* linux-low.c (handle_extended_wait): Simplify, use my_waitpid.
[binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "server.h"
21 #include "linux-low.h"
22
23 #include <sys/wait.h>
24 #include <stdio.h>
25 #include <sys/param.h>
26 #include <sys/ptrace.h>
27 #include <signal.h>
28 #include <sys/ioctl.h>
29 #include <fcntl.h>
30 #include <string.h>
31 #include <stdlib.h>
32 #include <unistd.h>
33 #include <errno.h>
34 #include <sys/syscall.h>
35 #include <sched.h>
36 #include <ctype.h>
37 #include <pwd.h>
38 #include <sys/types.h>
39 #include <dirent.h>
40
41 #ifndef PTRACE_GETSIGINFO
42 # define PTRACE_GETSIGINFO 0x4202
43 # define PTRACE_SETSIGINFO 0x4203
44 #endif
45
46 #ifndef O_LARGEFILE
47 #define O_LARGEFILE 0
48 #endif
49
50 /* If the system headers did not provide the constants, hard-code the normal
51 values. */
52 #ifndef PTRACE_EVENT_FORK
53
54 #define PTRACE_SETOPTIONS 0x4200
55 #define PTRACE_GETEVENTMSG 0x4201
56
57 /* options set using PTRACE_SETOPTIONS */
58 #define PTRACE_O_TRACESYSGOOD 0x00000001
59 #define PTRACE_O_TRACEFORK 0x00000002
60 #define PTRACE_O_TRACEVFORK 0x00000004
61 #define PTRACE_O_TRACECLONE 0x00000008
62 #define PTRACE_O_TRACEEXEC 0x00000010
63 #define PTRACE_O_TRACEVFORKDONE 0x00000020
64 #define PTRACE_O_TRACEEXIT 0x00000040
65
66 /* Wait extended result codes for the above trace options. */
67 #define PTRACE_EVENT_FORK 1
68 #define PTRACE_EVENT_VFORK 2
69 #define PTRACE_EVENT_CLONE 3
70 #define PTRACE_EVENT_EXEC 4
71 #define PTRACE_EVENT_VFORK_DONE 5
72 #define PTRACE_EVENT_EXIT 6
73
74 #endif /* PTRACE_EVENT_FORK */
75
76 /* We can't always assume that this flag is available, but all systems
77 with the ptrace event handlers also have __WALL, so it's safe to use
78 in some contexts. */
79 #ifndef __WALL
80 #define __WALL 0x40000000 /* Wait for any child. */
81 #endif
82
83 #ifdef __UCLIBC__
84 #if !(defined(__UCLIBC_HAS_MMU__) || defined(__ARCH_HAS_MMU__))
85 #define HAS_NOMMU
86 #endif
87 #endif
88
89 /* ``all_threads'' is keyed by the LWP ID, which we use as the GDB protocol
90 representation of the thread ID.
91
92 ``all_processes'' is keyed by the process ID - which on Linux is (presently)
93 the same as the LWP ID. */
94
95 struct inferior_list all_processes;
96
97 /* A list of all unknown processes which receive stop signals. Some other
98 process will presumably claim each of these as forked children
99 momentarily. */
100
101 struct inferior_list stopped_pids;
102
103 /* FIXME this is a bit of a hack, and could be removed. */
104 int stopping_threads;
105
106 /* FIXME make into a target method? */
107 int using_threads = 1;
108 static int thread_db_active;
109
110 static int must_set_ptrace_flags;
111
112 /* This flag is true iff we've just created or attached to a new inferior
113 but it has not stopped yet. As soon as it does, we need to call the
114 low target's arch_setup callback. */
115 static int new_inferior;
116
117 static void linux_resume_one_process (struct inferior_list_entry *entry,
118 int step, int signal, siginfo_t *info);
119 static void linux_resume (struct thread_resume *resume_info);
120 static void stop_all_processes (void);
121 static int linux_wait_for_event (struct thread_info *child);
122 static int check_removed_breakpoint (struct process_info *event_child);
123 static void *add_process (unsigned long pid);
124 static int my_waitpid (int pid, int *status, int flags);
125
126 struct pending_signals
127 {
128 int signal;
129 siginfo_t info;
130 struct pending_signals *prev;
131 };
132
133 #define PTRACE_ARG3_TYPE long
134 #define PTRACE_XFER_TYPE long
135
136 #ifdef HAVE_LINUX_REGSETS
137 static char *disabled_regsets;
138 static int num_regsets;
139 #endif
140
141 #define pid_of(proc) ((proc)->head.id)
142
143 /* FIXME: Delete eventually. */
144 #define inferior_pid (pid_of (get_thread_process (current_inferior)))
145
146 static void
147 handle_extended_wait (struct process_info *event_child, int wstat)
148 {
149 int event = wstat >> 16;
150 struct process_info *new_process;
151
152 if (event == PTRACE_EVENT_CLONE)
153 {
154 unsigned long new_pid;
155 int ret, status = W_STOPCODE (SIGSTOP);
156
157 ptrace (PTRACE_GETEVENTMSG, inferior_pid, 0, &new_pid);
158
159 /* If we haven't already seen the new PID stop, wait for it now. */
160 if (! pull_pid_from_list (&stopped_pids, new_pid))
161 {
162 /* The new child has a pending SIGSTOP. We can't affect it until it
163 hits the SIGSTOP, but we're already attached. */
164
165 ret = my_waitpid (new_pid, &status, __WALL);
166
167 if (ret == -1)
168 perror_with_name ("waiting for new child");
169 else if (ret != new_pid)
170 warning ("wait returned unexpected PID %d", ret);
171 else if (!WIFSTOPPED (status))
172 warning ("wait returned unexpected status 0x%x", status);
173 }
174
175 ptrace (PTRACE_SETOPTIONS, new_pid, 0, PTRACE_O_TRACECLONE);
176
177 new_process = (struct process_info *) add_process (new_pid);
178 add_thread (new_pid, new_process, new_pid);
179 new_thread_notify (thread_id_to_gdb_id (new_process->lwpid));
180
181 /* Normally we will get the pending SIGSTOP. But in some cases
182 we might get another signal delivered to the group first.
183 If we do, be sure not to lose it. */
184 if (WSTOPSIG (status) == SIGSTOP)
185 {
186 if (stopping_threads)
187 new_process->stopped = 1;
188 else
189 ptrace (PTRACE_CONT, new_pid, 0, 0);
190 }
191 else
192 {
193 new_process->stop_expected = 1;
194 if (stopping_threads)
195 {
196 new_process->stopped = 1;
197 new_process->status_pending_p = 1;
198 new_process->status_pending = status;
199 }
200 else
201 /* Pass the signal on. This is what GDB does - except
202 shouldn't we really report it instead? */
203 ptrace (PTRACE_CONT, new_pid, 0, WSTOPSIG (status));
204 }
205
206 /* Always resume the current thread. If we are stopping
207 threads, it will have a pending SIGSTOP; we may as well
208 collect it now. */
209 linux_resume_one_process (&event_child->head,
210 event_child->stepping, 0, NULL);
211 }
212 }
213
214 /* This function should only be called if the process got a SIGTRAP.
215 The SIGTRAP could mean several things.
216
217 On i386, where decr_pc_after_break is non-zero:
218 If we were single-stepping this process using PTRACE_SINGLESTEP,
219 we will get only the one SIGTRAP (even if the instruction we
220 stepped over was a breakpoint). The value of $eip will be the
221 next instruction.
222 If we continue the process using PTRACE_CONT, we will get a
223 SIGTRAP when we hit a breakpoint. The value of $eip will be
224 the instruction after the breakpoint (i.e. needs to be
225 decremented). If we report the SIGTRAP to GDB, we must also
226 report the undecremented PC. If we cancel the SIGTRAP, we
227 must resume at the decremented PC.
228
229 (Presumably, not yet tested) On a non-decr_pc_after_break machine
230 with hardware or kernel single-step:
231 If we single-step over a breakpoint instruction, our PC will
232 point at the following instruction. If we continue and hit a
233 breakpoint instruction, our PC will point at the breakpoint
234 instruction. */
235
236 static CORE_ADDR
237 get_stop_pc (void)
238 {
239 CORE_ADDR stop_pc = (*the_low_target.get_pc) ();
240
241 if (get_thread_process (current_inferior)->stepping)
242 return stop_pc;
243 else
244 return stop_pc - the_low_target.decr_pc_after_break;
245 }
246
247 static void *
248 add_process (unsigned long pid)
249 {
250 struct process_info *process;
251
252 process = (struct process_info *) malloc (sizeof (*process));
253 memset (process, 0, sizeof (*process));
254
255 process->head.id = pid;
256 process->lwpid = pid;
257
258 add_inferior_to_list (&all_processes, &process->head);
259
260 return process;
261 }
262
263 /* Start an inferior process and returns its pid.
264 ALLARGS is a vector of program-name and args. */
265
266 static int
267 linux_create_inferior (char *program, char **allargs)
268 {
269 void *new_process;
270 int pid;
271
272 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
273 pid = vfork ();
274 #else
275 pid = fork ();
276 #endif
277 if (pid < 0)
278 perror_with_name ("fork");
279
280 if (pid == 0)
281 {
282 ptrace (PTRACE_TRACEME, 0, 0, 0);
283
284 signal (__SIGRTMIN + 1, SIG_DFL);
285
286 setpgid (0, 0);
287
288 execv (program, allargs);
289 if (errno == ENOENT)
290 execvp (program, allargs);
291
292 fprintf (stderr, "Cannot exec %s: %s.\n", program,
293 strerror (errno));
294 fflush (stderr);
295 _exit (0177);
296 }
297
298 new_process = add_process (pid);
299 add_thread (pid, new_process, pid);
300 must_set_ptrace_flags = 1;
301 new_inferior = 1;
302
303 return pid;
304 }
305
306 /* Attach to an inferior process. */
307
308 void
309 linux_attach_lwp (unsigned long pid)
310 {
311 struct process_info *new_process;
312
313 if (ptrace (PTRACE_ATTACH, pid, 0, 0) != 0)
314 {
315 if (all_threads.head != NULL)
316 {
317 /* If we fail to attach to an LWP, just warn. */
318 fprintf (stderr, "Cannot attach to process %ld: %s (%d)\n", pid,
319 strerror (errno), errno);
320 fflush (stderr);
321 return;
322 }
323 else
324 /* If we fail to attach to a process, report an error. */
325 error ("Cannot attach to process %ld: %s (%d)\n", pid,
326 strerror (errno), errno);
327 }
328
329 ptrace (PTRACE_SETOPTIONS, pid, 0, PTRACE_O_TRACECLONE);
330
331 new_process = (struct process_info *) add_process (pid);
332 add_thread (pid, new_process, pid);
333 new_thread_notify (thread_id_to_gdb_id (new_process->lwpid));
334
335 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
336 brings it to a halt. We should ignore that SIGSTOP and resume the process
337 (unless this is the first process, in which case the flag will be cleared
338 in linux_attach).
339
340 On the other hand, if we are currently trying to stop all threads, we
341 should treat the new thread as if we had sent it a SIGSTOP. This works
342 because we are guaranteed that add_process added us to the end of the
343 list, and so the new thread has not yet reached wait_for_sigstop (but
344 will). */
345 if (! stopping_threads)
346 new_process->stop_expected = 1;
347 }
348
349 int
350 linux_attach (unsigned long pid)
351 {
352 struct process_info *process;
353
354 linux_attach_lwp (pid);
355
356 /* Don't ignore the initial SIGSTOP if we just attached to this process.
357 It will be collected by wait shortly. */
358 process = (struct process_info *) find_inferior_id (&all_processes, pid);
359 process->stop_expected = 0;
360
361 new_inferior = 1;
362
363 return 0;
364 }
365
366 /* Kill the inferior process. Make us have no inferior. */
367
368 static void
369 linux_kill_one_process (struct inferior_list_entry *entry)
370 {
371 struct thread_info *thread = (struct thread_info *) entry;
372 struct process_info *process = get_thread_process (thread);
373 int wstat;
374
375 /* We avoid killing the first thread here, because of a Linux kernel (at
376 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
377 the children get a chance to be reaped, it will remain a zombie
378 forever. */
379 if (entry == all_threads.head)
380 return;
381
382 do
383 {
384 ptrace (PTRACE_KILL, pid_of (process), 0, 0);
385
386 /* Make sure it died. The loop is most likely unnecessary. */
387 wstat = linux_wait_for_event (thread);
388 } while (WIFSTOPPED (wstat));
389 }
390
391 static void
392 linux_kill (void)
393 {
394 struct thread_info *thread = (struct thread_info *) all_threads.head;
395 struct process_info *process;
396 int wstat;
397
398 if (thread == NULL)
399 return;
400
401 for_each_inferior (&all_threads, linux_kill_one_process);
402
403 /* See the comment in linux_kill_one_process. We did not kill the first
404 thread in the list, so do so now. */
405 process = get_thread_process (thread);
406 do
407 {
408 ptrace (PTRACE_KILL, pid_of (process), 0, 0);
409
410 /* Make sure it died. The loop is most likely unnecessary. */
411 wstat = linux_wait_for_event (thread);
412 } while (WIFSTOPPED (wstat));
413
414 clear_inferiors ();
415 free (all_processes.head);
416 all_processes.head = all_processes.tail = NULL;
417 }
418
419 static void
420 linux_detach_one_process (struct inferior_list_entry *entry)
421 {
422 struct thread_info *thread = (struct thread_info *) entry;
423 struct process_info *process = get_thread_process (thread);
424
425 /* Make sure the process isn't stopped at a breakpoint that's
426 no longer there. */
427 check_removed_breakpoint (process);
428
429 /* If this process is stopped but is expecting a SIGSTOP, then make
430 sure we take care of that now. This isn't absolutely guaranteed
431 to collect the SIGSTOP, but is fairly likely to. */
432 if (process->stop_expected)
433 {
434 /* Clear stop_expected, so that the SIGSTOP will be reported. */
435 process->stop_expected = 0;
436 if (process->stopped)
437 linux_resume_one_process (&process->head, 0, 0, NULL);
438 linux_wait_for_event (thread);
439 }
440
441 /* Flush any pending changes to the process's registers. */
442 regcache_invalidate_one ((struct inferior_list_entry *)
443 get_process_thread (process));
444
445 /* Finally, let it resume. */
446 ptrace (PTRACE_DETACH, pid_of (process), 0, 0);
447 }
448
449 static int
450 linux_detach (void)
451 {
452 delete_all_breakpoints ();
453 for_each_inferior (&all_threads, linux_detach_one_process);
454 clear_inferiors ();
455 free (all_processes.head);
456 all_processes.head = all_processes.tail = NULL;
457 return 0;
458 }
459
460 static void
461 linux_join (void)
462 {
463 extern unsigned long signal_pid;
464 int status, ret;
465
466 do {
467 ret = waitpid (signal_pid, &status, 0);
468 if (WIFEXITED (status) || WIFSIGNALED (status))
469 break;
470 } while (ret != -1 || errno != ECHILD);
471 }
472
473 /* Return nonzero if the given thread is still alive. */
474 static int
475 linux_thread_alive (unsigned long lwpid)
476 {
477 if (find_inferior_id (&all_threads, lwpid) != NULL)
478 return 1;
479 else
480 return 0;
481 }
482
483 /* Return nonzero if this process stopped at a breakpoint which
484 no longer appears to be inserted. Also adjust the PC
485 appropriately to resume where the breakpoint used to be. */
486 static int
487 check_removed_breakpoint (struct process_info *event_child)
488 {
489 CORE_ADDR stop_pc;
490 struct thread_info *saved_inferior;
491
492 if (event_child->pending_is_breakpoint == 0)
493 return 0;
494
495 if (debug_threads)
496 fprintf (stderr, "Checking for breakpoint in process %ld.\n",
497 event_child->lwpid);
498
499 saved_inferior = current_inferior;
500 current_inferior = get_process_thread (event_child);
501
502 stop_pc = get_stop_pc ();
503
504 /* If the PC has changed since we stopped, then we shouldn't do
505 anything. This happens if, for instance, GDB handled the
506 decr_pc_after_break subtraction itself. */
507 if (stop_pc != event_child->pending_stop_pc)
508 {
509 if (debug_threads)
510 fprintf (stderr, "Ignoring, PC was changed. Old PC was 0x%08llx\n",
511 event_child->pending_stop_pc);
512
513 event_child->pending_is_breakpoint = 0;
514 current_inferior = saved_inferior;
515 return 0;
516 }
517
518 /* If the breakpoint is still there, we will report hitting it. */
519 if ((*the_low_target.breakpoint_at) (stop_pc))
520 {
521 if (debug_threads)
522 fprintf (stderr, "Ignoring, breakpoint is still present.\n");
523 current_inferior = saved_inferior;
524 return 0;
525 }
526
527 if (debug_threads)
528 fprintf (stderr, "Removed breakpoint.\n");
529
530 /* For decr_pc_after_break targets, here is where we perform the
531 decrement. We go immediately from this function to resuming,
532 and can not safely call get_stop_pc () again. */
533 if (the_low_target.set_pc != NULL)
534 (*the_low_target.set_pc) (stop_pc);
535
536 /* We consumed the pending SIGTRAP. */
537 event_child->pending_is_breakpoint = 0;
538 event_child->status_pending_p = 0;
539 event_child->status_pending = 0;
540
541 current_inferior = saved_inferior;
542 return 1;
543 }
544
545 /* Return 1 if this process has an interesting status pending. This function
546 may silently resume an inferior process. */
547 static int
548 status_pending_p (struct inferior_list_entry *entry, void *dummy)
549 {
550 struct process_info *process = (struct process_info *) entry;
551
552 if (process->status_pending_p)
553 if (check_removed_breakpoint (process))
554 {
555 /* This thread was stopped at a breakpoint, and the breakpoint
556 is now gone. We were told to continue (or step...) all threads,
557 so GDB isn't trying to single-step past this breakpoint.
558 So instead of reporting the old SIGTRAP, pretend we got to
559 the breakpoint just after it was removed instead of just
560 before; resume the process. */
561 linux_resume_one_process (&process->head, 0, 0, NULL);
562 return 0;
563 }
564
565 return process->status_pending_p;
566 }
567
568 static void
569 linux_wait_for_process (struct process_info **childp, int *wstatp)
570 {
571 int ret;
572 int to_wait_for = -1;
573
574 if (*childp != NULL)
575 to_wait_for = (*childp)->lwpid;
576
577 retry:
578 while (1)
579 {
580 ret = waitpid (to_wait_for, wstatp, WNOHANG);
581
582 if (ret == -1)
583 {
584 if (errno != ECHILD)
585 perror_with_name ("waitpid");
586 }
587 else if (ret > 0)
588 break;
589
590 ret = waitpid (to_wait_for, wstatp, WNOHANG | __WCLONE);
591
592 if (ret == -1)
593 {
594 if (errno != ECHILD)
595 perror_with_name ("waitpid (WCLONE)");
596 }
597 else if (ret > 0)
598 break;
599
600 usleep (1000);
601 }
602
603 if (debug_threads
604 && (!WIFSTOPPED (*wstatp)
605 || (WSTOPSIG (*wstatp) != 32
606 && WSTOPSIG (*wstatp) != 33)))
607 fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp);
608
609 if (to_wait_for == -1)
610 *childp = (struct process_info *) find_inferior_id (&all_processes, ret);
611
612 /* If we didn't find a process, one of two things presumably happened:
613 - A process we started and then detached from has exited. Ignore it.
614 - A process we are controlling has forked and the new child's stop
615 was reported to us by the kernel. Save its PID. */
616 if (*childp == NULL && WIFSTOPPED (*wstatp))
617 {
618 add_pid_to_list (&stopped_pids, ret);
619 goto retry;
620 }
621 else if (*childp == NULL)
622 goto retry;
623
624 (*childp)->stopped = 1;
625 (*childp)->pending_is_breakpoint = 0;
626
627 (*childp)->last_status = *wstatp;
628
629 /* Architecture-specific setup after inferior is running.
630 This needs to happen after we have attached to the inferior
631 and it is stopped for the first time, but before we access
632 any inferior registers. */
633 if (new_inferior)
634 {
635 the_low_target.arch_setup ();
636 #ifdef HAVE_LINUX_REGSETS
637 memset (disabled_regsets, 0, num_regsets);
638 #endif
639 new_inferior = 0;
640 }
641
642 if (debug_threads
643 && WIFSTOPPED (*wstatp))
644 {
645 current_inferior = (struct thread_info *)
646 find_inferior_id (&all_threads, (*childp)->lwpid);
647 /* For testing only; i386_stop_pc prints out a diagnostic. */
648 if (the_low_target.get_pc != NULL)
649 get_stop_pc ();
650 }
651 }
652
653 static int
654 linux_wait_for_event (struct thread_info *child)
655 {
656 CORE_ADDR stop_pc;
657 struct process_info *event_child;
658 int wstat;
659 int bp_status;
660
661 /* Check for a process with a pending status. */
662 /* It is possible that the user changed the pending task's registers since
663 it stopped. We correctly handle the change of PC if we hit a breakpoint
664 (in check_removed_breakpoint); signals should be reported anyway. */
665 if (child == NULL)
666 {
667 event_child = (struct process_info *)
668 find_inferior (&all_processes, status_pending_p, NULL);
669 if (debug_threads && event_child)
670 fprintf (stderr, "Got a pending child %ld\n", event_child->lwpid);
671 }
672 else
673 {
674 event_child = get_thread_process (child);
675 if (event_child->status_pending_p
676 && check_removed_breakpoint (event_child))
677 event_child = NULL;
678 }
679
680 if (event_child != NULL)
681 {
682 if (event_child->status_pending_p)
683 {
684 if (debug_threads)
685 fprintf (stderr, "Got an event from pending child %ld (%04x)\n",
686 event_child->lwpid, event_child->status_pending);
687 wstat = event_child->status_pending;
688 event_child->status_pending_p = 0;
689 event_child->status_pending = 0;
690 current_inferior = get_process_thread (event_child);
691 return wstat;
692 }
693 }
694
695 /* We only enter this loop if no process has a pending wait status. Thus
696 any action taken in response to a wait status inside this loop is
697 responding as soon as we detect the status, not after any pending
698 events. */
699 while (1)
700 {
701 if (child == NULL)
702 event_child = NULL;
703 else
704 event_child = get_thread_process (child);
705
706 linux_wait_for_process (&event_child, &wstat);
707
708 if (event_child == NULL)
709 error ("event from unknown child");
710
711 current_inferior = (struct thread_info *)
712 find_inferior_id (&all_threads, event_child->lwpid);
713
714 /* Check for thread exit. */
715 if (! WIFSTOPPED (wstat))
716 {
717 if (debug_threads)
718 fprintf (stderr, "LWP %ld exiting\n", event_child->head.id);
719
720 /* If the last thread is exiting, just return. */
721 if (all_threads.head == all_threads.tail)
722 return wstat;
723
724 dead_thread_notify (thread_id_to_gdb_id (event_child->lwpid));
725
726 remove_inferior (&all_processes, &event_child->head);
727 free (event_child);
728 remove_thread (current_inferior);
729 current_inferior = (struct thread_info *) all_threads.head;
730
731 /* If we were waiting for this particular child to do something...
732 well, it did something. */
733 if (child != NULL)
734 return wstat;
735
736 /* Wait for a more interesting event. */
737 continue;
738 }
739
740 if (WIFSTOPPED (wstat)
741 && WSTOPSIG (wstat) == SIGSTOP
742 && event_child->stop_expected)
743 {
744 if (debug_threads)
745 fprintf (stderr, "Expected stop.\n");
746 event_child->stop_expected = 0;
747 linux_resume_one_process (&event_child->head,
748 event_child->stepping, 0, NULL);
749 continue;
750 }
751
752 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
753 && wstat >> 16 != 0)
754 {
755 handle_extended_wait (event_child, wstat);
756 continue;
757 }
758
759 /* If GDB is not interested in this signal, don't stop other
760 threads, and don't report it to GDB. Just resume the
761 inferior right away. We do this for threading-related
762 signals as well as any that GDB specifically requested we
763 ignore. But never ignore SIGSTOP if we sent it ourselves,
764 and do not ignore signals when stepping - they may require
765 special handling to skip the signal handler. */
766 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
767 thread library? */
768 if (WIFSTOPPED (wstat)
769 && !event_child->stepping
770 && (
771 #ifdef USE_THREAD_DB
772 (thread_db_active && (WSTOPSIG (wstat) == __SIGRTMIN
773 || WSTOPSIG (wstat) == __SIGRTMIN + 1))
774 ||
775 #endif
776 (pass_signals[target_signal_from_host (WSTOPSIG (wstat))]
777 && (WSTOPSIG (wstat) != SIGSTOP || !stopping_threads))))
778 {
779 siginfo_t info, *info_p;
780
781 if (debug_threads)
782 fprintf (stderr, "Ignored signal %d for LWP %ld.\n",
783 WSTOPSIG (wstat), event_child->head.id);
784
785 if (ptrace (PTRACE_GETSIGINFO, event_child->lwpid, 0, &info) == 0)
786 info_p = &info;
787 else
788 info_p = NULL;
789 linux_resume_one_process (&event_child->head,
790 event_child->stepping,
791 WSTOPSIG (wstat), info_p);
792 continue;
793 }
794
795 /* If this event was not handled above, and is not a SIGTRAP, report
796 it. */
797 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGTRAP)
798 return wstat;
799
800 /* If this target does not support breakpoints, we simply report the
801 SIGTRAP; it's of no concern to us. */
802 if (the_low_target.get_pc == NULL)
803 return wstat;
804
805 stop_pc = get_stop_pc ();
806
807 /* bp_reinsert will only be set if we were single-stepping.
808 Notice that we will resume the process after hitting
809 a gdbserver breakpoint; single-stepping to/over one
810 is not supported (yet). */
811 if (event_child->bp_reinsert != 0)
812 {
813 if (debug_threads)
814 fprintf (stderr, "Reinserted breakpoint.\n");
815 reinsert_breakpoint (event_child->bp_reinsert);
816 event_child->bp_reinsert = 0;
817
818 /* Clear the single-stepping flag and SIGTRAP as we resume. */
819 linux_resume_one_process (&event_child->head, 0, 0, NULL);
820 continue;
821 }
822
823 bp_status = check_breakpoints (stop_pc);
824
825 if (bp_status != 0)
826 {
827 if (debug_threads)
828 fprintf (stderr, "Hit a gdbserver breakpoint.\n");
829
830 /* We hit one of our own breakpoints. We mark it as a pending
831 breakpoint, so that check_removed_breakpoint () will do the PC
832 adjustment for us at the appropriate time. */
833 event_child->pending_is_breakpoint = 1;
834 event_child->pending_stop_pc = stop_pc;
835
836 /* We may need to put the breakpoint back. We continue in the event
837 loop instead of simply replacing the breakpoint right away,
838 in order to not lose signals sent to the thread that hit the
839 breakpoint. Unfortunately this increases the window where another
840 thread could sneak past the removed breakpoint. For the current
841 use of server-side breakpoints (thread creation) this is
842 acceptable; but it needs to be considered before this breakpoint
843 mechanism can be used in more general ways. For some breakpoints
844 it may be necessary to stop all other threads, but that should
845 be avoided where possible.
846
847 If breakpoint_reinsert_addr is NULL, that means that we can
848 use PTRACE_SINGLESTEP on this platform. Uninsert the breakpoint,
849 mark it for reinsertion, and single-step.
850
851 Otherwise, call the target function to figure out where we need
852 our temporary breakpoint, create it, and continue executing this
853 process. */
854 if (bp_status == 2)
855 /* No need to reinsert. */
856 linux_resume_one_process (&event_child->head, 0, 0, NULL);
857 else if (the_low_target.breakpoint_reinsert_addr == NULL)
858 {
859 event_child->bp_reinsert = stop_pc;
860 uninsert_breakpoint (stop_pc);
861 linux_resume_one_process (&event_child->head, 1, 0, NULL);
862 }
863 else
864 {
865 reinsert_breakpoint_by_bp
866 (stop_pc, (*the_low_target.breakpoint_reinsert_addr) ());
867 linux_resume_one_process (&event_child->head, 0, 0, NULL);
868 }
869
870 continue;
871 }
872
873 if (debug_threads)
874 fprintf (stderr, "Hit a non-gdbserver breakpoint.\n");
875
876 /* If we were single-stepping, we definitely want to report the
877 SIGTRAP. The single-step operation has completed, so also
878 clear the stepping flag; in general this does not matter,
879 because the SIGTRAP will be reported to the client, which
880 will give us a new action for this thread, but clear it for
881 consistency anyway. It's safe to clear the stepping flag
882 because the only consumer of get_stop_pc () after this point
883 is check_removed_breakpoint, and pending_is_breakpoint is not
884 set. It might be wiser to use a step_completed flag instead. */
885 if (event_child->stepping)
886 {
887 event_child->stepping = 0;
888 return wstat;
889 }
890
891 /* A SIGTRAP that we can't explain. It may have been a breakpoint.
892 Check if it is a breakpoint, and if so mark the process information
893 accordingly. This will handle both the necessary fiddling with the
894 PC on decr_pc_after_break targets and suppressing extra threads
895 hitting a breakpoint if two hit it at once and then GDB removes it
896 after the first is reported. Arguably it would be better to report
897 multiple threads hitting breakpoints simultaneously, but the current
898 remote protocol does not allow this. */
899 if ((*the_low_target.breakpoint_at) (stop_pc))
900 {
901 event_child->pending_is_breakpoint = 1;
902 event_child->pending_stop_pc = stop_pc;
903 }
904
905 return wstat;
906 }
907
908 /* NOTREACHED */
909 return 0;
910 }
911
912 /* Wait for process, returns status. */
913
914 static unsigned char
915 linux_wait (char *status)
916 {
917 int w;
918 struct thread_info *child = NULL;
919
920 retry:
921 /* If we were only supposed to resume one thread, only wait for
922 that thread - if it's still alive. If it died, however - which
923 can happen if we're coming from the thread death case below -
924 then we need to make sure we restart the other threads. We could
925 pick a thread at random or restart all; restarting all is less
926 arbitrary. */
927 if (cont_thread != 0 && cont_thread != -1)
928 {
929 child = (struct thread_info *) find_inferior_id (&all_threads,
930 cont_thread);
931
932 /* No stepping, no signal - unless one is pending already, of course. */
933 if (child == NULL)
934 {
935 struct thread_resume resume_info;
936 resume_info.thread = -1;
937 resume_info.step = resume_info.sig = resume_info.leave_stopped = 0;
938 linux_resume (&resume_info);
939 }
940 }
941
942 w = linux_wait_for_event (child);
943 stop_all_processes ();
944
945 if (must_set_ptrace_flags)
946 {
947 ptrace (PTRACE_SETOPTIONS, inferior_pid, 0, PTRACE_O_TRACECLONE);
948 must_set_ptrace_flags = 0;
949 }
950
951 /* If we are waiting for a particular child, and it exited,
952 linux_wait_for_event will return its exit status. Similarly if
953 the last child exited. If this is not the last child, however,
954 do not report it as exited until there is a 'thread exited' response
955 available in the remote protocol. Instead, just wait for another event.
956 This should be safe, because if the thread crashed we will already
957 have reported the termination signal to GDB; that should stop any
958 in-progress stepping operations, etc.
959
960 Report the exit status of the last thread to exit. This matches
961 LinuxThreads' behavior. */
962
963 if (all_threads.head == all_threads.tail)
964 {
965 if (WIFEXITED (w))
966 {
967 fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
968 *status = 'W';
969 clear_inferiors ();
970 free (all_processes.head);
971 all_processes.head = all_processes.tail = NULL;
972 return WEXITSTATUS (w);
973 }
974 else if (!WIFSTOPPED (w))
975 {
976 fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
977 *status = 'X';
978 clear_inferiors ();
979 free (all_processes.head);
980 all_processes.head = all_processes.tail = NULL;
981 return target_signal_from_host (WTERMSIG (w));
982 }
983 }
984 else
985 {
986 if (!WIFSTOPPED (w))
987 goto retry;
988 }
989
990 *status = 'T';
991 return target_signal_from_host (WSTOPSIG (w));
992 }
993
994 /* Send a signal to an LWP. For LinuxThreads, kill is enough; however, if
995 thread groups are in use, we need to use tkill. */
996
997 static int
998 kill_lwp (unsigned long lwpid, int signo)
999 {
1000 static int tkill_failed;
1001
1002 errno = 0;
1003
1004 #ifdef SYS_tkill
1005 if (!tkill_failed)
1006 {
1007 int ret = syscall (SYS_tkill, lwpid, signo);
1008 if (errno != ENOSYS)
1009 return ret;
1010 errno = 0;
1011 tkill_failed = 1;
1012 }
1013 #endif
1014
1015 return kill (lwpid, signo);
1016 }
1017
1018 static void
1019 send_sigstop (struct inferior_list_entry *entry)
1020 {
1021 struct process_info *process = (struct process_info *) entry;
1022
1023 if (process->stopped)
1024 return;
1025
1026 /* If we already have a pending stop signal for this process, don't
1027 send another. */
1028 if (process->stop_expected)
1029 {
1030 if (debug_threads)
1031 fprintf (stderr, "Have pending sigstop for process %ld\n",
1032 process->lwpid);
1033
1034 /* We clear the stop_expected flag so that wait_for_sigstop
1035 will receive the SIGSTOP event (instead of silently resuming and
1036 waiting again). It'll be reset below. */
1037 process->stop_expected = 0;
1038 return;
1039 }
1040
1041 if (debug_threads)
1042 fprintf (stderr, "Sending sigstop to process %ld\n", process->head.id);
1043
1044 kill_lwp (process->head.id, SIGSTOP);
1045 }
1046
1047 static void
1048 wait_for_sigstop (struct inferior_list_entry *entry)
1049 {
1050 struct process_info *process = (struct process_info *) entry;
1051 struct thread_info *saved_inferior, *thread;
1052 int wstat;
1053 unsigned long saved_tid;
1054
1055 if (process->stopped)
1056 return;
1057
1058 saved_inferior = current_inferior;
1059 saved_tid = ((struct inferior_list_entry *) saved_inferior)->id;
1060 thread = (struct thread_info *) find_inferior_id (&all_threads,
1061 process->lwpid);
1062 wstat = linux_wait_for_event (thread);
1063
1064 /* If we stopped with a non-SIGSTOP signal, save it for later
1065 and record the pending SIGSTOP. If the process exited, just
1066 return. */
1067 if (WIFSTOPPED (wstat)
1068 && WSTOPSIG (wstat) != SIGSTOP)
1069 {
1070 if (debug_threads)
1071 fprintf (stderr, "LWP %ld stopped with non-sigstop status %06x\n",
1072 process->lwpid, wstat);
1073 process->status_pending_p = 1;
1074 process->status_pending = wstat;
1075 process->stop_expected = 1;
1076 }
1077
1078 if (linux_thread_alive (saved_tid))
1079 current_inferior = saved_inferior;
1080 else
1081 {
1082 if (debug_threads)
1083 fprintf (stderr, "Previously current thread died.\n");
1084
1085 /* Set a valid thread as current. */
1086 set_desired_inferior (0);
1087 }
1088 }
1089
1090 static void
1091 stop_all_processes (void)
1092 {
1093 stopping_threads = 1;
1094 for_each_inferior (&all_processes, send_sigstop);
1095 for_each_inferior (&all_processes, wait_for_sigstop);
1096 stopping_threads = 0;
1097 }
1098
1099 /* Resume execution of the inferior process.
1100 If STEP is nonzero, single-step it.
1101 If SIGNAL is nonzero, give it that signal. */
1102
1103 static void
1104 linux_resume_one_process (struct inferior_list_entry *entry,
1105 int step, int signal, siginfo_t *info)
1106 {
1107 struct process_info *process = (struct process_info *) entry;
1108 struct thread_info *saved_inferior;
1109
1110 if (process->stopped == 0)
1111 return;
1112
1113 /* If we have pending signals or status, and a new signal, enqueue the
1114 signal. Also enqueue the signal if we are waiting to reinsert a
1115 breakpoint; it will be picked up again below. */
1116 if (signal != 0
1117 && (process->status_pending_p || process->pending_signals != NULL
1118 || process->bp_reinsert != 0))
1119 {
1120 struct pending_signals *p_sig;
1121 p_sig = malloc (sizeof (*p_sig));
1122 p_sig->prev = process->pending_signals;
1123 p_sig->signal = signal;
1124 if (info == NULL)
1125 memset (&p_sig->info, 0, sizeof (siginfo_t));
1126 else
1127 memcpy (&p_sig->info, info, sizeof (siginfo_t));
1128 process->pending_signals = p_sig;
1129 }
1130
1131 if (process->status_pending_p && !check_removed_breakpoint (process))
1132 return;
1133
1134 saved_inferior = current_inferior;
1135 current_inferior = get_process_thread (process);
1136
1137 if (debug_threads)
1138 fprintf (stderr, "Resuming process %ld (%s, signal %d, stop %s)\n", inferior_pid,
1139 step ? "step" : "continue", signal,
1140 process->stop_expected ? "expected" : "not expected");
1141
1142 /* This bit needs some thinking about. If we get a signal that
1143 we must report while a single-step reinsert is still pending,
1144 we often end up resuming the thread. It might be better to
1145 (ew) allow a stack of pending events; then we could be sure that
1146 the reinsert happened right away and not lose any signals.
1147
1148 Making this stack would also shrink the window in which breakpoints are
1149 uninserted (see comment in linux_wait_for_process) but not enough for
1150 complete correctness, so it won't solve that problem. It may be
1151 worthwhile just to solve this one, however. */
1152 if (process->bp_reinsert != 0)
1153 {
1154 if (debug_threads)
1155 fprintf (stderr, " pending reinsert at %08lx", (long)process->bp_reinsert);
1156 if (step == 0)
1157 fprintf (stderr, "BAD - reinserting but not stepping.\n");
1158 step = 1;
1159
1160 /* Postpone any pending signal. It was enqueued above. */
1161 signal = 0;
1162 }
1163
1164 check_removed_breakpoint (process);
1165
1166 if (debug_threads && the_low_target.get_pc != NULL)
1167 {
1168 fprintf (stderr, " ");
1169 (*the_low_target.get_pc) ();
1170 }
1171
1172 /* If we have pending signals, consume one unless we are trying to reinsert
1173 a breakpoint. */
1174 if (process->pending_signals != NULL && process->bp_reinsert == 0)
1175 {
1176 struct pending_signals **p_sig;
1177
1178 p_sig = &process->pending_signals;
1179 while ((*p_sig)->prev != NULL)
1180 p_sig = &(*p_sig)->prev;
1181
1182 signal = (*p_sig)->signal;
1183 if ((*p_sig)->info.si_signo != 0)
1184 ptrace (PTRACE_SETSIGINFO, process->lwpid, 0, &(*p_sig)->info);
1185
1186 free (*p_sig);
1187 *p_sig = NULL;
1188 }
1189
1190 regcache_invalidate_one ((struct inferior_list_entry *)
1191 get_process_thread (process));
1192 errno = 0;
1193 process->stopped = 0;
1194 process->stepping = step;
1195 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, process->lwpid, 0, signal);
1196
1197 current_inferior = saved_inferior;
1198 if (errno)
1199 {
1200 /* ESRCH from ptrace either means that the thread was already
1201 running (an error) or that it is gone (a race condition). If
1202 it's gone, we will get a notification the next time we wait,
1203 so we can ignore the error. We could differentiate these
1204 two, but it's tricky without waiting; the thread still exists
1205 as a zombie, so sending it signal 0 would succeed. So just
1206 ignore ESRCH. */
1207 if (errno == ESRCH)
1208 return;
1209
1210 perror_with_name ("ptrace");
1211 }
1212 }
1213
1214 static struct thread_resume *resume_ptr;
1215
1216 /* This function is called once per thread. We look up the thread
1217 in RESUME_PTR, and mark the thread with a pointer to the appropriate
1218 resume request.
1219
1220 This algorithm is O(threads * resume elements), but resume elements
1221 is small (and will remain small at least until GDB supports thread
1222 suspension). */
1223 static void
1224 linux_set_resume_request (struct inferior_list_entry *entry)
1225 {
1226 struct process_info *process;
1227 struct thread_info *thread;
1228 int ndx;
1229
1230 thread = (struct thread_info *) entry;
1231 process = get_thread_process (thread);
1232
1233 ndx = 0;
1234 while (resume_ptr[ndx].thread != -1 && resume_ptr[ndx].thread != entry->id)
1235 ndx++;
1236
1237 process->resume = &resume_ptr[ndx];
1238 }
1239
1240 /* This function is called once per thread. We check the thread's resume
1241 request, which will tell us whether to resume, step, or leave the thread
1242 stopped; and what signal, if any, it should be sent. For threads which
1243 we aren't explicitly told otherwise, we preserve the stepping flag; this
1244 is used for stepping over gdbserver-placed breakpoints. */
1245
1246 static void
1247 linux_continue_one_thread (struct inferior_list_entry *entry)
1248 {
1249 struct process_info *process;
1250 struct thread_info *thread;
1251 int step;
1252
1253 thread = (struct thread_info *) entry;
1254 process = get_thread_process (thread);
1255
1256 if (process->resume->leave_stopped)
1257 return;
1258
1259 if (process->resume->thread == -1)
1260 step = process->stepping || process->resume->step;
1261 else
1262 step = process->resume->step;
1263
1264 linux_resume_one_process (&process->head, step, process->resume->sig, NULL);
1265
1266 process->resume = NULL;
1267 }
1268
1269 /* This function is called once per thread. We check the thread's resume
1270 request, which will tell us whether to resume, step, or leave the thread
1271 stopped; and what signal, if any, it should be sent. We queue any needed
1272 signals, since we won't actually resume. We already have a pending event
1273 to report, so we don't need to preserve any step requests; they should
1274 be re-issued if necessary. */
1275
1276 static void
1277 linux_queue_one_thread (struct inferior_list_entry *entry)
1278 {
1279 struct process_info *process;
1280 struct thread_info *thread;
1281
1282 thread = (struct thread_info *) entry;
1283 process = get_thread_process (thread);
1284
1285 if (process->resume->leave_stopped)
1286 return;
1287
1288 /* If we have a new signal, enqueue the signal. */
1289 if (process->resume->sig != 0)
1290 {
1291 struct pending_signals *p_sig;
1292 p_sig = malloc (sizeof (*p_sig));
1293 p_sig->prev = process->pending_signals;
1294 p_sig->signal = process->resume->sig;
1295 memset (&p_sig->info, 0, sizeof (siginfo_t));
1296
1297 /* If this is the same signal we were previously stopped by,
1298 make sure to queue its siginfo. We can ignore the return
1299 value of ptrace; if it fails, we'll skip
1300 PTRACE_SETSIGINFO. */
1301 if (WIFSTOPPED (process->last_status)
1302 && WSTOPSIG (process->last_status) == process->resume->sig)
1303 ptrace (PTRACE_GETSIGINFO, process->lwpid, 0, &p_sig->info);
1304
1305 process->pending_signals = p_sig;
1306 }
1307
1308 process->resume = NULL;
1309 }
1310
1311 /* Set DUMMY if this process has an interesting status pending. */
1312 static int
1313 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
1314 {
1315 struct process_info *process = (struct process_info *) entry;
1316
1317 /* Processes which will not be resumed are not interesting, because
1318 we might not wait for them next time through linux_wait. */
1319 if (process->resume->leave_stopped)
1320 return 0;
1321
1322 /* If this thread has a removed breakpoint, we won't have any
1323 events to report later, so check now. check_removed_breakpoint
1324 may clear status_pending_p. We avoid calling check_removed_breakpoint
1325 for any thread that we are not otherwise going to resume - this
1326 lets us preserve stopped status when two threads hit a breakpoint.
1327 GDB removes the breakpoint to single-step a particular thread
1328 past it, then re-inserts it and resumes all threads. We want
1329 to report the second thread without resuming it in the interim. */
1330 if (process->status_pending_p)
1331 check_removed_breakpoint (process);
1332
1333 if (process->status_pending_p)
1334 * (int *) flag_p = 1;
1335
1336 return 0;
1337 }
1338
1339 static void
1340 linux_resume (struct thread_resume *resume_info)
1341 {
1342 int pending_flag;
1343
1344 /* Yes, the use of a global here is rather ugly. */
1345 resume_ptr = resume_info;
1346
1347 for_each_inferior (&all_threads, linux_set_resume_request);
1348
1349 /* If there is a thread which would otherwise be resumed, which
1350 has a pending status, then don't resume any threads - we can just
1351 report the pending status. Make sure to queue any signals
1352 that would otherwise be sent. */
1353 pending_flag = 0;
1354 find_inferior (&all_processes, resume_status_pending_p, &pending_flag);
1355
1356 if (debug_threads)
1357 {
1358 if (pending_flag)
1359 fprintf (stderr, "Not resuming, pending status\n");
1360 else
1361 fprintf (stderr, "Resuming, no pending status\n");
1362 }
1363
1364 if (pending_flag)
1365 for_each_inferior (&all_threads, linux_queue_one_thread);
1366 else
1367 for_each_inferior (&all_threads, linux_continue_one_thread);
1368 }
1369
1370 #ifdef HAVE_LINUX_USRREGS
1371
1372 int
1373 register_addr (int regnum)
1374 {
1375 int addr;
1376
1377 if (regnum < 0 || regnum >= the_low_target.num_regs)
1378 error ("Invalid register number %d.", regnum);
1379
1380 addr = the_low_target.regmap[regnum];
1381
1382 return addr;
1383 }
1384
1385 /* Fetch one register. */
1386 static void
1387 fetch_register (int regno)
1388 {
1389 CORE_ADDR regaddr;
1390 int i, size;
1391 char *buf;
1392
1393 if (regno >= the_low_target.num_regs)
1394 return;
1395 if ((*the_low_target.cannot_fetch_register) (regno))
1396 return;
1397
1398 regaddr = register_addr (regno);
1399 if (regaddr == -1)
1400 return;
1401 size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
1402 & - sizeof (PTRACE_XFER_TYPE);
1403 buf = alloca (size);
1404 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
1405 {
1406 errno = 0;
1407 *(PTRACE_XFER_TYPE *) (buf + i) =
1408 ptrace (PTRACE_PEEKUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, 0);
1409 regaddr += sizeof (PTRACE_XFER_TYPE);
1410 if (errno != 0)
1411 {
1412 /* Warning, not error, in case we are attached; sometimes the
1413 kernel doesn't let us at the registers. */
1414 char *err = strerror (errno);
1415 char *msg = alloca (strlen (err) + 128);
1416 sprintf (msg, "reading register %d: %s", regno, err);
1417 error (msg);
1418 goto error_exit;
1419 }
1420 }
1421
1422 if (the_low_target.supply_ptrace_register)
1423 the_low_target.supply_ptrace_register (regno, buf);
1424 else
1425 supply_register (regno, buf);
1426
1427 error_exit:;
1428 }
1429
1430 /* Fetch all registers, or just one, from the child process. */
1431 static void
1432 usr_fetch_inferior_registers (int regno)
1433 {
1434 if (regno == -1 || regno == 0)
1435 for (regno = 0; regno < the_low_target.num_regs; regno++)
1436 fetch_register (regno);
1437 else
1438 fetch_register (regno);
1439 }
1440
1441 /* Store our register values back into the inferior.
1442 If REGNO is -1, do this for all registers.
1443 Otherwise, REGNO specifies which register (so we can save time). */
1444 static void
1445 usr_store_inferior_registers (int regno)
1446 {
1447 CORE_ADDR regaddr;
1448 int i, size;
1449 char *buf;
1450
1451 if (regno >= 0)
1452 {
1453 if (regno >= the_low_target.num_regs)
1454 return;
1455
1456 if ((*the_low_target.cannot_store_register) (regno) == 1)
1457 return;
1458
1459 regaddr = register_addr (regno);
1460 if (regaddr == -1)
1461 return;
1462 errno = 0;
1463 size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
1464 & - sizeof (PTRACE_XFER_TYPE);
1465 buf = alloca (size);
1466 memset (buf, 0, size);
1467
1468 if (the_low_target.collect_ptrace_register)
1469 the_low_target.collect_ptrace_register (regno, buf);
1470 else
1471 collect_register (regno, buf);
1472
1473 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
1474 {
1475 errno = 0;
1476 ptrace (PTRACE_POKEUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
1477 *(PTRACE_XFER_TYPE *) (buf + i));
1478 if (errno != 0)
1479 {
1480 /* At this point, ESRCH should mean the process is already gone,
1481 in which case we simply ignore attempts to change its registers.
1482 See also the related comment in linux_resume_one_process. */
1483 if (errno == ESRCH)
1484 return;
1485
1486 if ((*the_low_target.cannot_store_register) (regno) == 0)
1487 {
1488 char *err = strerror (errno);
1489 char *msg = alloca (strlen (err) + 128);
1490 sprintf (msg, "writing register %d: %s",
1491 regno, err);
1492 error (msg);
1493 return;
1494 }
1495 }
1496 regaddr += sizeof (PTRACE_XFER_TYPE);
1497 }
1498 }
1499 else
1500 for (regno = 0; regno < the_low_target.num_regs; regno++)
1501 usr_store_inferior_registers (regno);
1502 }
1503 #endif /* HAVE_LINUX_USRREGS */
1504
1505
1506
1507 #ifdef HAVE_LINUX_REGSETS
1508
1509 static int
1510 regsets_fetch_inferior_registers ()
1511 {
1512 struct regset_info *regset;
1513 int saw_general_regs = 0;
1514
1515 regset = target_regsets;
1516
1517 while (regset->size >= 0)
1518 {
1519 void *buf;
1520 int res;
1521
1522 if (regset->size == 0 || disabled_regsets[regset - target_regsets])
1523 {
1524 regset ++;
1525 continue;
1526 }
1527
1528 buf = malloc (regset->size);
1529 #ifndef __sparc__
1530 res = ptrace (regset->get_request, inferior_pid, 0, buf);
1531 #else
1532 res = ptrace (regset->get_request, inferior_pid, buf, 0);
1533 #endif
1534 if (res < 0)
1535 {
1536 if (errno == EIO)
1537 {
1538 /* If we get EIO on a regset, do not try it again for
1539 this process. */
1540 disabled_regsets[regset - target_regsets] = 1;
1541 continue;
1542 }
1543 else
1544 {
1545 char s[256];
1546 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%ld",
1547 inferior_pid);
1548 perror (s);
1549 }
1550 }
1551 else if (regset->type == GENERAL_REGS)
1552 saw_general_regs = 1;
1553 regset->store_function (buf);
1554 regset ++;
1555 }
1556 if (saw_general_regs)
1557 return 0;
1558 else
1559 return 1;
1560 }
1561
1562 static int
1563 regsets_store_inferior_registers ()
1564 {
1565 struct regset_info *regset;
1566 int saw_general_regs = 0;
1567
1568 regset = target_regsets;
1569
1570 while (regset->size >= 0)
1571 {
1572 void *buf;
1573 int res;
1574
1575 if (regset->size == 0 || disabled_regsets[regset - target_regsets])
1576 {
1577 regset ++;
1578 continue;
1579 }
1580
1581 buf = malloc (regset->size);
1582
1583 /* First fill the buffer with the current register set contents,
1584 in case there are any items in the kernel's regset that are
1585 not in gdbserver's regcache. */
1586 #ifndef __sparc__
1587 res = ptrace (regset->get_request, inferior_pid, 0, buf);
1588 #else
1589 res = ptrace (regset->get_request, inferior_pid, buf, 0);
1590 #endif
1591
1592 if (res == 0)
1593 {
1594 /* Then overlay our cached registers on that. */
1595 regset->fill_function (buf);
1596
1597 /* Only now do we write the register set. */
1598 #ifndef __sparc__
1599 res = ptrace (regset->set_request, inferior_pid, 0, buf);
1600 #else
1601 res = ptrace (regset->set_request, inferior_pid, buf, 0);
1602 #endif
1603 }
1604
1605 if (res < 0)
1606 {
1607 if (errno == EIO)
1608 {
1609 /* If we get EIO on a regset, do not try it again for
1610 this process. */
1611 disabled_regsets[regset - target_regsets] = 1;
1612 continue;
1613 }
1614 else if (errno == ESRCH)
1615 {
1616 /* At this point, ESRCH should mean the process is already gone,
1617 in which case we simply ignore attempts to change its registers.
1618 See also the related comment in linux_resume_one_process. */
1619 return 0;
1620 }
1621 else
1622 {
1623 perror ("Warning: ptrace(regsets_store_inferior_registers)");
1624 }
1625 }
1626 else if (regset->type == GENERAL_REGS)
1627 saw_general_regs = 1;
1628 regset ++;
1629 free (buf);
1630 }
1631 if (saw_general_regs)
1632 return 0;
1633 else
1634 return 1;
1635 return 0;
1636 }
1637
1638 #endif /* HAVE_LINUX_REGSETS */
1639
1640
1641 void
1642 linux_fetch_registers (int regno)
1643 {
1644 #ifdef HAVE_LINUX_REGSETS
1645 if (regsets_fetch_inferior_registers () == 0)
1646 return;
1647 #endif
1648 #ifdef HAVE_LINUX_USRREGS
1649 usr_fetch_inferior_registers (regno);
1650 #endif
1651 }
1652
1653 void
1654 linux_store_registers (int regno)
1655 {
1656 #ifdef HAVE_LINUX_REGSETS
1657 if (regsets_store_inferior_registers () == 0)
1658 return;
1659 #endif
1660 #ifdef HAVE_LINUX_USRREGS
1661 usr_store_inferior_registers (regno);
1662 #endif
1663 }
1664
1665
1666 /* Copy LEN bytes from inferior's memory starting at MEMADDR
1667 to debugger memory starting at MYADDR. */
1668
1669 static int
1670 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
1671 {
1672 register int i;
1673 /* Round starting address down to longword boundary. */
1674 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
1675 /* Round ending address up; get number of longwords that makes. */
1676 register int count
1677 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
1678 / sizeof (PTRACE_XFER_TYPE);
1679 /* Allocate buffer of that many longwords. */
1680 register PTRACE_XFER_TYPE *buffer
1681 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
1682 int fd;
1683 char filename[64];
1684
1685 /* Try using /proc. Don't bother for one word. */
1686 if (len >= 3 * sizeof (long))
1687 {
1688 /* We could keep this file open and cache it - possibly one per
1689 thread. That requires some juggling, but is even faster. */
1690 sprintf (filename, "/proc/%ld/mem", inferior_pid);
1691 fd = open (filename, O_RDONLY | O_LARGEFILE);
1692 if (fd == -1)
1693 goto no_proc;
1694
1695 /* If pread64 is available, use it. It's faster if the kernel
1696 supports it (only one syscall), and it's 64-bit safe even on
1697 32-bit platforms (for instance, SPARC debugging a SPARC64
1698 application). */
1699 #ifdef HAVE_PREAD64
1700 if (pread64 (fd, myaddr, len, memaddr) != len)
1701 #else
1702 if (lseek (fd, memaddr, SEEK_SET) == -1 || read (fd, memaddr, len) != len)
1703 #endif
1704 {
1705 close (fd);
1706 goto no_proc;
1707 }
1708
1709 close (fd);
1710 return 0;
1711 }
1712
1713 no_proc:
1714 /* Read all the longwords */
1715 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
1716 {
1717 errno = 0;
1718 buffer[i] = ptrace (PTRACE_PEEKTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
1719 if (errno)
1720 return errno;
1721 }
1722
1723 /* Copy appropriate bytes out of the buffer. */
1724 memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), len);
1725
1726 return 0;
1727 }
1728
1729 /* Copy LEN bytes of data from debugger memory at MYADDR
1730 to inferior's memory at MEMADDR.
1731 On failure (cannot write the inferior)
1732 returns the value of errno. */
1733
1734 static int
1735 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
1736 {
1737 register int i;
1738 /* Round starting address down to longword boundary. */
1739 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
1740 /* Round ending address up; get number of longwords that makes. */
1741 register int count
1742 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) / sizeof (PTRACE_XFER_TYPE);
1743 /* Allocate buffer of that many longwords. */
1744 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
1745
1746 if (debug_threads)
1747 {
1748 fprintf (stderr, "Writing %02x to %08lx\n", (unsigned)myaddr[0], (long)memaddr);
1749 }
1750
1751 /* Fill start and end extra bytes of buffer with existing memory data. */
1752
1753 buffer[0] = ptrace (PTRACE_PEEKTEXT, inferior_pid,
1754 (PTRACE_ARG3_TYPE) addr, 0);
1755
1756 if (count > 1)
1757 {
1758 buffer[count - 1]
1759 = ptrace (PTRACE_PEEKTEXT, inferior_pid,
1760 (PTRACE_ARG3_TYPE) (addr + (count - 1)
1761 * sizeof (PTRACE_XFER_TYPE)),
1762 0);
1763 }
1764
1765 /* Copy data to be written over corresponding part of buffer */
1766
1767 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), myaddr, len);
1768
1769 /* Write the entire buffer. */
1770
1771 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
1772 {
1773 errno = 0;
1774 ptrace (PTRACE_POKETEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]);
1775 if (errno)
1776 return errno;
1777 }
1778
1779 return 0;
1780 }
1781
1782 static int linux_supports_tracefork_flag;
1783
1784 /* Helper functions for linux_test_for_tracefork, called via clone (). */
1785
1786 static int
1787 linux_tracefork_grandchild (void *arg)
1788 {
1789 _exit (0);
1790 }
1791
1792 #define STACK_SIZE 4096
1793
1794 static int
1795 linux_tracefork_child (void *arg)
1796 {
1797 ptrace (PTRACE_TRACEME, 0, 0, 0);
1798 kill (getpid (), SIGSTOP);
1799 #ifdef __ia64__
1800 __clone2 (linux_tracefork_grandchild, arg, STACK_SIZE,
1801 CLONE_VM | SIGCHLD, NULL);
1802 #else
1803 clone (linux_tracefork_grandchild, arg + STACK_SIZE,
1804 CLONE_VM | SIGCHLD, NULL);
1805 #endif
1806 _exit (0);
1807 }
1808
1809 /* Wrapper function for waitpid which handles EINTR. */
1810
1811 static int
1812 my_waitpid (int pid, int *status, int flags)
1813 {
1814 int ret;
1815 do
1816 {
1817 ret = waitpid (pid, status, flags);
1818 }
1819 while (ret == -1 && errno == EINTR);
1820
1821 return ret;
1822 }
1823
1824 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events. Make
1825 sure that we can enable the option, and that it had the desired
1826 effect. */
1827
1828 static void
1829 linux_test_for_tracefork (void)
1830 {
1831 int child_pid, ret, status;
1832 long second_pid;
1833 char *stack = malloc (STACK_SIZE * 4);
1834
1835 linux_supports_tracefork_flag = 0;
1836
1837 /* Use CLONE_VM instead of fork, to support uClinux (no MMU). */
1838 #ifdef __ia64__
1839 child_pid = __clone2 (linux_tracefork_child, stack, STACK_SIZE,
1840 CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
1841 #else
1842 child_pid = clone (linux_tracefork_child, stack + STACK_SIZE,
1843 CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
1844 #endif
1845 if (child_pid == -1)
1846 perror_with_name ("clone");
1847
1848 ret = my_waitpid (child_pid, &status, 0);
1849 if (ret == -1)
1850 perror_with_name ("waitpid");
1851 else if (ret != child_pid)
1852 error ("linux_test_for_tracefork: waitpid: unexpected result %d.", ret);
1853 if (! WIFSTOPPED (status))
1854 error ("linux_test_for_tracefork: waitpid: unexpected status %d.", status);
1855
1856 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
1857 if (ret != 0)
1858 {
1859 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
1860 if (ret != 0)
1861 {
1862 warning ("linux_test_for_tracefork: failed to kill child");
1863 return;
1864 }
1865
1866 ret = my_waitpid (child_pid, &status, 0);
1867 if (ret != child_pid)
1868 warning ("linux_test_for_tracefork: failed to wait for killed child");
1869 else if (!WIFSIGNALED (status))
1870 warning ("linux_test_for_tracefork: unexpected wait status 0x%x from "
1871 "killed child", status);
1872
1873 return;
1874 }
1875
1876 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
1877 if (ret != 0)
1878 warning ("linux_test_for_tracefork: failed to resume child");
1879
1880 ret = my_waitpid (child_pid, &status, 0);
1881
1882 if (ret == child_pid && WIFSTOPPED (status)
1883 && status >> 16 == PTRACE_EVENT_FORK)
1884 {
1885 second_pid = 0;
1886 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
1887 if (ret == 0 && second_pid != 0)
1888 {
1889 int second_status;
1890
1891 linux_supports_tracefork_flag = 1;
1892 my_waitpid (second_pid, &second_status, 0);
1893 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
1894 if (ret != 0)
1895 warning ("linux_test_for_tracefork: failed to kill second child");
1896 my_waitpid (second_pid, &status, 0);
1897 }
1898 }
1899 else
1900 warning ("linux_test_for_tracefork: unexpected result from waitpid "
1901 "(%d, status 0x%x)", ret, status);
1902
1903 do
1904 {
1905 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
1906 if (ret != 0)
1907 warning ("linux_test_for_tracefork: failed to kill child");
1908 my_waitpid (child_pid, &status, 0);
1909 }
1910 while (WIFSTOPPED (status));
1911
1912 free (stack);
1913 }
1914
1915
1916 static void
1917 linux_look_up_symbols (void)
1918 {
1919 #ifdef USE_THREAD_DB
1920 if (thread_db_active)
1921 return;
1922
1923 thread_db_active = thread_db_init (!linux_supports_tracefork_flag);
1924 #endif
1925 }
1926
1927 static void
1928 linux_request_interrupt (void)
1929 {
1930 extern unsigned long signal_pid;
1931
1932 if (cont_thread != 0 && cont_thread != -1)
1933 {
1934 struct process_info *process;
1935
1936 process = get_thread_process (current_inferior);
1937 kill_lwp (process->lwpid, SIGINT);
1938 }
1939 else
1940 kill_lwp (signal_pid, SIGINT);
1941 }
1942
1943 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
1944 to debugger memory starting at MYADDR. */
1945
1946 static int
1947 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
1948 {
1949 char filename[PATH_MAX];
1950 int fd, n;
1951
1952 snprintf (filename, sizeof filename, "/proc/%ld/auxv", inferior_pid);
1953
1954 fd = open (filename, O_RDONLY);
1955 if (fd < 0)
1956 return -1;
1957
1958 if (offset != (CORE_ADDR) 0
1959 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
1960 n = -1;
1961 else
1962 n = read (fd, myaddr, len);
1963
1964 close (fd);
1965
1966 return n;
1967 }
1968
1969 /* These watchpoint related wrapper functions simply pass on the function call
1970 if the target has registered a corresponding function. */
1971
1972 static int
1973 linux_insert_watchpoint (char type, CORE_ADDR addr, int len)
1974 {
1975 if (the_low_target.insert_watchpoint != NULL)
1976 return the_low_target.insert_watchpoint (type, addr, len);
1977 else
1978 /* Unsupported (see target.h). */
1979 return 1;
1980 }
1981
1982 static int
1983 linux_remove_watchpoint (char type, CORE_ADDR addr, int len)
1984 {
1985 if (the_low_target.remove_watchpoint != NULL)
1986 return the_low_target.remove_watchpoint (type, addr, len);
1987 else
1988 /* Unsupported (see target.h). */
1989 return 1;
1990 }
1991
1992 static int
1993 linux_stopped_by_watchpoint (void)
1994 {
1995 if (the_low_target.stopped_by_watchpoint != NULL)
1996 return the_low_target.stopped_by_watchpoint ();
1997 else
1998 return 0;
1999 }
2000
2001 static CORE_ADDR
2002 linux_stopped_data_address (void)
2003 {
2004 if (the_low_target.stopped_data_address != NULL)
2005 return the_low_target.stopped_data_address ();
2006 else
2007 return 0;
2008 }
2009
2010 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
2011 #if defined(__mcoldfire__)
2012 /* These should really be defined in the kernel's ptrace.h header. */
2013 #define PT_TEXT_ADDR 49*4
2014 #define PT_DATA_ADDR 50*4
2015 #define PT_TEXT_END_ADDR 51*4
2016 #endif
2017
2018 /* Under uClinux, programs are loaded at non-zero offsets, which we need
2019 to tell gdb about. */
2020
2021 static int
2022 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
2023 {
2024 #if defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) && defined(PT_TEXT_END_ADDR)
2025 unsigned long text, text_end, data;
2026 int pid = get_thread_process (current_inferior)->head.id;
2027
2028 errno = 0;
2029
2030 text = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_ADDR, 0);
2031 text_end = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_END_ADDR, 0);
2032 data = ptrace (PTRACE_PEEKUSER, pid, (long)PT_DATA_ADDR, 0);
2033
2034 if (errno == 0)
2035 {
2036 /* Both text and data offsets produced at compile-time (and so
2037 used by gdb) are relative to the beginning of the program,
2038 with the data segment immediately following the text segment.
2039 However, the actual runtime layout in memory may put the data
2040 somewhere else, so when we send gdb a data base-address, we
2041 use the real data base address and subtract the compile-time
2042 data base-address from it (which is just the length of the
2043 text segment). BSS immediately follows data in both
2044 cases. */
2045 *text_p = text;
2046 *data_p = data - (text_end - text);
2047
2048 return 1;
2049 }
2050 #endif
2051 return 0;
2052 }
2053 #endif
2054
2055 static int
2056 linux_qxfer_osdata (const char *annex,
2057 unsigned char *readbuf, unsigned const char *writebuf,
2058 CORE_ADDR offset, int len)
2059 {
2060 /* We make the process list snapshot when the object starts to be
2061 read. */
2062 static const char *buf;
2063 static long len_avail = -1;
2064 static struct buffer buffer;
2065
2066 DIR *dirp;
2067
2068 if (strcmp (annex, "processes") != 0)
2069 return 0;
2070
2071 if (!readbuf || writebuf)
2072 return 0;
2073
2074 if (offset == 0)
2075 {
2076 if (len_avail != -1 && len_avail != 0)
2077 buffer_free (&buffer);
2078 len_avail = 0;
2079 buf = NULL;
2080 buffer_init (&buffer);
2081 buffer_grow_str (&buffer, "<osdata type=\"processes\">");
2082
2083 dirp = opendir ("/proc");
2084 if (dirp)
2085 {
2086 struct dirent *dp;
2087 while ((dp = readdir (dirp)) != NULL)
2088 {
2089 struct stat statbuf;
2090 char procentry[sizeof ("/proc/4294967295")];
2091
2092 if (!isdigit (dp->d_name[0])
2093 || strlen (dp->d_name) > sizeof ("4294967295") - 1)
2094 continue;
2095
2096 sprintf (procentry, "/proc/%s", dp->d_name);
2097 if (stat (procentry, &statbuf) == 0
2098 && S_ISDIR (statbuf.st_mode))
2099 {
2100 char pathname[128];
2101 FILE *f;
2102 char cmd[MAXPATHLEN + 1];
2103 struct passwd *entry;
2104
2105 sprintf (pathname, "/proc/%s/cmdline", dp->d_name);
2106 entry = getpwuid (statbuf.st_uid);
2107
2108 if ((f = fopen (pathname, "r")) != NULL)
2109 {
2110 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
2111 if (len > 0)
2112 {
2113 int i;
2114 for (i = 0; i < len; i++)
2115 if (cmd[i] == '\0')
2116 cmd[i] = ' ';
2117 cmd[len] = '\0';
2118
2119 buffer_xml_printf (
2120 &buffer,
2121 "<item>"
2122 "<column name=\"pid\">%s</column>"
2123 "<column name=\"user\">%s</column>"
2124 "<column name=\"command\">%s</column>"
2125 "</item>",
2126 dp->d_name,
2127 entry ? entry->pw_name : "?",
2128 cmd);
2129 }
2130 fclose (f);
2131 }
2132 }
2133 }
2134
2135 closedir (dirp);
2136 }
2137 buffer_grow_str0 (&buffer, "</osdata>\n");
2138 buf = buffer_finish (&buffer);
2139 len_avail = strlen (buf);
2140 }
2141
2142 if (offset >= len_avail)
2143 {
2144 /* Done. Get rid of the data. */
2145 buffer_free (&buffer);
2146 buf = NULL;
2147 len_avail = 0;
2148 return 0;
2149 }
2150
2151 if (len > len_avail - offset)
2152 len = len_avail - offset;
2153 memcpy (readbuf, buf + offset, len);
2154
2155 return len;
2156 }
2157
2158 static struct target_ops linux_target_ops = {
2159 linux_create_inferior,
2160 linux_attach,
2161 linux_kill,
2162 linux_detach,
2163 linux_join,
2164 linux_thread_alive,
2165 linux_resume,
2166 linux_wait,
2167 linux_fetch_registers,
2168 linux_store_registers,
2169 linux_read_memory,
2170 linux_write_memory,
2171 linux_look_up_symbols,
2172 linux_request_interrupt,
2173 linux_read_auxv,
2174 linux_insert_watchpoint,
2175 linux_remove_watchpoint,
2176 linux_stopped_by_watchpoint,
2177 linux_stopped_data_address,
2178 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
2179 linux_read_offsets,
2180 #else
2181 NULL,
2182 #endif
2183 #ifdef USE_THREAD_DB
2184 thread_db_get_tls_address,
2185 #else
2186 NULL,
2187 #endif
2188 NULL,
2189 hostio_last_error_from_errno,
2190 linux_qxfer_osdata,
2191 };
2192
2193 static void
2194 linux_init_signals ()
2195 {
2196 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
2197 to find what the cancel signal actually is. */
2198 signal (__SIGRTMIN+1, SIG_IGN);
2199 }
2200
2201 void
2202 initialize_low (void)
2203 {
2204 thread_db_active = 0;
2205 set_target_ops (&linux_target_ops);
2206 set_breakpoint_data (the_low_target.breakpoint,
2207 the_low_target.breakpoint_len);
2208 linux_init_signals ();
2209 linux_test_for_tracefork ();
2210 #ifdef HAVE_LINUX_REGSETS
2211 for (num_regsets = 0; target_regsets[num_regsets].size >= 0; num_regsets++)
2212 ;
2213 disabled_regsets = malloc (num_regsets);
2214 #endif
2215 }