_deferred_signal (event_child, &w);
2136
2137 if (debug_threads)
2138 fprintf (stderr,
2139 "Signal %d for LWP %ld deferred (in jump pad)\n",
2140 WSTOPSIG (w), lwpid_of (event_child));
2141
2142 linux_resume_one_lwp (event_child, 0, 0, NULL);
2143 goto retry;
2144 }
2145 }
2146
2147 if (event_child->collecting_fast_tracepoint)
2148 {
2149 if (debug_threads)
2150 fprintf (stderr, "\
2151 LWP %ld was trying to move out of the jump pad (%d). \
2152 Check if we're already there.\n",
2153 lwpid_of (event_child),
2154 event_child->collecting_fast_tracepoint);
2155
2156 trace_event = 1;
2157
2158 event_child->collecting_fast_tracepoint
2159 = linux_fast_tracepoint_collecting (event_child, NULL);
2160
2161 if (event_child->collecting_fast_tracepoint != 1)
2162 {
2163 /* No longer need this breakpoint. */
2164 if (event_child->exit_jump_pad_bkpt != NULL)
2165 {
2166 if (debug_threads)
2167 fprintf (stderr,
2168 "No longer need exit-jump-pad bkpt; removing it."
2169 "stopping all threads momentarily.\n");
2170
2171 /* Other running threads could hit this breakpoint.
2172 We don't handle moribund locations like GDB does,
2173 instead we always pause all threads when removing
2174 breakpoints, so that any step-over or
2175 decr_pc_after_break adjustment is always taken
2176 care of while the breakpoint is still
2177 inserted. */
2178 stop_all_lwps (1, event_child);
2179 cancel_breakpoints ();
2180
2181 delete_breakpoint (event_child->exit_jump_pad_bkpt);
2182 event_child->exit_jump_pad_bkpt = NULL;
2183
2184 unstop_all_lwps (1, event_child);
2185
2186 gdb_assert (event_child->suspended >= 0);
2187 }
2188 }
2189
2190 if (event_child->collecting_fast_tracepoint == 0)
2191 {
2192 if (debug_threads)
2193 fprintf (stderr,
2194 "fast tracepoint finished "
2195 "collecting successfully.\n");
2196
2197 /* We may have a deferred signal to report. */
2198 if (dequeue_one_deferred_signal (event_child, &w))
2199 {
2200 if (debug_threads)
2201 fprintf (stderr, "dequeued one signal.\n");
2202 }
2203 else if (debug_threads)
2204 {
2205 fprintf (stderr, "no deferred signals.\n");
2206
2207 if (stabilizing_threads)
2208 {
2209 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2210 ourstatus->value.sig = TARGET_SIGNAL_0;
2211 return ptid_of (event_child);
2212 }
2213 }
2214 }
2215 }
2216
2217 /* Check whether GDB would be interested in this event. */
2218
2219 /* If GDB is not interested in this signal, don't stop other
2220 threads, and don't report it to GDB. Just resume the inferior
2221 right away. We do this for threading-related signals as well as
2222 any that GDB specifically requested we ignore. But never ignore
2223 SIGSTOP if we sent it ourselves, and do not ignore signals when
2224 stepping - they may require special handling to skip the signal
2225 handler. */
2226 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
2227 thread library? */
2228 if (WIFSTOPPED (w)
2229 && current_inferior->last_resume_kind != resume_step
2230 && (
2231 #if defined (USE_THREAD_DB) && defined (__SIGRTMIN)
2232 (current_process ()->private->thread_db != NULL
2233 && (WSTOPSIG (w) == __SIGRTMIN
2234 || WSTOPSIG (w) == __SIGRTMIN + 1))
2235 ||
2236 #endif
2237 (pass_signals[target_signal_from_host (WSTOPSIG (w))]
2238 && !(WSTOPSIG (w) == SIGSTOP
2239 && current_inferior->last_resume_kind == resume_stop))))
2240 {
2241 siginfo_t info, *info_p;
2242
2243 if (debug_threads)
2244 fprintf (stderr, "Ignored signal %d for LWP %ld.\n",
2245 WSTOPSIG (w), lwpid_of (event_child));
2246
2247 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (event_child), 0, &info) == 0)
2248 info_p = &info;
2249 else
2250 info_p = NULL;
2251 linux_resume_one_lwp (event_child, event_child->stepping,
2252 WSTOPSIG (w), info_p);
2253 goto retry;
2254 }
2255
2256 /* If GDB wanted this thread to single step, we always want to
2257 report the SIGTRAP, and let GDB handle it. Watchpoints should
2258 always be reported. So should signals we can't explain. A
2259 SIGTRAP we can't explain could be a GDB breakpoint --- we may or
2260 not support Z0 breakpoints. If we do, we're be able to handle
2261 GDB breakpoints on top of internal breakpoints, by handling the
2262 internal breakpoint and still reporting the event to GDB. If we
2263 don't, we're out of luck, GDB won't see the breakpoint hit. */
2264 report_to_gdb = (!maybe_internal_trap
2265 || current_inferior->last_resume_kind == resume_step
2266 || event_child->stopped_by_watchpoint
2267 || (!step_over_finished && !bp_explains_trap && !trace_event)
2268 || gdb_breakpoint_here (event_child->stop_pc));
2269
2270 /* We found no reason GDB would want us to stop. We either hit one
2271 of our own breakpoints, or finished an internal step GDB
2272 shouldn't know about. */
2273 if (!report_to_gdb)
2274 {
2275 if (debug_threads)
2276 {
2277 if (bp_explains_trap)
2278 fprintf (stderr, "Hit a gdbserver breakpoint.\n");
2279 if (step_over_finished)
2280 fprintf (stderr, "Step-over finished.\n");
2281 if (trace_event)
2282 fprintf (stderr, "Tracepoint event.\n");
2283 }
2284
2285 /* We're not reporting this breakpoint to GDB, so apply the
2286 decr_pc_after_break adjustment to the inferior's regcache
2287 ourselves. */
2288
2289 if (the_low_target.set_pc != NULL)
2290 {
2291 struct regcache *regcache
2292 = get_thread_regcache (get_lwp_thread (event_child), 1);
2293 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
2294 }
2295
2296 /* We may have finished stepping over a breakpoint. If so,
2297 we've stopped and suspended all LWPs momentarily except the
2298 stepping one. This is where we resume them all again. We're
2299 going to keep waiting, so use proceed, which handles stepping
2300 over the next breakpoint. */
2301 if (debug_threads)
2302 fprintf (stderr, "proceeding all threads.\n");
2303
2304 if (step_over_finished)
2305 unsuspend_all_lwps (event_child);
2306
2307 proceed_all_lwps ();
2308 goto retry;
2309 }
2310
2311 if (debug_threads)
2312 {
2313 if (current_inferior->last_resume_kind == resume_step)
2314 fprintf (stderr, "GDB wanted to single-step, reporting event.\n");
2315 if (event_child->stopped_by_watchpoint)
2316 fprintf (stderr, "Stopped by watchpoint.\n");
2317 if (gdb_breakpoint_here (event_child->stop_pc))
2318 fprintf (stderr, "Stopped by GDB breakpoint.\n");
2319 if (debug_threads)
2320 fprintf (stderr, "Hit a non-gdbserver trap event.\n");
2321 }
2322
2323 /* Alright, we're going to report a stop. */
2324
2325 if (!non_stop && !stabilizing_threads)
2326 {
2327 /* In all-stop, stop all threads. */
2328 stop_all_lwps (0, NULL);
2329
2330 /* If we're not waiting for a specific LWP, choose an event LWP
2331 from among those that have had events. Giving equal priority
2332 to all LWPs that have had events helps prevent
2333 starvation. */
2334 if (ptid_equal (ptid, minus_one_ptid))
2335 {
2336 event_child->status_pending_p = 1;
2337 event_child->status_pending = w;
2338
2339 select_event_lwp (&event_child);
2340
2341 event_child->status_pending_p = 0;
2342 w = event_child->status_pending;
2343 }
2344
2345 /* Now that we've selected our final event LWP, cancel any
2346 breakpoints in other LWPs that have hit a GDB breakpoint.
2347 See the comment in cancel_breakpoints_callback to find out
2348 why. */
2349 find_inferior (&all_lwps, cancel_breakpoints_callback, event_child);
2350
2351 /* Stabilize threads (move out of jump pads). */
2352 stabilize_threads ();
2353 }
2354 else
2355 {
2356 /* If we just finished a step-over, then all threads had been
2357 momentarily paused. In all-stop, that's fine, we want
2358 threads stopped by now anyway. In non-stop, we need to
2359 re-resume threads that GDB wanted to be running. */
2360 if (step_over_finished)
2361 unstop_all_lwps (1, event_child);
2362 }
2363
2364 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2365
2366 if (current_inferior->last_resume_kind == resume_stop
2367 && WSTOPSIG (w) == SIGSTOP)
2368 {
2369 /* A thread that has been requested to stop by GDB with vCont;t,
2370 and it stopped cleanly, so report as SIG0. The use of
2371 SIGSTOP is an implementation detail. */
2372 ourstatus->value.sig = TARGET_SIGNAL_0;
2373 }
2374 else if (current_inferior->last_resume_kind == resume_stop
2375 && WSTOPSIG (w) != SIGSTOP)
2376 {
2377 /* A thread that has been requested to stop by GDB with vCont;t,
2378 but, it stopped for other reasons. */
2379 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (w));
2380 }
2381 else
2382 {
2383 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (w));
2384 }
2385
2386 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
2387
2388 if (debug_threads)
2389 fprintf (stderr, "linux_wait ret = %s, %d, %d\n",
2390 target_pid_to_str (ptid_of (event_child)),
2391 ourstatus->kind,
2392 ourstatus->value.sig);
2393
2394 if (!stabilizing_threads)
2395 current_inferior->last_status = *ourstatus;
2396
2397 return ptid_of (event_child);
2398 }
2399
2400 /* Get rid of any pending event in the pipe. */
2401 static void
2402 async_file_flush (void)
2403 {
2404 int ret;
2405 char buf;
2406
2407 do
2408 ret = read (linux_event_pipe[0], &buf, 1);
2409 while (ret >= 0 || (ret == -1 && errno == EINTR));
2410 }
2411
2412 /* Put something in the pipe, so the event loop wakes up. */
2413 static void
2414 async_file_mark (void)
2415 {
2416 int ret;
2417
2418 async_file_flush ();
2419
2420 do
2421 ret = write (linux_event_pipe[1], "+", 1);
2422 while (ret == 0 || (ret == -1 && errno == EINTR));
2423
2424 /* Ignore EAGAIN. If the pipe is full, the event loop will already
2425 be awakened anyway. */
2426 }
2427
2428 static ptid_t
2429 linux_wait (ptid_t ptid,
2430 struct target_waitstatus *ourstatus, int target_options)
2431 {
2432 ptid_t event_ptid;
2433
2434 if (debug_threads)
2435 fprintf (stderr, "linux_wait: [%s]\n", target_pid_to_str (ptid));
2436
2437 /* Flush the async file first. */
2438 if (target_is_async_p ())
2439 async_file_flush ();
2440
2441 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
2442
2443 /* If at least one stop was reported, there may be more. A single
2444 SIGCHLD can signal more than one child stop. */
2445 if (target_is_async_p ()
2446 && (target_options & TARGET_WNOHANG) != 0
2447 && !ptid_equal (event_ptid, null_ptid))
2448 async_file_mark ();
2449
2450 return event_ptid;
2451 }
2452
2453 /* Send a signal to an LWP. */
2454
2455 static int
2456 kill_lwp (unsigned long lwpid, int signo)
2457 {
2458 /* Use tkill, if possible, in case we are using nptl threads. If tkill
2459 fails, then we are not using nptl threads and we should be using kill. */
2460
2461 #ifdef __NR_tkill
2462 {
2463 static int tkill_failed;
2464
2465 if (!tkill_failed)
2466 {
2467 int ret;
2468
2469 errno = 0;
2470 ret = syscall (__NR_tkill, lwpid, signo);
2471 if (errno != ENOSYS)
2472 return ret;
2473 tkill_failed = 1;
2474 }
2475 }
2476 #endif
2477
2478 return kill (lwpid, signo);
2479 }
2480
2481 void
2482 linux_stop_lwp (struct lwp_info *lwp)
2483 {
2484 send_sigstop (lwp);
2485 }
2486
2487 static void
2488 send_sigstop (struct lwp_info *lwp)
2489 {
2490 int pid;
2491
2492 pid = lwpid_of (lwp);
2493
2494 /* If we already have a pending stop signal for this process, don't
2495 send another. */
2496 if (lwp->stop_expected)
2497 {
2498 if (debug_threads)
2499 fprintf (stderr, "Have pending sigstop for lwp %d\n", pid);
2500
2501 return;
2502 }
2503
2504 if (debug_threads)
2505 fprintf (stderr, "Sending sigstop to lwp %d\n", pid);
2506
2507 lwp->stop_expected = 1;
2508 kill_lwp (pid, SIGSTOP);
2509 }
2510
2511 static int
2512 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
2513 {
2514 struct lwp_info *lwp = (struct lwp_info *) entry;
2515
2516 /* Ignore EXCEPT. */
2517 if (lwp == except)
2518 return 0;
2519
2520 if (lwp->stopped)
2521 return 0;
2522
2523 send_sigstop (lwp);
2524 return 0;
2525 }
2526
2527 /* Increment the suspend count of an LWP, and stop it, if not stopped
2528 yet. */
2529 static int
2530 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
2531 void *except)
2532 {
2533 struct lwp_info *lwp = (struct lwp_info *) entry;
2534
2535 /* Ignore EXCEPT. */
2536 if (lwp == except)
2537 return 0;
2538
2539 lwp->suspended++;
2540
2541 return send_sigstop_callback (entry, except);
2542 }
2543
2544 static void
2545 mark_lwp_dead (struct lwp_info *lwp, int wstat)
2546 {
2547 /* It's dead, really. */
2548 lwp->dead = 1;
2549
2550 /* Store the exit status for later. */
2551 lwp->status_pending_p = 1;
2552 lwp->status_pending = wstat;
2553
2554 /* Prevent trying to stop it. */
2555 lwp->stopped = 1;
2556
2557 /* No further stops are expected from a dead lwp. */
2558 lwp->stop_expected = 0;
2559 }
2560
2561 static void
2562 wait_for_sigstop (struct inferior_list_entry *entry)
2563 {
2564 struct lwp_info *lwp = (struct lwp_info *) entry;
2565 struct thread_info *saved_inferior;
2566 int wstat;
2567 ptid_t saved_tid;
2568 ptid_t ptid;
2569 int pid;
2570
2571 if (lwp->stopped)
2572 {
2573 if (debug_threads)
2574 fprintf (stderr, "wait_for_sigstop: LWP %ld already stopped\n",
2575 lwpid_of (lwp));
2576 return;
2577 }
2578
2579 saved_inferior = current_inferior;
2580 if (saved_inferior != NULL)
2581 saved_tid = ((struct inferior_list_entry *) saved_inferior)->id;
2582 else
2583 saved_tid = null_ptid; /* avoid bogus unused warning */
2584
2585 ptid = lwp->head.id;
2586
2587 if (debug_threads)
2588 fprintf (stderr, "wait_for_sigstop: pulling one event\n");
2589
2590 pid = linux_wait_for_event (ptid, &wstat, __WALL);
2591
2592 /* If we stopped with a non-SIGSTOP signal, save it for later
2593 and record the pending SIGSTOP. If the process exited, just
2594 return. */
2595 if (WIFSTOPPED (wstat))
2596 {
2597 if (debug_threads)
2598 fprintf (stderr, "LWP %ld stopped with signal %d\n",
2599 lwpid_of (lwp), WSTOPSIG (wstat));
2600
2601 if (WSTOPSIG (wstat) != SIGSTOP)
2602 {
2603 if (debug_threads)
2604 fprintf (stderr, "LWP %ld stopped with non-sigstop status %06x\n",
2605 lwpid_of (lwp), wstat);
2606
2607 lwp->status_pending_p = 1;
2608 lwp->status_pending = wstat;
2609 }
2610 }
2611 else
2612 {
2613 if (debug_threads)
2614 fprintf (stderr, "Process %d exited while stopping LWPs\n", pid);
2615
2616 lwp = find_lwp_pid (pid_to_ptid (pid));
2617 if (lwp)
2618 {
2619 /* Leave this status pending for the next time we're able to
2620 report it. In the mean time, we'll report this lwp as
2621 dead to GDB, so GDB doesn't try to read registers and
2622 memory from it. This can only happen if this was the
2623 last thread of the process; otherwise, PID is removed
2624 from the thread tables before linux_wait_for_event
2625 returns. */
2626 mark_lwp_dead (lwp, wstat);
2627 }
2628 }
2629
2630 if (saved_inferior == NULL || linux_thread_alive (saved_tid))
2631 current_inferior = saved_inferior;
2632 else
2633 {
2634 if (debug_threads)
2635 fprintf (stderr, "Previously current thread died.\n");
2636
2637 if (non_stop)
2638 {
2639 /* We can't change the current inferior behind GDB's back,
2640 otherwise, a subsequent command may apply to the wrong
2641 process. */
2642 current_inferior = NULL;
2643 }
2644 else
2645 {
2646 /* Set a valid thread as current. */
2647 set_desired_inferior (0);
2648 }
2649 }
2650 }
2651
2652 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
2653 move it out, because we need to report the stop event to GDB. For
2654 example, if the user puts a breakpoint in the jump pad, it's
2655 because she wants to debug it. */
2656
2657 static int
2658 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
2659 {
2660 struct lwp_info *lwp = (struct lwp_info *) entry;
2661 struct thread_info *thread = get_lwp_thread (lwp);
2662
2663 gdb_assert (lwp->suspended == 0);
2664 gdb_assert (lwp->stopped);
2665
2666 /* Allow debugging the jump pad, gdb_collect, etc.. */
2667 return (supports_fast_tracepoints ()
2668 && in_process_agent_loaded ()
2669 && (gdb_breakpoint_here (lwp->stop_pc)
2670 || lwp->stopped_by_watchpoint
2671 || thread->last_resume_kind == resume_step)
2672 && linux_fast_tracepoint_collecting (lwp, NULL));
2673 }
2674
2675 static void
2676 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
2677 {
2678 struct lwp_info *lwp = (struct lwp_info *) entry;
2679 struct thread_info *thread = get_lwp_thread (lwp);
2680 int *wstat;
2681
2682 gdb_assert (lwp->suspended == 0);
2683 gdb_assert (lwp->stopped);
2684
2685 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
2686
2687 /* Allow debugging the jump pad, gdb_collect, etc. */
2688 if (!gdb_breakpoint_here (lwp->stop_pc)
2689 && !lwp->stopped_by_watchpoint
2690 && thread->last_resume_kind != resume_step
2691 && maybe_move_out_of_jump_pad (lwp, wstat))
2692 {
2693 if (debug_threads)
2694 fprintf (stderr,
2695 "LWP %ld needs stabilizing (in jump pad)\n",
2696 lwpid_of (lwp));
2697
2698 if (wstat)
2699 {
2700 lwp->status_pending_p = 0;
2701 enqueue_one_deferred_signal (lwp, wstat);
2702
2703 if (debug_threads)
2704 fprintf (stderr,
2705 "Signal %d for LWP %ld deferred "
2706 "(in jump pad)\n",
2707 WSTOPSIG (*wstat), lwpid_of (lwp));
2708 }
2709
2710 linux_resume_one_lwp (lwp, 0, 0, NULL);
2711 }
2712 else
2713 lwp->suspended++;
2714 }
2715
2716 static int
2717 lwp_running (struct inferior_list_entry *entry, void *data)
2718 {
2719 struct lwp_info *lwp = (struct lwp_info *) entry;
2720
2721 if (lwp->dead)
2722 return 0;
2723 if (lwp->stopped)
2724 return 0;
2725 return 1;
2726 }
2727
2728 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
2729 If SUSPEND, then also increase the suspend count of every LWP,
2730 except EXCEPT. */
2731
2732 static void
2733 stop_all_lwps (int suspend, struct lwp_info *except)
2734 {
2735 stopping_threads = 1;
2736
2737 if (suspend)
2738 find_inferior (&all_lwps, suspend_and_send_sigstop_callback, except);
2739 else
2740 find_inferior (&all_lwps, send_sigstop_callback, except);
2741 for_each_inferior (&all_lwps, wait_for_sigstop);
2742 stopping_threads = 0;
2743 }
2744
2745 /* Resume execution of the inferior process.
2746 If STEP is nonzero, single-step it.
2747 If SIGNAL is nonzero, give it that signal. */
2748
2749 static void
2750 linux_resume_one_lwp (struct lwp_info *lwp,
2751 int step, int signal, siginfo_t *info)
2752 {
2753 struct thread_info *saved_inferior;
2754 int fast_tp_collecting;
2755
2756 if (lwp->stopped == 0)
2757 return;
2758
2759 fast_tp_collecting = lwp->collecting_fast_tracepoint;
2760
2761 gdb_assert (!stabilizing_threads || fast_tp_collecting);
2762
2763 /* Cancel actions that rely on GDB not changing the PC (e.g., the
2764 user used the "jump" command, or "set $pc = foo"). */
2765 if (lwp->stop_pc != get_pc (lwp))
2766 {
2767 /* Collecting 'while-stepping' actions doesn't make sense
2768 anymore. */
2769 release_while_stepping_state_list (get_lwp_thread (lwp));
2770 }
2771
2772 /* If we have pending signals or status, and a new signal, enqueue the
2773 signal. Also enqueue the signal if we are waiting to reinsert a
2774 breakpoint; it will be picked up again below. */
2775 if (signal != 0
2776 && (lwp->status_pending_p
2777 || lwp->pending_signals != NULL
2778 || lwp->bp_reinsert != 0
2779 || fast_tp_collecting))
2780 {
2781 struct pending_signals *p_sig;
2782 p_sig = xmalloc (sizeof (*p_sig));
2783 p_sig->prev = lwp->pending_signals;
2784 p_sig->signal = signal;
2785 if (info == NULL)
2786 memset (&p_sig->info, 0, sizeof (siginfo_t));
2787 else
2788 memcpy (&p_sig->info, info, sizeof (siginfo_t));
2789 lwp->pending_signals = p_sig;
2790 }
2791
2792 if (lwp->status_pending_p)
2793 {
2794 if (debug_threads)
2795 fprintf (stderr, "Not resuming lwp %ld (%s, signal %d, stop %s);"
2796 " has pending status\n",
2797 lwpid_of (lwp), step ? "step" : "continue", signal,
2798 lwp->stop_expected ? "expected" : "not expected");
2799 return;
2800 }
2801
2802 saved_inferior = current_inferior;
2803 current_inferior = get_lwp_thread (lwp);
2804
2805 if (debug_threads)
2806 fprintf (stderr, "Resuming lwp %ld (%s, signal %d, stop %s)\n",
2807 lwpid_of (lwp), step ? "step" : "continue", signal,
2808 lwp->stop_expected ? "expected" : "not expected");
2809
2810 /* This bit needs some thinking about. If we get a signal that
2811 we must report while a single-step reinsert is still pending,
2812 we often end up resuming the thread. It might be better to
2813 (ew) allow a stack of pending events; then we could be sure that
2814 the reinsert happened right away and not lose any signals.
2815
2816 Making this stack would also shrink the window in which breakpoints are
2817 uninserted (see comment in linux_wait_for_lwp) but not enough for
2818 complete correctness, so it won't solve that problem. It may be
2819 worthwhile just to solve this one, however. */
2820 if (lwp->bp_reinsert != 0)
2821 {
2822 if (debug_threads)
2823 fprintf (stderr, " pending reinsert at 0x%s\n",
2824 paddress (lwp->bp_reinsert));
2825
2826 if (lwp->bp_reinsert != 0 && can_hardware_single_step ())
2827 {
2828 if (fast_tp_collecting == 0)
2829 {
2830 if (step == 0)
2831 fprintf (stderr, "BAD - reinserting but not stepping.\n");
2832 if (lwp->suspended)
2833 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
2834 lwp->suspended);
2835 }
2836
2837 step = 1;
2838 }
2839
2840 /* Postpone any pending signal. It was enqueued above. */
2841 signal = 0;
2842 }
2843
2844 if (fast_tp_collecting == 1)
2845 {
2846 if (debug_threads)
2847 fprintf (stderr, "\
2848 lwp %ld wants to get out of fast tracepoint jump pad (exit-jump-pad-bkpt)\n",
2849 lwpid_of (lwp));
2850
2851 /* Postpone any pending signal. It was enqueued above. */
2852 signal = 0;
2853 }
2854 else if (fast_tp_collecting == 2)
2855 {
2856 if (debug_threads)
2857 fprintf (stderr, "\
2858 lwp %ld wants to get out of fast tracepoint jump pad single-stepping\n",
2859 lwpid_of (lwp));
2860
2861 if (can_hardware_single_step ())
2862 step = 1;
2863 else
2864 fatal ("moving out of jump pad single-stepping"
2865 " not implemented on this target");
2866
2867 /* Postpone any pending signal. It was enqueued above. */
2868 signal = 0;
2869 }
2870
2871 /* If we have while-stepping actions in this thread set it stepping.
2872 If we have a signal to deliver, it may or may not be set to
2873 SIG_IGN, we don't know. Assume so, and allow collecting
2874 while-stepping into a signal handler. A possible smart thing to
2875 do would be to set an internal breakpoint at the signal return
2876 address, continue, and carry on catching this while-stepping
2877 action only when that breakpoint is hit. A future
2878 enhancement. */
2879 if (get_lwp_thread (lwp)->while_stepping != NULL
2880 && can_hardware_single_step ())
2881 {
2882 if (debug_threads)
2883 fprintf (stderr,
2884 "lwp %ld has a while-stepping action -> forcing step.\n",
2885 lwpid_of (lwp));
2886 step = 1;
2887 }
2888
2889 if (debug_threads && the_low_target.get_pc != NULL)
2890 {
2891 struct regcache *regcache = get_thread_regcache (current_inferior, 1);
2892 CORE_ADDR pc = (*the_low_target.get_pc) (regcache);
2893 fprintf (stderr, " resuming from pc 0x%lx\n", (long) pc);
2894 }
2895
2896 /* If we have pending signals, consume one unless we are trying to
2897 reinsert a breakpoint or we're trying to finish a fast tracepoint
2898 collect. */
2899 if (lwp->pending_signals != NULL
2900 && lwp->bp_reinsert == 0
2901 && fast_tp_collecting == 0)
2902 {
2903 struct pending_signals **p_sig;
2904
2905 p_sig = &lwp->pending_signals;
2906 while ((*p_sig)->prev != NULL)
2907 p_sig = &(*p_sig)->prev;
2908
2909 signal = (*p_sig)->signal;
2910 if ((*p_sig)->info.si_signo != 0)
2911 ptrace (PTRACE_SETSIGINFO, lwpid_of (lwp), 0, &(*p_sig)->info);
2912
2913 free (*p_sig);
2914 *p_sig = NULL;
2915 }
2916
2917 if (the_low_target.prepare_to_resume != NULL)
2918 the_low_target.prepare_to_resume (lwp);
2919
2920 regcache_invalidate_one ((struct inferior_list_entry *)
2921 get_lwp_thread (lwp));
2922 errno = 0;
2923 lwp->stopped = 0;
2924 lwp->stopped_by_watchpoint = 0;
2925 lwp->stepping = step;
2926 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, lwpid_of (lwp), 0,
2927 /* Coerce to a uintptr_t first to avoid potential gcc warning
2928 of coercing an 8 byte integer to a 4 byte pointer. */
2929 (PTRACE_ARG4_TYPE) (uintptr_t) signal);
2930
2931 current_inferior = saved_inferior;
2932 if (errno)
2933 {
2934 /* ESRCH from ptrace either means that the thread was already
2935 running (an error) or that it is gone (a race condition). If
2936 it's gone, we will get a notification the next time we wait,
2937 so we can ignore the error. We could differentiate these
2938 two, but it's tricky without waiting; the thread still exists
2939 as a zombie, so sending it signal 0 would succeed. So just
2940 ignore ESRCH. */
2941 if (errno == ESRCH)
2942 return;
2943
2944 perror_with_name ("ptrace");
2945 }
2946 }
2947
2948 struct thread_resume_array
2949 {
2950 struct thread_resume *resume;
2951 size_t n;
2952 };
2953
2954 /* This function is called once per thread. We look up the thread
2955 in RESUME_PTR, and mark the thread with a pointer to the appropriate
2956 resume request.
2957
2958 This algorithm is O(threads * resume elements), but resume elements
2959 is small (and will remain small at least until GDB supports thread
2960 suspension). */
2961 static int
2962 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
2963 {
2964 struct lwp_info *lwp;
2965 struct thread_info *thread;
2966 int ndx;
2967 struct thread_resume_array *r;
2968
2969 thread = (struct thread_info *) entry;
2970 lwp = get_thread_lwp (thread);
2971 r = arg;
2972
2973 for (ndx = 0; ndx < r->n; ndx++)
2974 {
2975 ptid_t ptid = r->resume[ndx].thread;
2976 if (ptid_equal (ptid, minus_one_ptid)
2977 || ptid_equal (ptid, entry->id)
2978 || (ptid_is_pid (ptid)
2979 && (ptid_get_pid (ptid) == pid_of (lwp)))
2980 || (ptid_get_lwp (ptid) == -1
2981 && (ptid_get_pid (ptid) == pid_of (lwp))))
2982 {
2983 if (r->resume[ndx].kind == resume_stop
2984 && thread->last_resume_kind == resume_stop)
2985 {
2986 if (debug_threads)
2987 fprintf (stderr, "already %s LWP %ld at GDB's request\n",
2988 thread->last_status.kind == TARGET_WAITKIND_STOPPED
2989 ? "stopped"
2990 : "stopping",
2991 lwpid_of (lwp));
2992
2993 continue;
2994 }
2995
2996 lwp->resume = &r->resume[ndx];
2997 thread->last_resume_kind = lwp->resume->kind;
2998
2999 /* If we had a deferred signal to report, dequeue one now.
3000 This can happen if LWP gets more than one signal while
3001 trying to get out of a jump pad. */
3002 if (lwp->stopped
3003 && !lwp->status_pending_p
3004 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
3005 {
3006 lwp->status_pending_p = 1;
3007
3008 if (debug_threads)
3009 fprintf (stderr,
3010 "Dequeueing deferred signal %d for LWP %ld, "
3011 "leaving status pending.\n",
3012 WSTOPSIG (lwp->status_pending), lwpid_of (lwp));
3013 }
3014
3015 return 0;
3016 }
3017 }
3018
3019 /* No resume action for this thread. */
3020 lwp->resume = NULL;
3021
3022 return 0;
3023 }
3024
3025
3026 /* Set *FLAG_P if this lwp has an interesting status pending. */
3027 static int
3028 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
3029 {
3030 struct lwp_info *lwp = (struct lwp_info *) entry;
3031
3032 /* LWPs which will not be resumed are not interesting, because
3033 we might not wait for them next time through linux_wait. */
3034 if (lwp->resume == NULL)
3035 return 0;
3036
3037 if (lwp->status_pending_p)
3038 * (int *) flag_p = 1;
3039
3040 return 0;
3041 }
3042
3043 /* Return 1 if this lwp that GDB wants running is stopped at an
3044 internal breakpoint that we need to step over. It assumes that any
3045 required STOP_PC adjustment has already been propagated to the
3046 inferior's regcache. */
3047
3048 static int
3049 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
3050 {
3051 struct lwp_info *lwp = (struct lwp_info *) entry;
3052 struct thread_info *thread;
3053 struct thread_info *saved_inferior;
3054 CORE_ADDR pc;
3055
3056 /* LWPs which will not be resumed are not interesting, because we
3057 might not wait for them next time through linux_wait. */
3058
3059 if (!lwp->stopped)
3060 {
3061 if (debug_threads)
3062 fprintf (stderr,
3063 "Need step over [LWP %ld]? Ignoring, not stopped\n",
3064 lwpid_of (lwp));
3065 return 0;
3066 }
3067
3068 thread = get_lwp_thread (lwp);
3069
3070 if (thread->last_resume_kind == resume_stop)
3071 {
3072 if (debug_threads)
3073 fprintf (stderr,
3074 "Need step over [LWP %ld]? Ignoring, should remain stopped\n",
3075 lwpid_of (lwp));
3076 return 0;
3077 }
3078
3079 gdb_assert (lwp->suspended >= 0);
3080
3081 if (lwp->suspended)
3082 {
3083 if (debug_threads)
3084 fprintf (stderr,
3085 "Need step over [LWP %ld]? Ignoring, suspended\n",
3086 lwpid_of (lwp));
3087 return 0;
3088 }
3089
3090 if (!lwp->need_step_over)
3091 {
3092 if (debug_threads)
3093 fprintf (stderr,
3094 "Need step over [LWP %ld]? No\n", lwpid_of (lwp));
3095 }
3096
3097 if (lwp->status_pending_p)
3098 {
3099 if (debug_threads)
3100 fprintf (stderr,
3101 "Need step over [LWP %ld]? Ignoring, has pending status.\n",
3102 lwpid_of (lwp));
3103 return 0;
3104 }
3105
3106 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
3107 or we have. */
3108 pc = get_pc (lwp);
3109
3110 /* If the PC has changed since we stopped, then don't do anything,
3111 and let the breakpoint/tracepoint be hit. This happens if, for
3112 instance, GDB handled the decr_pc_after_break subtraction itself,
3113 GDB is OOL stepping this thread, or the user has issued a "jump"
3114 command, or poked thread's registers herself. */
3115 if (pc != lwp->stop_pc)
3116 {
3117 if (debug_threads)
3118 fprintf (stderr,
3119 "Need step over [LWP %ld]? Cancelling, PC was changed. "
3120 "Old stop_pc was 0x%s, PC is now 0x%s\n",
3121 lwpid_of (lwp), paddress (lwp->stop_pc), paddress (pc));
3122
3123 lwp->need_step_over = 0;
3124 return 0;
3125 }
3126
3127 saved_inferior = current_inferior;
3128 current_inferior = thread;
3129
3130 /* We can only step over breakpoints we know about. */
3131 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
3132 {
3133 /* Don't step over a breakpoint that GDB expects to hit
3134 though. */
3135 if (gdb_breakpoint_here (pc))
3136 {
3137 if (debug_threads)
3138 fprintf (stderr,
3139 "Need step over [LWP %ld]? yes, but found"
3140 " GDB breakpoint at 0x%s; skipping step over\n",
3141 lwpid_of (lwp), paddress (pc));
3142
3143 current_inferior = saved_inferior;
3144 return 0;
3145 }
3146 else
3147 {
3148 if (debug_threads)
3149 fprintf (stderr,
3150 "Need step over [LWP %ld]? yes, found breakpoint at 0x%s\n",
3151 lwpid_of (lwp), paddress (pc));
3152
3153 /* We've found an lwp that needs stepping over --- return 1 so
3154 that find_inferior stops looking. */
3155 current_inferior = saved_inferior;
3156
3157 /* If the step over is cancelled, this is set again. */
3158 lwp->need_step_over = 0;
3159 return 1;
3160 }
3161 }
3162
3163 current_inferior = saved_inferior;
3164
3165 if (debug_threads)
3166 fprintf (stderr,
3167 "Need step over [LWP %ld]? No, no breakpoint found at 0x%s\n",
3168 lwpid_of (lwp), paddress (pc));
3169
3170 return 0;
3171 }
3172
3173 /* Start a step-over operation on LWP. When LWP stopped at a
3174 breakpoint, to make progress, we need to remove the breakpoint out
3175 of the way. If we let other threads run while we do that, they may
3176 pass by the breakpoint location and miss hitting it. To avoid
3177 that, a step-over momentarily stops all threads while LWP is
3178 single-stepped while the breakpoint is temporarily uninserted from
3179 the inferior. When the single-step finishes, we reinsert the
3180 breakpoint, and let all threads that are supposed to be running,
3181 run again.
3182
3183 On targets that don't support hardware single-step, we don't
3184 currently support full software single-stepping. Instead, we only
3185 support stepping over the thread event breakpoint, by asking the
3186 low target where to place a reinsert breakpoint. Since this
3187 routine assumes the breakpoint being stepped over is a thread event
3188 breakpoint, it usually assumes the return address of the current
3189 function is a good enough place to set the reinsert breakpoint. */
3190
3191 static int
3192 start_step_over (struct lwp_info *lwp)
3193 {
3194 struct thread_info *saved_inferior;
3195 CORE_ADDR pc;
3196 int step;
3197
3198 if (debug_threads)
3199 fprintf (stderr,
3200 "Starting step-over on LWP %ld. Stopping all threads\n",
3201 lwpid_of (lwp));
3202
3203 stop_all_lwps (1, lwp);
3204 gdb_assert (lwp->suspended == 0);
3205
3206 if (debug_threads)
3207 fprintf (stderr, "Done stopping all threads for step-over.\n");
3208
3209 /* Note, we should always reach here with an already adjusted PC,
3210 either by GDB (if we're resuming due to GDB's request), or by our
3211 caller, if we just finished handling an internal breakpoint GDB
3212 shouldn't care about. */
3213 pc = get_pc (lwp);
3214
3215 saved_inferior = current_inferior;
3216 current_inferior = get_lwp_thread (lwp);
3217
3218 lwp->bp_reinsert = pc;
3219 uninsert_breakpoints_at (pc);
3220 uninsert_fast_tracepoint_jumps_at (pc);
3221
3222 if (can_hardware_single_step ())
3223 {
3224 step = 1;
3225 }
3226 else
3227 {
3228 CORE_ADDR raddr = (*the_low_target.breakpoint_reinsert_addr) ();
3229 set_reinsert_breakpoint (raddr);
3230 step = 0;
3231 }
3232
3233 current_inferior = saved_inferior;
3234
3235 linux_resume_one_lwp (lwp, step, 0, NULL);
3236
3237 /* Require next event from this LWP. */
3238 step_over_bkpt = lwp->head.id;
3239 return 1;
3240 }
3241
3242 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
3243 start_step_over, if still there, and delete any reinsert
3244 breakpoints we've set, on non hardware single-step targets. */
3245
3246 static int
3247 finish_step_over (struct lwp_info *lwp)
3248 {
3249 if (lwp->bp_reinsert != 0)
3250 {
3251 if (debug_threads)
3252 fprintf (stderr, "Finished step over.\n");
3253
3254 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
3255 may be no breakpoint to reinsert there by now. */
3256 reinsert_breakpoints_at (lwp->bp_reinsert);
3257 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
3258
3259 lwp->bp_reinsert = 0;
3260
3261 /* Delete any software-single-step reinsert breakpoints. No
3262 longer needed. We don't have to worry about other threads
3263 hitting this trap, and later not being able to explain it,
3264 because we were stepping over a breakpoint, and we hold all
3265 threads but LWP stopped while doing that. */
3266 if (!can_hardware_single_step ())
3267 delete_reinsert_breakpoints ();
3268
3269 step_over_bkpt = null_ptid;
3270 return 1;
3271 }
3272 else
3273 return 0;
3274 }
3275
3276 /* This function is called once per thread. We check the thread's resume
3277 request, which will tell us whether to resume, step, or leave the thread
3278 stopped; and what signal, if any, it should be sent.
3279
3280 For threads which we aren't explicitly told otherwise, we preserve
3281 the stepping flag; this is used for stepping over gdbserver-placed
3282 breakpoints.
3283
3284 If pending_flags was set in any thread, we queue any needed
3285 signals, since we won't actually resume. We already have a pending
3286 event to report, so we don't need to preserve any step requests;
3287 they should be re-issued if necessary. */
3288
3289 static int
3290 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
3291 {
3292 struct lwp_info *lwp;
3293 struct thread_info *thread;
3294 int step;
3295 int leave_all_stopped = * (int *) arg;
3296 int leave_pending;
3297
3298 thread = (struct thread_info *) entry;
3299 lwp = get_thread_lwp (thread);
3300
3301 if (lwp->resume == NULL)
3302 return 0;
3303
3304 if (lwp->resume->kind == resume_stop)
3305 {
3306 if (debug_threads)
3307 fprintf (stderr, "resume_stop request for LWP %ld\n", lwpid_of (lwp));
3308
3309 if (!lwp->stopped)
3310 {
3311 if (debug_threads)
3312 fprintf (stderr, "stopping LWP %ld\n", lwpid_of (lwp));
3313
3314 /* Stop the thread, and wait for the event asynchronously,
3315 through the event loop. */
3316 send_sigstop (lwp);
3317 }
3318 else
3319 {
3320 if (debug_threads)
3321 fprintf (stderr, "already stopped LWP %ld\n",
3322 lwpid_of (lwp));
3323
3324 /* The LWP may have been stopped in an internal event that
3325 was not meant to be notified back to GDB (e.g., gdbserver
3326 breakpoint), so we should be reporting a stop event in
3327 this case too. */
3328
3329 /* If the thread already has a pending SIGSTOP, this is a
3330 no-op. Otherwise, something later will presumably resume
3331 the thread and this will cause it to cancel any pending
3332 operation, due to last_resume_kind == resume_stop. If
3333 the thread already has a pending status to report, we
3334 will still report it the next time we wait - see
3335 status_pending_p_callback. */
3336 send_sigstop (lwp);
3337 }
3338
3339 /* For stop requests, we're done. */
3340 lwp->resume = NULL;
3341 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
3342 return 0;
3343 }
3344
3345 /* If this thread which is about to be resumed has a pending status,
3346 then don't resume any threads - we can just report the pending
3347 status. Make sure to queue any signals that would otherwise be
3348 sent. In all-stop mode, we do this decision based on if *any*
3349 thread has a pending status. If there's a thread that needs the
3350 step-over-breakpoint dance, then don't resume any other thread
3351 but that particular one. */
3352 leave_pending = (lwp->status_pending_p || leave_all_stopped);
3353
3354 if (!leave_pending)
3355 {
3356 if (debug_threads)
3357 fprintf (stderr, "resuming LWP %ld\n", lwpid_of (lwp));
3358
3359 step = (lwp->resume->kind == resume_step);
3360 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
3361 }
3362 else
3363 {
3364 if (debug_threads)
3365 fprintf (stderr, "leaving LWP %ld stopped\n", lwpid_of (lwp));
3366
3367 /* If we have a new signal, enqueue the signal. */
3368 if (lwp->resume->sig != 0)
3369 {
3370 struct pending_signals *p_sig;
3371 p_sig = xmalloc (sizeof (*p_sig));
3372 p_sig->prev = lwp->pending_signals;
3373 p_sig->signal = lwp->resume->sig;
3374 memset (&p_sig->info, 0, sizeof (siginfo_t));
3375
3376 /* If this is the same signal we were previously stopped by,
3377 make sure to queue its siginfo. We can ignore the return
3378 value of ptrace; if it fails, we'll skip
3379 PTRACE_SETSIGINFO. */
3380 if (WIFSTOPPED (lwp->last_status)
3381 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
3382 ptrace (PTRACE_GETSIGINFO, lwpid_of (lwp), 0, &p_sig->info);
3383
3384 lwp->pending_signals = p_sig;
3385 }
3386 }
3387
3388 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
3389 lwp->resume = NULL;
3390 return 0;
3391 }
3392
3393 static void
3394 linux_resume (struct thread_resume *resume_info, size_t n)
3395 {
3396 struct thread_resume_array array = { resume_info, n };
3397 struct lwp_info *need_step_over = NULL;
3398 int any_pending;
3399 int leave_all_stopped;
3400
3401 find_inferior (&all_threads, linux_set_resume_request, &array);
3402
3403 /* If there is a thread which would otherwise be resumed, which has
3404 a pending status, then don't resume any threads - we can just
3405 report the pending status. Make sure to queue any signals that
3406 would otherwise be sent. In non-stop mode, we'll apply this
3407 logic to each thread individually. We consume all pending events
3408 before considering to start a step-over (in all-stop). */
3409 any_pending = 0;
3410 if (!non_stop)
3411 find_inferior (&all_lwps, resume_status_pending_p, &any_pending);
3412
3413 /* If there is a thread which would otherwise be resumed, which is
3414 stopped at a breakpoint that needs stepping over, then don't
3415 resume any threads - have it step over the breakpoint with all
3416 other threads stopped, then resume all threads again. Make sure
3417 to queue any signals that would otherwise be delivered or
3418 queued. */
3419 if (!any_pending && supports_breakpoints ())
3420 need_step_over
3421 = (struct lwp_info *) find_inferior (&all_lwps,
3422 need_step_over_p, NULL);
3423
3424 leave_all_stopped = (need_step_over != NULL || any_pending);
3425
3426 if (debug_threads)
3427 {
3428 if (need_step_over != NULL)
3429 fprintf (stderr, "Not resuming all, need step over\n");
3430 else if (any_pending)
3431 fprintf (stderr,
3432 "Not resuming, all-stop and found "
3433 "an LWP with pending status\n");
3434 else
3435 fprintf (stderr, "Resuming, no pending status or step over needed\n");
3436 }
3437
3438 /* Even if we're leaving threads stopped, queue all signals we'd
3439 otherwise deliver. */
3440 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
3441
3442 if (need_step_over)
3443 start_step_over (need_step_over);
3444 }
3445
3446 /* This function is called once per thread. We check the thread's
3447 last resume request, which will tell us whether to resume, step, or
3448 leave the thread stopped. Any signal the client requested to be
3449 delivered has already been enqueued at this point.
3450
3451 If any thread that GDB wants running is stopped at an internal
3452 breakpoint that needs stepping over, we start a step-over operation
3453 on that particular thread, and leave all others stopped. */
3454
3455 static int
3456 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
3457 {
3458 struct lwp_info *lwp = (struct lwp_info *) entry;
3459 struct thread_info *thread;
3460 int step;
3461
3462 if (lwp == except)
3463 return 0;
3464
3465 if (debug_threads)
3466 fprintf (stderr,
3467 "proceed_one_lwp: lwp %ld\n", lwpid_of (lwp));
3468
3469 if (!lwp->stopped)
3470 {
3471 if (debug_threads)
3472 fprintf (stderr, " LWP %ld already running\n", lwpid_of (lwp));
3473 return 0;
3474 }
3475
3476 thread = get_lwp_thread (lwp);
3477
3478 if (thread->last_resume_kind == resume_stop
3479 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
3480 {
3481 if (debug_threads)
3482 fprintf (stderr, " client wants LWP to remain %ld stopped\n",
3483 lwpid_of (lwp));
3484 return 0;
3485 }
3486
3487 if (lwp->status_pending_p)
3488 {
3489 if (debug_threads)
3490 fprintf (stderr, " LWP %ld has pending status, leaving stopped\n",
3491 lwpid_of (lwp));
3492 return 0;
3493 }
3494
3495 gdb_assert (lwp->suspended >= 0);
3496
3497 if (lwp->suspended)
3498 {
3499 if (debug_threads)
3500 fprintf (stderr, " LWP %ld is suspended\n", lwpid_of (lwp));
3501 return 0;
3502 }
3503
3504 if (thread->last_resume_kind == resume_stop)
3505 {
3506 /* We haven't reported this LWP as stopped yet (otherwise, the
3507 last_status.kind check above would catch it, and we wouldn't
3508 reach here. This LWP may have been momentarily paused by a
3509 stop_all_lwps call while handling for example, another LWP's
3510 step-over. In that case, the pending expected SIGSTOP signal
3511 that was queued at vCont;t handling time will have already
3512 been consumed by wait_for_sigstop, and so we need to requeue
3513 another one here. Note that if the LWP already has a SIGSTOP
3514 pending, this is a no-op. */
3515
3516 if (debug_threads)
3517 fprintf (stderr,
3518 "Client wants LWP %ld to stop. "
3519 "Making sure it has a SIGSTOP pending\n",
3520 lwpid_of (lwp));
3521
3522 send_sigstop (lwp);
3523 }
3524
3525 step = thread->last_resume_kind == resume_step;
3526 linux_resume_one_lwp (lwp, step, 0, NULL);
3527 return 0;
3528 }
3529
3530 static int
3531 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
3532 {
3533 struct lwp_info *lwp = (struct lwp_info *) entry;
3534
3535 if (lwp == except)
3536 return 0;
3537
3538 lwp->suspended--;
3539 gdb_assert (lwp->suspended >= 0);
3540
3541 return proceed_one_lwp (entry, except);
3542 }
3543
3544 /* When we finish a step-over, set threads running again. If there's
3545 another thread that may need a step-over, now's the time to start
3546 it. Eventually, we'll move all threads past their breakpoints. */
3547
3548 static void
3549 proceed_all_lwps (void)
3550 {
3551 struct lwp_info *need_step_over;
3552
3553 /* If there is a thread which would otherwise be resumed, which is
3554 stopped at a breakpoint that needs stepping over, then don't
3555 resume any threads - have it step over the breakpoint with all
3556 other threads stopped, then resume all threads again. */
3557
3558 if (supports_breakpoints ())
3559 {
3560 need_step_over
3561 = (struct lwp_info *) find_inferior (&all_lwps,
3562 need_step_over_p, NULL);
3563
3564 if (need_step_over != NULL)
3565 {
3566 if (debug_threads)
3567 fprintf (stderr, "proceed_all_lwps: found "
3568 "thread %ld needing a step-over\n",
3569 lwpid_of (need_step_over));
3570
3571 start_step_over (need_step_over);
3572 return;
3573 }
3574 }
3575
3576 if (debug_threads)
3577 fprintf (stderr, "Proceeding, no step-over needed\n");
3578
3579 find_inferior (&all_lwps, proceed_one_lwp, NULL);
3580 }
3581
3582 /* Stopped LWPs that the client wanted to be running, that don't have
3583 pending statuses, are set to run again, except for EXCEPT, if not
3584 NULL. This undoes a stop_all_lwps call. */
3585
3586 static void
3587 unstop_all_lwps (int unsuspend, struct lwp_info *except)
3588 {
3589 if (debug_threads)
3590 {
3591 if (except)
3592 fprintf (stderr,
3593 "unstopping all lwps, except=(LWP %ld)\n", lwpid_of (except));
3594 else
3595 fprintf (stderr,
3596 "unstopping all lwps\n");
3597 }
3598
3599 if (unsuspend)
3600 find_inferior (&all_lwps, unsuspend_and_proceed_one_lwp, except);
3601 else
3602 find_inferior (&all_lwps, proceed_one_lwp, except);
3603 }
3604
3605 #ifdef HAVE_LINUX_USRREGS
3606
3607 int
3608 register_addr (int regnum)
3609 {
3610 int addr;
3611
3612 if (regnum < 0 || regnum >= the_low_target.num_regs)
3613 error ("Invalid register number %d.", regnum);
3614
3615 addr = the_low_target.regmap[regnum];
3616
3617 return addr;
3618 }
3619
3620 /* Fetch one register. */
3621 static void
3622 fetch_register (struct regcache *regcache, int regno)
3623 {
3624 CORE_ADDR regaddr;
3625 int i, size;
3626 char *buf;
3627 int pid;
3628
3629 if (regno >= the_low_target.num_regs)
3630 return;
3631 if ((*the_low_target.cannot_fetch_register) (regno))
3632 return;
3633
3634 regaddr = register_addr (regno);
3635 if (regaddr == -1)
3636 return;
3637
3638 pid = lwpid_of (get_thread_lwp (current_inferior));
3639 size = ((register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
3640 & - sizeof (PTRACE_XFER_TYPE));
3641 buf = alloca (size);
3642 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
3643 {
3644 errno = 0;
3645 *(PTRACE_XFER_TYPE *) (buf + i) =
3646 ptrace (PTRACE_PEEKUSER, pid,
3647 /* Coerce to a uintptr_t first to avoid potential gcc warning
3648 of coercing an 8 byte integer to a 4 byte pointer. */
3649 (PTRACE_ARG3_TYPE) (uintptr_t) regaddr, 0);
3650 regaddr += sizeof (PTRACE_XFER_TYPE);
3651 if (errno != 0)
3652 error ("reading register %d: %s", regno, strerror (errno));
3653 }
3654
3655 if (the_low_target.supply_ptrace_register)
3656 the_low_target.supply_ptrace_register (regcache, regno, buf);
3657 else
3658 supply_register (regcache, regno, buf);
3659 }
3660
3661 /* Fetch all registers, or just one, from the child process. */
3662 static void
3663 usr_fetch_inferior_registers (struct regcache *regcache, int regno)
3664 {
3665 if (regno == -1)
3666 for (regno = 0; regno < the_low_target.num_regs; regno++)
3667 fetch_register (regcache, regno);
3668 else
3669 fetch_register (regcache, regno);
3670 }
3671
3672 /* Store our register values back into the inferior.
3673 If REGNO is -1, do this for all registers.
3674 Otherwise, REGNO specifies which register (so we can save time). */
3675 static void
3676 usr_store_inferior_registers (struct regcache *regcache, int regno)
3677 {
3678 CORE_ADDR regaddr;
3679 int i, size;
3680 char *buf;
3681 int pid;
3682
3683 if (regno >= 0)
3684 {
3685 if (regno >= the_low_target.num_regs)
3686 return;
3687
3688 if ((*the_low_target.cannot_store_register) (regno) == 1)
3689 return;
3690
3691 regaddr = register_addr (regno);
3692 if (regaddr == -1)
3693 return;
3694 errno = 0;
3695 size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
3696 & - sizeof (PTRACE_XFER_TYPE);
3697 buf = alloca (size);
3698 memset (buf, 0, size);
3699
3700 if (the_low_target.collect_ptrace_register)
3701 the_low_target.collect_ptrace_register (regcache, regno, buf);
3702 else
3703 collect_register (regcache, regno, buf);
3704
3705 pid = lwpid_of (get_thread_lwp (current_inferior));
3706 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
3707 {
3708 errno = 0;
3709 ptrace (PTRACE_POKEUSER, pid,
3710 /* Coerce to a uintptr_t first to avoid potential gcc warning
3711 about coercing an 8 byte integer to a 4 byte pointer. */
3712 (PTRACE_ARG3_TYPE) (uintptr_t) regaddr,
3713 (PTRACE_ARG4_TYPE) *(PTRACE_XFER_TYPE *) (buf + i));
3714 if (errno != 0)
3715 {
3716 /* At this point, ESRCH should mean the process is
3717 already gone, in which case we simply ignore attempts
3718 to change its registers. See also the related
3719 comment in linux_resume_one_lwp. */
3720 if (errno == ESRCH)
3721 return;
3722
3723 if ((*the_low_target.cannot_store_register) (regno) == 0)
3724 error ("writing register %d: %s", regno, strerror (errno));
3725 }
3726 regaddr += sizeof (PTRACE_XFER_TYPE);
3727 }
3728 }
3729 else
3730 for (regno = 0; regno < the_low_target.num_regs; regno++)
3731 usr_store_inferior_registers (regcache, regno);
3732 }
3733 #endif /* HAVE_LINUX_USRREGS */
3734
3735
3736
3737 #ifdef HAVE_LINUX_REGSETS
3738
3739 static int
3740 regsets_fetch_inferior_registers (struct regcache *regcache)
3741 {
3742 struct regset_info *regset;
3743 int saw_general_regs = 0;
3744 int pid;
3745 struct iovec iov;
3746
3747 regset = target_regsets;
3748
3749 pid = lwpid_of (get_thread_lwp (current_inferior));
3750 while (regset->size >= 0)
3751 {
3752 void *buf, *data;
3753 int nt_type, res;
3754
3755 if (regset->size == 0 || disabled_regsets[regset - target_regsets])
3756 {
3757 regset ++;
3758 continue;
3759 }
3760
3761 buf = xmalloc (regset->size);
3762
3763 nt_type = regset->nt_type;
3764 if (nt_type)
3765 {
3766 iov.iov_base = buf;
3767 iov.iov_len = regset->size;
3768 data = (void *) &iov;
3769 }
3770 else
3771 data = buf;
3772
3773 #ifndef __sparc__
3774 res = ptrace (regset->get_request, pid, nt_type, data);
3775 #else
3776 res = ptrace (regset->get_request, pid, data, nt_type);
3777 #endif
3778 if (res < 0)
3779 {
3780 if (errno == EIO)
3781 {
3782 /* If we get EIO on a regset, do not try it again for
3783 this process. */
3784 disabled_regsets[regset - target_regsets] = 1;
3785 free (buf);
3786 continue;
3787 }
3788 else
3789 {
3790 char s[256];
3791 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
3792 pid);
3793 perror (s);
3794 }
3795 }
3796 else if (regset->type == GENERAL_REGS)
3797 saw_general_regs = 1;
3798 regset->store_function (regcache, buf);
3799 regset ++;
3800 free (buf);
3801 }
3802 if (saw_general_regs)
3803 return 0;
3804 else
3805 return 1;
3806 }
3807
3808 static int
3809 regsets_store_inferior_registers (struct regcache *regcache)
3810 {
3811 struct regset_info *regset;
3812 int saw_general_regs = 0;
3813 int pid;
3814 struct iovec iov;
3815
3816 regset = target_regsets;
3817
3818 pid = lwpid_of (get_thread_lwp (current_inferior));
3819 while (regset->size >= 0)
3820 {
3821 void *buf, *data;
3822 int nt_type, res;
3823
3824 if (regset->size == 0 || disabled_regsets[regset - target_regsets])
3825 {
3826 regset ++;
3827 continue;
3828 }
3829
3830 buf = xmalloc (regset->size);
3831
3832 /* First fill the buffer with the current register set contents,
3833 in case there are any items in the kernel's regset that are
3834 not in gdbserver's regcache. */
3835
3836 nt_type = regset->nt_type;
3837 if (nt_type)
3838 {
3839 iov.iov_base = buf;
3840 iov.iov_len = regset->size;
3841 data = (void *) &iov;
3842 }
3843 else
3844 data = buf;
3845
3846 #ifndef __sparc__
3847 res = ptrace (regset->get_request, pid, nt_type, data);
3848 #else
3849 res = ptrace (regset->get_request, pid, &iov, data);
3850 #endif
3851
3852 if (res == 0)
3853 {
3854 /* Then overlay our cached registers on that. */
3855 regset->fill_function (regcache, buf);
3856
3857 /* Only now do we write the register set. */
3858 #ifndef __sparc__
3859 res = ptrace (regset->set_request, pid, nt_type, data);
3860 #else
3861 res = ptrace (regset->set_request, pid, data, nt_type);
3862 #endif
3863 }
3864
3865 if (res < 0)
3866 {
3867 if (errno == EIO)
3868 {
3869 /* If we get EIO on a regset, do not try it again for
3870 this process. */
3871 disabled_regsets[regset - target_regsets] = 1;
3872 free (buf);
3873 continue;
3874 }
3875 else if (errno == ESRCH)
3876 {
3877 /* At this point, ESRCH should mean the process is
3878 already gone, in which case we simply ignore attempts
3879 to change its registers. See also the related
3880 comment in linux_resume_one_lwp. */
3881 free (buf);
3882 return 0;
3883 }
3884 else
3885 {
3886 perror ("Warning: ptrace(regsets_store_inferior_registers)");
3887 }
3888 }
3889 else if (regset->type == GENERAL_REGS)
3890 saw_general_regs = 1;
3891 regset ++;
3892 free (buf);
3893 }
3894 if (saw_general_regs)
3895 return 0;
3896 else
3897 return 1;
3898 return 0;
3899 }
3900
3901 #endif /* HAVE_LINUX_REGSETS */
3902
3903
3904 void
3905 linux_fetch_registers (struct regcache *regcache, int regno)
3906 {
3907 #ifdef HAVE_LINUX_REGSETS
3908 if (regsets_fetch_inferior_registers (regcache) == 0)
3909 return;
3910 #endif
3911 #ifdef HAVE_LINUX_USRREGS
3912 usr_fetch_inferior_registers (regcache, regno);
3913 #endif
3914 }
3915
3916 void
3917 linux_store_registers (struct regcache *regcache, int regno)
3918 {
3919 #ifdef HAVE_LINUX_REGSETS
3920 if (regsets_store_inferior_registers (regcache) == 0)
3921 return;
3922 #endif
3923 #ifdef HAVE_LINUX_USRREGS
3924 usr_store_inferior_registers (regcache, regno);
3925 #endif
3926 }
3927
3928
3929 /* Copy LEN bytes from inferior's memory starting at MEMADDR
3930 to debugger memory starting at MYADDR. */
3931
3932 static int
3933 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
3934 {
3935 register int i;
3936 /* Round starting address down to longword boundary. */
3937 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
3938 /* Round ending address up; get number of longwords that makes. */
3939 register int count
3940 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
3941 / sizeof (PTRACE_XFER_TYPE);
3942 /* Allocate buffer of that many longwords. */
3943 register PTRACE_XFER_TYPE *buffer
3944 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
3945 int fd;
3946 char filename[64];
3947 int pid = lwpid_of (get_thread_lwp (current_inferior));
3948
3949 /* Try using /proc. Don't bother for one word. */
3950 if (len >= 3 * sizeof (long))
3951 {
3952 /* We could keep this file open and cache it - possibly one per
3953 thread. That requires some juggling, but is even faster. */
3954 sprintf (filename, "/proc/%d/mem", pid);
3955 fd = open (filename, O_RDONLY | O_LARGEFILE);
3956 if (fd == -1)
3957 goto no_proc;
3958
3959 /* If pread64 is available, use it. It's faster if the kernel
3960 supports it (only one syscall), and it's 64-bit safe even on
3961 32-bit platforms (for instance, SPARC debugging a SPARC64
3962 application). */
3963 #ifdef HAVE_PREAD64
3964 if (pread64 (fd, myaddr, len, memaddr) != len)
3965 #else
3966 if (lseek (fd, memaddr, SEEK_SET) == -1 || read (fd, myaddr, len) != len)
3967 #endif
3968 {
3969 close (fd);
3970 goto no_proc;
3971 }
3972
3973 close (fd);
3974 return 0;
3975 }
3976
3977 no_proc:
3978 /* Read all the longwords */
3979 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
3980 {
3981 errno = 0;
3982 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
3983 about coercing an 8 byte integer to a 4 byte pointer. */
3984 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
3985 (PTRACE_ARG3_TYPE) (uintptr_t) addr, 0);
3986 if (errno)
3987 return errno;
3988 }
3989
3990 /* Copy appropriate bytes out of the buffer. */
3991 memcpy (myaddr,
3992 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
3993 len);
3994
3995 return 0;
3996 }
3997
3998 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
3999 memory at MEMADDR. On failure (cannot write to the inferior)
4000 returns the value of errno. */
4001
4002 static int
4003 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
4004 {
4005 register int i;
4006 /* Round starting address down to longword boundary. */
4007 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
4008 /* Round ending address up; get number of longwords that makes. */
4009 register int count
4010 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) / sizeof (PTRACE_XFER_TYPE);
4011 /* Allocate buffer of that many longwords. */
4012 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
4013 int pid = lwpid_of (get_thread_lwp (current_inferior));
4014
4015 if (debug_threads)
4016 {
4017 /* Dump up to four bytes. */
4018 unsigned int val = * (unsigned int *) myaddr;
4019 if (len == 1)
4020 val = val & 0xff;
4021 else if (len == 2)
4022 val = val & 0xffff;
4023 else if (len == 3)
4024 val = val & 0xffffff;
4025 fprintf (stderr, "Writing %0*x to 0x%08lx\n", 2 * ((len < 4) ? len : 4),
4026 val, (long)memaddr);
4027 }
4028
4029 /* Fill start and end extra bytes of buffer with existing memory data. */
4030
4031 errno = 0;
4032 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
4033 about coercing an 8 byte integer to a 4 byte pointer. */
4034 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
4035 (PTRACE_ARG3_TYPE) (uintptr_t) addr, 0);
4036 if (errno)
4037 return errno;
4038
4039 if (count > 1)
4040 {
4041 errno = 0;
4042 buffer[count - 1]
4043 = ptrace (PTRACE_PEEKTEXT, pid,
4044 /* Coerce to a uintptr_t first to avoid potential gcc warning
4045 about coercing an 8 byte integer to a 4 byte pointer. */
4046 (PTRACE_ARG3_TYPE) (uintptr_t) (addr + (count - 1)
4047 * sizeof (PTRACE_XFER_TYPE)),
4048 0);
4049 if (errno)
4050 return errno;
4051 }
4052
4053 /* Copy data to be written over corresponding part of buffer. */
4054
4055 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), myaddr, len);
4056
4057 /* Write the entire buffer. */
4058
4059 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
4060 {
4061 errno = 0;
4062 ptrace (PTRACE_POKETEXT, pid,
4063 /* Coerce to a uintptr_t first to avoid potential gcc warning
4064 about coercing an 8 byte integer to a 4 byte pointer. */
4065 (PTRACE_ARG3_TYPE) (uintptr_t) addr,
4066 (PTRACE_ARG4_TYPE) buffer[i]);
4067 if (errno)
4068 return errno;
4069 }
4070
4071 return 0;
4072 }
4073
4074 /* Non-zero if the kernel supports PTRACE_O_TRACEFORK. */
4075 static int linux_supports_tracefork_flag;
4076
4077 static void
4078 linux_enable_event_reporting (int pid)
4079 {
4080 if (!linux_supports_tracefork_flag)
4081 return;
4082
4083 ptrace (PTRACE_SETOPTIONS, pid, 0, (PTRACE_ARG4_TYPE) PTRACE_O_TRACECLONE);
4084 }
4085
4086 /* Helper functions for linux_test_for_tracefork, called via clone (). */
4087
4088 static int
4089 linux_tracefork_grandchild (void *arg)
4090 {
4091 _exit (0);
4092 }
4093
4094 #define STACK_SIZE 4096
4095
4096 static int
4097 linux_tracefork_child (void *arg)
4098 {
4099 ptrace (PTRACE_TRACEME, 0, 0, 0);
4100 kill (getpid (), SIGSTOP);
4101
4102 #if !(defined(__UCLIBC__) && defined(HAS_NOMMU))
4103
4104 if (fork () == 0)
4105 linux_tracefork_grandchild (NULL);
4106
4107 #else /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4108
4109 #ifdef __ia64__
4110 __clone2 (linux_tracefork_grandchild, arg, STACK_SIZE,
4111 CLONE_VM | SIGCHLD, NULL);
4112 #else
4113 clone (linux_tracefork_grandchild, arg + STACK_SIZE,
4114 CLONE_VM | SIGCHLD, NULL);
4115 #endif
4116
4117 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4118
4119 _exit (0);
4120 }
4121
4122 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events. Make
4123 sure that we can enable the option, and that it had the desired
4124 effect. */
4125
4126 static void
4127 linux_test_for_tracefork (void)
4128 {
4129 int child_pid, ret, status;
4130 long second_pid;
4131 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
4132 char *stack = xmalloc (STACK_SIZE * 4);
4133 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4134
4135 linux_supports_tracefork_flag = 0;
4136
4137 #if !(defined(__UCLIBC__) && defined(HAS_NOMMU))
4138
4139 child_pid = fork ();
4140 if (child_pid == 0)
4141 linux_tracefork_child (NULL);
4142
4143 #else /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4144
4145 /* Use CLONE_VM instead of fork, to support uClinux (no MMU). */
4146 #ifdef __ia64__
4147 child_pid = __clone2 (linux_tracefork_child, stack, STACK_SIZE,
4148 CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
4149 #else /* !__ia64__ */
4150 child_pid = clone (linux_tracefork_child, stack + STACK_SIZE,
4151 CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
4152 #endif /* !__ia64__ */
4153
4154 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4155
4156 if (child_pid == -1)
4157 perror_with_name ("clone");
4158
4159 ret = my_waitpid (child_pid, &status, 0);
4160 if (ret == -1)
4161 perror_with_name ("waitpid");
4162 else if (ret != child_pid)
4163 error ("linux_test_for_tracefork: waitpid: unexpected result %d.", ret);
4164 if (! WIFSTOPPED (status))
4165 error ("linux_test_for_tracefork: waitpid: unexpected status %d.", status);
4166
4167 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
4168 (PTRACE_ARG4_TYPE) PTRACE_O_TRACEFORK);
4169 if (ret != 0)
4170 {
4171 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
4172 if (ret != 0)
4173 {
4174 warning ("linux_test_for_tracefork: failed to kill child");
4175 return;
4176 }
4177
4178 ret = my_waitpid (child_pid, &status, 0);
4179 if (ret != child_pid)
4180 warning ("linux_test_for_tracefork: failed to wait for killed child");
4181 else if (!WIFSIGNALED (status))
4182 warning ("linux_test_for_tracefork: unexpected wait status 0x%x from "
4183 "killed child", status);
4184
4185 return;
4186 }
4187
4188 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
4189 if (ret != 0)
4190 warning ("linux_test_for_tracefork: failed to resume child");
4191
4192 ret = my_waitpid (child_pid, &status, 0);
4193
4194 if (ret == child_pid && WIFSTOPPED (status)
4195 && status >> 16 == PTRACE_EVENT_FORK)
4196 {
4197 second_pid = 0;
4198 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
4199 if (ret == 0 && second_pid != 0)
4200 {
4201 int second_status;
4202
4203 linux_supports_tracefork_flag = 1;
4204 my_waitpid (second_pid, &second_status, 0);
4205 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
4206 if (ret != 0)
4207 warning ("linux_test_for_tracefork: failed to kill second child");
4208 my_waitpid (second_pid, &status, 0);
4209 }
4210 }
4211 else
4212 warning ("linux_test_for_tracefork: unexpected result from waitpid "
4213 "(%d, status 0x%x)", ret, status);
4214
4215 do
4216 {
4217 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
4218 if (ret != 0)
4219 warning ("linux_test_for_tracefork: failed to kill child");
4220 my_waitpid (child_pid, &status, 0);
4221 }
4222 while (WIFSTOPPED (status));
4223
4224 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
4225 free (stack);
4226 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4227 }
4228
4229
4230 static void
4231 linux_look_up_symbols (void)
4232 {
4233 #ifdef USE_THREAD_DB
4234 struct process_info *proc = current_process ();
4235
4236 if (proc->private->thread_db != NULL)
4237 return;
4238
4239 /* If the kernel supports tracing forks then it also supports tracing
4240 clones, and then we don't need to use the magic thread event breakpoint
4241 to learn about threads. */
4242 thread_db_init (!linux_supports_tracefork_flag);
4243 #endif
4244 }
4245
4246 static void
4247 linux_request_interrupt (void)
4248 {
4249 extern unsigned long signal_pid;
4250
4251 if (!ptid_equal (cont_thread, null_ptid)
4252 && !ptid_equal (cont_thread, minus_one_ptid))
4253 {
4254 struct lwp_info *lwp;
4255 int lwpid;
4256
4257 lwp = get_thread_lwp (current_inferior);
4258 lwpid = lwpid_of (lwp);
4259 kill_lwp (lwpid, SIGINT);
4260 }
4261 else
4262 kill_lwp (signal_pid, SIGINT);
4263 }
4264
4265 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
4266 to debugger memory starting at MYADDR. */
4267
4268 static int
4269 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
4270 {
4271 char filename[PATH_MAX];
4272 int fd, n;
4273 int pid = lwpid_of (get_thread_lwp (current_inferior));
4274
4275 snprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
4276
4277 fd = open (filename, O_RDONLY);
4278 if (fd < 0)
4279 return -1;
4280
4281 if (offset != (CORE_ADDR) 0
4282 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4283 n = -1;
4284 else
4285 n = read (fd, myaddr, len);
4286
4287 close (fd);
4288
4289 return n;
4290 }
4291
4292 /* These breakpoint and watchpoint related wrapper functions simply
4293 pass on the function call if the target has registered a
4294 corresponding function. */
4295
4296 static int
4297 linux_insert_point (char type, CORE_ADDR addr, int len)
4298 {
4299 if (the_low_target.insert_point != NULL)
4300 return the_low_target.insert_point (type, addr, len);
4301 else
4302 /* Unsupported (see target.h). */
4303 return 1;
4304 }
4305
4306 static int
4307 linux_remove_point (char type, CORE_ADDR addr, int len)
4308 {
4309 if (the_low_target.remove_point != NULL)
4310 return the_low_target.remove_point (type, addr, len);
4311 else
4312 /* Unsupported (see target.h). */
4313 return 1;
4314 }
4315
4316 static int
4317 linux_stopped_by_watchpoint (void)
4318 {
4319 struct lwp_info *lwp = get_thread_lwp (current_inferior);
4320
4321 return lwp->stopped_by_watchpoint;
4322 }
4323
4324 static CORE_ADDR
4325 linux_stopped_data_address (void)
4326 {
4327 struct lwp_info *lwp = get_thread_lwp (current_inferior);
4328
4329 return lwp->stopped_data_address;
4330 }
4331
4332 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
4333 #if defined(__mcoldfire__)
4334 /* These should really be defined in the kernel's ptrace.h header. */
4335 #define PT_TEXT_ADDR 49*4
4336 #define PT_DATA_ADDR 50*4
4337 #define PT_TEXT_END_ADDR 51*4
4338 #endif
4339
4340 /* Under uClinux, programs are loaded at non-zero offsets, which we need
4341 to tell gdb about. */
4342
4343 static int
4344 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
4345 {
4346 #if defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) && defined(PT_TEXT_END_ADDR)
4347 unsigned long text, text_end, data;
4348 int pid = lwpid_of (get_thread_lwp (current_inferior));
4349
4350 errno = 0;
4351
4352 text = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_ADDR, 0);
4353 text_end = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_END_ADDR, 0);
4354 data = ptrace (PTRACE_PEEKUSER, pid, (long)PT_DATA_ADDR, 0);
4355
4356 if (errno == 0)
4357 {
4358 /* Both text and data offsets produced at compile-time (and so
4359 used by gdb) are relative to the beginning of the program,
4360 with the data segment immediately following the text segment.
4361 However, the actual runtime layout in memory may put the data
4362 somewhere else, so when we send gdb a data base-address, we
4363 use the real data base address and subtract the compile-time
4364 data base-address from it (which is just the length of the
4365 text segment). BSS immediately follows data in both
4366 cases. */
4367 *text_p = text;
4368 *data_p = data - (text_end - text);
4369
4370 return 1;
4371 }
4372 #endif
4373 return 0;
4374 }
4375 #endif
4376
4377 static int
4378 compare_ints (const void *xa, const void *xb)
4379 {
4380 int a = *(const int *)xa;
4381 int b = *(const int *)xb;
4382
4383 return a - b;
4384 }
4385
4386 static int *
4387 unique (int *b, int *e)
4388 {
4389 int *d = b;
4390 while (++b != e)
4391 if (*d != *b)
4392 *++d = *b;
4393 return ++d;
4394 }
4395
4396 /* Given PID, iterates over all threads in that process.
4397
4398 Information about each thread, in a format suitable for qXfer:osdata:thread
4399 is printed to BUFFER, if it's not NULL. BUFFER is assumed to be already
4400 initialized, and the caller is responsible for finishing and appending '\0'
4401 to it.
4402
4403 The list of cores that threads are running on is assigned to *CORES, if it
4404 is not NULL. If no cores are found, *CORES will be set to NULL. Caller
4405 should free *CORES. */
4406
4407 static void
4408 list_threads (int pid, struct buffer *buffer, char **cores)
4409 {
4410 int count = 0;
4411 int allocated = 10;
4412 int *core_numbers = xmalloc (sizeof (int) * allocated);
4413 char pathname[128];
4414 DIR *dir;
4415 struct dirent *dp;
4416 struct stat statbuf;
4417
4418 sprintf (pathname, "/proc/%d/task", pid);
4419 if (stat (pathname, &statbuf) == 0 && S_ISDIR (statbuf.st_mode))
4420 {
4421 dir = opendir (pathname);
4422 if (!dir)
4423 {
4424 free (core_numbers);
4425 return;
4426 }
4427
4428 while ((dp = readdir (dir)) != NULL)
4429 {
4430 unsigned long lwp = strtoul (dp->d_name, NULL, 10);
4431
4432 if (lwp != 0)
4433 {
4434 unsigned core = linux_core_of_thread (ptid_build (pid, lwp, 0));
4435
4436 if (core != -1)
4437 {
4438 char s[sizeof ("4294967295")];
4439 sprintf (s, "%u", core);
4440
4441 if (count == allocated)
4442 {
4443 allocated *= 2;
4444 core_numbers = realloc (core_numbers,
4445 sizeof (int) * allocated);
4446 }
4447 core_numbers[count++] = core;
4448 if (buffer)
4449 buffer_xml_printf (buffer,
4450 "<item>"
4451 "<column name=\"pid\">%d</column>"
4452 "<column name=\"tid\">%s</column>"
4453 "<column name=\"core\">%s</column>"
4454 "</item>", pid, dp->d_name, s);
4455 }
4456 else
4457 {
4458 if (buffer)
4459 buffer_xml_printf (buffer,
4460 "<item>"
4461 "<column name=\"pid\">%d</column>"
4462 "<column name=\"tid\">%s</column>"
4463 "</item>", pid, dp->d_name);
4464 }
4465 }
4466 }
4467 }
4468
4469 if (cores)
4470 {
4471 *cores = NULL;
4472 if (count > 0)
4473 {
4474 struct buffer buffer2;
4475 int *b;
4476 int *e;
4477 qsort (core_numbers, count, sizeof (int), compare_ints);
4478
4479 /* Remove duplicates. */
4480 b = core_numbers;
4481 e = unique (b, core_numbers + count);
4482
4483 buffer_init (&buffer2);
4484
4485 for (b = core_numbers; b != e; ++b)
4486 {
4487 char number[sizeof ("4294967295")];
4488 sprintf (number, "%u", *b);
4489 buffer_xml_printf (&buffer2, "%s%s",
4490 (b == core_numbers) ? "" : ",", number);
4491 }
4492 buffer_grow_str0 (&buffer2, "");
4493
4494 *cores = buffer_finish (&buffer2);
4495 }
4496 }
4497 free (core_numbers);
4498 }
4499
4500 static void
4501 show_process (int pid, const char *username, struct buffer *buffer)
4502 {
4503 char pathname[128];
4504 FILE *f;
4505 char cmd[MAXPATHLEN + 1];
4506
4507 sprintf (pathname, "/proc/%d/cmdline", pid);
4508
4509 if ((f = fopen (pathname, "r")) != NULL)
4510 {
4511 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
4512 if (len > 0)
4513 {
4514 char *cores = 0;
4515 int i;
4516 for (i = 0; i < len; i++)
4517 if (cmd[i] == '\0')
4518 cmd[i] = ' ';
4519 cmd[len] = '\0';
4520
4521 buffer_xml_printf (buffer,
4522 "<item>"
4523 "<column name=\"pid\">%d</column>"
4524 "<column name=\"user\">%s</column>"
4525 "<column name=\"command\">%s</column>",
4526 pid,
4527 username,
4528 cmd);
4529
4530 /* This only collects core numbers, and does not print threads. */
4531 list_threads (pid, NULL, &cores);
4532
4533 if (cores)
4534 {
4535 buffer_xml_printf (buffer,
4536 "<column name=\"cores\">%s</column>", cores);
4537 free (cores);
4538 }
4539
4540 buffer_xml_printf (buffer, "</item>");
4541 }
4542 fclose (f);
4543 }
4544 }
4545
4546 static int
4547 linux_qxfer_osdata (const char *annex,
4548 unsigned char *readbuf, unsigned const char *writebuf,
4549 CORE_ADDR offset, int len)
4550 {
4551 /* We make the process list snapshot when the object starts to be
4552 read. */
4553 static const char *buf;
4554 static long len_avail = -1;
4555 static struct buffer buffer;
4556 int processes = 0;
4557 int threads = 0;
4558
4559 DIR *dirp;
4560
4561 if (strcmp (annex, "processes") == 0)
4562 processes = 1;
4563 else if (strcmp (annex, "threads") == 0)
4564 threads = 1;
4565 else
4566 return 0;
4567
4568 if (!readbuf || writebuf)
4569 return 0;
4570
4571 if (offset == 0)
4572 {
4573 if (len_avail != -1 && len_avail != 0)
4574 buffer_free (&buffer);
4575 len_avail = 0;
4576 buf = NULL;
4577 buffer_init (&buffer);
4578 if (processes)
4579 buffer_grow_str (&buffer, "<osdata type=\"processes\">");
4580 else if (threads)
4581 buffer_grow_str (&buffer, "<osdata type=\"threads\">");
4582
4583 dirp = opendir ("/proc");
4584 if (dirp)
4585 {
4586 struct dirent *dp;
4587 while ((dp = readdir (dirp)) != NULL)
4588 {
4589 struct stat statbuf;
4590 char procentry[sizeof ("/proc/4294967295")];
4591
4592 if (!isdigit (dp->d_name[0])
4593 || strlen (dp->d_name) > sizeof ("4294967295") - 1)
4594 continue;
4595
4596 sprintf (procentry, "/proc/%s", dp->d_name);
4597 if (stat (procentry, &statbuf) == 0
4598 && S_ISDIR (statbuf.st_mode))
4599 {
4600 int pid = (int) strtoul (dp->d_name, NULL, 10);
4601
4602 if (processes)
4603 {
4604 struct passwd *entry = getpwuid (statbuf.st_uid);
4605 show_process (pid, entry ? entry->pw_name : "?", &buffer);
4606 }
4607 else if (threads)
4608 {
4609 list_threads (pid, &buffer, NULL);
4610 }
4611 }
4612 }
4613
4614 closedir (dirp);
4615 }
4616 buffer_grow_str0 (&buffer, "</osdata>\n");
4617 buf = buffer_finish (&buffer);
4618 len_avail = strlen (buf);
4619 }
4620
4621 if (offset >= len_avail)
4622 {
4623 /* Done. Get rid of the data. */
4624 buffer_free (&buffer);
4625 buf = NULL;
4626 len_avail = 0;
4627 return 0;
4628 }
4629
4630 if (len > len_avail - offset)
4631 len = len_avail - offset;
4632 memcpy (readbuf, buf + offset, len);
4633
4634 return len;
4635 }
4636
4637 /* Convert a native/host siginfo object, into/from the siginfo in the
4638 layout of the inferiors' architecture. */
4639
4640 static void
4641 siginfo_fixup (struct siginfo *siginfo, void *inf_siginfo, int direction)
4642 {
4643 int done = 0;
4644
4645 if (the_low_target.siginfo_fixup != NULL)
4646 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
4647
4648 /* If there was no callback, or the callback didn't do anything,
4649 then just do a straight memcpy. */
4650 if (!done)
4651 {
4652 if (direction == 1)
4653 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
4654 else
4655 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
4656 }
4657 }
4658
4659 static int
4660 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
4661 unsigned const char *writebuf, CORE_ADDR offset, int len)
4662 {
4663 int pid;
4664 struct siginfo siginfo;
4665 char inf_siginfo[sizeof (struct siginfo)];
4666
4667 if (current_inferior == NULL)
4668 return -1;
4669
4670 pid = lwpid_of (get_thread_lwp (current_inferior));
4671
4672 if (debug_threads)
4673 fprintf (stderr, "%s siginfo for lwp %d.\n",
4674 readbuf != NULL ? "Reading" : "Writing",
4675 pid);
4676
4677 if (offset > sizeof (siginfo))
4678 return -1;
4679
4680 if (ptrace (PTRACE_GETSIGINFO, pid, 0, &siginfo) != 0)
4681 return -1;
4682
4683 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
4684 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
4685 inferior with a 64-bit GDBSERVER should look the same as debugging it
4686 with a 32-bit GDBSERVER, we need to convert it. */
4687 siginfo_fixup (&siginfo, inf_siginfo, 0);
4688
4689 if (offset + len > sizeof (siginfo))
4690 len = sizeof (siginfo) - offset;
4691
4692 if (readbuf != NULL)
4693 memcpy (readbuf, inf_siginfo + offset, len);
4694 else
4695 {
4696 memcpy (inf_siginfo + offset, writebuf, len);
4697
4698 /* Convert back to ptrace layout before flushing it out. */
4699 siginfo_fixup (&siginfo, inf_siginfo, 1);
4700
4701 if (ptrace (PTRACE_SETSIGINFO, pid, 0, &siginfo) != 0)
4702 return -1;
4703 }
4704
4705 return len;
4706 }
4707
4708 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4709 so we notice when children change state; as the handler for the
4710 sigsuspend in my_waitpid. */
4711
4712 static void
4713 sigchld_handler (int signo)
4714 {
4715 int old_errno = errno;
4716
4717 if (debug_threads)
4718 /* fprintf is not async-signal-safe, so call write directly. */
4719 write (2, "sigchld_handler\n", sizeof ("sigchld_handler\n") - 1);
4720
4721 if (target_is_async_p ())
4722 async_file_mark (); /* trigger a linux_wait */
4723
4724 errno = old_errno;
4725 }
4726
4727 static int
4728 linux_supports_non_stop (void)
4729 {
4730 return 1;
4731 }
4732
4733 static int
4734 linux_async (int enable)
4735 {
4736 int previous = (linux_event_pipe[0] != -1);
4737
4738 if (debug_threads)
4739 fprintf (stderr, "linux_async (%d), previous=%d\n",
4740 enable, previous);
4741
4742 if (previous != enable)
4743 {
4744 sigset_t mask;
4745 sigemptyset (&mask);
4746 sigaddset (&mask, SIGCHLD);
4747
4748 sigprocmask (SIG_BLOCK, &mask, NULL);
4749
4750 if (enable)
4751 {
4752 if (pipe (linux_event_pipe) == -1)
4753 fatal ("creating event pipe failed.");
4754
4755 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
4756 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
4757
4758 /* Register the event loop handler. */
4759 add_file_handler (linux_event_pipe[0],
4760 handle_target_event, NULL);
4761
4762 /* Always trigger a linux_wait. */
4763 async_file_mark ();
4764 }
4765 else
4766 {
4767 delete_file_handler (linux_event_pipe[0]);
4768
4769 close (linux_event_pipe[0]);
4770 close (linux_event_pipe[1]);
4771 linux_event_pipe[0] = -1;
4772 linux_event_pipe[1] = -1;
4773 }
4774
4775 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4776 }
4777
4778 return previous;
4779 }
4780
4781 static int
4782 linux_start_non_stop (int nonstop)
4783 {
4784 /* Register or unregister from event-loop accordingly. */
4785 linux_async (nonstop);
4786 return 0;
4787 }
4788
4789 static int
4790 linux_supports_multi_process (void)
4791 {
4792 return 1;
4793 }
4794
4795
4796 /* Enumerate spufs IDs for process PID. */
4797 static int
4798 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
4799 {
4800 int pos = 0;
4801 int written = 0;
4802 char path[128];
4803 DIR *dir;
4804 struct dirent *entry;
4805
4806 sprintf (path, "/proc/%ld/fd", pid);
4807 dir = opendir (path);
4808 if (!dir)
4809 return -1;
4810
4811 rewinddir (dir);
4812 while ((entry = readdir (dir)) != NULL)
4813 {
4814 struct stat st;
4815 struct statfs stfs;
4816 int fd;
4817
4818 fd = atoi (entry->d_name);
4819 if (!fd)
4820 continue;
4821
4822 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
4823 if (stat (path, &st) != 0)
4824 continue;
4825 if (!S_ISDIR (st.st_mode))
4826 continue;
4827
4828 if (statfs (path, &stfs) != 0)
4829 continue;
4830 if (stfs.f_type != SPUFS_MAGIC)
4831 continue;
4832
4833 if (pos >= offset && pos + 4 <= offset + len)
4834 {
4835 *(unsigned int *)(buf + pos - offset) = fd;
4836 written += 4;
4837 }
4838 pos += 4;
4839 }
4840
4841 closedir (dir);
4842 return written;
4843 }
4844
4845 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
4846 object type, using the /proc file system. */
4847 static int
4848 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
4849 unsigned const char *writebuf,
4850 CORE_ADDR offset, int len)
4851 {
4852 long pid = lwpid_of (get_thread_lwp (current_inferior));
4853 char buf[128];
4854 int fd = 0;
4855 int ret = 0;
4856
4857 if (!writebuf && !readbuf)
4858 return -1;
4859
4860 if (!*annex)
4861 {
4862 if (!readbuf)
4863 return -1;
4864 else
4865 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4866 }
4867
4868 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
4869 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4870 if (fd <= 0)
4871 return -1;
4872
4873 if (offset != 0
4874 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4875 {
4876 close (fd);
4877 return 0;
4878 }
4879
4880 if (writebuf)
4881 ret = write (fd, writebuf, (size_t) len);
4882 else
4883 ret = read (fd, readbuf, (size_t) len);
4884
4885 close (fd);
4886 return ret;
4887 }
4888
4889 static int
4890 linux_core_of_thread (ptid_t ptid)
4891 {
4892 char filename[sizeof ("/proc//task//stat")
4893 + 2 * 20 /* decimal digits for 2 numbers, max 2^64 bit each */
4894 + 1];
4895 FILE *f;
4896 char *content = NULL;
4897 char *p;
4898 char *ts = 0;
4899 int content_read = 0;
4900 int i;
4901 int core;
4902
4903 sprintf (filename, "/proc/%d/task/%ld/stat",
4904 ptid_get_pid (ptid), ptid_get_lwp (ptid));
4905 f = fopen (filename, "r");
4906 if (!f)
4907 return -1;
4908
4909 for (;;)
4910 {
4911 int n;
4912 content = realloc (content, content_read + 1024);
4913 n = fread (content + content_read, 1, 1024, f);
4914 content_read += n;
4915 if (n < 1024)
4916 {
4917 content[content_read] = '\0';
4918 break;
4919 }
4920 }
4921
4922 p = strchr (content, '(');
4923
4924 /* Skip ")". */
4925 if (p != NULL)
4926 p = strchr (p, ')');
4927 if (p != NULL)
4928 p++;
4929
4930 /* If the first field after program name has index 0, then core number is
4931 the field with index 36. There's no constant for that anywhere. */
4932 if (p != NULL)
4933 p = strtok_r (p, " ", &ts);
4934 for (i = 0; p != NULL && i != 36; ++i)
4935 p = strtok_r (NULL, " ", &ts);
4936
4937 if (p == NULL || sscanf (p, "%d", &core) == 0)
4938 core = -1;
4939
4940 free (content);
4941 fclose (f);
4942
4943 return core;
4944 }
4945
4946 static void
4947 linux_process_qsupported (const char *query)
4948 {
4949 if (the_low_target.process_qsupported != NULL)
4950 the_low_target.process_qsupported (query);
4951 }
4952
4953 static int
4954 linux_supports_tracepoints (void)
4955 {
4956 if (*the_low_target.supports_tracepoints == NULL)
4957 return 0;
4958
4959 return (*the_low_target.supports_tracepoints) ();
4960 }
4961
4962 static CORE_ADDR
4963 linux_read_pc (struct regcache *regcache)
4964 {
4965 if (the_low_target.get_pc == NULL)
4966 return 0;
4967
4968 return (*the_low_target.get_pc) (regcache);
4969 }
4970
4971 static void
4972 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
4973 {
4974 gdb_assert (the_low_target.set_pc != NULL);
4975
4976 (*the_low_target.set_pc) (regcache, pc);
4977 }
4978
4979 static int
4980 linux_thread_stopped (struct thread_info *thread)
4981 {
4982 return get_thread_lwp (thread)->stopped;
4983 }
4984
4985 /* This exposes stop-all-threads functionality to other modules. */
4986
4987 static void
4988 linux_pause_all (int freeze)
4989 {
4990 stop_all_lwps (freeze, NULL);
4991 }
4992
4993 /* This exposes unstop-all-threads functionality to other gdbserver
4994 modules. */
4995
4996 static void
4997 linux_unpause_all (int unfreeze)
4998 {
4999 unstop_all_lwps (unfreeze, NULL);
5000 }
5001
5002 static int
5003 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
5004 CORE_ADDR collector,
5005 CORE_ADDR lockaddr,
5006 ULONGEST orig_size,
5007 CORE_ADDR *jump_entry,
5008 unsigned char *jjump_pad_insn,
5009 ULONGEST *jjump_pad_insn_size,
5010 CORE_ADDR *adjusted_insn_addr,
5011 CORE_ADDR *adjusted_insn_addr_end)
5012 {
5013 return (*the_low_target.install_fast_tracepoint_jump_pad)
5014 (tpoint, tpaddr, collector, lockaddr, orig_size,
5015 jump_entry, jjump_pad_insn, jjump_pad_insn_size,
5016 adjusted_insn_addr, adjusted_insn_addr_end);
5017 }
5018
5019 static struct emit_ops *
5020 linux_emit_ops (void)
5021 {
5022 if (the_low_target.emit_ops != NULL)
5023 return (*the_low_target.emit_ops) ();
5024 else
5025 return NULL;
5026 }
5027
5028 static struct target_ops linux_target_ops = {
5029 linux_create_inferior,
5030 linux_attach,
5031 linux_kill,
5032 linux_detach,
5033 linux_mourn,
5034 linux_join,
5035 linux_thread_alive,
5036 linux_resume,
5037 linux_wait,
5038 linux_fetch_registers,
5039 linux_store_registers,
5040 linux_read_memory,
5041 linux_write_memory,
5042 linux_look_up_symbols,
5043 linux_request_interrupt,
5044 linux_read_auxv,
5045 linux_insert_point,
5046 linux_remove_point,
5047 linux_stopped_by_watchpoint,
5048 linux_stopped_data_address,
5049 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
5050 linux_read_offsets,
5051 #else
5052 NULL,
5053 #endif
5054 #ifdef USE_THREAD_DB
5055 thread_db_get_tls_address,
5056 #else
5057 NULL,
5058 #endif
5059 linux_qxfer_spu,
5060 hostio_last_error_from_errno,
5061 linux_qxfer_osdata,
5062 linux_xfer_siginfo,
5063 linux_supports_non_stop,
5064 linux_async,
5065 linux_start_non_stop,
5066 linux_supports_multi_process,
5067 #ifdef USE_THREAD_DB
5068 thread_db_handle_monitor_command,
5069 #else
5070 NULL,
5071 #endif
5072 linux_core_of_thread,
5073 linux_process_qsupported,
5074 linux_supports_tracepoints,
5075 linux_read_pc,
5076 linux_write_pc,
5077 linux_thread_stopped,
5078 NULL,
5079 linux_pause_all,
5080 linux_unpause_all,
5081 linux_cancel_breakpoints,
5082 linux_stabilize_threads,
5083 linux_install_fast_tracepoint_jump_pad,
5084 linux_emit_ops
5085 };
5086
5087 static void
5088 linux_init_signals ()
5089 {
5090 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
5091 to find what the cancel signal actually is. */
5092 #ifdef __SIGRTMIN /* Bionic doesn't use SIGRTMIN the way glibc does. */
5093 signal (__SIGRTMIN+1, SIG_IGN);
5094 #endif
5095 }
5096
5097 void
5098 initialize_low (void)
5099 {
5100 struct sigaction sigchld_action;
5101 memset (&sigchld_action, 0, sizeof (sigchld_action));
5102 set_target_ops (&linux_target_ops);
5103 set_breakpoint_data (the_low_target.breakpoint,
5104 the_low_target.breakpoint_len);
5105 linux_init_signals ();
5106 linux_test_for_tracefork ();
5107 #ifdef HAVE_LINUX_REGSETS
5108 for (num_regsets = 0; target_regsets[num_regsets].size >= 0; num_regsets++)
5109 ;
5110 disabled_regsets = xmalloc (num_regsets);
5111 #endif
5112
5113 sigchld_action.sa_handler = sigchld_handler;
5114 sigemptyset (&sigchld_action.sa_mask);
5115 sigchld_action.sa_flags = SA_RESTART;
5116 sigaction (SIGCHLD, &sigchld_action, NULL);
5117 }