* linux-low.c (my_waitpid): Delete unnecessary prototype.
[binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "server.h"
21 #include "linux-low.h"
22 #include "ansidecl.h" /* For ATTRIBUTE_PACKED, must be bug in external.h. */
23 #include "elf/common.h"
24 #include "elf/external.h"
25
26 #include <sys/wait.h>
27 #include <stdio.h>
28 #include <sys/param.h>
29 #include <sys/ptrace.h>
30 #include <signal.h>
31 #include <sys/ioctl.h>
32 #include <fcntl.h>
33 #include <string.h>
34 #include <stdlib.h>
35 #include <unistd.h>
36 #include <errno.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45
46 #ifndef SPUFS_MAGIC
47 #define SPUFS_MAGIC 0x23c9b64e
48 #endif
49
50 #ifndef PTRACE_GETSIGINFO
51 # define PTRACE_GETSIGINFO 0x4202
52 # define PTRACE_SETSIGINFO 0x4203
53 #endif
54
55 #ifndef O_LARGEFILE
56 #define O_LARGEFILE 0
57 #endif
58
59 /* If the system headers did not provide the constants, hard-code the normal
60 values. */
61 #ifndef PTRACE_EVENT_FORK
62
63 #define PTRACE_SETOPTIONS 0x4200
64 #define PTRACE_GETEVENTMSG 0x4201
65
66 /* options set using PTRACE_SETOPTIONS */
67 #define PTRACE_O_TRACESYSGOOD 0x00000001
68 #define PTRACE_O_TRACEFORK 0x00000002
69 #define PTRACE_O_TRACEVFORK 0x00000004
70 #define PTRACE_O_TRACECLONE 0x00000008
71 #define PTRACE_O_TRACEEXEC 0x00000010
72 #define PTRACE_O_TRACEVFORKDONE 0x00000020
73 #define PTRACE_O_TRACEEXIT 0x00000040
74
75 /* Wait extended result codes for the above trace options. */
76 #define PTRACE_EVENT_FORK 1
77 #define PTRACE_EVENT_VFORK 2
78 #define PTRACE_EVENT_CLONE 3
79 #define PTRACE_EVENT_EXEC 4
80 #define PTRACE_EVENT_VFORK_DONE 5
81 #define PTRACE_EVENT_EXIT 6
82
83 #endif /* PTRACE_EVENT_FORK */
84
85 /* We can't always assume that this flag is available, but all systems
86 with the ptrace event handlers also have __WALL, so it's safe to use
87 in some contexts. */
88 #ifndef __WALL
89 #define __WALL 0x40000000 /* Wait for any child. */
90 #endif
91
92 #ifdef __UCLIBC__
93 #if !(defined(__UCLIBC_HAS_MMU__) || defined(__ARCH_HAS_MMU__))
94 #define HAS_NOMMU
95 #endif
96 #endif
97
98 /* ``all_threads'' is keyed by the LWP ID, which we use as the GDB protocol
99 representation of the thread ID.
100
101 ``all_lwps'' is keyed by the process ID - which on Linux is (presently)
102 the same as the LWP ID.
103
104 ``all_processes'' is keyed by the "overall process ID", which
105 GNU/Linux calls tgid, "thread group ID". */
106
107 struct inferior_list all_lwps;
108
109 /* A list of all unknown processes which receive stop signals. Some other
110 process will presumably claim each of these as forked children
111 momentarily. */
112
113 struct inferior_list stopped_pids;
114
115 /* FIXME this is a bit of a hack, and could be removed. */
116 int stopping_threads;
117
118 /* FIXME make into a target method? */
119 int using_threads = 1;
120
121 /* This flag is true iff we've just created or attached to our first
122 inferior but it has not stopped yet. As soon as it does, we need
123 to call the low target's arch_setup callback. Doing this only on
124 the first inferior avoids reinializing the architecture on every
125 inferior, and avoids messing with the register caches of the
126 already running inferiors. NOTE: this assumes all inferiors under
127 control of gdbserver have the same architecture. */
128 static int new_inferior;
129
130 static void linux_resume_one_lwp (struct lwp_info *lwp,
131 int step, int signal, siginfo_t *info);
132 static void linux_resume (struct thread_resume *resume_info, size_t n);
133 static void stop_all_lwps (void);
134 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
135 static int check_removed_breakpoint (struct lwp_info *event_child);
136 static void *add_lwp (ptid_t ptid);
137 static int linux_stopped_by_watchpoint (void);
138 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
139
140 struct pending_signals
141 {
142 int signal;
143 siginfo_t info;
144 struct pending_signals *prev;
145 };
146
147 #define PTRACE_ARG3_TYPE long
148 #define PTRACE_XFER_TYPE long
149
150 #ifdef HAVE_LINUX_REGSETS
151 static char *disabled_regsets;
152 static int num_regsets;
153 #endif
154
155 /* The read/write ends of the pipe registered as waitable file in the
156 event loop. */
157 static int linux_event_pipe[2] = { -1, -1 };
158
159 /* True if we're currently in async mode. */
160 #define target_is_async_p() (linux_event_pipe[0] != -1)
161
162 static void send_sigstop (struct inferior_list_entry *entry);
163 static void wait_for_sigstop (struct inferior_list_entry *entry);
164
165 /* Accepts an integer PID; Returns a string representing a file that
166 can be opened to get info for the child process.
167 Space for the result is malloc'd, caller must free. */
168
169 char *
170 linux_child_pid_to_exec_file (int pid)
171 {
172 char *name1, *name2;
173
174 name1 = xmalloc (MAXPATHLEN);
175 name2 = xmalloc (MAXPATHLEN);
176 memset (name2, 0, MAXPATHLEN);
177
178 sprintf (name1, "/proc/%d/exe", pid);
179 if (readlink (name1, name2, MAXPATHLEN) > 0)
180 {
181 free (name1);
182 return name2;
183 }
184 else
185 {
186 free (name2);
187 return name1;
188 }
189 }
190
191 /* Return non-zero if HEADER is a 64-bit ELF file. */
192
193 static int
194 elf_64_header_p (const Elf64_External_Ehdr *header)
195 {
196 return (header->e_ident[EI_MAG0] == ELFMAG0
197 && header->e_ident[EI_MAG1] == ELFMAG1
198 && header->e_ident[EI_MAG2] == ELFMAG2
199 && header->e_ident[EI_MAG3] == ELFMAG3
200 && header->e_ident[EI_CLASS] == ELFCLASS64);
201 }
202
203 /* Return non-zero if FILE is a 64-bit ELF file,
204 zero if the file is not a 64-bit ELF file,
205 and -1 if the file is not accessible or doesn't exist. */
206
207 int
208 elf_64_file_p (const char *file)
209 {
210 Elf64_External_Ehdr header;
211 int fd;
212
213 fd = open (file, O_RDONLY);
214 if (fd < 0)
215 return -1;
216
217 if (read (fd, &header, sizeof (header)) != sizeof (header))
218 {
219 close (fd);
220 return 0;
221 }
222 close (fd);
223
224 return elf_64_header_p (&header);
225 }
226
227 static void
228 delete_lwp (struct lwp_info *lwp)
229 {
230 remove_thread (get_lwp_thread (lwp));
231 remove_inferior (&all_lwps, &lwp->head);
232 free (lwp->arch_private);
233 free (lwp);
234 }
235
236 /* Add a process to the common process list, and set its private
237 data. */
238
239 static struct process_info *
240 linux_add_process (int pid, int attached)
241 {
242 struct process_info *proc;
243
244 /* Is this the first process? If so, then set the arch. */
245 if (all_processes.head == NULL)
246 new_inferior = 1;
247
248 proc = add_process (pid, attached);
249 proc->private = xcalloc (1, sizeof (*proc->private));
250
251 if (the_low_target.new_process != NULL)
252 proc->private->arch_private = the_low_target.new_process ();
253
254 return proc;
255 }
256
257 /* Remove a process from the common process list,
258 also freeing all private data. */
259
260 static void
261 linux_remove_process (struct process_info *process, int detaching)
262 {
263 struct process_info_private *priv = process->private;
264
265 #ifdef USE_THREAD_DB
266 thread_db_free (process, detaching);
267 #endif
268
269 free (priv->arch_private);
270 free (priv);
271 remove_process (process);
272 }
273
274 /* Wrapper function for waitpid which handles EINTR, and emulates
275 __WALL for systems where that is not available. */
276
277 static int
278 my_waitpid (int pid, int *status, int flags)
279 {
280 int ret, out_errno;
281
282 if (debug_threads)
283 fprintf (stderr, "my_waitpid (%d, 0x%x)\n", pid, flags);
284
285 if (flags & __WALL)
286 {
287 sigset_t block_mask, org_mask, wake_mask;
288 int wnohang;
289
290 wnohang = (flags & WNOHANG) != 0;
291 flags &= ~(__WALL | __WCLONE);
292 flags |= WNOHANG;
293
294 /* Block all signals while here. This avoids knowing about
295 LinuxThread's signals. */
296 sigfillset (&block_mask);
297 sigprocmask (SIG_BLOCK, &block_mask, &org_mask);
298
299 /* ... except during the sigsuspend below. */
300 sigemptyset (&wake_mask);
301
302 while (1)
303 {
304 /* Since all signals are blocked, there's no need to check
305 for EINTR here. */
306 ret = waitpid (pid, status, flags);
307 out_errno = errno;
308
309 if (ret == -1 && out_errno != ECHILD)
310 break;
311 else if (ret > 0)
312 break;
313
314 if (flags & __WCLONE)
315 {
316 /* We've tried both flavors now. If WNOHANG is set,
317 there's nothing else to do, just bail out. */
318 if (wnohang)
319 break;
320
321 if (debug_threads)
322 fprintf (stderr, "blocking\n");
323
324 /* Block waiting for signals. */
325 sigsuspend (&wake_mask);
326 }
327
328 flags ^= __WCLONE;
329 }
330
331 sigprocmask (SIG_SETMASK, &org_mask, NULL);
332 }
333 else
334 {
335 do
336 ret = waitpid (pid, status, flags);
337 while (ret == -1 && errno == EINTR);
338 out_errno = errno;
339 }
340
341 if (debug_threads)
342 fprintf (stderr, "my_waitpid (%d, 0x%x): status(%x), %d\n",
343 pid, flags, status ? *status : -1, ret);
344
345 errno = out_errno;
346 return ret;
347 }
348
349 /* Handle a GNU/Linux extended wait response. If we see a clone
350 event, we need to add the new LWP to our list (and not report the
351 trap to higher layers). */
352
353 static void
354 handle_extended_wait (struct lwp_info *event_child, int wstat)
355 {
356 int event = wstat >> 16;
357 struct lwp_info *new_lwp;
358
359 if (event == PTRACE_EVENT_CLONE)
360 {
361 ptid_t ptid;
362 unsigned long new_pid;
363 int ret, status = W_STOPCODE (SIGSTOP);
364
365 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_child), 0, &new_pid);
366
367 /* If we haven't already seen the new PID stop, wait for it now. */
368 if (! pull_pid_from_list (&stopped_pids, new_pid))
369 {
370 /* The new child has a pending SIGSTOP. We can't affect it until it
371 hits the SIGSTOP, but we're already attached. */
372
373 ret = my_waitpid (new_pid, &status, __WALL);
374
375 if (ret == -1)
376 perror_with_name ("waiting for new child");
377 else if (ret != new_pid)
378 warning ("wait returned unexpected PID %d", ret);
379 else if (!WIFSTOPPED (status))
380 warning ("wait returned unexpected status 0x%x", status);
381 }
382
383 ptrace (PTRACE_SETOPTIONS, new_pid, 0, PTRACE_O_TRACECLONE);
384
385 ptid = ptid_build (pid_of (event_child), new_pid, 0);
386 new_lwp = (struct lwp_info *) add_lwp (ptid);
387 add_thread (ptid, new_lwp);
388
389 /* Either we're going to immediately resume the new thread
390 or leave it stopped. linux_resume_one_lwp is a nop if it
391 thinks the thread is currently running, so set this first
392 before calling linux_resume_one_lwp. */
393 new_lwp->stopped = 1;
394
395 /* Normally we will get the pending SIGSTOP. But in some cases
396 we might get another signal delivered to the group first.
397 If we do get another signal, be sure not to lose it. */
398 if (WSTOPSIG (status) == SIGSTOP)
399 {
400 if (! stopping_threads)
401 linux_resume_one_lwp (new_lwp, 0, 0, NULL);
402 }
403 else
404 {
405 new_lwp->stop_expected = 1;
406 if (stopping_threads)
407 {
408 new_lwp->status_pending_p = 1;
409 new_lwp->status_pending = status;
410 }
411 else
412 /* Pass the signal on. This is what GDB does - except
413 shouldn't we really report it instead? */
414 linux_resume_one_lwp (new_lwp, 0, WSTOPSIG (status), NULL);
415 }
416
417 /* Always resume the current thread. If we are stopping
418 threads, it will have a pending SIGSTOP; we may as well
419 collect it now. */
420 linux_resume_one_lwp (event_child, event_child->stepping, 0, NULL);
421 }
422 }
423
424 /* This function should only be called if the process got a SIGTRAP.
425 The SIGTRAP could mean several things.
426
427 On i386, where decr_pc_after_break is non-zero:
428 If we were single-stepping this process using PTRACE_SINGLESTEP,
429 we will get only the one SIGTRAP (even if the instruction we
430 stepped over was a breakpoint). The value of $eip will be the
431 next instruction.
432 If we continue the process using PTRACE_CONT, we will get a
433 SIGTRAP when we hit a breakpoint. The value of $eip will be
434 the instruction after the breakpoint (i.e. needs to be
435 decremented). If we report the SIGTRAP to GDB, we must also
436 report the undecremented PC. If we cancel the SIGTRAP, we
437 must resume at the decremented PC.
438
439 (Presumably, not yet tested) On a non-decr_pc_after_break machine
440 with hardware or kernel single-step:
441 If we single-step over a breakpoint instruction, our PC will
442 point at the following instruction. If we continue and hit a
443 breakpoint instruction, our PC will point at the breakpoint
444 instruction. */
445
446 static CORE_ADDR
447 get_stop_pc (void)
448 {
449 CORE_ADDR stop_pc = (*the_low_target.get_pc) ();
450
451 if (! get_thread_lwp (current_inferior)->stepping)
452 stop_pc -= the_low_target.decr_pc_after_break;
453
454 if (debug_threads)
455 fprintf (stderr, "stop pc is 0x%lx\n", (long) stop_pc);
456
457 return stop_pc;
458 }
459
460 static void *
461 add_lwp (ptid_t ptid)
462 {
463 struct lwp_info *lwp;
464
465 lwp = (struct lwp_info *) xmalloc (sizeof (*lwp));
466 memset (lwp, 0, sizeof (*lwp));
467
468 lwp->head.id = ptid;
469
470 if (the_low_target.new_thread != NULL)
471 lwp->arch_private = the_low_target.new_thread ();
472
473 add_inferior_to_list (&all_lwps, &lwp->head);
474
475 return lwp;
476 }
477
478 /* Start an inferior process and returns its pid.
479 ALLARGS is a vector of program-name and args. */
480
481 static int
482 linux_create_inferior (char *program, char **allargs)
483 {
484 struct lwp_info *new_lwp;
485 int pid;
486 ptid_t ptid;
487
488 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
489 pid = vfork ();
490 #else
491 pid = fork ();
492 #endif
493 if (pid < 0)
494 perror_with_name ("fork");
495
496 if (pid == 0)
497 {
498 ptrace (PTRACE_TRACEME, 0, 0, 0);
499
500 signal (__SIGRTMIN + 1, SIG_DFL);
501
502 setpgid (0, 0);
503
504 execv (program, allargs);
505 if (errno == ENOENT)
506 execvp (program, allargs);
507
508 fprintf (stderr, "Cannot exec %s: %s.\n", program,
509 strerror (errno));
510 fflush (stderr);
511 _exit (0177);
512 }
513
514 linux_add_process (pid, 0);
515
516 ptid = ptid_build (pid, pid, 0);
517 new_lwp = add_lwp (ptid);
518 add_thread (ptid, new_lwp);
519 new_lwp->must_set_ptrace_flags = 1;
520
521 return pid;
522 }
523
524 /* Attach to an inferior process. */
525
526 static void
527 linux_attach_lwp_1 (unsigned long lwpid, int initial)
528 {
529 ptid_t ptid;
530 struct lwp_info *new_lwp;
531
532 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) != 0)
533 {
534 if (!initial)
535 {
536 /* If we fail to attach to an LWP, just warn. */
537 fprintf (stderr, "Cannot attach to lwp %ld: %s (%d)\n", lwpid,
538 strerror (errno), errno);
539 fflush (stderr);
540 return;
541 }
542 else
543 /* If we fail to attach to a process, report an error. */
544 error ("Cannot attach to lwp %ld: %s (%d)\n", lwpid,
545 strerror (errno), errno);
546 }
547
548 if (initial)
549 /* NOTE/FIXME: This lwp might have not been the tgid. */
550 ptid = ptid_build (lwpid, lwpid, 0);
551 else
552 {
553 /* Note that extracting the pid from the current inferior is
554 safe, since we're always called in the context of the same
555 process as this new thread. */
556 int pid = pid_of (get_thread_lwp (current_inferior));
557 ptid = ptid_build (pid, lwpid, 0);
558 }
559
560 new_lwp = (struct lwp_info *) add_lwp (ptid);
561 add_thread (ptid, new_lwp);
562
563 /* We need to wait for SIGSTOP before being able to make the next
564 ptrace call on this LWP. */
565 new_lwp->must_set_ptrace_flags = 1;
566
567 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
568 brings it to a halt.
569
570 There are several cases to consider here:
571
572 1) gdbserver has already attached to the process and is being notified
573 of a new thread that is being created.
574 In this case we should ignore that SIGSTOP and resume the process.
575 This is handled below by setting stop_expected = 1.
576
577 2) This is the first thread (the process thread), and we're attaching
578 to it via attach_inferior.
579 In this case we want the process thread to stop.
580 This is handled by having linux_attach clear stop_expected after
581 we return.
582 ??? If the process already has several threads we leave the other
583 threads running.
584
585 3) GDB is connecting to gdbserver and is requesting an enumeration of all
586 existing threads.
587 In this case we want the thread to stop.
588 FIXME: This case is currently not properly handled.
589 We should wait for the SIGSTOP but don't. Things work apparently
590 because enough time passes between when we ptrace (ATTACH) and when
591 gdb makes the next ptrace call on the thread.
592
593 On the other hand, if we are currently trying to stop all threads, we
594 should treat the new thread as if we had sent it a SIGSTOP. This works
595 because we are guaranteed that the add_lwp call above added us to the
596 end of the list, and so the new thread has not yet reached
597 wait_for_sigstop (but will). */
598 if (! stopping_threads)
599 new_lwp->stop_expected = 1;
600 }
601
602 void
603 linux_attach_lwp (unsigned long lwpid)
604 {
605 linux_attach_lwp_1 (lwpid, 0);
606 }
607
608 int
609 linux_attach (unsigned long pid)
610 {
611 struct lwp_info *lwp;
612
613 linux_attach_lwp_1 (pid, 1);
614
615 linux_add_process (pid, 1);
616
617 if (!non_stop)
618 {
619 /* Don't ignore the initial SIGSTOP if we just attached to this
620 process. It will be collected by wait shortly. */
621 lwp = (struct lwp_info *) find_inferior_id (&all_lwps,
622 ptid_build (pid, pid, 0));
623 lwp->stop_expected = 0;
624 }
625
626 return 0;
627 }
628
629 struct counter
630 {
631 int pid;
632 int count;
633 };
634
635 static int
636 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
637 {
638 struct counter *counter = args;
639
640 if (ptid_get_pid (entry->id) == counter->pid)
641 {
642 if (++counter->count > 1)
643 return 1;
644 }
645
646 return 0;
647 }
648
649 static int
650 last_thread_of_process_p (struct thread_info *thread)
651 {
652 ptid_t ptid = ((struct inferior_list_entry *)thread)->id;
653 int pid = ptid_get_pid (ptid);
654 struct counter counter = { pid , 0 };
655
656 return (find_inferior (&all_threads,
657 second_thread_of_pid_p, &counter) == NULL);
658 }
659
660 /* Kill the inferior lwp. */
661
662 static int
663 linux_kill_one_lwp (struct inferior_list_entry *entry, void *args)
664 {
665 struct thread_info *thread = (struct thread_info *) entry;
666 struct lwp_info *lwp = get_thread_lwp (thread);
667 int wstat;
668 int pid = * (int *) args;
669
670 if (ptid_get_pid (entry->id) != pid)
671 return 0;
672
673 /* We avoid killing the first thread here, because of a Linux kernel (at
674 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
675 the children get a chance to be reaped, it will remain a zombie
676 forever. */
677
678 if (lwpid_of (lwp) == pid)
679 {
680 if (debug_threads)
681 fprintf (stderr, "lkop: is last of process %s\n",
682 target_pid_to_str (entry->id));
683 return 0;
684 }
685
686 /* If we're killing a running inferior, make sure it is stopped
687 first, as PTRACE_KILL will not work otherwise. */
688 if (!lwp->stopped)
689 send_sigstop (&lwp->head);
690
691 do
692 {
693 ptrace (PTRACE_KILL, lwpid_of (lwp), 0, 0);
694
695 /* Make sure it died. The loop is most likely unnecessary. */
696 pid = linux_wait_for_event (lwp->head.id, &wstat, __WALL);
697 } while (pid > 0 && WIFSTOPPED (wstat));
698
699 return 0;
700 }
701
702 static int
703 linux_kill (int pid)
704 {
705 struct process_info *process;
706 struct lwp_info *lwp;
707 struct thread_info *thread;
708 int wstat;
709 int lwpid;
710
711 process = find_process_pid (pid);
712 if (process == NULL)
713 return -1;
714
715 find_inferior (&all_threads, linux_kill_one_lwp, &pid);
716
717 /* See the comment in linux_kill_one_lwp. We did not kill the first
718 thread in the list, so do so now. */
719 lwp = find_lwp_pid (pid_to_ptid (pid));
720 thread = get_lwp_thread (lwp);
721
722 if (debug_threads)
723 fprintf (stderr, "lk_1: killing lwp %ld, for pid: %d\n",
724 lwpid_of (lwp), pid);
725
726 /* If we're killing a running inferior, make sure it is stopped
727 first, as PTRACE_KILL will not work otherwise. */
728 if (!lwp->stopped)
729 send_sigstop (&lwp->head);
730
731 do
732 {
733 ptrace (PTRACE_KILL, lwpid_of (lwp), 0, 0);
734
735 /* Make sure it died. The loop is most likely unnecessary. */
736 lwpid = linux_wait_for_event (lwp->head.id, &wstat, __WALL);
737 } while (lwpid > 0 && WIFSTOPPED (wstat));
738
739 delete_lwp (lwp);
740 linux_remove_process (process, 0);
741 return 0;
742 }
743
744 static int
745 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
746 {
747 struct thread_info *thread = (struct thread_info *) entry;
748 struct lwp_info *lwp = get_thread_lwp (thread);
749 int pid = * (int *) args;
750
751 if (ptid_get_pid (entry->id) != pid)
752 return 0;
753
754 /* If we're detaching from a running inferior, make sure it is
755 stopped first, as PTRACE_DETACH will not work otherwise. */
756 if (!lwp->stopped)
757 {
758 int lwpid = lwpid_of (lwp);
759
760 stopping_threads = 1;
761 send_sigstop (&lwp->head);
762
763 /* If this detects a new thread through a clone event, the new
764 thread is appended to the end of the lwp list, so we'll
765 eventually detach from it. */
766 wait_for_sigstop (&lwp->head);
767 stopping_threads = 0;
768
769 /* If LWP exits while we're trying to stop it, there's nothing
770 left to do. */
771 lwp = find_lwp_pid (pid_to_ptid (lwpid));
772 if (lwp == NULL)
773 return 0;
774 }
775
776 /* Make sure the process isn't stopped at a breakpoint that's
777 no longer there. */
778 check_removed_breakpoint (lwp);
779
780 /* If this process is stopped but is expecting a SIGSTOP, then make
781 sure we take care of that now. This isn't absolutely guaranteed
782 to collect the SIGSTOP, but is fairly likely to. */
783 if (lwp->stop_expected)
784 {
785 int wstat;
786 /* Clear stop_expected, so that the SIGSTOP will be reported. */
787 lwp->stop_expected = 0;
788 if (lwp->stopped)
789 linux_resume_one_lwp (lwp, 0, 0, NULL);
790 linux_wait_for_event (lwp->head.id, &wstat, __WALL);
791 }
792
793 /* Flush any pending changes to the process's registers. */
794 regcache_invalidate_one ((struct inferior_list_entry *)
795 get_lwp_thread (lwp));
796
797 /* Finally, let it resume. */
798 ptrace (PTRACE_DETACH, lwpid_of (lwp), 0, 0);
799
800 delete_lwp (lwp);
801 return 0;
802 }
803
804 static int
805 any_thread_of (struct inferior_list_entry *entry, void *args)
806 {
807 int *pid_p = args;
808
809 if (ptid_get_pid (entry->id) == *pid_p)
810 return 1;
811
812 return 0;
813 }
814
815 static int
816 linux_detach (int pid)
817 {
818 struct process_info *process;
819
820 process = find_process_pid (pid);
821 if (process == NULL)
822 return -1;
823
824 current_inferior =
825 (struct thread_info *) find_inferior (&all_threads, any_thread_of, &pid);
826
827 delete_all_breakpoints ();
828 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
829 linux_remove_process (process, 1);
830 return 0;
831 }
832
833 static void
834 linux_join (int pid)
835 {
836 int status, ret;
837 struct process_info *process;
838
839 process = find_process_pid (pid);
840 if (process == NULL)
841 return;
842
843 do {
844 ret = my_waitpid (pid, &status, 0);
845 if (WIFEXITED (status) || WIFSIGNALED (status))
846 break;
847 } while (ret != -1 || errno != ECHILD);
848 }
849
850 /* Return nonzero if the given thread is still alive. */
851 static int
852 linux_thread_alive (ptid_t ptid)
853 {
854 struct lwp_info *lwp = find_lwp_pid (ptid);
855
856 /* We assume we always know if a thread exits. If a whole process
857 exited but we still haven't been able to report it to GDB, we'll
858 hold on to the last lwp of the dead process. */
859 if (lwp != NULL)
860 return !lwp->dead;
861 else
862 return 0;
863 }
864
865 /* Return nonzero if this process stopped at a breakpoint which
866 no longer appears to be inserted. Also adjust the PC
867 appropriately to resume where the breakpoint used to be. */
868 static int
869 check_removed_breakpoint (struct lwp_info *event_child)
870 {
871 CORE_ADDR stop_pc;
872 struct thread_info *saved_inferior;
873
874 if (event_child->pending_is_breakpoint == 0)
875 return 0;
876
877 if (debug_threads)
878 fprintf (stderr, "Checking for breakpoint in lwp %ld.\n",
879 lwpid_of (event_child));
880
881 saved_inferior = current_inferior;
882 current_inferior = get_lwp_thread (event_child);
883
884 stop_pc = get_stop_pc ();
885
886 /* If the PC has changed since we stopped, then we shouldn't do
887 anything. This happens if, for instance, GDB handled the
888 decr_pc_after_break subtraction itself. */
889 if (stop_pc != event_child->pending_stop_pc)
890 {
891 if (debug_threads)
892 fprintf (stderr, "Ignoring, PC was changed. Old PC was 0x%08llx\n",
893 event_child->pending_stop_pc);
894
895 event_child->pending_is_breakpoint = 0;
896 current_inferior = saved_inferior;
897 return 0;
898 }
899
900 /* If the breakpoint is still there, we will report hitting it. */
901 if ((*the_low_target.breakpoint_at) (stop_pc))
902 {
903 if (debug_threads)
904 fprintf (stderr, "Ignoring, breakpoint is still present.\n");
905 current_inferior = saved_inferior;
906 return 0;
907 }
908
909 if (debug_threads)
910 fprintf (stderr, "Removed breakpoint.\n");
911
912 /* For decr_pc_after_break targets, here is where we perform the
913 decrement. We go immediately from this function to resuming,
914 and can not safely call get_stop_pc () again. */
915 if (the_low_target.set_pc != NULL)
916 {
917 if (debug_threads)
918 fprintf (stderr, "Set pc to 0x%lx\n", (long) stop_pc);
919 (*the_low_target.set_pc) (stop_pc);
920 }
921
922 /* We consumed the pending SIGTRAP. */
923 event_child->pending_is_breakpoint = 0;
924 event_child->status_pending_p = 0;
925 event_child->status_pending = 0;
926
927 current_inferior = saved_inferior;
928 return 1;
929 }
930
931 /* Return 1 if this lwp has an interesting status pending. This
932 function may silently resume an inferior lwp. */
933 static int
934 status_pending_p (struct inferior_list_entry *entry, void *arg)
935 {
936 struct lwp_info *lwp = (struct lwp_info *) entry;
937 ptid_t ptid = * (ptid_t *) arg;
938
939 /* Check if we're only interested in events from a specific process
940 or its lwps. */
941 if (!ptid_equal (minus_one_ptid, ptid)
942 && ptid_get_pid (ptid) != ptid_get_pid (lwp->head.id))
943 return 0;
944
945 if (lwp->status_pending_p && !lwp->suspended)
946 if (check_removed_breakpoint (lwp))
947 {
948 /* This thread was stopped at a breakpoint, and the breakpoint
949 is now gone. We were told to continue (or step...) all threads,
950 so GDB isn't trying to single-step past this breakpoint.
951 So instead of reporting the old SIGTRAP, pretend we got to
952 the breakpoint just after it was removed instead of just
953 before; resume the process. */
954 linux_resume_one_lwp (lwp, 0, 0, NULL);
955 return 0;
956 }
957
958 return (lwp->status_pending_p && !lwp->suspended);
959 }
960
961 static int
962 same_lwp (struct inferior_list_entry *entry, void *data)
963 {
964 ptid_t ptid = *(ptid_t *) data;
965 int lwp;
966
967 if (ptid_get_lwp (ptid) != 0)
968 lwp = ptid_get_lwp (ptid);
969 else
970 lwp = ptid_get_pid (ptid);
971
972 if (ptid_get_lwp (entry->id) == lwp)
973 return 1;
974
975 return 0;
976 }
977
978 struct lwp_info *
979 find_lwp_pid (ptid_t ptid)
980 {
981 return (struct lwp_info*) find_inferior (&all_lwps, same_lwp, &ptid);
982 }
983
984 static struct lwp_info *
985 linux_wait_for_lwp (ptid_t ptid, int *wstatp, int options)
986 {
987 int ret;
988 int to_wait_for = -1;
989 struct lwp_info *child = NULL;
990
991 if (debug_threads)
992 fprintf (stderr, "linux_wait_for_lwp: %s\n", target_pid_to_str (ptid));
993
994 if (ptid_equal (ptid, minus_one_ptid))
995 to_wait_for = -1; /* any child */
996 else
997 to_wait_for = ptid_get_lwp (ptid); /* this lwp only */
998
999 options |= __WALL;
1000
1001 retry:
1002
1003 ret = my_waitpid (to_wait_for, wstatp, options);
1004 if (ret == 0 || (ret == -1 && errno == ECHILD && (options & WNOHANG)))
1005 return NULL;
1006 else if (ret == -1)
1007 perror_with_name ("waitpid");
1008
1009 if (debug_threads
1010 && (!WIFSTOPPED (*wstatp)
1011 || (WSTOPSIG (*wstatp) != 32
1012 && WSTOPSIG (*wstatp) != 33)))
1013 fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp);
1014
1015 child = find_lwp_pid (pid_to_ptid (ret));
1016
1017 /* If we didn't find a process, one of two things presumably happened:
1018 - A process we started and then detached from has exited. Ignore it.
1019 - A process we are controlling has forked and the new child's stop
1020 was reported to us by the kernel. Save its PID. */
1021 if (child == NULL && WIFSTOPPED (*wstatp))
1022 {
1023 add_pid_to_list (&stopped_pids, ret);
1024 goto retry;
1025 }
1026 else if (child == NULL)
1027 goto retry;
1028
1029 child->stopped = 1;
1030 child->pending_is_breakpoint = 0;
1031
1032 child->last_status = *wstatp;
1033
1034 /* Architecture-specific setup after inferior is running.
1035 This needs to happen after we have attached to the inferior
1036 and it is stopped for the first time, but before we access
1037 any inferior registers. */
1038 if (new_inferior)
1039 {
1040 the_low_target.arch_setup ();
1041 #ifdef HAVE_LINUX_REGSETS
1042 memset (disabled_regsets, 0, num_regsets);
1043 #endif
1044 new_inferior = 0;
1045 }
1046
1047 if (debug_threads
1048 && WIFSTOPPED (*wstatp)
1049 && the_low_target.get_pc != NULL)
1050 {
1051 struct thread_info *saved_inferior = current_inferior;
1052 CORE_ADDR pc;
1053
1054 current_inferior = (struct thread_info *)
1055 find_inferior_id (&all_threads, child->head.id);
1056 pc = (*the_low_target.get_pc) ();
1057 fprintf (stderr, "linux_wait_for_lwp: pc is 0x%lx\n", (long) pc);
1058 current_inferior = saved_inferior;
1059 }
1060
1061 return child;
1062 }
1063
1064 /* Wait for an event from child PID. If PID is -1, wait for any
1065 child. Store the stop status through the status pointer WSTAT.
1066 OPTIONS is passed to the waitpid call. Return 0 if no child stop
1067 event was found and OPTIONS contains WNOHANG. Return the PID of
1068 the stopped child otherwise. */
1069
1070 static int
1071 linux_wait_for_event_1 (ptid_t ptid, int *wstat, int options)
1072 {
1073 CORE_ADDR stop_pc;
1074 struct lwp_info *event_child = NULL;
1075 int bp_status;
1076 struct lwp_info *requested_child = NULL;
1077
1078 /* Check for a lwp with a pending status. */
1079 /* It is possible that the user changed the pending task's registers since
1080 it stopped. We correctly handle the change of PC if we hit a breakpoint
1081 (in check_removed_breakpoint); signals should be reported anyway. */
1082
1083 if (ptid_equal (ptid, minus_one_ptid)
1084 || ptid_equal (pid_to_ptid (ptid_get_pid (ptid)), ptid))
1085 {
1086 event_child = (struct lwp_info *)
1087 find_inferior (&all_lwps, status_pending_p, &ptid);
1088 if (debug_threads && event_child)
1089 fprintf (stderr, "Got a pending child %ld\n", lwpid_of (event_child));
1090 }
1091 else
1092 {
1093 requested_child = find_lwp_pid (ptid);
1094 if (requested_child->status_pending_p
1095 && !check_removed_breakpoint (requested_child))
1096 event_child = requested_child;
1097 }
1098
1099 if (event_child != NULL)
1100 {
1101 if (debug_threads)
1102 fprintf (stderr, "Got an event from pending child %ld (%04x)\n",
1103 lwpid_of (event_child), event_child->status_pending);
1104 *wstat = event_child->status_pending;
1105 event_child->status_pending_p = 0;
1106 event_child->status_pending = 0;
1107 current_inferior = get_lwp_thread (event_child);
1108 return lwpid_of (event_child);
1109 }
1110
1111 /* We only enter this loop if no process has a pending wait status. Thus
1112 any action taken in response to a wait status inside this loop is
1113 responding as soon as we detect the status, not after any pending
1114 events. */
1115 while (1)
1116 {
1117 event_child = linux_wait_for_lwp (ptid, wstat, options);
1118
1119 if ((options & WNOHANG) && event_child == NULL)
1120 return 0;
1121
1122 if (event_child == NULL)
1123 error ("event from unknown child");
1124
1125 current_inferior = get_lwp_thread (event_child);
1126
1127 /* Check for thread exit. */
1128 if (! WIFSTOPPED (*wstat))
1129 {
1130 if (debug_threads)
1131 fprintf (stderr, "LWP %ld exiting\n", lwpid_of (event_child));
1132
1133 /* If the last thread is exiting, just return. */
1134 if (last_thread_of_process_p (current_inferior))
1135 {
1136 if (debug_threads)
1137 fprintf (stderr, "LWP %ld is last lwp of process\n",
1138 lwpid_of (event_child));
1139 return lwpid_of (event_child);
1140 }
1141
1142 delete_lwp (event_child);
1143
1144 if (!non_stop)
1145 {
1146 current_inferior = (struct thread_info *) all_threads.head;
1147 if (debug_threads)
1148 fprintf (stderr, "Current inferior is now %ld\n",
1149 lwpid_of (get_thread_lwp (current_inferior)));
1150 }
1151 else
1152 {
1153 current_inferior = NULL;
1154 if (debug_threads)
1155 fprintf (stderr, "Current inferior is now <NULL>\n");
1156 }
1157
1158 /* If we were waiting for this particular child to do something...
1159 well, it did something. */
1160 if (requested_child != NULL)
1161 return lwpid_of (event_child);
1162
1163 /* Wait for a more interesting event. */
1164 continue;
1165 }
1166
1167 if (event_child->must_set_ptrace_flags)
1168 {
1169 ptrace (PTRACE_SETOPTIONS, lwpid_of (event_child),
1170 0, PTRACE_O_TRACECLONE);
1171 event_child->must_set_ptrace_flags = 0;
1172 }
1173
1174 if (WIFSTOPPED (*wstat)
1175 && WSTOPSIG (*wstat) == SIGSTOP
1176 && event_child->stop_expected)
1177 {
1178 if (debug_threads)
1179 fprintf (stderr, "Expected stop.\n");
1180 event_child->stop_expected = 0;
1181 linux_resume_one_lwp (event_child, event_child->stepping, 0, NULL);
1182 continue;
1183 }
1184
1185 if (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) == SIGTRAP
1186 && *wstat >> 16 != 0)
1187 {
1188 handle_extended_wait (event_child, *wstat);
1189 continue;
1190 }
1191
1192 /* If GDB is not interested in this signal, don't stop other
1193 threads, and don't report it to GDB. Just resume the
1194 inferior right away. We do this for threading-related
1195 signals as well as any that GDB specifically requested we
1196 ignore. But never ignore SIGSTOP if we sent it ourselves,
1197 and do not ignore signals when stepping - they may require
1198 special handling to skip the signal handler. */
1199 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
1200 thread library? */
1201 if (WIFSTOPPED (*wstat)
1202 && !event_child->stepping
1203 && (
1204 #ifdef USE_THREAD_DB
1205 (current_process ()->private->thread_db != NULL
1206 && (WSTOPSIG (*wstat) == __SIGRTMIN
1207 || WSTOPSIG (*wstat) == __SIGRTMIN + 1))
1208 ||
1209 #endif
1210 (pass_signals[target_signal_from_host (WSTOPSIG (*wstat))]
1211 && (WSTOPSIG (*wstat) != SIGSTOP || !stopping_threads))))
1212 {
1213 siginfo_t info, *info_p;
1214
1215 if (debug_threads)
1216 fprintf (stderr, "Ignored signal %d for LWP %ld.\n",
1217 WSTOPSIG (*wstat), lwpid_of (event_child));
1218
1219 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (event_child), 0, &info) == 0)
1220 info_p = &info;
1221 else
1222 info_p = NULL;
1223 linux_resume_one_lwp (event_child,
1224 event_child->stepping,
1225 WSTOPSIG (*wstat), info_p);
1226 continue;
1227 }
1228
1229 /* If this event was not handled above, and is not a SIGTRAP, report
1230 it. */
1231 if (!WIFSTOPPED (*wstat) || WSTOPSIG (*wstat) != SIGTRAP)
1232 return lwpid_of (event_child);
1233
1234 /* If this target does not support breakpoints, we simply report the
1235 SIGTRAP; it's of no concern to us. */
1236 if (the_low_target.get_pc == NULL)
1237 return lwpid_of (event_child);
1238
1239 stop_pc = get_stop_pc ();
1240
1241 /* bp_reinsert will only be set if we were single-stepping.
1242 Notice that we will resume the process after hitting
1243 a gdbserver breakpoint; single-stepping to/over one
1244 is not supported (yet). */
1245 if (event_child->bp_reinsert != 0)
1246 {
1247 if (debug_threads)
1248 fprintf (stderr, "Reinserted breakpoint.\n");
1249 reinsert_breakpoint (event_child->bp_reinsert);
1250 event_child->bp_reinsert = 0;
1251
1252 /* Clear the single-stepping flag and SIGTRAP as we resume. */
1253 linux_resume_one_lwp (event_child, 0, 0, NULL);
1254 continue;
1255 }
1256
1257 bp_status = check_breakpoints (stop_pc);
1258
1259 if (bp_status != 0)
1260 {
1261 if (debug_threads)
1262 fprintf (stderr, "Hit a gdbserver breakpoint.\n");
1263
1264 /* We hit one of our own breakpoints. We mark it as a pending
1265 breakpoint, so that check_removed_breakpoint () will do the PC
1266 adjustment for us at the appropriate time. */
1267 event_child->pending_is_breakpoint = 1;
1268 event_child->pending_stop_pc = stop_pc;
1269
1270 /* We may need to put the breakpoint back. We continue in the event
1271 loop instead of simply replacing the breakpoint right away,
1272 in order to not lose signals sent to the thread that hit the
1273 breakpoint. Unfortunately this increases the window where another
1274 thread could sneak past the removed breakpoint. For the current
1275 use of server-side breakpoints (thread creation) this is
1276 acceptable; but it needs to be considered before this breakpoint
1277 mechanism can be used in more general ways. For some breakpoints
1278 it may be necessary to stop all other threads, but that should
1279 be avoided where possible.
1280
1281 If breakpoint_reinsert_addr is NULL, that means that we can
1282 use PTRACE_SINGLESTEP on this platform. Uninsert the breakpoint,
1283 mark it for reinsertion, and single-step.
1284
1285 Otherwise, call the target function to figure out where we need
1286 our temporary breakpoint, create it, and continue executing this
1287 process. */
1288
1289 /* NOTE: we're lifting breakpoints in non-stop mode. This
1290 is currently only used for thread event breakpoints, so
1291 it isn't that bad as long as we have PTRACE_EVENT_CLONE
1292 events. */
1293 if (bp_status == 2)
1294 /* No need to reinsert. */
1295 linux_resume_one_lwp (event_child, 0, 0, NULL);
1296 else if (the_low_target.breakpoint_reinsert_addr == NULL)
1297 {
1298 event_child->bp_reinsert = stop_pc;
1299 uninsert_breakpoint (stop_pc);
1300 linux_resume_one_lwp (event_child, 1, 0, NULL);
1301 }
1302 else
1303 {
1304 reinsert_breakpoint_by_bp
1305 (stop_pc, (*the_low_target.breakpoint_reinsert_addr) ());
1306 linux_resume_one_lwp (event_child, 0, 0, NULL);
1307 }
1308
1309 continue;
1310 }
1311
1312 if (debug_threads)
1313 fprintf (stderr, "Hit a non-gdbserver breakpoint.\n");
1314
1315 /* If we were single-stepping, we definitely want to report the
1316 SIGTRAP. Although the single-step operation has completed,
1317 do not clear clear the stepping flag yet; we need to check it
1318 in wait_for_sigstop. */
1319 if (event_child->stepping)
1320 return lwpid_of (event_child);
1321
1322 /* A SIGTRAP that we can't explain. It may have been a breakpoint.
1323 Check if it is a breakpoint, and if so mark the process information
1324 accordingly. This will handle both the necessary fiddling with the
1325 PC on decr_pc_after_break targets and suppressing extra threads
1326 hitting a breakpoint if two hit it at once and then GDB removes it
1327 after the first is reported. Arguably it would be better to report
1328 multiple threads hitting breakpoints simultaneously, but the current
1329 remote protocol does not allow this. */
1330 if ((*the_low_target.breakpoint_at) (stop_pc))
1331 {
1332 event_child->pending_is_breakpoint = 1;
1333 event_child->pending_stop_pc = stop_pc;
1334 }
1335
1336 return lwpid_of (event_child);
1337 }
1338
1339 /* NOTREACHED */
1340 return 0;
1341 }
1342
1343 static int
1344 linux_wait_for_event (ptid_t ptid, int *wstat, int options)
1345 {
1346 ptid_t wait_ptid;
1347
1348 if (ptid_is_pid (ptid))
1349 {
1350 /* A request to wait for a specific tgid. This is not possible
1351 with waitpid, so instead, we wait for any child, and leave
1352 children we're not interested in right now with a pending
1353 status to report later. */
1354 wait_ptid = minus_one_ptid;
1355 }
1356 else
1357 wait_ptid = ptid;
1358
1359 while (1)
1360 {
1361 int event_pid;
1362
1363 event_pid = linux_wait_for_event_1 (wait_ptid, wstat, options);
1364
1365 if (event_pid > 0
1366 && ptid_is_pid (ptid) && ptid_get_pid (ptid) != event_pid)
1367 {
1368 struct lwp_info *event_child = find_lwp_pid (pid_to_ptid (event_pid));
1369
1370 if (! WIFSTOPPED (*wstat))
1371 mark_lwp_dead (event_child, *wstat);
1372 else
1373 {
1374 event_child->status_pending_p = 1;
1375 event_child->status_pending = *wstat;
1376 }
1377 }
1378 else
1379 return event_pid;
1380 }
1381 }
1382
1383 /* Wait for process, returns status. */
1384
1385 static ptid_t
1386 linux_wait_1 (ptid_t ptid,
1387 struct target_waitstatus *ourstatus, int target_options)
1388 {
1389 int w;
1390 struct thread_info *thread = NULL;
1391 struct lwp_info *lwp = NULL;
1392 int options;
1393 int pid;
1394
1395 /* Translate generic target options into linux options. */
1396 options = __WALL;
1397 if (target_options & TARGET_WNOHANG)
1398 options |= WNOHANG;
1399
1400 retry:
1401 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1402
1403 /* If we were only supposed to resume one thread, only wait for
1404 that thread - if it's still alive. If it died, however - which
1405 can happen if we're coming from the thread death case below -
1406 then we need to make sure we restart the other threads. We could
1407 pick a thread at random or restart all; restarting all is less
1408 arbitrary. */
1409 if (!non_stop
1410 && !ptid_equal (cont_thread, null_ptid)
1411 && !ptid_equal (cont_thread, minus_one_ptid))
1412 {
1413 thread = (struct thread_info *) find_inferior_id (&all_threads,
1414 cont_thread);
1415
1416 /* No stepping, no signal - unless one is pending already, of course. */
1417 if (thread == NULL)
1418 {
1419 struct thread_resume resume_info;
1420 resume_info.thread = minus_one_ptid;
1421 resume_info.kind = resume_continue;
1422 resume_info.sig = 0;
1423 linux_resume (&resume_info, 1);
1424 }
1425 else
1426 ptid = cont_thread;
1427 }
1428
1429 pid = linux_wait_for_event (ptid, &w, options);
1430 if (pid == 0) /* only if TARGET_WNOHANG */
1431 return null_ptid;
1432
1433 lwp = get_thread_lwp (current_inferior);
1434
1435 /* If we are waiting for a particular child, and it exited,
1436 linux_wait_for_event will return its exit status. Similarly if
1437 the last child exited. If this is not the last child, however,
1438 do not report it as exited until there is a 'thread exited' response
1439 available in the remote protocol. Instead, just wait for another event.
1440 This should be safe, because if the thread crashed we will already
1441 have reported the termination signal to GDB; that should stop any
1442 in-progress stepping operations, etc.
1443
1444 Report the exit status of the last thread to exit. This matches
1445 LinuxThreads' behavior. */
1446
1447 if (last_thread_of_process_p (current_inferior))
1448 {
1449 if (WIFEXITED (w) || WIFSIGNALED (w))
1450 {
1451 int pid = pid_of (lwp);
1452 struct process_info *process = find_process_pid (pid);
1453
1454 delete_lwp (lwp);
1455 linux_remove_process (process, 0);
1456
1457 current_inferior = NULL;
1458
1459 if (WIFEXITED (w))
1460 {
1461 ourstatus->kind = TARGET_WAITKIND_EXITED;
1462 ourstatus->value.integer = WEXITSTATUS (w);
1463
1464 if (debug_threads)
1465 fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
1466 }
1467 else
1468 {
1469 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
1470 ourstatus->value.sig = target_signal_from_host (WTERMSIG (w));
1471
1472 if (debug_threads)
1473 fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
1474
1475 }
1476
1477 return pid_to_ptid (pid);
1478 }
1479 }
1480 else
1481 {
1482 if (!WIFSTOPPED (w))
1483 goto retry;
1484 }
1485
1486 /* In all-stop, stop all threads. Be careful to only do this if
1487 we're about to report an event to GDB. */
1488 if (!non_stop)
1489 stop_all_lwps ();
1490
1491 ourstatus->kind = TARGET_WAITKIND_STOPPED;
1492
1493 if (lwp->suspended && WSTOPSIG (w) == SIGSTOP)
1494 {
1495 /* A thread that has been requested to stop by GDB with vCont;t,
1496 and it stopped cleanly, so report as SIG0. The use of
1497 SIGSTOP is an implementation detail. */
1498 ourstatus->value.sig = TARGET_SIGNAL_0;
1499 }
1500 else if (lwp->suspended && WSTOPSIG (w) != SIGSTOP)
1501 {
1502 /* A thread that has been requested to stop by GDB with vCont;t,
1503 but, it stopped for other reasons. Set stop_expected so the
1504 pending SIGSTOP is ignored and the LWP is resumed. */
1505 lwp->stop_expected = 1;
1506 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (w));
1507 }
1508 else
1509 {
1510 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (w));
1511 }
1512
1513 if (debug_threads)
1514 fprintf (stderr, "linux_wait ret = %s, %d, %d\n",
1515 target_pid_to_str (lwp->head.id),
1516 ourstatus->kind,
1517 ourstatus->value.sig);
1518
1519 return lwp->head.id;
1520 }
1521
1522 /* Get rid of any pending event in the pipe. */
1523 static void
1524 async_file_flush (void)
1525 {
1526 int ret;
1527 char buf;
1528
1529 do
1530 ret = read (linux_event_pipe[0], &buf, 1);
1531 while (ret >= 0 || (ret == -1 && errno == EINTR));
1532 }
1533
1534 /* Put something in the pipe, so the event loop wakes up. */
1535 static void
1536 async_file_mark (void)
1537 {
1538 int ret;
1539
1540 async_file_flush ();
1541
1542 do
1543 ret = write (linux_event_pipe[1], "+", 1);
1544 while (ret == 0 || (ret == -1 && errno == EINTR));
1545
1546 /* Ignore EAGAIN. If the pipe is full, the event loop will already
1547 be awakened anyway. */
1548 }
1549
1550 static ptid_t
1551 linux_wait (ptid_t ptid,
1552 struct target_waitstatus *ourstatus, int target_options)
1553 {
1554 ptid_t event_ptid;
1555
1556 if (debug_threads)
1557 fprintf (stderr, "linux_wait: [%s]\n", target_pid_to_str (ptid));
1558
1559 /* Flush the async file first. */
1560 if (target_is_async_p ())
1561 async_file_flush ();
1562
1563 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
1564
1565 /* If at least one stop was reported, there may be more. A single
1566 SIGCHLD can signal more than one child stop. */
1567 if (target_is_async_p ()
1568 && (target_options & TARGET_WNOHANG) != 0
1569 && !ptid_equal (event_ptid, null_ptid))
1570 async_file_mark ();
1571
1572 return event_ptid;
1573 }
1574
1575 /* Send a signal to an LWP. For LinuxThreads, kill is enough; however, if
1576 thread groups are in use, we need to use tkill. */
1577
1578 static int
1579 kill_lwp (unsigned long lwpid, int signo)
1580 {
1581 static int tkill_failed;
1582
1583 errno = 0;
1584
1585 #ifdef SYS_tkill
1586 if (!tkill_failed)
1587 {
1588 int ret = syscall (SYS_tkill, lwpid, signo);
1589 if (errno != ENOSYS)
1590 return ret;
1591 errno = 0;
1592 tkill_failed = 1;
1593 }
1594 #endif
1595
1596 return kill (lwpid, signo);
1597 }
1598
1599 static void
1600 send_sigstop (struct inferior_list_entry *entry)
1601 {
1602 struct lwp_info *lwp = (struct lwp_info *) entry;
1603 int pid;
1604
1605 if (lwp->stopped)
1606 return;
1607
1608 pid = lwpid_of (lwp);
1609
1610 /* If we already have a pending stop signal for this process, don't
1611 send another. */
1612 if (lwp->stop_expected)
1613 {
1614 if (debug_threads)
1615 fprintf (stderr, "Have pending sigstop for lwp %d\n", pid);
1616
1617 /* We clear the stop_expected flag so that wait_for_sigstop
1618 will receive the SIGSTOP event (instead of silently resuming and
1619 waiting again). It'll be reset below. */
1620 lwp->stop_expected = 0;
1621 return;
1622 }
1623
1624 if (debug_threads)
1625 fprintf (stderr, "Sending sigstop to lwp %d\n", pid);
1626
1627 kill_lwp (pid, SIGSTOP);
1628 }
1629
1630 static void
1631 mark_lwp_dead (struct lwp_info *lwp, int wstat)
1632 {
1633 /* It's dead, really. */
1634 lwp->dead = 1;
1635
1636 /* Store the exit status for later. */
1637 lwp->status_pending_p = 1;
1638 lwp->status_pending = wstat;
1639
1640 /* So that check_removed_breakpoint doesn't try to figure out if
1641 this is stopped at a breakpoint. */
1642 lwp->pending_is_breakpoint = 0;
1643
1644 /* Prevent trying to stop it. */
1645 lwp->stopped = 1;
1646
1647 /* No further stops are expected from a dead lwp. */
1648 lwp->stop_expected = 0;
1649 }
1650
1651 static void
1652 wait_for_sigstop (struct inferior_list_entry *entry)
1653 {
1654 struct lwp_info *lwp = (struct lwp_info *) entry;
1655 struct thread_info *saved_inferior;
1656 int wstat;
1657 ptid_t saved_tid;
1658 ptid_t ptid;
1659
1660 if (lwp->stopped)
1661 return;
1662
1663 saved_inferior = current_inferior;
1664 if (saved_inferior != NULL)
1665 saved_tid = ((struct inferior_list_entry *) saved_inferior)->id;
1666 else
1667 saved_tid = null_ptid; /* avoid bogus unused warning */
1668
1669 ptid = lwp->head.id;
1670
1671 linux_wait_for_event (ptid, &wstat, __WALL);
1672
1673 /* If we stopped with a non-SIGSTOP signal, save it for later
1674 and record the pending SIGSTOP. If the process exited, just
1675 return. */
1676 if (WIFSTOPPED (wstat)
1677 && WSTOPSIG (wstat) != SIGSTOP)
1678 {
1679 if (debug_threads)
1680 fprintf (stderr, "LWP %ld stopped with non-sigstop status %06x\n",
1681 lwpid_of (lwp), wstat);
1682
1683 /* Do not leave a pending single-step finish to be reported to
1684 the client. The client will give us a new action for this
1685 thread, possibly a continue request --- otherwise, the client
1686 would consider this pending SIGTRAP reported later a spurious
1687 signal. */
1688 if (WSTOPSIG (wstat) == SIGTRAP
1689 && lwp->stepping
1690 && !linux_stopped_by_watchpoint ())
1691 {
1692 if (debug_threads)
1693 fprintf (stderr, " single-step SIGTRAP ignored\n");
1694 }
1695 else
1696 {
1697 lwp->status_pending_p = 1;
1698 lwp->status_pending = wstat;
1699 }
1700 lwp->stop_expected = 1;
1701 }
1702 else if (!WIFSTOPPED (wstat))
1703 {
1704 if (debug_threads)
1705 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
1706 lwpid_of (lwp));
1707
1708 /* Leave this status pending for the next time we're able to
1709 report it. In the mean time, we'll report this lwp as dead
1710 to GDB, so GDB doesn't try to read registers and memory from
1711 it. */
1712 mark_lwp_dead (lwp, wstat);
1713 }
1714
1715 if (saved_inferior == NULL || linux_thread_alive (saved_tid))
1716 current_inferior = saved_inferior;
1717 else
1718 {
1719 if (debug_threads)
1720 fprintf (stderr, "Previously current thread died.\n");
1721
1722 if (non_stop)
1723 {
1724 /* We can't change the current inferior behind GDB's back,
1725 otherwise, a subsequent command may apply to the wrong
1726 process. */
1727 current_inferior = NULL;
1728 }
1729 else
1730 {
1731 /* Set a valid thread as current. */
1732 set_desired_inferior (0);
1733 }
1734 }
1735 }
1736
1737 static void
1738 stop_all_lwps (void)
1739 {
1740 stopping_threads = 1;
1741 for_each_inferior (&all_lwps, send_sigstop);
1742 for_each_inferior (&all_lwps, wait_for_sigstop);
1743 stopping_threads = 0;
1744 }
1745
1746 /* Resume execution of the inferior process.
1747 If STEP is nonzero, single-step it.
1748 If SIGNAL is nonzero, give it that signal. */
1749
1750 static void
1751 linux_resume_one_lwp (struct lwp_info *lwp,
1752 int step, int signal, siginfo_t *info)
1753 {
1754 struct thread_info *saved_inferior;
1755
1756 if (lwp->stopped == 0)
1757 return;
1758
1759 /* If we have pending signals or status, and a new signal, enqueue the
1760 signal. Also enqueue the signal if we are waiting to reinsert a
1761 breakpoint; it will be picked up again below. */
1762 if (signal != 0
1763 && (lwp->status_pending_p || lwp->pending_signals != NULL
1764 || lwp->bp_reinsert != 0))
1765 {
1766 struct pending_signals *p_sig;
1767 p_sig = xmalloc (sizeof (*p_sig));
1768 p_sig->prev = lwp->pending_signals;
1769 p_sig->signal = signal;
1770 if (info == NULL)
1771 memset (&p_sig->info, 0, sizeof (siginfo_t));
1772 else
1773 memcpy (&p_sig->info, info, sizeof (siginfo_t));
1774 lwp->pending_signals = p_sig;
1775 }
1776
1777 if (lwp->status_pending_p && !check_removed_breakpoint (lwp))
1778 return;
1779
1780 saved_inferior = current_inferior;
1781 current_inferior = get_lwp_thread (lwp);
1782
1783 if (debug_threads)
1784 fprintf (stderr, "Resuming lwp %ld (%s, signal %d, stop %s)\n",
1785 lwpid_of (lwp), step ? "step" : "continue", signal,
1786 lwp->stop_expected ? "expected" : "not expected");
1787
1788 /* This bit needs some thinking about. If we get a signal that
1789 we must report while a single-step reinsert is still pending,
1790 we often end up resuming the thread. It might be better to
1791 (ew) allow a stack of pending events; then we could be sure that
1792 the reinsert happened right away and not lose any signals.
1793
1794 Making this stack would also shrink the window in which breakpoints are
1795 uninserted (see comment in linux_wait_for_lwp) but not enough for
1796 complete correctness, so it won't solve that problem. It may be
1797 worthwhile just to solve this one, however. */
1798 if (lwp->bp_reinsert != 0)
1799 {
1800 if (debug_threads)
1801 fprintf (stderr, " pending reinsert at %08lx", (long)lwp->bp_reinsert);
1802 if (step == 0)
1803 fprintf (stderr, "BAD - reinserting but not stepping.\n");
1804 step = 1;
1805
1806 /* Postpone any pending signal. It was enqueued above. */
1807 signal = 0;
1808 }
1809
1810 check_removed_breakpoint (lwp);
1811
1812 if (debug_threads && the_low_target.get_pc != NULL)
1813 {
1814 CORE_ADDR pc = (*the_low_target.get_pc) ();
1815 fprintf (stderr, " resuming from pc 0x%lx\n", (long) pc);
1816 }
1817
1818 /* If we have pending signals, consume one unless we are trying to reinsert
1819 a breakpoint. */
1820 if (lwp->pending_signals != NULL && lwp->bp_reinsert == 0)
1821 {
1822 struct pending_signals **p_sig;
1823
1824 p_sig = &lwp->pending_signals;
1825 while ((*p_sig)->prev != NULL)
1826 p_sig = &(*p_sig)->prev;
1827
1828 signal = (*p_sig)->signal;
1829 if ((*p_sig)->info.si_signo != 0)
1830 ptrace (PTRACE_SETSIGINFO, lwpid_of (lwp), 0, &(*p_sig)->info);
1831
1832 free (*p_sig);
1833 *p_sig = NULL;
1834 }
1835
1836 if (the_low_target.prepare_to_resume != NULL)
1837 the_low_target.prepare_to_resume (lwp);
1838
1839 regcache_invalidate_one ((struct inferior_list_entry *)
1840 get_lwp_thread (lwp));
1841 errno = 0;
1842 lwp->stopped = 0;
1843 lwp->stepping = step;
1844 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, lwpid_of (lwp), 0, signal);
1845
1846 current_inferior = saved_inferior;
1847 if (errno)
1848 {
1849 /* ESRCH from ptrace either means that the thread was already
1850 running (an error) or that it is gone (a race condition). If
1851 it's gone, we will get a notification the next time we wait,
1852 so we can ignore the error. We could differentiate these
1853 two, but it's tricky without waiting; the thread still exists
1854 as a zombie, so sending it signal 0 would succeed. So just
1855 ignore ESRCH. */
1856 if (errno == ESRCH)
1857 return;
1858
1859 perror_with_name ("ptrace");
1860 }
1861 }
1862
1863 struct thread_resume_array
1864 {
1865 struct thread_resume *resume;
1866 size_t n;
1867 };
1868
1869 /* This function is called once per thread. We look up the thread
1870 in RESUME_PTR, and mark the thread with a pointer to the appropriate
1871 resume request.
1872
1873 This algorithm is O(threads * resume elements), but resume elements
1874 is small (and will remain small at least until GDB supports thread
1875 suspension). */
1876 static int
1877 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
1878 {
1879 struct lwp_info *lwp;
1880 struct thread_info *thread;
1881 int ndx;
1882 struct thread_resume_array *r;
1883
1884 thread = (struct thread_info *) entry;
1885 lwp = get_thread_lwp (thread);
1886 r = arg;
1887
1888 for (ndx = 0; ndx < r->n; ndx++)
1889 {
1890 ptid_t ptid = r->resume[ndx].thread;
1891 if (ptid_equal (ptid, minus_one_ptid)
1892 || ptid_equal (ptid, entry->id)
1893 || (ptid_is_pid (ptid)
1894 && (ptid_get_pid (ptid) == pid_of (lwp)))
1895 || (ptid_get_lwp (ptid) == -1
1896 && (ptid_get_pid (ptid) == pid_of (lwp))))
1897 {
1898 lwp->resume = &r->resume[ndx];
1899 return 0;
1900 }
1901 }
1902
1903 /* No resume action for this thread. */
1904 lwp->resume = NULL;
1905
1906 return 0;
1907 }
1908
1909
1910 /* Set *FLAG_P if this lwp has an interesting status pending. */
1911 static int
1912 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
1913 {
1914 struct lwp_info *lwp = (struct lwp_info *) entry;
1915
1916 /* LWPs which will not be resumed are not interesting, because
1917 we might not wait for them next time through linux_wait. */
1918 if (lwp->resume == NULL)
1919 return 0;
1920
1921 /* If this thread has a removed breakpoint, we won't have any
1922 events to report later, so check now. check_removed_breakpoint
1923 may clear status_pending_p. We avoid calling check_removed_breakpoint
1924 for any thread that we are not otherwise going to resume - this
1925 lets us preserve stopped status when two threads hit a breakpoint.
1926 GDB removes the breakpoint to single-step a particular thread
1927 past it, then re-inserts it and resumes all threads. We want
1928 to report the second thread without resuming it in the interim. */
1929 if (lwp->status_pending_p)
1930 check_removed_breakpoint (lwp);
1931
1932 if (lwp->status_pending_p)
1933 * (int *) flag_p = 1;
1934
1935 return 0;
1936 }
1937
1938 /* This function is called once per thread. We check the thread's resume
1939 request, which will tell us whether to resume, step, or leave the thread
1940 stopped; and what signal, if any, it should be sent.
1941
1942 For threads which we aren't explicitly told otherwise, we preserve
1943 the stepping flag; this is used for stepping over gdbserver-placed
1944 breakpoints.
1945
1946 If pending_flags was set in any thread, we queue any needed
1947 signals, since we won't actually resume. We already have a pending
1948 event to report, so we don't need to preserve any step requests;
1949 they should be re-issued if necessary. */
1950
1951 static int
1952 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
1953 {
1954 struct lwp_info *lwp;
1955 struct thread_info *thread;
1956 int step;
1957 int pending_flag = * (int *) arg;
1958
1959 thread = (struct thread_info *) entry;
1960 lwp = get_thread_lwp (thread);
1961
1962 if (lwp->resume == NULL)
1963 return 0;
1964
1965 if (lwp->resume->kind == resume_stop)
1966 {
1967 if (debug_threads)
1968 fprintf (stderr, "suspending LWP %ld\n", lwpid_of (lwp));
1969
1970 if (!lwp->stopped)
1971 {
1972 if (debug_threads)
1973 fprintf (stderr, "running -> suspending LWP %ld\n", lwpid_of (lwp));
1974
1975 lwp->suspended = 1;
1976 send_sigstop (&lwp->head);
1977 }
1978 else
1979 {
1980 if (debug_threads)
1981 {
1982 if (lwp->suspended)
1983 fprintf (stderr, "already stopped/suspended LWP %ld\n",
1984 lwpid_of (lwp));
1985 else
1986 fprintf (stderr, "already stopped/not suspended LWP %ld\n",
1987 lwpid_of (lwp));
1988 }
1989
1990 /* Make sure we leave the LWP suspended, so we don't try to
1991 resume it without GDB telling us to. FIXME: The LWP may
1992 have been stopped in an internal event that was not meant
1993 to be notified back to GDB (e.g., gdbserver breakpoint),
1994 so we should be reporting a stop event in that case
1995 too. */
1996 lwp->suspended = 1;
1997 }
1998
1999 /* For stop requests, we're done. */
2000 lwp->resume = NULL;
2001 return 0;
2002 }
2003 else
2004 lwp->suspended = 0;
2005
2006 /* If this thread which is about to be resumed has a pending status,
2007 then don't resume any threads - we can just report the pending
2008 status. Make sure to queue any signals that would otherwise be
2009 sent. In all-stop mode, we do this decision based on if *any*
2010 thread has a pending status. */
2011 if (non_stop)
2012 resume_status_pending_p (&lwp->head, &pending_flag);
2013
2014 if (!pending_flag)
2015 {
2016 if (debug_threads)
2017 fprintf (stderr, "resuming LWP %ld\n", lwpid_of (lwp));
2018
2019 if (ptid_equal (lwp->resume->thread, minus_one_ptid)
2020 && lwp->stepping
2021 && lwp->pending_is_breakpoint)
2022 step = 1;
2023 else
2024 step = (lwp->resume->kind == resume_step);
2025
2026 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
2027 }
2028 else
2029 {
2030 if (debug_threads)
2031 fprintf (stderr, "leaving LWP %ld stopped\n", lwpid_of (lwp));
2032
2033 /* If we have a new signal, enqueue the signal. */
2034 if (lwp->resume->sig != 0)
2035 {
2036 struct pending_signals *p_sig;
2037 p_sig = xmalloc (sizeof (*p_sig));
2038 p_sig->prev = lwp->pending_signals;
2039 p_sig->signal = lwp->resume->sig;
2040 memset (&p_sig->info, 0, sizeof (siginfo_t));
2041
2042 /* If this is the same signal we were previously stopped by,
2043 make sure to queue its siginfo. We can ignore the return
2044 value of ptrace; if it fails, we'll skip
2045 PTRACE_SETSIGINFO. */
2046 if (WIFSTOPPED (lwp->last_status)
2047 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
2048 ptrace (PTRACE_GETSIGINFO, lwpid_of (lwp), 0, &p_sig->info);
2049
2050 lwp->pending_signals = p_sig;
2051 }
2052 }
2053
2054 lwp->resume = NULL;
2055 return 0;
2056 }
2057
2058 static void
2059 linux_resume (struct thread_resume *resume_info, size_t n)
2060 {
2061 int pending_flag;
2062 struct thread_resume_array array = { resume_info, n };
2063
2064 find_inferior (&all_threads, linux_set_resume_request, &array);
2065
2066 /* If there is a thread which would otherwise be resumed, which
2067 has a pending status, then don't resume any threads - we can just
2068 report the pending status. Make sure to queue any signals
2069 that would otherwise be sent. In non-stop mode, we'll apply this
2070 logic to each thread individually. */
2071 pending_flag = 0;
2072 if (!non_stop)
2073 find_inferior (&all_lwps, resume_status_pending_p, &pending_flag);
2074
2075 if (debug_threads)
2076 {
2077 if (pending_flag)
2078 fprintf (stderr, "Not resuming, pending status\n");
2079 else
2080 fprintf (stderr, "Resuming, no pending status\n");
2081 }
2082
2083 find_inferior (&all_threads, linux_resume_one_thread, &pending_flag);
2084 }
2085
2086 #ifdef HAVE_LINUX_USRREGS
2087
2088 int
2089 register_addr (int regnum)
2090 {
2091 int addr;
2092
2093 if (regnum < 0 || regnum >= the_low_target.num_regs)
2094 error ("Invalid register number %d.", regnum);
2095
2096 addr = the_low_target.regmap[regnum];
2097
2098 return addr;
2099 }
2100
2101 /* Fetch one register. */
2102 static void
2103 fetch_register (int regno)
2104 {
2105 CORE_ADDR regaddr;
2106 int i, size;
2107 char *buf;
2108 int pid;
2109
2110 if (regno >= the_low_target.num_regs)
2111 return;
2112 if ((*the_low_target.cannot_fetch_register) (regno))
2113 return;
2114
2115 regaddr = register_addr (regno);
2116 if (regaddr == -1)
2117 return;
2118
2119 pid = lwpid_of (get_thread_lwp (current_inferior));
2120 size = ((register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
2121 & - sizeof (PTRACE_XFER_TYPE));
2122 buf = alloca (size);
2123 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
2124 {
2125 errno = 0;
2126 *(PTRACE_XFER_TYPE *) (buf + i) =
2127 ptrace (PTRACE_PEEKUSER, pid, (PTRACE_ARG3_TYPE) regaddr, 0);
2128 regaddr += sizeof (PTRACE_XFER_TYPE);
2129 if (errno != 0)
2130 {
2131 /* Warning, not error, in case we are attached; sometimes the
2132 kernel doesn't let us at the registers. */
2133 char *err = strerror (errno);
2134 char *msg = alloca (strlen (err) + 128);
2135 sprintf (msg, "reading register %d: %s", regno, err);
2136 error (msg);
2137 goto error_exit;
2138 }
2139 }
2140
2141 if (the_low_target.supply_ptrace_register)
2142 the_low_target.supply_ptrace_register (regno, buf);
2143 else
2144 supply_register (regno, buf);
2145
2146 error_exit:;
2147 }
2148
2149 /* Fetch all registers, or just one, from the child process. */
2150 static void
2151 usr_fetch_inferior_registers (int regno)
2152 {
2153 if (regno == -1)
2154 for (regno = 0; regno < the_low_target.num_regs; regno++)
2155 fetch_register (regno);
2156 else
2157 fetch_register (regno);
2158 }
2159
2160 /* Store our register values back into the inferior.
2161 If REGNO is -1, do this for all registers.
2162 Otherwise, REGNO specifies which register (so we can save time). */
2163 static void
2164 usr_store_inferior_registers (int regno)
2165 {
2166 CORE_ADDR regaddr;
2167 int i, size;
2168 char *buf;
2169 int pid;
2170
2171 if (regno >= 0)
2172 {
2173 if (regno >= the_low_target.num_regs)
2174 return;
2175
2176 if ((*the_low_target.cannot_store_register) (regno) == 1)
2177 return;
2178
2179 regaddr = register_addr (regno);
2180 if (regaddr == -1)
2181 return;
2182 errno = 0;
2183 size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
2184 & - sizeof (PTRACE_XFER_TYPE);
2185 buf = alloca (size);
2186 memset (buf, 0, size);
2187
2188 if (the_low_target.collect_ptrace_register)
2189 the_low_target.collect_ptrace_register (regno, buf);
2190 else
2191 collect_register (regno, buf);
2192
2193 pid = lwpid_of (get_thread_lwp (current_inferior));
2194 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
2195 {
2196 errno = 0;
2197 ptrace (PTRACE_POKEUSER, pid, (PTRACE_ARG3_TYPE) regaddr,
2198 *(PTRACE_XFER_TYPE *) (buf + i));
2199 if (errno != 0)
2200 {
2201 /* At this point, ESRCH should mean the process is
2202 already gone, in which case we simply ignore attempts
2203 to change its registers. See also the related
2204 comment in linux_resume_one_lwp. */
2205 if (errno == ESRCH)
2206 return;
2207
2208 if ((*the_low_target.cannot_store_register) (regno) == 0)
2209 {
2210 char *err = strerror (errno);
2211 char *msg = alloca (strlen (err) + 128);
2212 sprintf (msg, "writing register %d: %s",
2213 regno, err);
2214 error (msg);
2215 return;
2216 }
2217 }
2218 regaddr += sizeof (PTRACE_XFER_TYPE);
2219 }
2220 }
2221 else
2222 for (regno = 0; regno < the_low_target.num_regs; regno++)
2223 usr_store_inferior_registers (regno);
2224 }
2225 #endif /* HAVE_LINUX_USRREGS */
2226
2227
2228
2229 #ifdef HAVE_LINUX_REGSETS
2230
2231 static int
2232 regsets_fetch_inferior_registers ()
2233 {
2234 struct regset_info *regset;
2235 int saw_general_regs = 0;
2236 int pid;
2237
2238 regset = target_regsets;
2239
2240 pid = lwpid_of (get_thread_lwp (current_inferior));
2241 while (regset->size >= 0)
2242 {
2243 void *buf;
2244 int res;
2245
2246 if (regset->size == 0 || disabled_regsets[regset - target_regsets])
2247 {
2248 regset ++;
2249 continue;
2250 }
2251
2252 buf = xmalloc (regset->size);
2253 #ifndef __sparc__
2254 res = ptrace (regset->get_request, pid, 0, buf);
2255 #else
2256 res = ptrace (regset->get_request, pid, buf, 0);
2257 #endif
2258 if (res < 0)
2259 {
2260 if (errno == EIO)
2261 {
2262 /* If we get EIO on a regset, do not try it again for
2263 this process. */
2264 disabled_regsets[regset - target_regsets] = 1;
2265 free (buf);
2266 continue;
2267 }
2268 else
2269 {
2270 char s[256];
2271 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
2272 pid);
2273 perror (s);
2274 }
2275 }
2276 else if (regset->type == GENERAL_REGS)
2277 saw_general_regs = 1;
2278 regset->store_function (buf);
2279 regset ++;
2280 free (buf);
2281 }
2282 if (saw_general_regs)
2283 return 0;
2284 else
2285 return 1;
2286 }
2287
2288 static int
2289 regsets_store_inferior_registers ()
2290 {
2291 struct regset_info *regset;
2292 int saw_general_regs = 0;
2293 int pid;
2294
2295 regset = target_regsets;
2296
2297 pid = lwpid_of (get_thread_lwp (current_inferior));
2298 while (regset->size >= 0)
2299 {
2300 void *buf;
2301 int res;
2302
2303 if (regset->size == 0 || disabled_regsets[regset - target_regsets])
2304 {
2305 regset ++;
2306 continue;
2307 }
2308
2309 buf = xmalloc (regset->size);
2310
2311 /* First fill the buffer with the current register set contents,
2312 in case there are any items in the kernel's regset that are
2313 not in gdbserver's regcache. */
2314 #ifndef __sparc__
2315 res = ptrace (regset->get_request, pid, 0, buf);
2316 #else
2317 res = ptrace (regset->get_request, pid, buf, 0);
2318 #endif
2319
2320 if (res == 0)
2321 {
2322 /* Then overlay our cached registers on that. */
2323 regset->fill_function (buf);
2324
2325 /* Only now do we write the register set. */
2326 #ifndef __sparc__
2327 res = ptrace (regset->set_request, pid, 0, buf);
2328 #else
2329 res = ptrace (regset->set_request, pid, buf, 0);
2330 #endif
2331 }
2332
2333 if (res < 0)
2334 {
2335 if (errno == EIO)
2336 {
2337 /* If we get EIO on a regset, do not try it again for
2338 this process. */
2339 disabled_regsets[regset - target_regsets] = 1;
2340 free (buf);
2341 continue;
2342 }
2343 else if (errno == ESRCH)
2344 {
2345 /* At this point, ESRCH should mean the process is
2346 already gone, in which case we simply ignore attempts
2347 to change its registers. See also the related
2348 comment in linux_resume_one_lwp. */
2349 free (buf);
2350 return 0;
2351 }
2352 else
2353 {
2354 perror ("Warning: ptrace(regsets_store_inferior_registers)");
2355 }
2356 }
2357 else if (regset->type == GENERAL_REGS)
2358 saw_general_regs = 1;
2359 regset ++;
2360 free (buf);
2361 }
2362 if (saw_general_regs)
2363 return 0;
2364 else
2365 return 1;
2366 return 0;
2367 }
2368
2369 #endif /* HAVE_LINUX_REGSETS */
2370
2371
2372 void
2373 linux_fetch_registers (int regno)
2374 {
2375 #ifdef HAVE_LINUX_REGSETS
2376 if (regsets_fetch_inferior_registers () == 0)
2377 return;
2378 #endif
2379 #ifdef HAVE_LINUX_USRREGS
2380 usr_fetch_inferior_registers (regno);
2381 #endif
2382 }
2383
2384 void
2385 linux_store_registers (int regno)
2386 {
2387 #ifdef HAVE_LINUX_REGSETS
2388 if (regsets_store_inferior_registers () == 0)
2389 return;
2390 #endif
2391 #ifdef HAVE_LINUX_USRREGS
2392 usr_store_inferior_registers (regno);
2393 #endif
2394 }
2395
2396
2397 /* Copy LEN bytes from inferior's memory starting at MEMADDR
2398 to debugger memory starting at MYADDR. */
2399
2400 static int
2401 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
2402 {
2403 register int i;
2404 /* Round starting address down to longword boundary. */
2405 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
2406 /* Round ending address up; get number of longwords that makes. */
2407 register int count
2408 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
2409 / sizeof (PTRACE_XFER_TYPE);
2410 /* Allocate buffer of that many longwords. */
2411 register PTRACE_XFER_TYPE *buffer
2412 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
2413 int fd;
2414 char filename[64];
2415 int pid = lwpid_of (get_thread_lwp (current_inferior));
2416
2417 /* Try using /proc. Don't bother for one word. */
2418 if (len >= 3 * sizeof (long))
2419 {
2420 /* We could keep this file open and cache it - possibly one per
2421 thread. That requires some juggling, but is even faster. */
2422 sprintf (filename, "/proc/%d/mem", pid);
2423 fd = open (filename, O_RDONLY | O_LARGEFILE);
2424 if (fd == -1)
2425 goto no_proc;
2426
2427 /* If pread64 is available, use it. It's faster if the kernel
2428 supports it (only one syscall), and it's 64-bit safe even on
2429 32-bit platforms (for instance, SPARC debugging a SPARC64
2430 application). */
2431 #ifdef HAVE_PREAD64
2432 if (pread64 (fd, myaddr, len, memaddr) != len)
2433 #else
2434 if (lseek (fd, memaddr, SEEK_SET) == -1 || read (fd, myaddr, len) != len)
2435 #endif
2436 {
2437 close (fd);
2438 goto no_proc;
2439 }
2440
2441 close (fd);
2442 return 0;
2443 }
2444
2445 no_proc:
2446 /* Read all the longwords */
2447 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
2448 {
2449 errno = 0;
2450 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid, (PTRACE_ARG3_TYPE) addr, 0);
2451 if (errno)
2452 return errno;
2453 }
2454
2455 /* Copy appropriate bytes out of the buffer. */
2456 memcpy (myaddr,
2457 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
2458 len);
2459
2460 return 0;
2461 }
2462
2463 /* Copy LEN bytes of data from debugger memory at MYADDR
2464 to inferior's memory at MEMADDR.
2465 On failure (cannot write the inferior)
2466 returns the value of errno. */
2467
2468 static int
2469 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
2470 {
2471 register int i;
2472 /* Round starting address down to longword boundary. */
2473 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
2474 /* Round ending address up; get number of longwords that makes. */
2475 register int count
2476 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) / sizeof (PTRACE_XFER_TYPE);
2477 /* Allocate buffer of that many longwords. */
2478 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
2479 int pid = lwpid_of (get_thread_lwp (current_inferior));
2480
2481 if (debug_threads)
2482 {
2483 /* Dump up to four bytes. */
2484 unsigned int val = * (unsigned int *) myaddr;
2485 if (len == 1)
2486 val = val & 0xff;
2487 else if (len == 2)
2488 val = val & 0xffff;
2489 else if (len == 3)
2490 val = val & 0xffffff;
2491 fprintf (stderr, "Writing %0*x to 0x%08lx\n", 2 * ((len < 4) ? len : 4),
2492 val, (long)memaddr);
2493 }
2494
2495 /* Fill start and end extra bytes of buffer with existing memory data. */
2496
2497 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid, (PTRACE_ARG3_TYPE) addr, 0);
2498
2499 if (count > 1)
2500 {
2501 buffer[count - 1]
2502 = ptrace (PTRACE_PEEKTEXT, pid,
2503 (PTRACE_ARG3_TYPE) (addr + (count - 1)
2504 * sizeof (PTRACE_XFER_TYPE)),
2505 0);
2506 }
2507
2508 /* Copy data to be written over corresponding part of buffer */
2509
2510 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), myaddr, len);
2511
2512 /* Write the entire buffer. */
2513
2514 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
2515 {
2516 errno = 0;
2517 ptrace (PTRACE_POKETEXT, pid, (PTRACE_ARG3_TYPE) addr, buffer[i]);
2518 if (errno)
2519 return errno;
2520 }
2521
2522 return 0;
2523 }
2524
2525 static int linux_supports_tracefork_flag;
2526
2527 /* Helper functions for linux_test_for_tracefork, called via clone (). */
2528
2529 static int
2530 linux_tracefork_grandchild (void *arg)
2531 {
2532 _exit (0);
2533 }
2534
2535 #define STACK_SIZE 4096
2536
2537 static int
2538 linux_tracefork_child (void *arg)
2539 {
2540 ptrace (PTRACE_TRACEME, 0, 0, 0);
2541 kill (getpid (), SIGSTOP);
2542 #ifdef __ia64__
2543 __clone2 (linux_tracefork_grandchild, arg, STACK_SIZE,
2544 CLONE_VM | SIGCHLD, NULL);
2545 #else
2546 clone (linux_tracefork_grandchild, arg + STACK_SIZE,
2547 CLONE_VM | SIGCHLD, NULL);
2548 #endif
2549 _exit (0);
2550 }
2551
2552 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events. Make
2553 sure that we can enable the option, and that it had the desired
2554 effect. */
2555
2556 static void
2557 linux_test_for_tracefork (void)
2558 {
2559 int child_pid, ret, status;
2560 long second_pid;
2561 char *stack = xmalloc (STACK_SIZE * 4);
2562
2563 linux_supports_tracefork_flag = 0;
2564
2565 /* Use CLONE_VM instead of fork, to support uClinux (no MMU). */
2566 #ifdef __ia64__
2567 child_pid = __clone2 (linux_tracefork_child, stack, STACK_SIZE,
2568 CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
2569 #else
2570 child_pid = clone (linux_tracefork_child, stack + STACK_SIZE,
2571 CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
2572 #endif
2573 if (child_pid == -1)
2574 perror_with_name ("clone");
2575
2576 ret = my_waitpid (child_pid, &status, 0);
2577 if (ret == -1)
2578 perror_with_name ("waitpid");
2579 else if (ret != child_pid)
2580 error ("linux_test_for_tracefork: waitpid: unexpected result %d.", ret);
2581 if (! WIFSTOPPED (status))
2582 error ("linux_test_for_tracefork: waitpid: unexpected status %d.", status);
2583
2584 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
2585 if (ret != 0)
2586 {
2587 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
2588 if (ret != 0)
2589 {
2590 warning ("linux_test_for_tracefork: failed to kill child");
2591 return;
2592 }
2593
2594 ret = my_waitpid (child_pid, &status, 0);
2595 if (ret != child_pid)
2596 warning ("linux_test_for_tracefork: failed to wait for killed child");
2597 else if (!WIFSIGNALED (status))
2598 warning ("linux_test_for_tracefork: unexpected wait status 0x%x from "
2599 "killed child", status);
2600
2601 return;
2602 }
2603
2604 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
2605 if (ret != 0)
2606 warning ("linux_test_for_tracefork: failed to resume child");
2607
2608 ret = my_waitpid (child_pid, &status, 0);
2609
2610 if (ret == child_pid && WIFSTOPPED (status)
2611 && status >> 16 == PTRACE_EVENT_FORK)
2612 {
2613 second_pid = 0;
2614 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
2615 if (ret == 0 && second_pid != 0)
2616 {
2617 int second_status;
2618
2619 linux_supports_tracefork_flag = 1;
2620 my_waitpid (second_pid, &second_status, 0);
2621 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
2622 if (ret != 0)
2623 warning ("linux_test_for_tracefork: failed to kill second child");
2624 my_waitpid (second_pid, &status, 0);
2625 }
2626 }
2627 else
2628 warning ("linux_test_for_tracefork: unexpected result from waitpid "
2629 "(%d, status 0x%x)", ret, status);
2630
2631 do
2632 {
2633 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
2634 if (ret != 0)
2635 warning ("linux_test_for_tracefork: failed to kill child");
2636 my_waitpid (child_pid, &status, 0);
2637 }
2638 while (WIFSTOPPED (status));
2639
2640 free (stack);
2641 }
2642
2643
2644 static void
2645 linux_look_up_symbols (void)
2646 {
2647 #ifdef USE_THREAD_DB
2648 struct process_info *proc = current_process ();
2649
2650 if (proc->private->thread_db != NULL)
2651 return;
2652
2653 thread_db_init (!linux_supports_tracefork_flag);
2654 #endif
2655 }
2656
2657 static void
2658 linux_request_interrupt (void)
2659 {
2660 extern unsigned long signal_pid;
2661
2662 if (!ptid_equal (cont_thread, null_ptid)
2663 && !ptid_equal (cont_thread, minus_one_ptid))
2664 {
2665 struct lwp_info *lwp;
2666 int lwpid;
2667
2668 lwp = get_thread_lwp (current_inferior);
2669 lwpid = lwpid_of (lwp);
2670 kill_lwp (lwpid, SIGINT);
2671 }
2672 else
2673 kill_lwp (signal_pid, SIGINT);
2674 }
2675
2676 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
2677 to debugger memory starting at MYADDR. */
2678
2679 static int
2680 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
2681 {
2682 char filename[PATH_MAX];
2683 int fd, n;
2684 int pid = lwpid_of (get_thread_lwp (current_inferior));
2685
2686 snprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
2687
2688 fd = open (filename, O_RDONLY);
2689 if (fd < 0)
2690 return -1;
2691
2692 if (offset != (CORE_ADDR) 0
2693 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
2694 n = -1;
2695 else
2696 n = read (fd, myaddr, len);
2697
2698 close (fd);
2699
2700 return n;
2701 }
2702
2703 /* These breakpoint and watchpoint related wrapper functions simply
2704 pass on the function call if the target has registered a
2705 corresponding function. */
2706
2707 static int
2708 linux_insert_point (char type, CORE_ADDR addr, int len)
2709 {
2710 if (the_low_target.insert_point != NULL)
2711 return the_low_target.insert_point (type, addr, len);
2712 else
2713 /* Unsupported (see target.h). */
2714 return 1;
2715 }
2716
2717 static int
2718 linux_remove_point (char type, CORE_ADDR addr, int len)
2719 {
2720 if (the_low_target.remove_point != NULL)
2721 return the_low_target.remove_point (type, addr, len);
2722 else
2723 /* Unsupported (see target.h). */
2724 return 1;
2725 }
2726
2727 static int
2728 linux_stopped_by_watchpoint (void)
2729 {
2730 if (the_low_target.stopped_by_watchpoint != NULL)
2731 return the_low_target.stopped_by_watchpoint ();
2732 else
2733 return 0;
2734 }
2735
2736 static CORE_ADDR
2737 linux_stopped_data_address (void)
2738 {
2739 if (the_low_target.stopped_data_address != NULL)
2740 return the_low_target.stopped_data_address ();
2741 else
2742 return 0;
2743 }
2744
2745 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
2746 #if defined(__mcoldfire__)
2747 /* These should really be defined in the kernel's ptrace.h header. */
2748 #define PT_TEXT_ADDR 49*4
2749 #define PT_DATA_ADDR 50*4
2750 #define PT_TEXT_END_ADDR 51*4
2751 #endif
2752
2753 /* Under uClinux, programs are loaded at non-zero offsets, which we need
2754 to tell gdb about. */
2755
2756 static int
2757 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
2758 {
2759 #if defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) && defined(PT_TEXT_END_ADDR)
2760 unsigned long text, text_end, data;
2761 int pid = lwpid_of (get_thread_lwp (current_inferior));
2762
2763 errno = 0;
2764
2765 text = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_ADDR, 0);
2766 text_end = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_END_ADDR, 0);
2767 data = ptrace (PTRACE_PEEKUSER, pid, (long)PT_DATA_ADDR, 0);
2768
2769 if (errno == 0)
2770 {
2771 /* Both text and data offsets produced at compile-time (and so
2772 used by gdb) are relative to the beginning of the program,
2773 with the data segment immediately following the text segment.
2774 However, the actual runtime layout in memory may put the data
2775 somewhere else, so when we send gdb a data base-address, we
2776 use the real data base address and subtract the compile-time
2777 data base-address from it (which is just the length of the
2778 text segment). BSS immediately follows data in both
2779 cases. */
2780 *text_p = text;
2781 *data_p = data - (text_end - text);
2782
2783 return 1;
2784 }
2785 #endif
2786 return 0;
2787 }
2788 #endif
2789
2790 static int
2791 linux_qxfer_osdata (const char *annex,
2792 unsigned char *readbuf, unsigned const char *writebuf,
2793 CORE_ADDR offset, int len)
2794 {
2795 /* We make the process list snapshot when the object starts to be
2796 read. */
2797 static const char *buf;
2798 static long len_avail = -1;
2799 static struct buffer buffer;
2800
2801 DIR *dirp;
2802
2803 if (strcmp (annex, "processes") != 0)
2804 return 0;
2805
2806 if (!readbuf || writebuf)
2807 return 0;
2808
2809 if (offset == 0)
2810 {
2811 if (len_avail != -1 && len_avail != 0)
2812 buffer_free (&buffer);
2813 len_avail = 0;
2814 buf = NULL;
2815 buffer_init (&buffer);
2816 buffer_grow_str (&buffer, "<osdata type=\"processes\">");
2817
2818 dirp = opendir ("/proc");
2819 if (dirp)
2820 {
2821 struct dirent *dp;
2822 while ((dp = readdir (dirp)) != NULL)
2823 {
2824 struct stat statbuf;
2825 char procentry[sizeof ("/proc/4294967295")];
2826
2827 if (!isdigit (dp->d_name[0])
2828 || strlen (dp->d_name) > sizeof ("4294967295") - 1)
2829 continue;
2830
2831 sprintf (procentry, "/proc/%s", dp->d_name);
2832 if (stat (procentry, &statbuf) == 0
2833 && S_ISDIR (statbuf.st_mode))
2834 {
2835 char pathname[128];
2836 FILE *f;
2837 char cmd[MAXPATHLEN + 1];
2838 struct passwd *entry;
2839
2840 sprintf (pathname, "/proc/%s/cmdline", dp->d_name);
2841 entry = getpwuid (statbuf.st_uid);
2842
2843 if ((f = fopen (pathname, "r")) != NULL)
2844 {
2845 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
2846 if (len > 0)
2847 {
2848 int i;
2849 for (i = 0; i < len; i++)
2850 if (cmd[i] == '\0')
2851 cmd[i] = ' ';
2852 cmd[len] = '\0';
2853
2854 buffer_xml_printf (
2855 &buffer,
2856 "<item>"
2857 "<column name=\"pid\">%s</column>"
2858 "<column name=\"user\">%s</column>"
2859 "<column name=\"command\">%s</column>"
2860 "</item>",
2861 dp->d_name,
2862 entry ? entry->pw_name : "?",
2863 cmd);
2864 }
2865 fclose (f);
2866 }
2867 }
2868 }
2869
2870 closedir (dirp);
2871 }
2872 buffer_grow_str0 (&buffer, "</osdata>\n");
2873 buf = buffer_finish (&buffer);
2874 len_avail = strlen (buf);
2875 }
2876
2877 if (offset >= len_avail)
2878 {
2879 /* Done. Get rid of the data. */
2880 buffer_free (&buffer);
2881 buf = NULL;
2882 len_avail = 0;
2883 return 0;
2884 }
2885
2886 if (len > len_avail - offset)
2887 len = len_avail - offset;
2888 memcpy (readbuf, buf + offset, len);
2889
2890 return len;
2891 }
2892
2893 /* Convert a native/host siginfo object, into/from the siginfo in the
2894 layout of the inferiors' architecture. */
2895
2896 static void
2897 siginfo_fixup (struct siginfo *siginfo, void *inf_siginfo, int direction)
2898 {
2899 int done = 0;
2900
2901 if (the_low_target.siginfo_fixup != NULL)
2902 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
2903
2904 /* If there was no callback, or the callback didn't do anything,
2905 then just do a straight memcpy. */
2906 if (!done)
2907 {
2908 if (direction == 1)
2909 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
2910 else
2911 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
2912 }
2913 }
2914
2915 static int
2916 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
2917 unsigned const char *writebuf, CORE_ADDR offset, int len)
2918 {
2919 int pid;
2920 struct siginfo siginfo;
2921 char inf_siginfo[sizeof (struct siginfo)];
2922
2923 if (current_inferior == NULL)
2924 return -1;
2925
2926 pid = lwpid_of (get_thread_lwp (current_inferior));
2927
2928 if (debug_threads)
2929 fprintf (stderr, "%s siginfo for lwp %d.\n",
2930 readbuf != NULL ? "Reading" : "Writing",
2931 pid);
2932
2933 if (offset > sizeof (siginfo))
2934 return -1;
2935
2936 if (ptrace (PTRACE_GETSIGINFO, pid, 0, &siginfo) != 0)
2937 return -1;
2938
2939 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
2940 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
2941 inferior with a 64-bit GDBSERVER should look the same as debugging it
2942 with a 32-bit GDBSERVER, we need to convert it. */
2943 siginfo_fixup (&siginfo, inf_siginfo, 0);
2944
2945 if (offset + len > sizeof (siginfo))
2946 len = sizeof (siginfo) - offset;
2947
2948 if (readbuf != NULL)
2949 memcpy (readbuf, inf_siginfo + offset, len);
2950 else
2951 {
2952 memcpy (inf_siginfo + offset, writebuf, len);
2953
2954 /* Convert back to ptrace layout before flushing it out. */
2955 siginfo_fixup (&siginfo, inf_siginfo, 1);
2956
2957 if (ptrace (PTRACE_SETSIGINFO, pid, 0, &siginfo) != 0)
2958 return -1;
2959 }
2960
2961 return len;
2962 }
2963
2964 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
2965 so we notice when children change state; as the handler for the
2966 sigsuspend in my_waitpid. */
2967
2968 static void
2969 sigchld_handler (int signo)
2970 {
2971 int old_errno = errno;
2972
2973 if (debug_threads)
2974 /* fprintf is not async-signal-safe, so call write directly. */
2975 write (2, "sigchld_handler\n", sizeof ("sigchld_handler\n") - 1);
2976
2977 if (target_is_async_p ())
2978 async_file_mark (); /* trigger a linux_wait */
2979
2980 errno = old_errno;
2981 }
2982
2983 static int
2984 linux_supports_non_stop (void)
2985 {
2986 return 1;
2987 }
2988
2989 static int
2990 linux_async (int enable)
2991 {
2992 int previous = (linux_event_pipe[0] != -1);
2993
2994 if (previous != enable)
2995 {
2996 sigset_t mask;
2997 sigemptyset (&mask);
2998 sigaddset (&mask, SIGCHLD);
2999
3000 sigprocmask (SIG_BLOCK, &mask, NULL);
3001
3002 if (enable)
3003 {
3004 if (pipe (linux_event_pipe) == -1)
3005 fatal ("creating event pipe failed.");
3006
3007 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
3008 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
3009
3010 /* Register the event loop handler. */
3011 add_file_handler (linux_event_pipe[0],
3012 handle_target_event, NULL);
3013
3014 /* Always trigger a linux_wait. */
3015 async_file_mark ();
3016 }
3017 else
3018 {
3019 delete_file_handler (linux_event_pipe[0]);
3020
3021 close (linux_event_pipe[0]);
3022 close (linux_event_pipe[1]);
3023 linux_event_pipe[0] = -1;
3024 linux_event_pipe[1] = -1;
3025 }
3026
3027 sigprocmask (SIG_UNBLOCK, &mask, NULL);
3028 }
3029
3030 return previous;
3031 }
3032
3033 static int
3034 linux_start_non_stop (int nonstop)
3035 {
3036 /* Register or unregister from event-loop accordingly. */
3037 linux_async (nonstop);
3038 return 0;
3039 }
3040
3041 static int
3042 linux_supports_multi_process (void)
3043 {
3044 return 1;
3045 }
3046
3047
3048 /* Enumerate spufs IDs for process PID. */
3049 static int
3050 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
3051 {
3052 int pos = 0;
3053 int written = 0;
3054 char path[128];
3055 DIR *dir;
3056 struct dirent *entry;
3057
3058 sprintf (path, "/proc/%ld/fd", pid);
3059 dir = opendir (path);
3060 if (!dir)
3061 return -1;
3062
3063 rewinddir (dir);
3064 while ((entry = readdir (dir)) != NULL)
3065 {
3066 struct stat st;
3067 struct statfs stfs;
3068 int fd;
3069
3070 fd = atoi (entry->d_name);
3071 if (!fd)
3072 continue;
3073
3074 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
3075 if (stat (path, &st) != 0)
3076 continue;
3077 if (!S_ISDIR (st.st_mode))
3078 continue;
3079
3080 if (statfs (path, &stfs) != 0)
3081 continue;
3082 if (stfs.f_type != SPUFS_MAGIC)
3083 continue;
3084
3085 if (pos >= offset && pos + 4 <= offset + len)
3086 {
3087 *(unsigned int *)(buf + pos - offset) = fd;
3088 written += 4;
3089 }
3090 pos += 4;
3091 }
3092
3093 closedir (dir);
3094 return written;
3095 }
3096
3097 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
3098 object type, using the /proc file system. */
3099 static int
3100 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
3101 unsigned const char *writebuf,
3102 CORE_ADDR offset, int len)
3103 {
3104 long pid = lwpid_of (get_thread_lwp (current_inferior));
3105 char buf[128];
3106 int fd = 0;
3107 int ret = 0;
3108
3109 if (!writebuf && !readbuf)
3110 return -1;
3111
3112 if (!*annex)
3113 {
3114 if (!readbuf)
3115 return -1;
3116 else
3117 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
3118 }
3119
3120 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
3121 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
3122 if (fd <= 0)
3123 return -1;
3124
3125 if (offset != 0
3126 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
3127 {
3128 close (fd);
3129 return 0;
3130 }
3131
3132 if (writebuf)
3133 ret = write (fd, writebuf, (size_t) len);
3134 else
3135 ret = read (fd, readbuf, (size_t) len);
3136
3137 close (fd);
3138 return ret;
3139 }
3140
3141 static struct target_ops linux_target_ops = {
3142 linux_create_inferior,
3143 linux_attach,
3144 linux_kill,
3145 linux_detach,
3146 linux_join,
3147 linux_thread_alive,
3148 linux_resume,
3149 linux_wait,
3150 linux_fetch_registers,
3151 linux_store_registers,
3152 linux_read_memory,
3153 linux_write_memory,
3154 linux_look_up_symbols,
3155 linux_request_interrupt,
3156 linux_read_auxv,
3157 linux_insert_point,
3158 linux_remove_point,
3159 linux_stopped_by_watchpoint,
3160 linux_stopped_data_address,
3161 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
3162 linux_read_offsets,
3163 #else
3164 NULL,
3165 #endif
3166 #ifdef USE_THREAD_DB
3167 thread_db_get_tls_address,
3168 #else
3169 NULL,
3170 #endif
3171 linux_qxfer_spu,
3172 hostio_last_error_from_errno,
3173 linux_qxfer_osdata,
3174 linux_xfer_siginfo,
3175 linux_supports_non_stop,
3176 linux_async,
3177 linux_start_non_stop,
3178 linux_supports_multi_process,
3179 #ifdef USE_THREAD_DB
3180 thread_db_handle_monitor_command
3181 #else
3182 NULL
3183 #endif
3184 };
3185
3186 static void
3187 linux_init_signals ()
3188 {
3189 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
3190 to find what the cancel signal actually is. */
3191 signal (__SIGRTMIN+1, SIG_IGN);
3192 }
3193
3194 void
3195 initialize_low (void)
3196 {
3197 struct sigaction sigchld_action;
3198 memset (&sigchld_action, 0, sizeof (sigchld_action));
3199 set_target_ops (&linux_target_ops);
3200 set_breakpoint_data (the_low_target.breakpoint,
3201 the_low_target.breakpoint_len);
3202 linux_init_signals ();
3203 linux_test_for_tracefork ();
3204 #ifdef HAVE_LINUX_REGSETS
3205 for (num_regsets = 0; target_regsets[num_regsets].size >= 0; num_regsets++)
3206 ;
3207 disabled_regsets = xmalloc (num_regsets);
3208 #endif
3209
3210 sigchld_action.sa_handler = sigchld_handler;
3211 sigemptyset (&sigchld_action.sa_mask);
3212 sigchld_action.sa_flags = SA_RESTART;
3213 sigaction (SIGCHLD, &sigchld_action, NULL);
3214 }