* linux-low.c (linux_create_inferior): Call setpgid. Return
[binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright 1995, 1996, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "server.h"
23 #include "linux-low.h"
24
25 #include <sys/wait.h>
26 #include <stdio.h>
27 #include <sys/param.h>
28 #include <sys/dir.h>
29 #include <sys/ptrace.h>
30 #include <sys/user.h>
31 #include <signal.h>
32 #include <sys/ioctl.h>
33 #include <fcntl.h>
34 #include <string.h>
35 #include <stdlib.h>
36 #include <unistd.h>
37
38 /* ``all_threads'' is keyed by the LWP ID - it should be the thread ID instead,
39 however. This requires changing the ID in place when we go from !using_threads
40 to using_threads, immediately.
41
42 ``all_processes'' is keyed by the process ID - which on Linux is (presently)
43 the same as the LWP ID. */
44
45 struct inferior_list all_processes;
46
47 /* FIXME this is a bit of a hack, and could be removed. */
48 int stopping_threads;
49
50 /* FIXME make into a target method? */
51 int using_threads;
52
53 static void linux_resume_one_process (struct inferior_list_entry *entry,
54 int step, int signal);
55 static void linux_resume (int step, int signal);
56 static void stop_all_processes (void);
57 static int linux_wait_for_event (struct thread_info *child);
58
59 struct pending_signals
60 {
61 int signal;
62 struct pending_signals *prev;
63 };
64
65 #define PTRACE_ARG3_TYPE long
66 #define PTRACE_XFER_TYPE long
67
68 #ifdef HAVE_LINUX_REGSETS
69 static int use_regsets_p = 1;
70 #endif
71
72 extern int errno;
73
74 int debug_threads = 0;
75
76 #define pid_of(proc) ((proc)->head.id)
77
78 /* FIXME: Delete eventually. */
79 #define inferior_pid (pid_of (get_thread_process (current_inferior)))
80
81 /* This function should only be called if the process got a SIGTRAP.
82 The SIGTRAP could mean several things.
83
84 On i386, where decr_pc_after_break is non-zero:
85 If we were single-stepping this process using PTRACE_SINGLESTEP,
86 we will get only the one SIGTRAP (even if the instruction we
87 stepped over was a breakpoint). The value of $eip will be the
88 next instruction.
89 If we continue the process using PTRACE_CONT, we will get a
90 SIGTRAP when we hit a breakpoint. The value of $eip will be
91 the instruction after the breakpoint (i.e. needs to be
92 decremented). If we report the SIGTRAP to GDB, we must also
93 report the undecremented PC. If we cancel the SIGTRAP, we
94 must resume at the decremented PC.
95
96 (Presumably, not yet tested) On a non-decr_pc_after_break machine
97 with hardware or kernel single-step:
98 If we single-step over a breakpoint instruction, our PC will
99 point at the following instruction. If we continue and hit a
100 breakpoint instruction, our PC will point at the breakpoint
101 instruction. */
102
103 static CORE_ADDR
104 get_stop_pc (void)
105 {
106 CORE_ADDR stop_pc = (*the_low_target.get_pc) ();
107
108 if (get_thread_process (current_inferior)->stepping)
109 return stop_pc;
110 else
111 return stop_pc - the_low_target.decr_pc_after_break;
112 }
113
114 static void *
115 add_process (int pid)
116 {
117 struct process_info *process;
118
119 process = (struct process_info *) malloc (sizeof (*process));
120 memset (process, 0, sizeof (*process));
121
122 process->head.id = pid;
123
124 /* Default to tid == lwpid == pid. */
125 process->tid = pid;
126 process->lwpid = pid;
127
128 add_inferior_to_list (&all_processes, &process->head);
129
130 return process;
131 }
132
133 /* Start an inferior process and returns its pid.
134 ALLARGS is a vector of program-name and args. */
135
136 static int
137 linux_create_inferior (char *program, char **allargs)
138 {
139 void *new_process;
140 int pid;
141
142 pid = fork ();
143 if (pid < 0)
144 perror_with_name ("fork");
145
146 if (pid == 0)
147 {
148 ptrace (PTRACE_TRACEME, 0, 0, 0);
149
150 signal (SIGRTMIN + 1, SIG_DFL);
151
152 setpgid (0, 0);
153
154 execv (program, allargs);
155
156 fprintf (stderr, "Cannot exec %s: %s.\n", program,
157 strerror (errno));
158 fflush (stderr);
159 _exit (0177);
160 }
161
162 new_process = add_process (pid);
163 add_thread (pid, new_process);
164
165 return pid;
166 }
167
168 /* Attach to an inferior process. */
169
170 void
171 linux_attach_lwp (int pid, int tid)
172 {
173 struct process_info *new_process;
174
175 if (ptrace (PTRACE_ATTACH, pid, 0, 0) != 0)
176 {
177 fprintf (stderr, "Cannot attach to process %d: %s (%d)\n", pid,
178 errno < sys_nerr ? sys_errlist[errno] : "unknown error",
179 errno);
180 fflush (stderr);
181
182 /* If we fail to attach to an LWP, just return. */
183 if (!using_threads)
184 _exit (0177);
185 return;
186 }
187
188 new_process = (struct process_info *) add_process (pid);
189 add_thread (tid, new_process);
190
191 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
192 brings it to a halt. We should ignore that SIGSTOP and resume the process
193 (unless this is the first process, in which case the flag will be cleared
194 in linux_attach).
195
196 On the other hand, if we are currently trying to stop all threads, we
197 should treat the new thread as if we had sent it a SIGSTOP. This works
198 because we are guaranteed that add_process added us to the end of the
199 list, and so the new thread has not yet reached wait_for_sigstop (but
200 will). */
201 if (! stopping_threads)
202 new_process->stop_expected = 1;
203 }
204
205 int
206 linux_attach (int pid)
207 {
208 struct process_info *process;
209
210 linux_attach_lwp (pid, pid);
211
212 /* Don't ignore the initial SIGSTOP if we just attached to this process. */
213 process = (struct process_info *) find_inferior_id (&all_processes, pid);
214 process->stop_expected = 0;
215
216 return 0;
217 }
218
219 /* Kill the inferior process. Make us have no inferior. */
220
221 static void
222 linux_kill_one_process (struct inferior_list_entry *entry)
223 {
224 struct thread_info *thread = (struct thread_info *) entry;
225 struct process_info *process = get_thread_process (thread);
226 int wstat;
227
228 do
229 {
230 ptrace (PTRACE_KILL, pid_of (process), 0, 0);
231
232 /* Make sure it died. The loop is most likely unnecessary. */
233 wstat = linux_wait_for_event (thread);
234 } while (WIFSTOPPED (wstat));
235 }
236
237 /* Return nonzero if the given thread is still alive. */
238 static void
239 linux_kill (void)
240 {
241 for_each_inferior (&all_threads, linux_kill_one_process);
242 }
243
244 static int
245 linux_thread_alive (int tid)
246 {
247 if (find_inferior_id (&all_threads, tid) != NULL)
248 return 1;
249 else
250 return 0;
251 }
252
253 /* Return nonzero if this process stopped at a breakpoint which
254 no longer appears to be inserted. Also adjust the PC
255 appropriately to resume where the breakpoint used to be. */
256 static int
257 check_removed_breakpoint (struct process_info *event_child)
258 {
259 CORE_ADDR stop_pc;
260 struct thread_info *saved_inferior;
261
262 if (event_child->pending_is_breakpoint == 0)
263 return 0;
264
265 if (debug_threads)
266 fprintf (stderr, "Checking for breakpoint.\n");
267
268 saved_inferior = current_inferior;
269 current_inferior = get_process_thread (event_child);
270
271 stop_pc = get_stop_pc ();
272
273 /* If the PC has changed since we stopped, then we shouldn't do
274 anything. This happens if, for instance, GDB handled the
275 decr_pc_after_break subtraction itself. */
276 if (stop_pc != event_child->pending_stop_pc)
277 {
278 if (debug_threads)
279 fprintf (stderr, "Ignoring, PC was changed.\n");
280
281 event_child->pending_is_breakpoint = 0;
282 current_inferior = saved_inferior;
283 return 0;
284 }
285
286 /* If the breakpoint is still there, we will report hitting it. */
287 if ((*the_low_target.breakpoint_at) (stop_pc))
288 {
289 if (debug_threads)
290 fprintf (stderr, "Ignoring, breakpoint is still present.\n");
291 current_inferior = saved_inferior;
292 return 0;
293 }
294
295 if (debug_threads)
296 fprintf (stderr, "Removed breakpoint.\n");
297
298 /* For decr_pc_after_break targets, here is where we perform the
299 decrement. We go immediately from this function to resuming,
300 and can not safely call get_stop_pc () again. */
301 if (the_low_target.set_pc != NULL)
302 (*the_low_target.set_pc) (stop_pc);
303
304 /* We consumed the pending SIGTRAP. */
305 event_child->status_pending_p = 0;
306 event_child->status_pending = 0;
307
308 current_inferior = saved_inferior;
309 return 1;
310 }
311
312 /* Return 1 if this process has an interesting status pending. This function
313 may silently resume an inferior process. */
314 static int
315 status_pending_p (struct inferior_list_entry *entry, void *dummy)
316 {
317 struct process_info *process = (struct process_info *) entry;
318
319 if (process->status_pending_p)
320 if (check_removed_breakpoint (process))
321 {
322 /* This thread was stopped at a breakpoint, and the breakpoint
323 is now gone. We were told to continue (or step...) all threads,
324 so GDB isn't trying to single-step past this breakpoint.
325 So instead of reporting the old SIGTRAP, pretend we got to
326 the breakpoint just after it was removed instead of just
327 before; resume the process. */
328 linux_resume_one_process (&process->head, 0, 0);
329 return 0;
330 }
331
332 return process->status_pending_p;
333 }
334
335 static void
336 linux_wait_for_process (struct process_info **childp, int *wstatp)
337 {
338 int ret;
339 int to_wait_for = -1;
340
341 if (*childp != NULL)
342 to_wait_for = (*childp)->lwpid;
343
344 while (1)
345 {
346 ret = waitpid (to_wait_for, wstatp, WNOHANG);
347
348 if (ret == -1)
349 {
350 if (errno != ECHILD)
351 perror_with_name ("waitpid");
352 }
353 else if (ret > 0)
354 break;
355
356 ret = waitpid (to_wait_for, wstatp, WNOHANG | __WCLONE);
357
358 if (ret == -1)
359 {
360 if (errno != ECHILD)
361 perror_with_name ("waitpid (WCLONE)");
362 }
363 else if (ret > 0)
364 break;
365
366 usleep (1000);
367 }
368
369 if (debug_threads
370 && (!WIFSTOPPED (*wstatp)
371 || (WSTOPSIG (*wstatp) != 32
372 && WSTOPSIG (*wstatp) != 33)))
373 fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp);
374
375 if (to_wait_for == -1)
376 *childp = (struct process_info *) find_inferior_id (&all_processes, ret);
377
378 (*childp)->stopped = 1;
379 (*childp)->pending_is_breakpoint = 0;
380
381 if (debug_threads
382 && WIFSTOPPED (*wstatp))
383 {
384 current_inferior = (struct thread_info *)
385 find_inferior_id (&all_threads, (*childp)->tid);
386 /* For testing only; i386_stop_pc prints out a diagnostic. */
387 if (the_low_target.get_pc != NULL)
388 get_stop_pc ();
389 }
390 }
391
392 static int
393 linux_wait_for_event (struct thread_info *child)
394 {
395 CORE_ADDR stop_pc;
396 struct process_info *event_child;
397 int wstat;
398
399 /* Check for a process with a pending status. */
400 /* It is possible that the user changed the pending task's registers since
401 it stopped. We correctly handle the change of PC if we hit a breakpoint
402 (in check_removed_breakpoints); signals should be reported anyway. */
403 if (child == NULL)
404 {
405 event_child = (struct process_info *)
406 find_inferior (&all_processes, status_pending_p, NULL);
407 if (debug_threads && event_child)
408 fprintf (stderr, "Got a pending child %d\n", event_child->lwpid);
409 }
410 else
411 {
412 event_child = get_thread_process (child);
413 if (event_child->status_pending_p
414 && check_removed_breakpoint (event_child))
415 event_child = NULL;
416 }
417
418 if (event_child != NULL)
419 {
420 if (event_child->status_pending_p)
421 {
422 if (debug_threads)
423 fprintf (stderr, "Got an event from pending child %d (%04x)\n",
424 event_child->lwpid, event_child->status_pending);
425 wstat = event_child->status_pending;
426 event_child->status_pending_p = 0;
427 event_child->status_pending = 0;
428 current_inferior = get_process_thread (event_child);
429 return wstat;
430 }
431 }
432
433 /* We only enter this loop if no process has a pending wait status. Thus
434 any action taken in response to a wait status inside this loop is
435 responding as soon as we detect the status, not after any pending
436 events. */
437 while (1)
438 {
439 if (child == NULL)
440 event_child = NULL;
441 else
442 event_child = get_thread_process (child);
443
444 linux_wait_for_process (&event_child, &wstat);
445
446 if (event_child == NULL)
447 error ("event from unknown child");
448
449 current_inferior = (struct thread_info *)
450 find_inferior_id (&all_threads, event_child->tid);
451
452 if (using_threads)
453 {
454 /* Check for thread exit. */
455 if (! WIFSTOPPED (wstat))
456 {
457 if (debug_threads)
458 fprintf (stderr, "Thread %d (LWP %d) exiting\n",
459 event_child->tid, event_child->head.id);
460
461 /* If the last thread is exiting, just return. */
462 if (all_threads.head == all_threads.tail)
463 return wstat;
464
465 dead_thread_notify (event_child->tid);
466
467 remove_inferior (&all_processes, &event_child->head);
468 free (event_child);
469 remove_thread (current_inferior);
470 current_inferior = (struct thread_info *) all_threads.head;
471
472 /* If we were waiting for this particular child to do something...
473 well, it did something. */
474 if (child != NULL)
475 return wstat;
476
477 /* Wait for a more interesting event. */
478 continue;
479 }
480
481 if (WIFSTOPPED (wstat)
482 && WSTOPSIG (wstat) == SIGSTOP
483 && event_child->stop_expected)
484 {
485 if (debug_threads)
486 fprintf (stderr, "Expected stop.\n");
487 event_child->stop_expected = 0;
488 linux_resume_one_process (&event_child->head,
489 event_child->stepping, 0);
490 continue;
491 }
492
493 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
494 thread library? */
495 if (WIFSTOPPED (wstat)
496 && (WSTOPSIG (wstat) == SIGRTMIN
497 || WSTOPSIG (wstat) == SIGRTMIN + 1))
498 {
499 if (debug_threads)
500 fprintf (stderr, "Ignored signal %d for %d (LWP %d).\n",
501 WSTOPSIG (wstat), event_child->tid,
502 event_child->head.id);
503 linux_resume_one_process (&event_child->head,
504 event_child->stepping,
505 WSTOPSIG (wstat));
506 continue;
507 }
508 }
509
510 /* If this event was not handled above, and is not a SIGTRAP, report
511 it. */
512 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGTRAP)
513 return wstat;
514
515 /* If this target does not support breakpoints, we simply report the
516 SIGTRAP; it's of no concern to us. */
517 if (the_low_target.get_pc == NULL)
518 return wstat;
519
520 stop_pc = get_stop_pc ();
521
522 /* bp_reinsert will only be set if we were single-stepping.
523 Notice that we will resume the process after hitting
524 a gdbserver breakpoint; single-stepping to/over one
525 is not supported (yet). */
526 if (event_child->bp_reinsert != 0)
527 {
528 if (debug_threads)
529 fprintf (stderr, "Reinserted breakpoint.\n");
530 reinsert_breakpoint (event_child->bp_reinsert);
531 event_child->bp_reinsert = 0;
532
533 /* Clear the single-stepping flag and SIGTRAP as we resume. */
534 linux_resume_one_process (&event_child->head, 0, 0);
535 continue;
536 }
537
538 if (debug_threads)
539 fprintf (stderr, "Hit a (non-reinsert) breakpoint.\n");
540
541 if (check_breakpoints (stop_pc) != 0)
542 {
543 /* We hit one of our own breakpoints. We mark it as a pending
544 breakpoint, so that check_removed_breakpoints () will do the PC
545 adjustment for us at the appropriate time. */
546 event_child->pending_is_breakpoint = 1;
547 event_child->pending_stop_pc = stop_pc;
548
549 /* Now we need to put the breakpoint back. We continue in the event
550 loop instead of simply replacing the breakpoint right away,
551 in order to not lose signals sent to the thread that hit the
552 breakpoint. Unfortunately this increases the window where another
553 thread could sneak past the removed breakpoint. For the current
554 use of server-side breakpoints (thread creation) this is
555 acceptable; but it needs to be considered before this breakpoint
556 mechanism can be used in more general ways. For some breakpoints
557 it may be necessary to stop all other threads, but that should
558 be avoided where possible.
559
560 If breakpoint_reinsert_addr is NULL, that means that we can
561 use PTRACE_SINGLESTEP on this platform. Uninsert the breakpoint,
562 mark it for reinsertion, and single-step.
563
564 Otherwise, call the target function to figure out where we need
565 our temporary breakpoint, create it, and continue executing this
566 process. */
567 if (the_low_target.breakpoint_reinsert_addr == NULL)
568 {
569 event_child->bp_reinsert = stop_pc;
570 uninsert_breakpoint (stop_pc);
571 linux_resume_one_process (&event_child->head, 1, 0);
572 }
573 else
574 {
575 reinsert_breakpoint_by_bp
576 (stop_pc, (*the_low_target.breakpoint_reinsert_addr) ());
577 linux_resume_one_process (&event_child->head, 0, 0);
578 }
579
580 continue;
581 }
582
583 /* If we were single-stepping, we definitely want to report the
584 SIGTRAP. The single-step operation has completed, so also
585 clear the stepping flag; in general this does not matter,
586 because the SIGTRAP will be reported to the client, which
587 will give us a new action for this thread, but clear it for
588 consistency anyway. It's safe to clear the stepping flag
589 because the only consumer of get_stop_pc () after this point
590 is check_removed_breakpoints, and pending_is_breakpoint is not
591 set. It might be wiser to use a step_completed flag instead. */
592 if (event_child->stepping)
593 {
594 event_child->stepping = 0;
595 return wstat;
596 }
597
598 /* A SIGTRAP that we can't explain. It may have been a breakpoint.
599 Check if it is a breakpoint, and if so mark the process information
600 accordingly. This will handle both the necessary fiddling with the
601 PC on decr_pc_after_break targets and suppressing extra threads
602 hitting a breakpoint if two hit it at once and then GDB removes it
603 after the first is reported. Arguably it would be better to report
604 multiple threads hitting breakpoints simultaneously, but the current
605 remote protocol does not allow this. */
606 if ((*the_low_target.breakpoint_at) (stop_pc))
607 {
608 event_child->pending_is_breakpoint = 1;
609 event_child->pending_stop_pc = stop_pc;
610 }
611
612 return wstat;
613 }
614
615 /* NOTREACHED */
616 return 0;
617 }
618
619 /* Wait for process, returns status. */
620
621 static unsigned char
622 linux_wait (char *status)
623 {
624 int w;
625 struct thread_info *child = NULL;
626
627 retry:
628 /* If we were only supposed to resume one thread, only wait for
629 that thread - if it's still alive. If it died, however - which
630 can happen if we're coming from the thread death case below -
631 then we need to make sure we restart the other threads. We could
632 pick a thread at random or restart all; restarting all is less
633 arbitrary. */
634 if (cont_thread > 0)
635 {
636 child = (struct thread_info *) find_inferior_id (&all_threads,
637 cont_thread);
638
639 /* No stepping, no signal - unless one is pending already, of course. */
640 if (child == NULL)
641 linux_resume (0, 0);
642 }
643
644 enable_async_io ();
645 w = linux_wait_for_event (child);
646 stop_all_processes ();
647 disable_async_io ();
648
649 /* If we are waiting for a particular child, and it exited,
650 linux_wait_for_event will return its exit status. Similarly if
651 the last child exited. If this is not the last child, however,
652 do not report it as exited until there is a 'thread exited' response
653 available in the remote protocol. Instead, just wait for another event.
654 This should be safe, because if the thread crashed we will already
655 have reported the termination signal to GDB; that should stop any
656 in-progress stepping operations, etc.
657
658 Report the exit status of the last thread to exit. This matches
659 LinuxThreads' behavior. */
660
661 if (all_threads.head == all_threads.tail)
662 {
663 if (WIFEXITED (w))
664 {
665 fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
666 *status = 'W';
667 clear_inferiors ();
668 return ((unsigned char) WEXITSTATUS (w));
669 }
670 else if (!WIFSTOPPED (w))
671 {
672 fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
673 clear_inferiors ();
674 *status = 'X';
675 return ((unsigned char) WTERMSIG (w));
676 }
677 }
678 else
679 {
680 if (!WIFSTOPPED (w))
681 goto retry;
682 }
683
684 *status = 'T';
685 return ((unsigned char) WSTOPSIG (w));
686 }
687
688 static void
689 send_sigstop (struct inferior_list_entry *entry)
690 {
691 struct process_info *process = (struct process_info *) entry;
692
693 if (process->stopped)
694 return;
695
696 /* If we already have a pending stop signal for this process, don't
697 send another. */
698 if (process->stop_expected)
699 {
700 process->stop_expected = 0;
701 return;
702 }
703
704 if (debug_threads)
705 fprintf (stderr, "Sending sigstop to process %d\n", process->head.id);
706
707 kill (process->head.id, SIGSTOP);
708 process->sigstop_sent = 1;
709 }
710
711 static void
712 wait_for_sigstop (struct inferior_list_entry *entry)
713 {
714 struct process_info *process = (struct process_info *) entry;
715 struct thread_info *saved_inferior, *thread;
716 int wstat, saved_tid;
717
718 if (process->stopped)
719 return;
720
721 saved_inferior = current_inferior;
722 saved_tid = ((struct inferior_list_entry *) saved_inferior)->id;
723 thread = (struct thread_info *) find_inferior_id (&all_threads,
724 process->tid);
725 wstat = linux_wait_for_event (thread);
726
727 /* If we stopped with a non-SIGSTOP signal, save it for later
728 and record the pending SIGSTOP. If the process exited, just
729 return. */
730 if (WIFSTOPPED (wstat)
731 && WSTOPSIG (wstat) != SIGSTOP)
732 {
733 if (debug_threads)
734 fprintf (stderr, "Stopped with non-sigstop signal\n");
735 process->status_pending_p = 1;
736 process->status_pending = wstat;
737 process->stop_expected = 1;
738 }
739
740 if (linux_thread_alive (saved_tid))
741 current_inferior = saved_inferior;
742 else
743 {
744 if (debug_threads)
745 fprintf (stderr, "Previously current thread died.\n");
746
747 /* Set a valid thread as current. */
748 set_desired_inferior (0);
749 }
750 }
751
752 static void
753 stop_all_processes (void)
754 {
755 stopping_threads = 1;
756 for_each_inferior (&all_processes, send_sigstop);
757 for_each_inferior (&all_processes, wait_for_sigstop);
758 stopping_threads = 0;
759 }
760
761 /* Resume execution of the inferior process.
762 If STEP is nonzero, single-step it.
763 If SIGNAL is nonzero, give it that signal. */
764
765 static void
766 linux_resume_one_process (struct inferior_list_entry *entry,
767 int step, int signal)
768 {
769 struct process_info *process = (struct process_info *) entry;
770 struct thread_info *saved_inferior;
771
772 if (process->stopped == 0)
773 return;
774
775 /* If we have pending signals or status, and a new signal, enqueue the
776 signal. Also enqueue the signal if we are waiting to reinsert a
777 breakpoint; it will be picked up again below. */
778 if (signal != 0
779 && (process->status_pending_p || process->pending_signals != NULL
780 || process->bp_reinsert != 0))
781 {
782 struct pending_signals *p_sig;
783 p_sig = malloc (sizeof (*p_sig));
784 p_sig->prev = process->pending_signals;
785 p_sig->signal = signal;
786 process->pending_signals = p_sig;
787 }
788
789 if (process->status_pending_p)
790 return;
791
792 saved_inferior = current_inferior;
793 current_inferior = get_process_thread (process);
794
795 if (debug_threads)
796 fprintf (stderr, "Resuming process %d (%s, signal %d, stop %s)\n", inferior_pid,
797 step ? "step" : "continue", signal,
798 process->stop_expected ? "expected" : "not expected");
799
800 /* This bit needs some thinking about. If we get a signal that
801 we must report while a single-step reinsert is still pending,
802 we often end up resuming the thread. It might be better to
803 (ew) allow a stack of pending events; then we could be sure that
804 the reinsert happened right away and not lose any signals.
805
806 Making this stack would also shrink the window in which breakpoints are
807 uninserted (see comment in linux_wait_for_process) but not enough for
808 complete correctness, so it won't solve that problem. It may be
809 worthwhile just to solve this one, however. */
810 if (process->bp_reinsert != 0)
811 {
812 if (debug_threads)
813 fprintf (stderr, " pending reinsert at %08lx", (long)process->bp_reinsert);
814 if (step == 0)
815 fprintf (stderr, "BAD - reinserting but not stepping.\n");
816 step = 1;
817
818 /* Postpone any pending signal. It was enqueued above. */
819 signal = 0;
820 }
821
822 check_removed_breakpoint (process);
823
824 if (debug_threads && the_low_target.get_pc != NULL)
825 {
826 fprintf (stderr, " ");
827 (long) (*the_low_target.get_pc) ();
828 }
829
830 /* If we have pending signals, consume one unless we are trying to reinsert
831 a breakpoint. */
832 if (process->pending_signals != NULL && process->bp_reinsert == 0)
833 {
834 struct pending_signals **p_sig;
835
836 p_sig = &process->pending_signals;
837 while ((*p_sig)->prev != NULL)
838 p_sig = &(*p_sig)->prev;
839
840 signal = (*p_sig)->signal;
841 free (*p_sig);
842 *p_sig = NULL;
843 }
844
845 regcache_invalidate_one ((struct inferior_list_entry *)
846 get_process_thread (process));
847 errno = 0;
848 process->stopped = 0;
849 process->stepping = step;
850 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, process->lwpid, 0, signal);
851
852 current_inferior = saved_inferior;
853 if (errno)
854 perror_with_name ("ptrace");
855 }
856
857 /* This function is called once per process other than the first
858 one. The first process we are told the signal to continue
859 with, and whether to step or continue; for all others, any
860 existing signals will be marked in status_pending_p to be
861 reported momentarily, and we preserve the stepping flag. */
862 static void
863 linux_continue_one_process (struct inferior_list_entry *entry)
864 {
865 struct process_info *process;
866
867 process = (struct process_info *) entry;
868 linux_resume_one_process (entry, process->stepping, 0);
869 }
870
871 static void
872 linux_resume (int step, int signal)
873 {
874 struct process_info *process;
875
876 process = get_thread_process (current_inferior);
877
878 /* If the current process has a status pending, this signal will
879 be enqueued and sent later. */
880 linux_resume_one_process (&process->head, step, signal);
881
882 if (cont_thread == 0 || cont_thread == -1)
883 for_each_inferior (&all_processes, linux_continue_one_process);
884 }
885
886 #ifdef HAVE_LINUX_USRREGS
887
888 int
889 register_addr (int regnum)
890 {
891 int addr;
892
893 if (regnum < 0 || regnum >= the_low_target.num_regs)
894 error ("Invalid register number %d.", regnum);
895
896 addr = the_low_target.regmap[regnum];
897 if (addr == -1)
898 addr = 0;
899
900 return addr;
901 }
902
903 /* Fetch one register. */
904 static void
905 fetch_register (int regno)
906 {
907 CORE_ADDR regaddr;
908 register int i;
909 char *buf;
910
911 if (regno >= the_low_target.num_regs)
912 return;
913 if ((*the_low_target.cannot_fetch_register) (regno))
914 return;
915
916 regaddr = register_addr (regno);
917 if (regaddr == -1)
918 return;
919 buf = alloca (register_size (regno));
920 for (i = 0; i < register_size (regno); i += sizeof (PTRACE_XFER_TYPE))
921 {
922 errno = 0;
923 *(PTRACE_XFER_TYPE *) (buf + i) =
924 ptrace (PTRACE_PEEKUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, 0);
925 regaddr += sizeof (PTRACE_XFER_TYPE);
926 if (errno != 0)
927 {
928 /* Warning, not error, in case we are attached; sometimes the
929 kernel doesn't let us at the registers. */
930 char *err = strerror (errno);
931 char *msg = alloca (strlen (err) + 128);
932 sprintf (msg, "reading register %d: %s", regno, err);
933 error (msg);
934 goto error_exit;
935 }
936 }
937 supply_register (regno, buf);
938
939 error_exit:;
940 }
941
942 /* Fetch all registers, or just one, from the child process. */
943 static void
944 usr_fetch_inferior_registers (int regno)
945 {
946 if (regno == -1 || regno == 0)
947 for (regno = 0; regno < the_low_target.num_regs; regno++)
948 fetch_register (regno);
949 else
950 fetch_register (regno);
951 }
952
953 /* Store our register values back into the inferior.
954 If REGNO is -1, do this for all registers.
955 Otherwise, REGNO specifies which register (so we can save time). */
956 static void
957 usr_store_inferior_registers (int regno)
958 {
959 CORE_ADDR regaddr;
960 int i;
961 char *buf;
962
963 if (regno >= 0)
964 {
965 if (regno >= the_low_target.num_regs)
966 return;
967
968 if ((*the_low_target.cannot_store_register) (regno) == 1)
969 return;
970
971 regaddr = register_addr (regno);
972 if (regaddr == -1)
973 return;
974 errno = 0;
975 buf = alloca (register_size (regno));
976 collect_register (regno, buf);
977 for (i = 0; i < register_size (regno); i += sizeof (PTRACE_XFER_TYPE))
978 {
979 errno = 0;
980 ptrace (PTRACE_POKEUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
981 *(int *) (buf + i));
982 if (errno != 0)
983 {
984 if ((*the_low_target.cannot_store_register) (regno) == 0)
985 {
986 char *err = strerror (errno);
987 char *msg = alloca (strlen (err) + 128);
988 sprintf (msg, "writing register %d: %s",
989 regno, err);
990 error (msg);
991 return;
992 }
993 }
994 regaddr += sizeof (int);
995 }
996 }
997 else
998 for (regno = 0; regno < the_low_target.num_regs; regno++)
999 usr_store_inferior_registers (regno);
1000 }
1001 #endif /* HAVE_LINUX_USRREGS */
1002
1003
1004
1005 #ifdef HAVE_LINUX_REGSETS
1006
1007 static int
1008 regsets_fetch_inferior_registers ()
1009 {
1010 struct regset_info *regset;
1011
1012 regset = target_regsets;
1013
1014 while (regset->size >= 0)
1015 {
1016 void *buf;
1017 int res;
1018
1019 if (regset->size == 0)
1020 {
1021 regset ++;
1022 continue;
1023 }
1024
1025 buf = malloc (regset->size);
1026 res = ptrace (regset->get_request, inferior_pid, 0, buf);
1027 if (res < 0)
1028 {
1029 if (errno == EIO)
1030 {
1031 /* If we get EIO on the first regset, do not try regsets again.
1032 If we get EIO on a later regset, disable that regset. */
1033 if (regset == target_regsets)
1034 {
1035 use_regsets_p = 0;
1036 return -1;
1037 }
1038 else
1039 {
1040 regset->size = 0;
1041 continue;
1042 }
1043 }
1044 else
1045 {
1046 char s[256];
1047 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
1048 inferior_pid);
1049 perror (s);
1050 }
1051 }
1052 regset->store_function (buf);
1053 regset ++;
1054 }
1055 return 0;
1056 }
1057
1058 static int
1059 regsets_store_inferior_registers ()
1060 {
1061 struct regset_info *regset;
1062
1063 regset = target_regsets;
1064
1065 while (regset->size >= 0)
1066 {
1067 void *buf;
1068 int res;
1069
1070 if (regset->size == 0)
1071 {
1072 regset ++;
1073 continue;
1074 }
1075
1076 buf = malloc (regset->size);
1077 regset->fill_function (buf);
1078 res = ptrace (regset->set_request, inferior_pid, 0, buf);
1079 if (res < 0)
1080 {
1081 if (errno == EIO)
1082 {
1083 /* If we get EIO on the first regset, do not try regsets again.
1084 If we get EIO on a later regset, disable that regset. */
1085 if (regset == target_regsets)
1086 {
1087 use_regsets_p = 0;
1088 return -1;
1089 }
1090 else
1091 {
1092 regset->size = 0;
1093 continue;
1094 }
1095 }
1096 else
1097 {
1098 perror ("Warning: ptrace(regsets_store_inferior_registers)");
1099 }
1100 }
1101 regset ++;
1102 free (buf);
1103 }
1104 return 0;
1105 }
1106
1107 #endif /* HAVE_LINUX_REGSETS */
1108
1109
1110 void
1111 linux_fetch_registers (int regno)
1112 {
1113 #ifdef HAVE_LINUX_REGSETS
1114 if (use_regsets_p)
1115 {
1116 if (regsets_fetch_inferior_registers () == 0)
1117 return;
1118 }
1119 #endif
1120 #ifdef HAVE_LINUX_USRREGS
1121 usr_fetch_inferior_registers (regno);
1122 #endif
1123 }
1124
1125 void
1126 linux_store_registers (int regno)
1127 {
1128 #ifdef HAVE_LINUX_REGSETS
1129 if (use_regsets_p)
1130 {
1131 if (regsets_store_inferior_registers () == 0)
1132 return;
1133 }
1134 #endif
1135 #ifdef HAVE_LINUX_USRREGS
1136 usr_store_inferior_registers (regno);
1137 #endif
1138 }
1139
1140
1141 /* Copy LEN bytes from inferior's memory starting at MEMADDR
1142 to debugger memory starting at MYADDR. */
1143
1144 static void
1145 linux_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
1146 {
1147 register int i;
1148 /* Round starting address down to longword boundary. */
1149 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
1150 /* Round ending address up; get number of longwords that makes. */
1151 register int count
1152 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
1153 / sizeof (PTRACE_XFER_TYPE);
1154 /* Allocate buffer of that many longwords. */
1155 register PTRACE_XFER_TYPE *buffer
1156 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
1157
1158 /* Read all the longwords */
1159 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
1160 {
1161 buffer[i] = ptrace (PTRACE_PEEKTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
1162 }
1163
1164 /* Copy appropriate bytes out of the buffer. */
1165 memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), len);
1166 }
1167
1168 /* Copy LEN bytes of data from debugger memory at MYADDR
1169 to inferior's memory at MEMADDR.
1170 On failure (cannot write the inferior)
1171 returns the value of errno. */
1172
1173 static int
1174 linux_write_memory (CORE_ADDR memaddr, const char *myaddr, int len)
1175 {
1176 register int i;
1177 /* Round starting address down to longword boundary. */
1178 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
1179 /* Round ending address up; get number of longwords that makes. */
1180 register int count
1181 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) / sizeof (PTRACE_XFER_TYPE);
1182 /* Allocate buffer of that many longwords. */
1183 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
1184 extern int errno;
1185
1186 if (debug_threads)
1187 {
1188 fprintf (stderr, "Writing %02x to %08lx\n", (unsigned)myaddr[0], (long)memaddr);
1189 }
1190
1191 /* Fill start and end extra bytes of buffer with existing memory data. */
1192
1193 buffer[0] = ptrace (PTRACE_PEEKTEXT, inferior_pid,
1194 (PTRACE_ARG3_TYPE) addr, 0);
1195
1196 if (count > 1)
1197 {
1198 buffer[count - 1]
1199 = ptrace (PTRACE_PEEKTEXT, inferior_pid,
1200 (PTRACE_ARG3_TYPE) (addr + (count - 1)
1201 * sizeof (PTRACE_XFER_TYPE)),
1202 0);
1203 }
1204
1205 /* Copy data to be written over corresponding part of buffer */
1206
1207 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), myaddr, len);
1208
1209 /* Write the entire buffer. */
1210
1211 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
1212 {
1213 errno = 0;
1214 ptrace (PTRACE_POKETEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]);
1215 if (errno)
1216 return errno;
1217 }
1218
1219 return 0;
1220 }
1221
1222 static void
1223 linux_look_up_symbols (void)
1224 {
1225 #ifdef USE_THREAD_DB
1226 if (using_threads)
1227 return;
1228
1229 using_threads = thread_db_init ();
1230 #endif
1231 }
1232
1233 \f
1234 static struct target_ops linux_target_ops = {
1235 linux_create_inferior,
1236 linux_attach,
1237 linux_kill,
1238 linux_thread_alive,
1239 linux_resume,
1240 linux_wait,
1241 linux_fetch_registers,
1242 linux_store_registers,
1243 linux_read_memory,
1244 linux_write_memory,
1245 linux_look_up_symbols,
1246 };
1247
1248 static void
1249 linux_init_signals ()
1250 {
1251 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
1252 to find what the cancel signal actually is. */
1253 signal (SIGRTMIN+1, SIG_IGN);
1254 }
1255
1256 void
1257 initialize_low (void)
1258 {
1259 using_threads = 0;
1260 set_target_ops (&linux_target_ops);
1261 set_breakpoint_data (the_low_target.breakpoint,
1262 the_low_target.breakpoint_len);
1263 init_registers ();
1264 linux_init_signals ();
1265 }