invoke_xmethod & array_view
[binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static int opaque_type_resolution = 1;
120
121 /* A flag to enable printing of debugging information of C++
122 overloading. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static int strict_type_checking = 1;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
186
187 return type;
188 }
189
190 /* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
192 on the obstack associated with GDBARCH. */
193
194 struct type *
195 alloc_type_arch (struct gdbarch *gdbarch)
196 {
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 struct gdbarch *arch;
237
238 if (TYPE_OBJFILE_OWNED (type))
239 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
240 else
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
249 }
250
251 /* See gdbtypes.h. */
252
253 struct type *
254 get_target_type (struct type *type)
255 {
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264 }
265
266 /* See gdbtypes.h. */
267
268 unsigned int
269 type_length_units (struct type *type)
270 {
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275 }
276
277 /* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281 static struct type *
282 alloc_type_instance (struct type *oldtype)
283 {
284 struct type *type;
285
286 /* Allocate the structure. */
287
288 if (! TYPE_OBJFILE_OWNED (oldtype))
289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
290 else
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
298 return type;
299 }
300
301 /* Clear all remnants of the previous type at TYPE, in preparation for
302 replacing it with something else. Preserve owner information. */
303
304 static void
305 smash_type (struct type *type)
306 {
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320 }
321
322 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327 struct type *
328 make_pointer_type (struct type *type, struct type **typeptr)
329 {
330 struct type *ntype; /* New type */
331 struct type *chain;
332
333 ntype = TYPE_POINTER_TYPE (type);
334
335 if (ntype)
336 {
337 if (typeptr == 0)
338 return ntype; /* Don't care about alloc,
339 and have new type. */
340 else if (*typeptr == 0)
341 {
342 *typeptr = ntype; /* Tracking alloc, and have new type. */
343 return ntype;
344 }
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
349 ntype = alloc_type_copy (type);
350 if (typeptr)
351 *typeptr = ntype;
352 }
353 else /* We have storage, but need to reset it. */
354 {
355 ntype = *typeptr;
356 chain = TYPE_CHAIN (ntype);
357 smash_type (ntype);
358 TYPE_CHAIN (ntype) = chain;
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
364 /* FIXME! Assumes the machine has only one representation for pointers! */
365
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
370 /* Mark pointers as unsigned. The target converts between pointers
371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
372 gdbarch_address_to_pointer. */
373 TYPE_UNSIGNED (ntype) = 1;
374
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
383 return ntype;
384 }
385
386 /* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389 struct type *
390 lookup_pointer_type (struct type *type)
391 {
392 return make_pointer_type (type, (struct type **) 0);
393 }
394
395 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
400
401 struct type *
402 make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
404 {
405 struct type *ntype; /* New type */
406 struct type **reftype;
407 struct type *chain;
408
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
413
414 if (ntype)
415 {
416 if (typeptr == 0)
417 return ntype; /* Don't care about alloc,
418 and have new type. */
419 else if (*typeptr == 0)
420 {
421 *typeptr = ntype; /* Tracking alloc, and have new type. */
422 return ntype;
423 }
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
428 ntype = alloc_type_copy (type);
429 if (typeptr)
430 *typeptr = ntype;
431 }
432 else /* We have storage, but need to reset it. */
433 {
434 ntype = *typeptr;
435 chain = TYPE_CHAIN (ntype);
436 smash_type (ntype);
437 TYPE_CHAIN (ntype) = chain;
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
445
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
449
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
452 TYPE_CODE (ntype) = refcode;
453
454 *reftype = ntype;
455
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
464 return ntype;
465 }
466
467 /* Same as above, but caller doesn't care about memory allocation
468 details. */
469
470 struct type *
471 lookup_reference_type (struct type *type, enum type_code refcode)
472 {
473 return make_reference_type (type, (struct type **) 0, refcode);
474 }
475
476 /* Lookup the lvalue reference type for the type TYPE. */
477
478 struct type *
479 lookup_lvalue_reference_type (struct type *type)
480 {
481 return lookup_reference_type (type, TYPE_CODE_REF);
482 }
483
484 /* Lookup the rvalue reference type for the type TYPE. */
485
486 struct type *
487 lookup_rvalue_reference_type (struct type *type)
488 {
489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
490 }
491
492 /* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
495 function type we return. We allocate new memory if needed. */
496
497 struct type *
498 make_function_type (struct type *type, struct type **typeptr)
499 {
500 struct type *ntype; /* New type */
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
504 ntype = alloc_type_copy (type);
505 if (typeptr)
506 *typeptr = ntype;
507 }
508 else /* We have storage, but need to reset it. */
509 {
510 ntype = *typeptr;
511 smash_type (ntype);
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
518
519 INIT_FUNC_SPECIFIC (ntype);
520
521 return ntype;
522 }
523
524 /* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527 struct type *
528 lookup_function_type (struct type *type)
529 {
530 return make_function_type (type, (struct type **) 0);
531 }
532
533 /* Given a type TYPE and argument types, return the appropriate
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
536
537 struct type *
538 lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541 {
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
545 if (nparams > 0)
546 {
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
560 else
561 TYPE_PROTOTYPED (fn) = 1;
562 }
563
564 TYPE_NFIELDS (fn) = nparams;
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571 }
572
573 /* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
575
576 int
577 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
578 {
579 int type_flags;
580
581 /* Check for known address space delimiters. */
582 if (!strcmp (space_identifier, "code"))
583 return TYPE_INSTANCE_FLAG_CODE_SPACE;
584 else if (!strcmp (space_identifier, "data"))
585 return TYPE_INSTANCE_FLAG_DATA_SPACE;
586 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
587 && gdbarch_address_class_name_to_type_flags (gdbarch,
588 space_identifier,
589 &type_flags))
590 return type_flags;
591 else
592 error (_("Unknown address space specifier: \"%s\""), space_identifier);
593 }
594
595 /* Identify address space identifier by integer flag as defined in
596 gdbtypes.h -- return the string version of the adress space name. */
597
598 const char *
599 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
600 {
601 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
602 return "code";
603 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
604 return "data";
605 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
606 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
607 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
608 else
609 return NULL;
610 }
611
612 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
613
614 If STORAGE is non-NULL, create the new type instance there.
615 STORAGE must be in the same obstack as TYPE. */
616
617 static struct type *
618 make_qualified_type (struct type *type, int new_flags,
619 struct type *storage)
620 {
621 struct type *ntype;
622
623 ntype = type;
624 do
625 {
626 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
627 return ntype;
628 ntype = TYPE_CHAIN (ntype);
629 }
630 while (ntype != type);
631
632 /* Create a new type instance. */
633 if (storage == NULL)
634 ntype = alloc_type_instance (type);
635 else
636 {
637 /* If STORAGE was provided, it had better be in the same objfile
638 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
639 if one objfile is freed and the other kept, we'd have
640 dangling pointers. */
641 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
642
643 ntype = storage;
644 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
645 TYPE_CHAIN (ntype) = ntype;
646 }
647
648 /* Pointers or references to the original type are not relevant to
649 the new type. */
650 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
651 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
652
653 /* Chain the new qualified type to the old type. */
654 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
655 TYPE_CHAIN (type) = ntype;
656
657 /* Now set the instance flags and return the new type. */
658 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
659
660 /* Set length of new type to that of the original type. */
661 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
662
663 return ntype;
664 }
665
666 /* Make an address-space-delimited variant of a type -- a type that
667 is identical to the one supplied except that it has an address
668 space attribute attached to it (such as "code" or "data").
669
670 The space attributes "code" and "data" are for Harvard
671 architectures. The address space attributes are for architectures
672 which have alternately sized pointers or pointers with alternate
673 representations. */
674
675 struct type *
676 make_type_with_address_space (struct type *type, int space_flag)
677 {
678 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
679 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
680 | TYPE_INSTANCE_FLAG_DATA_SPACE
681 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
682 | space_flag);
683
684 return make_qualified_type (type, new_flags, NULL);
685 }
686
687 /* Make a "c-v" variant of a type -- a type that is identical to the
688 one supplied except that it may have const or volatile attributes
689 CNST is a flag for setting the const attribute
690 VOLTL is a flag for setting the volatile attribute
691 TYPE is the base type whose variant we are creating.
692
693 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
694 storage to hold the new qualified type; *TYPEPTR and TYPE must be
695 in the same objfile. Otherwise, allocate fresh memory for the new
696 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
697 new type we construct. */
698
699 struct type *
700 make_cv_type (int cnst, int voltl,
701 struct type *type,
702 struct type **typeptr)
703 {
704 struct type *ntype; /* New type */
705
706 int new_flags = (TYPE_INSTANCE_FLAGS (type)
707 & ~(TYPE_INSTANCE_FLAG_CONST
708 | TYPE_INSTANCE_FLAG_VOLATILE));
709
710 if (cnst)
711 new_flags |= TYPE_INSTANCE_FLAG_CONST;
712
713 if (voltl)
714 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
715
716 if (typeptr && *typeptr != NULL)
717 {
718 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
719 a C-V variant chain that threads across objfiles: if one
720 objfile gets freed, then the other has a broken C-V chain.
721
722 This code used to try to copy over the main type from TYPE to
723 *TYPEPTR if they were in different objfiles, but that's
724 wrong, too: TYPE may have a field list or member function
725 lists, which refer to types of their own, etc. etc. The
726 whole shebang would need to be copied over recursively; you
727 can't have inter-objfile pointers. The only thing to do is
728 to leave stub types as stub types, and look them up afresh by
729 name each time you encounter them. */
730 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
731 }
732
733 ntype = make_qualified_type (type, new_flags,
734 typeptr ? *typeptr : NULL);
735
736 if (typeptr != NULL)
737 *typeptr = ntype;
738
739 return ntype;
740 }
741
742 /* Make a 'restrict'-qualified version of TYPE. */
743
744 struct type *
745 make_restrict_type (struct type *type)
746 {
747 return make_qualified_type (type,
748 (TYPE_INSTANCE_FLAGS (type)
749 | TYPE_INSTANCE_FLAG_RESTRICT),
750 NULL);
751 }
752
753 /* Make a type without const, volatile, or restrict. */
754
755 struct type *
756 make_unqualified_type (struct type *type)
757 {
758 return make_qualified_type (type,
759 (TYPE_INSTANCE_FLAGS (type)
760 & ~(TYPE_INSTANCE_FLAG_CONST
761 | TYPE_INSTANCE_FLAG_VOLATILE
762 | TYPE_INSTANCE_FLAG_RESTRICT)),
763 NULL);
764 }
765
766 /* Make a '_Atomic'-qualified version of TYPE. */
767
768 struct type *
769 make_atomic_type (struct type *type)
770 {
771 return make_qualified_type (type,
772 (TYPE_INSTANCE_FLAGS (type)
773 | TYPE_INSTANCE_FLAG_ATOMIC),
774 NULL);
775 }
776
777 /* Replace the contents of ntype with the type *type. This changes the
778 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
779 the changes are propogated to all types in the TYPE_CHAIN.
780
781 In order to build recursive types, it's inevitable that we'll need
782 to update types in place --- but this sort of indiscriminate
783 smashing is ugly, and needs to be replaced with something more
784 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
785 clear if more steps are needed. */
786
787 void
788 replace_type (struct type *ntype, struct type *type)
789 {
790 struct type *chain;
791
792 /* These two types had better be in the same objfile. Otherwise,
793 the assignment of one type's main type structure to the other
794 will produce a type with references to objects (names; field
795 lists; etc.) allocated on an objfile other than its own. */
796 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
797
798 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
799
800 /* The type length is not a part of the main type. Update it for
801 each type on the variant chain. */
802 chain = ntype;
803 do
804 {
805 /* Assert that this element of the chain has no address-class bits
806 set in its flags. Such type variants might have type lengths
807 which are supposed to be different from the non-address-class
808 variants. This assertion shouldn't ever be triggered because
809 symbol readers which do construct address-class variants don't
810 call replace_type(). */
811 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
812
813 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
814 chain = TYPE_CHAIN (chain);
815 }
816 while (ntype != chain);
817
818 /* Assert that the two types have equivalent instance qualifiers.
819 This should be true for at least all of our debug readers. */
820 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
821 }
822
823 /* Implement direct support for MEMBER_TYPE in GNU C++.
824 May need to construct such a type if this is the first use.
825 The TYPE is the type of the member. The DOMAIN is the type
826 of the aggregate that the member belongs to. */
827
828 struct type *
829 lookup_memberptr_type (struct type *type, struct type *domain)
830 {
831 struct type *mtype;
832
833 mtype = alloc_type_copy (type);
834 smash_to_memberptr_type (mtype, domain, type);
835 return mtype;
836 }
837
838 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
839
840 struct type *
841 lookup_methodptr_type (struct type *to_type)
842 {
843 struct type *mtype;
844
845 mtype = alloc_type_copy (to_type);
846 smash_to_methodptr_type (mtype, to_type);
847 return mtype;
848 }
849
850 /* Allocate a stub method whose return type is TYPE. This apparently
851 happens for speed of symbol reading, since parsing out the
852 arguments to the method is cpu-intensive, the way we are doing it.
853 So, we will fill in arguments later. This always returns a fresh
854 type. */
855
856 struct type *
857 allocate_stub_method (struct type *type)
858 {
859 struct type *mtype;
860
861 mtype = alloc_type_copy (type);
862 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
863 TYPE_LENGTH (mtype) = 1;
864 TYPE_STUB (mtype) = 1;
865 TYPE_TARGET_TYPE (mtype) = type;
866 /* TYPE_SELF_TYPE (mtype) = unknown yet */
867 return mtype;
868 }
869
870 /* See gdbtypes.h. */
871
872 bool
873 operator== (const dynamic_prop &l, const dynamic_prop &r)
874 {
875 if (l.kind != r.kind)
876 return false;
877
878 switch (l.kind)
879 {
880 case PROP_UNDEFINED:
881 return true;
882 case PROP_CONST:
883 return l.data.const_val == r.data.const_val;
884 case PROP_ADDR_OFFSET:
885 case PROP_LOCEXPR:
886 case PROP_LOCLIST:
887 return l.data.baton == r.data.baton;
888 }
889
890 gdb_assert_not_reached ("unhandled dynamic_prop kind");
891 }
892
893 /* See gdbtypes.h. */
894
895 bool
896 operator== (const range_bounds &l, const range_bounds &r)
897 {
898 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
899
900 return (FIELD_EQ (low)
901 && FIELD_EQ (high)
902 && FIELD_EQ (flag_upper_bound_is_count)
903 && FIELD_EQ (flag_bound_evaluated));
904
905 #undef FIELD_EQ
906 }
907
908 /* Create a range type with a dynamic range from LOW_BOUND to
909 HIGH_BOUND, inclusive. See create_range_type for further details. */
910
911 struct type *
912 create_range_type (struct type *result_type, struct type *index_type,
913 const struct dynamic_prop *low_bound,
914 const struct dynamic_prop *high_bound)
915 {
916 if (result_type == NULL)
917 result_type = alloc_type_copy (index_type);
918 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
919 TYPE_TARGET_TYPE (result_type) = index_type;
920 if (TYPE_STUB (index_type))
921 TYPE_TARGET_STUB (result_type) = 1;
922 else
923 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
924
925 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
926 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
927 TYPE_RANGE_DATA (result_type)->low = *low_bound;
928 TYPE_RANGE_DATA (result_type)->high = *high_bound;
929
930 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
931 TYPE_UNSIGNED (result_type) = 1;
932
933 /* Ada allows the declaration of range types whose upper bound is
934 less than the lower bound, so checking the lower bound is not
935 enough. Make sure we do not mark a range type whose upper bound
936 is negative as unsigned. */
937 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
938 TYPE_UNSIGNED (result_type) = 0;
939
940 return result_type;
941 }
942
943 /* Create a range type using either a blank type supplied in
944 RESULT_TYPE, or creating a new type, inheriting the objfile from
945 INDEX_TYPE.
946
947 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
948 to HIGH_BOUND, inclusive.
949
950 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
951 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
952
953 struct type *
954 create_static_range_type (struct type *result_type, struct type *index_type,
955 LONGEST low_bound, LONGEST high_bound)
956 {
957 struct dynamic_prop low, high;
958
959 low.kind = PROP_CONST;
960 low.data.const_val = low_bound;
961
962 high.kind = PROP_CONST;
963 high.data.const_val = high_bound;
964
965 result_type = create_range_type (result_type, index_type, &low, &high);
966
967 return result_type;
968 }
969
970 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
971 are static, otherwise returns 0. */
972
973 static int
974 has_static_range (const struct range_bounds *bounds)
975 {
976 return (bounds->low.kind == PROP_CONST
977 && bounds->high.kind == PROP_CONST);
978 }
979
980
981 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
982 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
983 bounds will fit in LONGEST), or -1 otherwise. */
984
985 int
986 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
987 {
988 type = check_typedef (type);
989 switch (TYPE_CODE (type))
990 {
991 case TYPE_CODE_RANGE:
992 *lowp = TYPE_LOW_BOUND (type);
993 *highp = TYPE_HIGH_BOUND (type);
994 return 1;
995 case TYPE_CODE_ENUM:
996 if (TYPE_NFIELDS (type) > 0)
997 {
998 /* The enums may not be sorted by value, so search all
999 entries. */
1000 int i;
1001
1002 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1003 for (i = 0; i < TYPE_NFIELDS (type); i++)
1004 {
1005 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1006 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1007 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1008 *highp = TYPE_FIELD_ENUMVAL (type, i);
1009 }
1010
1011 /* Set unsigned indicator if warranted. */
1012 if (*lowp >= 0)
1013 {
1014 TYPE_UNSIGNED (type) = 1;
1015 }
1016 }
1017 else
1018 {
1019 *lowp = 0;
1020 *highp = -1;
1021 }
1022 return 0;
1023 case TYPE_CODE_BOOL:
1024 *lowp = 0;
1025 *highp = 1;
1026 return 0;
1027 case TYPE_CODE_INT:
1028 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1029 return -1;
1030 if (!TYPE_UNSIGNED (type))
1031 {
1032 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1033 *highp = -*lowp - 1;
1034 return 0;
1035 }
1036 /* fall through */
1037 case TYPE_CODE_CHAR:
1038 *lowp = 0;
1039 /* This round-about calculation is to avoid shifting by
1040 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1041 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1042 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1043 *highp = (*highp - 1) | *highp;
1044 return 0;
1045 default:
1046 return -1;
1047 }
1048 }
1049
1050 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1051 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1052 Save the high bound into HIGH_BOUND if not NULL.
1053
1054 Return 1 if the operation was successful. Return zero otherwise,
1055 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1056
1057 We now simply use get_discrete_bounds call to get the values
1058 of the low and high bounds.
1059 get_discrete_bounds can return three values:
1060 1, meaning that index is a range,
1061 0, meaning that index is a discrete type,
1062 or -1 for failure. */
1063
1064 int
1065 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1066 {
1067 struct type *index = TYPE_INDEX_TYPE (type);
1068 LONGEST low = 0;
1069 LONGEST high = 0;
1070 int res;
1071
1072 if (index == NULL)
1073 return 0;
1074
1075 res = get_discrete_bounds (index, &low, &high);
1076 if (res == -1)
1077 return 0;
1078
1079 /* Check if the array bounds are undefined. */
1080 if (res == 1
1081 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1082 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1083 return 0;
1084
1085 if (low_bound)
1086 *low_bound = low;
1087
1088 if (high_bound)
1089 *high_bound = high;
1090
1091 return 1;
1092 }
1093
1094 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1095 representation of a value of this type, save the corresponding
1096 position number in POS.
1097
1098 Its differs from VAL only in the case of enumeration types. In
1099 this case, the position number of the value of the first listed
1100 enumeration literal is zero; the position number of the value of
1101 each subsequent enumeration literal is one more than that of its
1102 predecessor in the list.
1103
1104 Return 1 if the operation was successful. Return zero otherwise,
1105 in which case the value of POS is unmodified.
1106 */
1107
1108 int
1109 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1110 {
1111 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1112 {
1113 int i;
1114
1115 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1116 {
1117 if (val == TYPE_FIELD_ENUMVAL (type, i))
1118 {
1119 *pos = i;
1120 return 1;
1121 }
1122 }
1123 /* Invalid enumeration value. */
1124 return 0;
1125 }
1126 else
1127 {
1128 *pos = val;
1129 return 1;
1130 }
1131 }
1132
1133 /* Create an array type using either a blank type supplied in
1134 RESULT_TYPE, or creating a new type, inheriting the objfile from
1135 RANGE_TYPE.
1136
1137 Elements will be of type ELEMENT_TYPE, the indices will be of type
1138 RANGE_TYPE.
1139
1140 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1141 This byte stride property is added to the resulting array type
1142 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1143 argument can only be used to create types that are objfile-owned
1144 (see add_dyn_prop), meaning that either this function must be called
1145 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1146
1147 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1148 If BIT_STRIDE is not zero, build a packed array type whose element
1149 size is BIT_STRIDE. Otherwise, ignore this parameter.
1150
1151 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1152 sure it is TYPE_CODE_UNDEF before we bash it into an array
1153 type? */
1154
1155 struct type *
1156 create_array_type_with_stride (struct type *result_type,
1157 struct type *element_type,
1158 struct type *range_type,
1159 struct dynamic_prop *byte_stride_prop,
1160 unsigned int bit_stride)
1161 {
1162 if (byte_stride_prop != NULL
1163 && byte_stride_prop->kind == PROP_CONST)
1164 {
1165 /* The byte stride is actually not dynamic. Pretend we were
1166 called with bit_stride set instead of byte_stride_prop.
1167 This will give us the same result type, while avoiding
1168 the need to handle this as a special case. */
1169 bit_stride = byte_stride_prop->data.const_val * 8;
1170 byte_stride_prop = NULL;
1171 }
1172
1173 if (result_type == NULL)
1174 result_type = alloc_type_copy (range_type);
1175
1176 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1177 TYPE_TARGET_TYPE (result_type) = element_type;
1178 if (byte_stride_prop == NULL
1179 && has_static_range (TYPE_RANGE_DATA (range_type))
1180 && (!type_not_associated (result_type)
1181 && !type_not_allocated (result_type)))
1182 {
1183 LONGEST low_bound, high_bound;
1184
1185 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1186 low_bound = high_bound = 0;
1187 element_type = check_typedef (element_type);
1188 /* Be careful when setting the array length. Ada arrays can be
1189 empty arrays with the high_bound being smaller than the low_bound.
1190 In such cases, the array length should be zero. */
1191 if (high_bound < low_bound)
1192 TYPE_LENGTH (result_type) = 0;
1193 else if (bit_stride > 0)
1194 TYPE_LENGTH (result_type) =
1195 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1196 else
1197 TYPE_LENGTH (result_type) =
1198 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1199 }
1200 else
1201 {
1202 /* This type is dynamic and its length needs to be computed
1203 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1204 undefined by setting it to zero. Although we are not expected
1205 to trust TYPE_LENGTH in this case, setting the size to zero
1206 allows us to avoid allocating objects of random sizes in case
1207 we accidently do. */
1208 TYPE_LENGTH (result_type) = 0;
1209 }
1210
1211 TYPE_NFIELDS (result_type) = 1;
1212 TYPE_FIELDS (result_type) =
1213 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1214 TYPE_INDEX_TYPE (result_type) = range_type;
1215 if (byte_stride_prop != NULL)
1216 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1217 else if (bit_stride > 0)
1218 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1219
1220 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1221 if (TYPE_LENGTH (result_type) == 0)
1222 TYPE_TARGET_STUB (result_type) = 1;
1223
1224 return result_type;
1225 }
1226
1227 /* Same as create_array_type_with_stride but with no bit_stride
1228 (BIT_STRIDE = 0), thus building an unpacked array. */
1229
1230 struct type *
1231 create_array_type (struct type *result_type,
1232 struct type *element_type,
1233 struct type *range_type)
1234 {
1235 return create_array_type_with_stride (result_type, element_type,
1236 range_type, NULL, 0);
1237 }
1238
1239 struct type *
1240 lookup_array_range_type (struct type *element_type,
1241 LONGEST low_bound, LONGEST high_bound)
1242 {
1243 struct type *index_type;
1244 struct type *range_type;
1245
1246 if (TYPE_OBJFILE_OWNED (element_type))
1247 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1248 else
1249 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1250 range_type = create_static_range_type (NULL, index_type,
1251 low_bound, high_bound);
1252
1253 return create_array_type (NULL, element_type, range_type);
1254 }
1255
1256 /* Create a string type using either a blank type supplied in
1257 RESULT_TYPE, or creating a new type. String types are similar
1258 enough to array of char types that we can use create_array_type to
1259 build the basic type and then bash it into a string type.
1260
1261 For fixed length strings, the range type contains 0 as the lower
1262 bound and the length of the string minus one as the upper bound.
1263
1264 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1265 sure it is TYPE_CODE_UNDEF before we bash it into a string
1266 type? */
1267
1268 struct type *
1269 create_string_type (struct type *result_type,
1270 struct type *string_char_type,
1271 struct type *range_type)
1272 {
1273 result_type = create_array_type (result_type,
1274 string_char_type,
1275 range_type);
1276 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1277 return result_type;
1278 }
1279
1280 struct type *
1281 lookup_string_range_type (struct type *string_char_type,
1282 LONGEST low_bound, LONGEST high_bound)
1283 {
1284 struct type *result_type;
1285
1286 result_type = lookup_array_range_type (string_char_type,
1287 low_bound, high_bound);
1288 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1289 return result_type;
1290 }
1291
1292 struct type *
1293 create_set_type (struct type *result_type, struct type *domain_type)
1294 {
1295 if (result_type == NULL)
1296 result_type = alloc_type_copy (domain_type);
1297
1298 TYPE_CODE (result_type) = TYPE_CODE_SET;
1299 TYPE_NFIELDS (result_type) = 1;
1300 TYPE_FIELDS (result_type)
1301 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1302
1303 if (!TYPE_STUB (domain_type))
1304 {
1305 LONGEST low_bound, high_bound, bit_length;
1306
1307 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1308 low_bound = high_bound = 0;
1309 bit_length = high_bound - low_bound + 1;
1310 TYPE_LENGTH (result_type)
1311 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1312 if (low_bound >= 0)
1313 TYPE_UNSIGNED (result_type) = 1;
1314 }
1315 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1316
1317 return result_type;
1318 }
1319
1320 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1321 and any array types nested inside it. */
1322
1323 void
1324 make_vector_type (struct type *array_type)
1325 {
1326 struct type *inner_array, *elt_type;
1327 int flags;
1328
1329 /* Find the innermost array type, in case the array is
1330 multi-dimensional. */
1331 inner_array = array_type;
1332 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1333 inner_array = TYPE_TARGET_TYPE (inner_array);
1334
1335 elt_type = TYPE_TARGET_TYPE (inner_array);
1336 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1337 {
1338 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1339 elt_type = make_qualified_type (elt_type, flags, NULL);
1340 TYPE_TARGET_TYPE (inner_array) = elt_type;
1341 }
1342
1343 TYPE_VECTOR (array_type) = 1;
1344 }
1345
1346 struct type *
1347 init_vector_type (struct type *elt_type, int n)
1348 {
1349 struct type *array_type;
1350
1351 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1352 make_vector_type (array_type);
1353 return array_type;
1354 }
1355
1356 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1357 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1358 confusing. "self" is a common enough replacement for "this".
1359 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1360 TYPE_CODE_METHOD. */
1361
1362 struct type *
1363 internal_type_self_type (struct type *type)
1364 {
1365 switch (TYPE_CODE (type))
1366 {
1367 case TYPE_CODE_METHODPTR:
1368 case TYPE_CODE_MEMBERPTR:
1369 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1370 return NULL;
1371 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1372 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1373 case TYPE_CODE_METHOD:
1374 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1375 return NULL;
1376 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1377 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1378 default:
1379 gdb_assert_not_reached ("bad type");
1380 }
1381 }
1382
1383 /* Set the type of the class that TYPE belongs to.
1384 In c++ this is the class of "this".
1385 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1386 TYPE_CODE_METHOD. */
1387
1388 void
1389 set_type_self_type (struct type *type, struct type *self_type)
1390 {
1391 switch (TYPE_CODE (type))
1392 {
1393 case TYPE_CODE_METHODPTR:
1394 case TYPE_CODE_MEMBERPTR:
1395 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1396 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1397 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1398 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1399 break;
1400 case TYPE_CODE_METHOD:
1401 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1402 INIT_FUNC_SPECIFIC (type);
1403 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1404 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1405 break;
1406 default:
1407 gdb_assert_not_reached ("bad type");
1408 }
1409 }
1410
1411 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1412 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1413 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1414 TYPE doesn't include the offset (that's the value of the MEMBER
1415 itself), but does include the structure type into which it points
1416 (for some reason).
1417
1418 When "smashing" the type, we preserve the objfile that the old type
1419 pointed to, since we aren't changing where the type is actually
1420 allocated. */
1421
1422 void
1423 smash_to_memberptr_type (struct type *type, struct type *self_type,
1424 struct type *to_type)
1425 {
1426 smash_type (type);
1427 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1428 TYPE_TARGET_TYPE (type) = to_type;
1429 set_type_self_type (type, self_type);
1430 /* Assume that a data member pointer is the same size as a normal
1431 pointer. */
1432 TYPE_LENGTH (type)
1433 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1434 }
1435
1436 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1437
1438 When "smashing" the type, we preserve the objfile that the old type
1439 pointed to, since we aren't changing where the type is actually
1440 allocated. */
1441
1442 void
1443 smash_to_methodptr_type (struct type *type, struct type *to_type)
1444 {
1445 smash_type (type);
1446 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1447 TYPE_TARGET_TYPE (type) = to_type;
1448 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1449 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1450 }
1451
1452 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1453 METHOD just means `function that gets an extra "this" argument'.
1454
1455 When "smashing" the type, we preserve the objfile that the old type
1456 pointed to, since we aren't changing where the type is actually
1457 allocated. */
1458
1459 void
1460 smash_to_method_type (struct type *type, struct type *self_type,
1461 struct type *to_type, struct field *args,
1462 int nargs, int varargs)
1463 {
1464 smash_type (type);
1465 TYPE_CODE (type) = TYPE_CODE_METHOD;
1466 TYPE_TARGET_TYPE (type) = to_type;
1467 set_type_self_type (type, self_type);
1468 TYPE_FIELDS (type) = args;
1469 TYPE_NFIELDS (type) = nargs;
1470 if (varargs)
1471 TYPE_VARARGS (type) = 1;
1472 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1473 }
1474
1475 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1476 Since GCC PR debug/47510 DWARF provides associated information to detect the
1477 anonymous class linkage name from its typedef.
1478
1479 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1480 apply it itself. */
1481
1482 const char *
1483 type_name_or_error (struct type *type)
1484 {
1485 struct type *saved_type = type;
1486 const char *name;
1487 struct objfile *objfile;
1488
1489 type = check_typedef (type);
1490
1491 name = TYPE_NAME (type);
1492 if (name != NULL)
1493 return name;
1494
1495 name = TYPE_NAME (saved_type);
1496 objfile = TYPE_OBJFILE (saved_type);
1497 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1498 name ? name : "<anonymous>",
1499 objfile ? objfile_name (objfile) : "<arch>");
1500 }
1501
1502 /* Lookup a typedef or primitive type named NAME, visible in lexical
1503 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1504 suitably defined. */
1505
1506 struct type *
1507 lookup_typename (const struct language_defn *language,
1508 struct gdbarch *gdbarch, const char *name,
1509 const struct block *block, int noerr)
1510 {
1511 struct symbol *sym;
1512
1513 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1514 language->la_language, NULL).symbol;
1515 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1516 return SYMBOL_TYPE (sym);
1517
1518 if (noerr)
1519 return NULL;
1520 error (_("No type named %s."), name);
1521 }
1522
1523 struct type *
1524 lookup_unsigned_typename (const struct language_defn *language,
1525 struct gdbarch *gdbarch, const char *name)
1526 {
1527 char *uns = (char *) alloca (strlen (name) + 10);
1528
1529 strcpy (uns, "unsigned ");
1530 strcpy (uns + 9, name);
1531 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1532 }
1533
1534 struct type *
1535 lookup_signed_typename (const struct language_defn *language,
1536 struct gdbarch *gdbarch, const char *name)
1537 {
1538 struct type *t;
1539 char *uns = (char *) alloca (strlen (name) + 8);
1540
1541 strcpy (uns, "signed ");
1542 strcpy (uns + 7, name);
1543 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1544 /* If we don't find "signed FOO" just try again with plain "FOO". */
1545 if (t != NULL)
1546 return t;
1547 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1548 }
1549
1550 /* Lookup a structure type named "struct NAME",
1551 visible in lexical block BLOCK. */
1552
1553 struct type *
1554 lookup_struct (const char *name, const struct block *block)
1555 {
1556 struct symbol *sym;
1557
1558 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1559
1560 if (sym == NULL)
1561 {
1562 error (_("No struct type named %s."), name);
1563 }
1564 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1565 {
1566 error (_("This context has class, union or enum %s, not a struct."),
1567 name);
1568 }
1569 return (SYMBOL_TYPE (sym));
1570 }
1571
1572 /* Lookup a union type named "union NAME",
1573 visible in lexical block BLOCK. */
1574
1575 struct type *
1576 lookup_union (const char *name, const struct block *block)
1577 {
1578 struct symbol *sym;
1579 struct type *t;
1580
1581 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1582
1583 if (sym == NULL)
1584 error (_("No union type named %s."), name);
1585
1586 t = SYMBOL_TYPE (sym);
1587
1588 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1589 return t;
1590
1591 /* If we get here, it's not a union. */
1592 error (_("This context has class, struct or enum %s, not a union."),
1593 name);
1594 }
1595
1596 /* Lookup an enum type named "enum NAME",
1597 visible in lexical block BLOCK. */
1598
1599 struct type *
1600 lookup_enum (const char *name, const struct block *block)
1601 {
1602 struct symbol *sym;
1603
1604 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1605 if (sym == NULL)
1606 {
1607 error (_("No enum type named %s."), name);
1608 }
1609 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1610 {
1611 error (_("This context has class, struct or union %s, not an enum."),
1612 name);
1613 }
1614 return (SYMBOL_TYPE (sym));
1615 }
1616
1617 /* Lookup a template type named "template NAME<TYPE>",
1618 visible in lexical block BLOCK. */
1619
1620 struct type *
1621 lookup_template_type (char *name, struct type *type,
1622 const struct block *block)
1623 {
1624 struct symbol *sym;
1625 char *nam = (char *)
1626 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1627
1628 strcpy (nam, name);
1629 strcat (nam, "<");
1630 strcat (nam, TYPE_NAME (type));
1631 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1632
1633 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1634
1635 if (sym == NULL)
1636 {
1637 error (_("No template type named %s."), name);
1638 }
1639 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1640 {
1641 error (_("This context has class, union or enum %s, not a struct."),
1642 name);
1643 }
1644 return (SYMBOL_TYPE (sym));
1645 }
1646
1647 /* Given a type TYPE, lookup the type of the component of type named
1648 NAME.
1649
1650 TYPE can be either a struct or union, or a pointer or reference to
1651 a struct or union. If it is a pointer or reference, its target
1652 type is automatically used. Thus '.' and '->' are interchangable,
1653 as specified for the definitions of the expression element types
1654 STRUCTOP_STRUCT and STRUCTOP_PTR.
1655
1656 If NOERR is nonzero, return zero if NAME is not suitably defined.
1657 If NAME is the name of a baseclass type, return that type. */
1658
1659 struct type *
1660 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1661 {
1662 int i;
1663
1664 for (;;)
1665 {
1666 type = check_typedef (type);
1667 if (TYPE_CODE (type) != TYPE_CODE_PTR
1668 && TYPE_CODE (type) != TYPE_CODE_REF)
1669 break;
1670 type = TYPE_TARGET_TYPE (type);
1671 }
1672
1673 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1674 && TYPE_CODE (type) != TYPE_CODE_UNION)
1675 {
1676 std::string type_name = type_to_string (type);
1677 error (_("Type %s is not a structure or union type."),
1678 type_name.c_str ());
1679 }
1680
1681 #if 0
1682 /* FIXME: This change put in by Michael seems incorrect for the case
1683 where the structure tag name is the same as the member name.
1684 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1685 foo; } bell;" Disabled by fnf. */
1686 {
1687 char *type_name;
1688
1689 type_name = TYPE_NAME (type);
1690 if (type_name != NULL && strcmp (type_name, name) == 0)
1691 return type;
1692 }
1693 #endif
1694
1695 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1696 {
1697 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1698
1699 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1700 {
1701 return TYPE_FIELD_TYPE (type, i);
1702 }
1703 else if (!t_field_name || *t_field_name == '\0')
1704 {
1705 struct type *subtype
1706 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1707
1708 if (subtype != NULL)
1709 return subtype;
1710 }
1711 }
1712
1713 /* OK, it's not in this class. Recursively check the baseclasses. */
1714 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1715 {
1716 struct type *t;
1717
1718 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1719 if (t != NULL)
1720 {
1721 return t;
1722 }
1723 }
1724
1725 if (noerr)
1726 {
1727 return NULL;
1728 }
1729
1730 std::string type_name = type_to_string (type);
1731 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1732 }
1733
1734 /* Store in *MAX the largest number representable by unsigned integer type
1735 TYPE. */
1736
1737 void
1738 get_unsigned_type_max (struct type *type, ULONGEST *max)
1739 {
1740 unsigned int n;
1741
1742 type = check_typedef (type);
1743 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1744 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1745
1746 /* Written this way to avoid overflow. */
1747 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1748 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1749 }
1750
1751 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1752 signed integer type TYPE. */
1753
1754 void
1755 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1756 {
1757 unsigned int n;
1758
1759 type = check_typedef (type);
1760 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1761 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1762
1763 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1764 *min = -((ULONGEST) 1 << (n - 1));
1765 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1766 }
1767
1768 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1769 cplus_stuff.vptr_fieldno.
1770
1771 cplus_stuff is initialized to cplus_struct_default which does not
1772 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1773 designated initializers). We cope with that here. */
1774
1775 int
1776 internal_type_vptr_fieldno (struct type *type)
1777 {
1778 type = check_typedef (type);
1779 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1780 || TYPE_CODE (type) == TYPE_CODE_UNION);
1781 if (!HAVE_CPLUS_STRUCT (type))
1782 return -1;
1783 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1784 }
1785
1786 /* Set the value of cplus_stuff.vptr_fieldno. */
1787
1788 void
1789 set_type_vptr_fieldno (struct type *type, int fieldno)
1790 {
1791 type = check_typedef (type);
1792 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1793 || TYPE_CODE (type) == TYPE_CODE_UNION);
1794 if (!HAVE_CPLUS_STRUCT (type))
1795 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1796 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1797 }
1798
1799 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1800 cplus_stuff.vptr_basetype. */
1801
1802 struct type *
1803 internal_type_vptr_basetype (struct type *type)
1804 {
1805 type = check_typedef (type);
1806 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1807 || TYPE_CODE (type) == TYPE_CODE_UNION);
1808 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1809 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1810 }
1811
1812 /* Set the value of cplus_stuff.vptr_basetype. */
1813
1814 void
1815 set_type_vptr_basetype (struct type *type, struct type *basetype)
1816 {
1817 type = check_typedef (type);
1818 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1819 || TYPE_CODE (type) == TYPE_CODE_UNION);
1820 if (!HAVE_CPLUS_STRUCT (type))
1821 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1822 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1823 }
1824
1825 /* Lookup the vptr basetype/fieldno values for TYPE.
1826 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1827 vptr_fieldno. Also, if found and basetype is from the same objfile,
1828 cache the results.
1829 If not found, return -1 and ignore BASETYPEP.
1830 Callers should be aware that in some cases (for example,
1831 the type or one of its baseclasses is a stub type and we are
1832 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1833 this function will not be able to find the
1834 virtual function table pointer, and vptr_fieldno will remain -1 and
1835 vptr_basetype will remain NULL or incomplete. */
1836
1837 int
1838 get_vptr_fieldno (struct type *type, struct type **basetypep)
1839 {
1840 type = check_typedef (type);
1841
1842 if (TYPE_VPTR_FIELDNO (type) < 0)
1843 {
1844 int i;
1845
1846 /* We must start at zero in case the first (and only) baseclass
1847 is virtual (and hence we cannot share the table pointer). */
1848 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1849 {
1850 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1851 int fieldno;
1852 struct type *basetype;
1853
1854 fieldno = get_vptr_fieldno (baseclass, &basetype);
1855 if (fieldno >= 0)
1856 {
1857 /* If the type comes from a different objfile we can't cache
1858 it, it may have a different lifetime. PR 2384 */
1859 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1860 {
1861 set_type_vptr_fieldno (type, fieldno);
1862 set_type_vptr_basetype (type, basetype);
1863 }
1864 if (basetypep)
1865 *basetypep = basetype;
1866 return fieldno;
1867 }
1868 }
1869
1870 /* Not found. */
1871 return -1;
1872 }
1873 else
1874 {
1875 if (basetypep)
1876 *basetypep = TYPE_VPTR_BASETYPE (type);
1877 return TYPE_VPTR_FIELDNO (type);
1878 }
1879 }
1880
1881 static void
1882 stub_noname_complaint (void)
1883 {
1884 complaint (_("stub type has NULL name"));
1885 }
1886
1887 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1888 attached to it, and that property has a non-constant value. */
1889
1890 static int
1891 array_type_has_dynamic_stride (struct type *type)
1892 {
1893 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1894
1895 return (prop != NULL && prop->kind != PROP_CONST);
1896 }
1897
1898 /* Worker for is_dynamic_type. */
1899
1900 static int
1901 is_dynamic_type_internal (struct type *type, int top_level)
1902 {
1903 type = check_typedef (type);
1904
1905 /* We only want to recognize references at the outermost level. */
1906 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1907 type = check_typedef (TYPE_TARGET_TYPE (type));
1908
1909 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1910 dynamic, even if the type itself is statically defined.
1911 From a user's point of view, this may appear counter-intuitive;
1912 but it makes sense in this context, because the point is to determine
1913 whether any part of the type needs to be resolved before it can
1914 be exploited. */
1915 if (TYPE_DATA_LOCATION (type) != NULL
1916 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1917 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1918 return 1;
1919
1920 if (TYPE_ASSOCIATED_PROP (type))
1921 return 1;
1922
1923 if (TYPE_ALLOCATED_PROP (type))
1924 return 1;
1925
1926 switch (TYPE_CODE (type))
1927 {
1928 case TYPE_CODE_RANGE:
1929 {
1930 /* A range type is obviously dynamic if it has at least one
1931 dynamic bound. But also consider the range type to be
1932 dynamic when its subtype is dynamic, even if the bounds
1933 of the range type are static. It allows us to assume that
1934 the subtype of a static range type is also static. */
1935 return (!has_static_range (TYPE_RANGE_DATA (type))
1936 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1937 }
1938
1939 case TYPE_CODE_ARRAY:
1940 {
1941 gdb_assert (TYPE_NFIELDS (type) == 1);
1942
1943 /* The array is dynamic if either the bounds are dynamic... */
1944 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1945 return 1;
1946 /* ... or the elements it contains have a dynamic contents... */
1947 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1948 return 1;
1949 /* ... or if it has a dynamic stride... */
1950 if (array_type_has_dynamic_stride (type))
1951 return 1;
1952 return 0;
1953 }
1954
1955 case TYPE_CODE_STRUCT:
1956 case TYPE_CODE_UNION:
1957 {
1958 int i;
1959
1960 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1961 if (!field_is_static (&TYPE_FIELD (type, i))
1962 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1963 return 1;
1964 }
1965 break;
1966 }
1967
1968 return 0;
1969 }
1970
1971 /* See gdbtypes.h. */
1972
1973 int
1974 is_dynamic_type (struct type *type)
1975 {
1976 return is_dynamic_type_internal (type, 1);
1977 }
1978
1979 static struct type *resolve_dynamic_type_internal
1980 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1981
1982 /* Given a dynamic range type (dyn_range_type) and a stack of
1983 struct property_addr_info elements, return a static version
1984 of that type. */
1985
1986 static struct type *
1987 resolve_dynamic_range (struct type *dyn_range_type,
1988 struct property_addr_info *addr_stack)
1989 {
1990 CORE_ADDR value;
1991 struct type *static_range_type, *static_target_type;
1992 const struct dynamic_prop *prop;
1993 struct dynamic_prop low_bound, high_bound;
1994
1995 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1996
1997 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1998 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1999 {
2000 low_bound.kind = PROP_CONST;
2001 low_bound.data.const_val = value;
2002 }
2003 else
2004 {
2005 low_bound.kind = PROP_UNDEFINED;
2006 low_bound.data.const_val = 0;
2007 }
2008
2009 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2010 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2011 {
2012 high_bound.kind = PROP_CONST;
2013 high_bound.data.const_val = value;
2014
2015 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2016 high_bound.data.const_val
2017 = low_bound.data.const_val + high_bound.data.const_val - 1;
2018 }
2019 else
2020 {
2021 high_bound.kind = PROP_UNDEFINED;
2022 high_bound.data.const_val = 0;
2023 }
2024
2025 static_target_type
2026 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2027 addr_stack, 0);
2028 static_range_type = create_range_type (copy_type (dyn_range_type),
2029 static_target_type,
2030 &low_bound, &high_bound);
2031 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2032 return static_range_type;
2033 }
2034
2035 /* Resolves dynamic bound values of an array type TYPE to static ones.
2036 ADDR_STACK is a stack of struct property_addr_info to be used
2037 if needed during the dynamic resolution. */
2038
2039 static struct type *
2040 resolve_dynamic_array (struct type *type,
2041 struct property_addr_info *addr_stack)
2042 {
2043 CORE_ADDR value;
2044 struct type *elt_type;
2045 struct type *range_type;
2046 struct type *ary_dim;
2047 struct dynamic_prop *prop;
2048 unsigned int bit_stride = 0;
2049
2050 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2051
2052 type = copy_type (type);
2053
2054 elt_type = type;
2055 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2056 range_type = resolve_dynamic_range (range_type, addr_stack);
2057
2058 /* Resolve allocated/associated here before creating a new array type, which
2059 will update the length of the array accordingly. */
2060 prop = TYPE_ALLOCATED_PROP (type);
2061 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2062 {
2063 TYPE_DYN_PROP_ADDR (prop) = value;
2064 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2065 }
2066 prop = TYPE_ASSOCIATED_PROP (type);
2067 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2068 {
2069 TYPE_DYN_PROP_ADDR (prop) = value;
2070 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2071 }
2072
2073 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2074
2075 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2076 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
2077 else
2078 elt_type = TYPE_TARGET_TYPE (type);
2079
2080 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2081 if (prop != NULL)
2082 {
2083 int prop_eval_ok
2084 = dwarf2_evaluate_property (prop, NULL, addr_stack, &value);
2085
2086 if (prop_eval_ok)
2087 {
2088 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2089 bit_stride = (unsigned int) (value * 8);
2090 }
2091 else
2092 {
2093 /* Could be a bug in our code, but it could also happen
2094 if the DWARF info is not correct. Issue a warning,
2095 and assume no byte/bit stride (leave bit_stride = 0). */
2096 warning (_("cannot determine array stride for type %s"),
2097 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2098 }
2099 }
2100 else
2101 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2102
2103 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2104 bit_stride);
2105 }
2106
2107 /* Resolve dynamic bounds of members of the union TYPE to static
2108 bounds. ADDR_STACK is a stack of struct property_addr_info
2109 to be used if needed during the dynamic resolution. */
2110
2111 static struct type *
2112 resolve_dynamic_union (struct type *type,
2113 struct property_addr_info *addr_stack)
2114 {
2115 struct type *resolved_type;
2116 int i;
2117 unsigned int max_len = 0;
2118
2119 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2120
2121 resolved_type = copy_type (type);
2122 TYPE_FIELDS (resolved_type)
2123 = (struct field *) TYPE_ALLOC (resolved_type,
2124 TYPE_NFIELDS (resolved_type)
2125 * sizeof (struct field));
2126 memcpy (TYPE_FIELDS (resolved_type),
2127 TYPE_FIELDS (type),
2128 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2129 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2130 {
2131 struct type *t;
2132
2133 if (field_is_static (&TYPE_FIELD (type, i)))
2134 continue;
2135
2136 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2137 addr_stack, 0);
2138 TYPE_FIELD_TYPE (resolved_type, i) = t;
2139 if (TYPE_LENGTH (t) > max_len)
2140 max_len = TYPE_LENGTH (t);
2141 }
2142
2143 TYPE_LENGTH (resolved_type) = max_len;
2144 return resolved_type;
2145 }
2146
2147 /* Resolve dynamic bounds of members of the struct TYPE to static
2148 bounds. ADDR_STACK is a stack of struct property_addr_info to
2149 be used if needed during the dynamic resolution. */
2150
2151 static struct type *
2152 resolve_dynamic_struct (struct type *type,
2153 struct property_addr_info *addr_stack)
2154 {
2155 struct type *resolved_type;
2156 int i;
2157 unsigned resolved_type_bit_length = 0;
2158
2159 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2160 gdb_assert (TYPE_NFIELDS (type) > 0);
2161
2162 resolved_type = copy_type (type);
2163 TYPE_FIELDS (resolved_type)
2164 = (struct field *) TYPE_ALLOC (resolved_type,
2165 TYPE_NFIELDS (resolved_type)
2166 * sizeof (struct field));
2167 memcpy (TYPE_FIELDS (resolved_type),
2168 TYPE_FIELDS (type),
2169 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2170 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2171 {
2172 unsigned new_bit_length;
2173 struct property_addr_info pinfo;
2174
2175 if (field_is_static (&TYPE_FIELD (type, i)))
2176 continue;
2177
2178 /* As we know this field is not a static field, the field's
2179 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2180 this is the case, but only trigger a simple error rather
2181 than an internal error if that fails. While failing
2182 that verification indicates a bug in our code, the error
2183 is not severe enough to suggest to the user he stops
2184 his debugging session because of it. */
2185 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2186 error (_("Cannot determine struct field location"
2187 " (invalid location kind)"));
2188
2189 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2190 pinfo.valaddr = addr_stack->valaddr;
2191 pinfo.addr
2192 = (addr_stack->addr
2193 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2194 pinfo.next = addr_stack;
2195
2196 TYPE_FIELD_TYPE (resolved_type, i)
2197 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2198 &pinfo, 0);
2199 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2200 == FIELD_LOC_KIND_BITPOS);
2201
2202 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2203 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2204 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2205 else
2206 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2207 * TARGET_CHAR_BIT);
2208
2209 /* Normally, we would use the position and size of the last field
2210 to determine the size of the enclosing structure. But GCC seems
2211 to be encoding the position of some fields incorrectly when
2212 the struct contains a dynamic field that is not placed last.
2213 So we compute the struct size based on the field that has
2214 the highest position + size - probably the best we can do. */
2215 if (new_bit_length > resolved_type_bit_length)
2216 resolved_type_bit_length = new_bit_length;
2217 }
2218
2219 /* The length of a type won't change for fortran, but it does for C and Ada.
2220 For fortran the size of dynamic fields might change over time but not the
2221 type length of the structure. If we adapt it, we run into problems
2222 when calculating the element offset for arrays of structs. */
2223 if (current_language->la_language != language_fortran)
2224 TYPE_LENGTH (resolved_type)
2225 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2226
2227 /* The Ada language uses this field as a cache for static fixed types: reset
2228 it as RESOLVED_TYPE must have its own static fixed type. */
2229 TYPE_TARGET_TYPE (resolved_type) = NULL;
2230
2231 return resolved_type;
2232 }
2233
2234 /* Worker for resolved_dynamic_type. */
2235
2236 static struct type *
2237 resolve_dynamic_type_internal (struct type *type,
2238 struct property_addr_info *addr_stack,
2239 int top_level)
2240 {
2241 struct type *real_type = check_typedef (type);
2242 struct type *resolved_type = type;
2243 struct dynamic_prop *prop;
2244 CORE_ADDR value;
2245
2246 if (!is_dynamic_type_internal (real_type, top_level))
2247 return type;
2248
2249 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2250 {
2251 resolved_type = copy_type (type);
2252 TYPE_TARGET_TYPE (resolved_type)
2253 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2254 top_level);
2255 }
2256 else
2257 {
2258 /* Before trying to resolve TYPE, make sure it is not a stub. */
2259 type = real_type;
2260
2261 switch (TYPE_CODE (type))
2262 {
2263 case TYPE_CODE_REF:
2264 {
2265 struct property_addr_info pinfo;
2266
2267 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2268 pinfo.valaddr = NULL;
2269 if (addr_stack->valaddr != NULL)
2270 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2271 else
2272 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2273 pinfo.next = addr_stack;
2274
2275 resolved_type = copy_type (type);
2276 TYPE_TARGET_TYPE (resolved_type)
2277 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2278 &pinfo, top_level);
2279 break;
2280 }
2281
2282 case TYPE_CODE_ARRAY:
2283 resolved_type = resolve_dynamic_array (type, addr_stack);
2284 break;
2285
2286 case TYPE_CODE_RANGE:
2287 resolved_type = resolve_dynamic_range (type, addr_stack);
2288 break;
2289
2290 case TYPE_CODE_UNION:
2291 resolved_type = resolve_dynamic_union (type, addr_stack);
2292 break;
2293
2294 case TYPE_CODE_STRUCT:
2295 resolved_type = resolve_dynamic_struct (type, addr_stack);
2296 break;
2297 }
2298 }
2299
2300 /* Resolve data_location attribute. */
2301 prop = TYPE_DATA_LOCATION (resolved_type);
2302 if (prop != NULL
2303 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2304 {
2305 TYPE_DYN_PROP_ADDR (prop) = value;
2306 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2307 }
2308
2309 return resolved_type;
2310 }
2311
2312 /* See gdbtypes.h */
2313
2314 struct type *
2315 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2316 CORE_ADDR addr)
2317 {
2318 struct property_addr_info pinfo
2319 = {check_typedef (type), valaddr, addr, NULL};
2320
2321 return resolve_dynamic_type_internal (type, &pinfo, 1);
2322 }
2323
2324 /* See gdbtypes.h */
2325
2326 struct dynamic_prop *
2327 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2328 {
2329 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2330
2331 while (node != NULL)
2332 {
2333 if (node->prop_kind == prop_kind)
2334 return &node->prop;
2335 node = node->next;
2336 }
2337 return NULL;
2338 }
2339
2340 /* See gdbtypes.h */
2341
2342 void
2343 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2344 struct type *type)
2345 {
2346 struct dynamic_prop_list *temp;
2347
2348 gdb_assert (TYPE_OBJFILE_OWNED (type));
2349
2350 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2351 struct dynamic_prop_list);
2352 temp->prop_kind = prop_kind;
2353 temp->prop = prop;
2354 temp->next = TYPE_DYN_PROP_LIST (type);
2355
2356 TYPE_DYN_PROP_LIST (type) = temp;
2357 }
2358
2359 /* Remove dynamic property from TYPE in case it exists. */
2360
2361 void
2362 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2363 struct type *type)
2364 {
2365 struct dynamic_prop_list *prev_node, *curr_node;
2366
2367 curr_node = TYPE_DYN_PROP_LIST (type);
2368 prev_node = NULL;
2369
2370 while (NULL != curr_node)
2371 {
2372 if (curr_node->prop_kind == prop_kind)
2373 {
2374 /* Update the linked list but don't free anything.
2375 The property was allocated on objstack and it is not known
2376 if we are on top of it. Nevertheless, everything is released
2377 when the complete objstack is freed. */
2378 if (NULL == prev_node)
2379 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2380 else
2381 prev_node->next = curr_node->next;
2382
2383 return;
2384 }
2385
2386 prev_node = curr_node;
2387 curr_node = curr_node->next;
2388 }
2389 }
2390
2391 /* Find the real type of TYPE. This function returns the real type,
2392 after removing all layers of typedefs, and completing opaque or stub
2393 types. Completion changes the TYPE argument, but stripping of
2394 typedefs does not.
2395
2396 Instance flags (e.g. const/volatile) are preserved as typedefs are
2397 stripped. If necessary a new qualified form of the underlying type
2398 is created.
2399
2400 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2401 not been computed and we're either in the middle of reading symbols, or
2402 there was no name for the typedef in the debug info.
2403
2404 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2405 QUITs in the symbol reading code can also throw.
2406 Thus this function can throw an exception.
2407
2408 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2409 the target type.
2410
2411 If this is a stubbed struct (i.e. declared as struct foo *), see if
2412 we can find a full definition in some other file. If so, copy this
2413 definition, so we can use it in future. There used to be a comment
2414 (but not any code) that if we don't find a full definition, we'd
2415 set a flag so we don't spend time in the future checking the same
2416 type. That would be a mistake, though--we might load in more
2417 symbols which contain a full definition for the type. */
2418
2419 struct type *
2420 check_typedef (struct type *type)
2421 {
2422 struct type *orig_type = type;
2423 /* While we're removing typedefs, we don't want to lose qualifiers.
2424 E.g., const/volatile. */
2425 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2426
2427 gdb_assert (type);
2428
2429 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2430 {
2431 if (!TYPE_TARGET_TYPE (type))
2432 {
2433 const char *name;
2434 struct symbol *sym;
2435
2436 /* It is dangerous to call lookup_symbol if we are currently
2437 reading a symtab. Infinite recursion is one danger. */
2438 if (currently_reading_symtab)
2439 return make_qualified_type (type, instance_flags, NULL);
2440
2441 name = TYPE_NAME (type);
2442 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2443 VAR_DOMAIN as appropriate? */
2444 if (name == NULL)
2445 {
2446 stub_noname_complaint ();
2447 return make_qualified_type (type, instance_flags, NULL);
2448 }
2449 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2450 if (sym)
2451 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2452 else /* TYPE_CODE_UNDEF */
2453 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2454 }
2455 type = TYPE_TARGET_TYPE (type);
2456
2457 /* Preserve the instance flags as we traverse down the typedef chain.
2458
2459 Handling address spaces/classes is nasty, what do we do if there's a
2460 conflict?
2461 E.g., what if an outer typedef marks the type as class_1 and an inner
2462 typedef marks the type as class_2?
2463 This is the wrong place to do such error checking. We leave it to
2464 the code that created the typedef in the first place to flag the
2465 error. We just pick the outer address space (akin to letting the
2466 outer cast in a chain of casting win), instead of assuming
2467 "it can't happen". */
2468 {
2469 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2470 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2471 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2472 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2473
2474 /* Treat code vs data spaces and address classes separately. */
2475 if ((instance_flags & ALL_SPACES) != 0)
2476 new_instance_flags &= ~ALL_SPACES;
2477 if ((instance_flags & ALL_CLASSES) != 0)
2478 new_instance_flags &= ~ALL_CLASSES;
2479
2480 instance_flags |= new_instance_flags;
2481 }
2482 }
2483
2484 /* If this is a struct/class/union with no fields, then check
2485 whether a full definition exists somewhere else. This is for
2486 systems where a type definition with no fields is issued for such
2487 types, instead of identifying them as stub types in the first
2488 place. */
2489
2490 if (TYPE_IS_OPAQUE (type)
2491 && opaque_type_resolution
2492 && !currently_reading_symtab)
2493 {
2494 const char *name = TYPE_NAME (type);
2495 struct type *newtype;
2496
2497 if (name == NULL)
2498 {
2499 stub_noname_complaint ();
2500 return make_qualified_type (type, instance_flags, NULL);
2501 }
2502 newtype = lookup_transparent_type (name);
2503
2504 if (newtype)
2505 {
2506 /* If the resolved type and the stub are in the same
2507 objfile, then replace the stub type with the real deal.
2508 But if they're in separate objfiles, leave the stub
2509 alone; we'll just look up the transparent type every time
2510 we call check_typedef. We can't create pointers between
2511 types allocated to different objfiles, since they may
2512 have different lifetimes. Trying to copy NEWTYPE over to
2513 TYPE's objfile is pointless, too, since you'll have to
2514 move over any other types NEWTYPE refers to, which could
2515 be an unbounded amount of stuff. */
2516 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2517 type = make_qualified_type (newtype,
2518 TYPE_INSTANCE_FLAGS (type),
2519 type);
2520 else
2521 type = newtype;
2522 }
2523 }
2524 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2525 types. */
2526 else if (TYPE_STUB (type) && !currently_reading_symtab)
2527 {
2528 const char *name = TYPE_NAME (type);
2529 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2530 as appropriate? */
2531 struct symbol *sym;
2532
2533 if (name == NULL)
2534 {
2535 stub_noname_complaint ();
2536 return make_qualified_type (type, instance_flags, NULL);
2537 }
2538 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2539 if (sym)
2540 {
2541 /* Same as above for opaque types, we can replace the stub
2542 with the complete type only if they are in the same
2543 objfile. */
2544 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2545 type = make_qualified_type (SYMBOL_TYPE (sym),
2546 TYPE_INSTANCE_FLAGS (type),
2547 type);
2548 else
2549 type = SYMBOL_TYPE (sym);
2550 }
2551 }
2552
2553 if (TYPE_TARGET_STUB (type))
2554 {
2555 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2556
2557 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2558 {
2559 /* Nothing we can do. */
2560 }
2561 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2562 {
2563 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2564 TYPE_TARGET_STUB (type) = 0;
2565 }
2566 }
2567
2568 type = make_qualified_type (type, instance_flags, NULL);
2569
2570 /* Cache TYPE_LENGTH for future use. */
2571 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2572
2573 return type;
2574 }
2575
2576 /* Parse a type expression in the string [P..P+LENGTH). If an error
2577 occurs, silently return a void type. */
2578
2579 static struct type *
2580 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2581 {
2582 struct ui_file *saved_gdb_stderr;
2583 struct type *type = NULL; /* Initialize to keep gcc happy. */
2584
2585 /* Suppress error messages. */
2586 saved_gdb_stderr = gdb_stderr;
2587 gdb_stderr = &null_stream;
2588
2589 /* Call parse_and_eval_type() without fear of longjmp()s. */
2590 TRY
2591 {
2592 type = parse_and_eval_type (p, length);
2593 }
2594 CATCH (except, RETURN_MASK_ERROR)
2595 {
2596 type = builtin_type (gdbarch)->builtin_void;
2597 }
2598 END_CATCH
2599
2600 /* Stop suppressing error messages. */
2601 gdb_stderr = saved_gdb_stderr;
2602
2603 return type;
2604 }
2605
2606 /* Ugly hack to convert method stubs into method types.
2607
2608 He ain't kiddin'. This demangles the name of the method into a
2609 string including argument types, parses out each argument type,
2610 generates a string casting a zero to that type, evaluates the
2611 string, and stuffs the resulting type into an argtype vector!!!
2612 Then it knows the type of the whole function (including argument
2613 types for overloading), which info used to be in the stab's but was
2614 removed to hack back the space required for them. */
2615
2616 static void
2617 check_stub_method (struct type *type, int method_id, int signature_id)
2618 {
2619 struct gdbarch *gdbarch = get_type_arch (type);
2620 struct fn_field *f;
2621 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2622 char *demangled_name = gdb_demangle (mangled_name,
2623 DMGL_PARAMS | DMGL_ANSI);
2624 char *argtypetext, *p;
2625 int depth = 0, argcount = 1;
2626 struct field *argtypes;
2627 struct type *mtype;
2628
2629 /* Make sure we got back a function string that we can use. */
2630 if (demangled_name)
2631 p = strchr (demangled_name, '(');
2632 else
2633 p = NULL;
2634
2635 if (demangled_name == NULL || p == NULL)
2636 error (_("Internal: Cannot demangle mangled name `%s'."),
2637 mangled_name);
2638
2639 /* Now, read in the parameters that define this type. */
2640 p += 1;
2641 argtypetext = p;
2642 while (*p)
2643 {
2644 if (*p == '(' || *p == '<')
2645 {
2646 depth += 1;
2647 }
2648 else if (*p == ')' || *p == '>')
2649 {
2650 depth -= 1;
2651 }
2652 else if (*p == ',' && depth == 0)
2653 {
2654 argcount += 1;
2655 }
2656
2657 p += 1;
2658 }
2659
2660 /* If we read one argument and it was ``void'', don't count it. */
2661 if (startswith (argtypetext, "(void)"))
2662 argcount -= 1;
2663
2664 /* We need one extra slot, for the THIS pointer. */
2665
2666 argtypes = (struct field *)
2667 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2668 p = argtypetext;
2669
2670 /* Add THIS pointer for non-static methods. */
2671 f = TYPE_FN_FIELDLIST1 (type, method_id);
2672 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2673 argcount = 0;
2674 else
2675 {
2676 argtypes[0].type = lookup_pointer_type (type);
2677 argcount = 1;
2678 }
2679
2680 if (*p != ')') /* () means no args, skip while. */
2681 {
2682 depth = 0;
2683 while (*p)
2684 {
2685 if (depth <= 0 && (*p == ',' || *p == ')'))
2686 {
2687 /* Avoid parsing of ellipsis, they will be handled below.
2688 Also avoid ``void'' as above. */
2689 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2690 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2691 {
2692 argtypes[argcount].type =
2693 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2694 argcount += 1;
2695 }
2696 argtypetext = p + 1;
2697 }
2698
2699 if (*p == '(' || *p == '<')
2700 {
2701 depth += 1;
2702 }
2703 else if (*p == ')' || *p == '>')
2704 {
2705 depth -= 1;
2706 }
2707
2708 p += 1;
2709 }
2710 }
2711
2712 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2713
2714 /* Now update the old "stub" type into a real type. */
2715 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2716 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2717 We want a method (TYPE_CODE_METHOD). */
2718 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2719 argtypes, argcount, p[-2] == '.');
2720 TYPE_STUB (mtype) = 0;
2721 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2722
2723 xfree (demangled_name);
2724 }
2725
2726 /* This is the external interface to check_stub_method, above. This
2727 function unstubs all of the signatures for TYPE's METHOD_ID method
2728 name. After calling this function TYPE_FN_FIELD_STUB will be
2729 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2730 correct.
2731
2732 This function unfortunately can not die until stabs do. */
2733
2734 void
2735 check_stub_method_group (struct type *type, int method_id)
2736 {
2737 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2738 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2739 int j, found_stub = 0;
2740
2741 for (j = 0; j < len; j++)
2742 if (TYPE_FN_FIELD_STUB (f, j))
2743 {
2744 found_stub = 1;
2745 check_stub_method (type, method_id, j);
2746 }
2747
2748 /* GNU v3 methods with incorrect names were corrected when we read
2749 in type information, because it was cheaper to do it then. The
2750 only GNU v2 methods with incorrect method names are operators and
2751 destructors; destructors were also corrected when we read in type
2752 information.
2753
2754 Therefore the only thing we need to handle here are v2 operator
2755 names. */
2756 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2757 {
2758 int ret;
2759 char dem_opname[256];
2760
2761 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2762 method_id),
2763 dem_opname, DMGL_ANSI);
2764 if (!ret)
2765 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2766 method_id),
2767 dem_opname, 0);
2768 if (ret)
2769 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2770 }
2771 }
2772
2773 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2774 const struct cplus_struct_type cplus_struct_default = { };
2775
2776 void
2777 allocate_cplus_struct_type (struct type *type)
2778 {
2779 if (HAVE_CPLUS_STRUCT (type))
2780 /* Structure was already allocated. Nothing more to do. */
2781 return;
2782
2783 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2784 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2785 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2786 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2787 set_type_vptr_fieldno (type, -1);
2788 }
2789
2790 const struct gnat_aux_type gnat_aux_default =
2791 { NULL };
2792
2793 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2794 and allocate the associated gnat-specific data. The gnat-specific
2795 data is also initialized to gnat_aux_default. */
2796
2797 void
2798 allocate_gnat_aux_type (struct type *type)
2799 {
2800 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2801 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2802 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2803 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2804 }
2805
2806 /* Helper function to initialize a newly allocated type. Set type code
2807 to CODE and initialize the type-specific fields accordingly. */
2808
2809 static void
2810 set_type_code (struct type *type, enum type_code code)
2811 {
2812 TYPE_CODE (type) = code;
2813
2814 switch (code)
2815 {
2816 case TYPE_CODE_STRUCT:
2817 case TYPE_CODE_UNION:
2818 case TYPE_CODE_NAMESPACE:
2819 INIT_CPLUS_SPECIFIC (type);
2820 break;
2821 case TYPE_CODE_FLT:
2822 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2823 break;
2824 case TYPE_CODE_FUNC:
2825 INIT_FUNC_SPECIFIC (type);
2826 break;
2827 }
2828 }
2829
2830 /* Helper function to verify floating-point format and size.
2831 BIT is the type size in bits; if BIT equals -1, the size is
2832 determined by the floatformat. Returns size to be used. */
2833
2834 static int
2835 verify_floatformat (int bit, const struct floatformat *floatformat)
2836 {
2837 gdb_assert (floatformat != NULL);
2838
2839 if (bit == -1)
2840 bit = floatformat->totalsize;
2841
2842 gdb_assert (bit >= 0);
2843 gdb_assert (bit >= floatformat->totalsize);
2844
2845 return bit;
2846 }
2847
2848 /* Return the floating-point format for a floating-point variable of
2849 type TYPE. */
2850
2851 const struct floatformat *
2852 floatformat_from_type (const struct type *type)
2853 {
2854 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2855 gdb_assert (TYPE_FLOATFORMAT (type));
2856 return TYPE_FLOATFORMAT (type);
2857 }
2858
2859 /* Helper function to initialize the standard scalar types.
2860
2861 If NAME is non-NULL, then it is used to initialize the type name.
2862 Note that NAME is not copied; it is required to have a lifetime at
2863 least as long as OBJFILE. */
2864
2865 struct type *
2866 init_type (struct objfile *objfile, enum type_code code, int bit,
2867 const char *name)
2868 {
2869 struct type *type;
2870
2871 type = alloc_type (objfile);
2872 set_type_code (type, code);
2873 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2874 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2875 TYPE_NAME (type) = name;
2876
2877 return type;
2878 }
2879
2880 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2881 to use with variables that have no debug info. NAME is the type
2882 name. */
2883
2884 static struct type *
2885 init_nodebug_var_type (struct objfile *objfile, const char *name)
2886 {
2887 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2888 }
2889
2890 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2891 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2892 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2893
2894 struct type *
2895 init_integer_type (struct objfile *objfile,
2896 int bit, int unsigned_p, const char *name)
2897 {
2898 struct type *t;
2899
2900 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2901 if (unsigned_p)
2902 TYPE_UNSIGNED (t) = 1;
2903
2904 return t;
2905 }
2906
2907 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2908 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2909 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2910
2911 struct type *
2912 init_character_type (struct objfile *objfile,
2913 int bit, int unsigned_p, const char *name)
2914 {
2915 struct type *t;
2916
2917 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2918 if (unsigned_p)
2919 TYPE_UNSIGNED (t) = 1;
2920
2921 return t;
2922 }
2923
2924 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2925 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2926 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2927
2928 struct type *
2929 init_boolean_type (struct objfile *objfile,
2930 int bit, int unsigned_p, const char *name)
2931 {
2932 struct type *t;
2933
2934 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2935 if (unsigned_p)
2936 TYPE_UNSIGNED (t) = 1;
2937
2938 return t;
2939 }
2940
2941 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2942 BIT is the type size in bits; if BIT equals -1, the size is
2943 determined by the floatformat. NAME is the type name. Set the
2944 TYPE_FLOATFORMAT from FLOATFORMATS. */
2945
2946 struct type *
2947 init_float_type (struct objfile *objfile,
2948 int bit, const char *name,
2949 const struct floatformat **floatformats)
2950 {
2951 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2952 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
2953 struct type *t;
2954
2955 bit = verify_floatformat (bit, fmt);
2956 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
2957 TYPE_FLOATFORMAT (t) = fmt;
2958
2959 return t;
2960 }
2961
2962 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2963 BIT is the type size in bits. NAME is the type name. */
2964
2965 struct type *
2966 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2967 {
2968 struct type *t;
2969
2970 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
2971 return t;
2972 }
2973
2974 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2975 NAME is the type name. TARGET_TYPE is the component float type. */
2976
2977 struct type *
2978 init_complex_type (struct objfile *objfile,
2979 const char *name, struct type *target_type)
2980 {
2981 struct type *t;
2982
2983 t = init_type (objfile, TYPE_CODE_COMPLEX,
2984 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
2985 TYPE_TARGET_TYPE (t) = target_type;
2986 return t;
2987 }
2988
2989 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2990 BIT is the pointer type size in bits. NAME is the type name.
2991 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2992 TYPE_UNSIGNED flag. */
2993
2994 struct type *
2995 init_pointer_type (struct objfile *objfile,
2996 int bit, const char *name, struct type *target_type)
2997 {
2998 struct type *t;
2999
3000 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3001 TYPE_TARGET_TYPE (t) = target_type;
3002 TYPE_UNSIGNED (t) = 1;
3003 return t;
3004 }
3005
3006 /* See gdbtypes.h. */
3007
3008 unsigned
3009 type_raw_align (struct type *type)
3010 {
3011 if (type->align_log2 != 0)
3012 return 1 << (type->align_log2 - 1);
3013 return 0;
3014 }
3015
3016 /* See gdbtypes.h. */
3017
3018 unsigned
3019 type_align (struct type *type)
3020 {
3021 unsigned raw_align = type_raw_align (type);
3022 if (raw_align != 0)
3023 return raw_align;
3024
3025 ULONGEST align = 0;
3026 switch (TYPE_CODE (type))
3027 {
3028 case TYPE_CODE_PTR:
3029 case TYPE_CODE_FUNC:
3030 case TYPE_CODE_FLAGS:
3031 case TYPE_CODE_INT:
3032 case TYPE_CODE_FLT:
3033 case TYPE_CODE_ENUM:
3034 case TYPE_CODE_REF:
3035 case TYPE_CODE_RVALUE_REF:
3036 case TYPE_CODE_CHAR:
3037 case TYPE_CODE_BOOL:
3038 case TYPE_CODE_DECFLOAT:
3039 {
3040 struct gdbarch *arch = get_type_arch (type);
3041 align = gdbarch_type_align (arch, type);
3042 }
3043 break;
3044
3045 case TYPE_CODE_ARRAY:
3046 case TYPE_CODE_COMPLEX:
3047 case TYPE_CODE_TYPEDEF:
3048 align = type_align (TYPE_TARGET_TYPE (type));
3049 break;
3050
3051 case TYPE_CODE_STRUCT:
3052 case TYPE_CODE_UNION:
3053 {
3054 if (TYPE_NFIELDS (type) == 0)
3055 {
3056 /* An empty struct has alignment 1. */
3057 align = 1;
3058 break;
3059 }
3060 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3061 {
3062 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3063 if (f_align == 0)
3064 {
3065 /* Don't pretend we know something we don't. */
3066 align = 0;
3067 break;
3068 }
3069 if (f_align > align)
3070 align = f_align;
3071 }
3072 }
3073 break;
3074
3075 case TYPE_CODE_SET:
3076 case TYPE_CODE_RANGE:
3077 case TYPE_CODE_STRING:
3078 /* Not sure what to do here, and these can't appear in C or C++
3079 anyway. */
3080 break;
3081
3082 case TYPE_CODE_METHODPTR:
3083 case TYPE_CODE_MEMBERPTR:
3084 align = type_length_units (type);
3085 break;
3086
3087 case TYPE_CODE_VOID:
3088 align = 1;
3089 break;
3090
3091 case TYPE_CODE_ERROR:
3092 case TYPE_CODE_METHOD:
3093 default:
3094 break;
3095 }
3096
3097 if ((align & (align - 1)) != 0)
3098 {
3099 /* Not a power of 2, so pass. */
3100 align = 0;
3101 }
3102
3103 return align;
3104 }
3105
3106 /* See gdbtypes.h. */
3107
3108 bool
3109 set_type_align (struct type *type, ULONGEST align)
3110 {
3111 /* Must be a power of 2. Zero is ok. */
3112 gdb_assert ((align & (align - 1)) == 0);
3113
3114 unsigned result = 0;
3115 while (align != 0)
3116 {
3117 ++result;
3118 align >>= 1;
3119 }
3120
3121 if (result >= (1 << TYPE_ALIGN_BITS))
3122 return false;
3123
3124 type->align_log2 = result;
3125 return true;
3126 }
3127
3128 \f
3129 /* Queries on types. */
3130
3131 int
3132 can_dereference (struct type *t)
3133 {
3134 /* FIXME: Should we return true for references as well as
3135 pointers? */
3136 t = check_typedef (t);
3137 return
3138 (t != NULL
3139 && TYPE_CODE (t) == TYPE_CODE_PTR
3140 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3141 }
3142
3143 int
3144 is_integral_type (struct type *t)
3145 {
3146 t = check_typedef (t);
3147 return
3148 ((t != NULL)
3149 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3150 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3151 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3152 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3153 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3154 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3155 }
3156
3157 int
3158 is_floating_type (struct type *t)
3159 {
3160 t = check_typedef (t);
3161 return
3162 ((t != NULL)
3163 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3164 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3165 }
3166
3167 /* Return true if TYPE is scalar. */
3168
3169 int
3170 is_scalar_type (struct type *type)
3171 {
3172 type = check_typedef (type);
3173
3174 switch (TYPE_CODE (type))
3175 {
3176 case TYPE_CODE_ARRAY:
3177 case TYPE_CODE_STRUCT:
3178 case TYPE_CODE_UNION:
3179 case TYPE_CODE_SET:
3180 case TYPE_CODE_STRING:
3181 return 0;
3182 default:
3183 return 1;
3184 }
3185 }
3186
3187 /* Return true if T is scalar, or a composite type which in practice has
3188 the memory layout of a scalar type. E.g., an array or struct with only
3189 one scalar element inside it, or a union with only scalar elements. */
3190
3191 int
3192 is_scalar_type_recursive (struct type *t)
3193 {
3194 t = check_typedef (t);
3195
3196 if (is_scalar_type (t))
3197 return 1;
3198 /* Are we dealing with an array or string of known dimensions? */
3199 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3200 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3201 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3202 {
3203 LONGEST low_bound, high_bound;
3204 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3205
3206 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3207
3208 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3209 }
3210 /* Are we dealing with a struct with one element? */
3211 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3212 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3213 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3214 {
3215 int i, n = TYPE_NFIELDS (t);
3216
3217 /* If all elements of the union are scalar, then the union is scalar. */
3218 for (i = 0; i < n; i++)
3219 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3220 return 0;
3221
3222 return 1;
3223 }
3224
3225 return 0;
3226 }
3227
3228 /* Return true is T is a class or a union. False otherwise. */
3229
3230 int
3231 class_or_union_p (const struct type *t)
3232 {
3233 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3234 || TYPE_CODE (t) == TYPE_CODE_UNION);
3235 }
3236
3237 /* A helper function which returns true if types A and B represent the
3238 "same" class type. This is true if the types have the same main
3239 type, or the same name. */
3240
3241 int
3242 class_types_same_p (const struct type *a, const struct type *b)
3243 {
3244 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3245 || (TYPE_NAME (a) && TYPE_NAME (b)
3246 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3247 }
3248
3249 /* If BASE is an ancestor of DCLASS return the distance between them.
3250 otherwise return -1;
3251 eg:
3252
3253 class A {};
3254 class B: public A {};
3255 class C: public B {};
3256 class D: C {};
3257
3258 distance_to_ancestor (A, A, 0) = 0
3259 distance_to_ancestor (A, B, 0) = 1
3260 distance_to_ancestor (A, C, 0) = 2
3261 distance_to_ancestor (A, D, 0) = 3
3262
3263 If PUBLIC is 1 then only public ancestors are considered,
3264 and the function returns the distance only if BASE is a public ancestor
3265 of DCLASS.
3266 Eg:
3267
3268 distance_to_ancestor (A, D, 1) = -1. */
3269
3270 static int
3271 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3272 {
3273 int i;
3274 int d;
3275
3276 base = check_typedef (base);
3277 dclass = check_typedef (dclass);
3278
3279 if (class_types_same_p (base, dclass))
3280 return 0;
3281
3282 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3283 {
3284 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3285 continue;
3286
3287 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3288 if (d >= 0)
3289 return 1 + d;
3290 }
3291
3292 return -1;
3293 }
3294
3295 /* Check whether BASE is an ancestor or base class or DCLASS
3296 Return 1 if so, and 0 if not.
3297 Note: If BASE and DCLASS are of the same type, this function
3298 will return 1. So for some class A, is_ancestor (A, A) will
3299 return 1. */
3300
3301 int
3302 is_ancestor (struct type *base, struct type *dclass)
3303 {
3304 return distance_to_ancestor (base, dclass, 0) >= 0;
3305 }
3306
3307 /* Like is_ancestor, but only returns true when BASE is a public
3308 ancestor of DCLASS. */
3309
3310 int
3311 is_public_ancestor (struct type *base, struct type *dclass)
3312 {
3313 return distance_to_ancestor (base, dclass, 1) >= 0;
3314 }
3315
3316 /* A helper function for is_unique_ancestor. */
3317
3318 static int
3319 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3320 int *offset,
3321 const gdb_byte *valaddr, int embedded_offset,
3322 CORE_ADDR address, struct value *val)
3323 {
3324 int i, count = 0;
3325
3326 base = check_typedef (base);
3327 dclass = check_typedef (dclass);
3328
3329 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3330 {
3331 struct type *iter;
3332 int this_offset;
3333
3334 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3335
3336 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3337 address, val);
3338
3339 if (class_types_same_p (base, iter))
3340 {
3341 /* If this is the first subclass, set *OFFSET and set count
3342 to 1. Otherwise, if this is at the same offset as
3343 previous instances, do nothing. Otherwise, increment
3344 count. */
3345 if (*offset == -1)
3346 {
3347 *offset = this_offset;
3348 count = 1;
3349 }
3350 else if (this_offset == *offset)
3351 {
3352 /* Nothing. */
3353 }
3354 else
3355 ++count;
3356 }
3357 else
3358 count += is_unique_ancestor_worker (base, iter, offset,
3359 valaddr,
3360 embedded_offset + this_offset,
3361 address, val);
3362 }
3363
3364 return count;
3365 }
3366
3367 /* Like is_ancestor, but only returns true if BASE is a unique base
3368 class of the type of VAL. */
3369
3370 int
3371 is_unique_ancestor (struct type *base, struct value *val)
3372 {
3373 int offset = -1;
3374
3375 return is_unique_ancestor_worker (base, value_type (val), &offset,
3376 value_contents_for_printing (val),
3377 value_embedded_offset (val),
3378 value_address (val), val) == 1;
3379 }
3380
3381 \f
3382 /* Overload resolution. */
3383
3384 /* Return the sum of the rank of A with the rank of B. */
3385
3386 struct rank
3387 sum_ranks (struct rank a, struct rank b)
3388 {
3389 struct rank c;
3390 c.rank = a.rank + b.rank;
3391 c.subrank = a.subrank + b.subrank;
3392 return c;
3393 }
3394
3395 /* Compare rank A and B and return:
3396 0 if a = b
3397 1 if a is better than b
3398 -1 if b is better than a. */
3399
3400 int
3401 compare_ranks (struct rank a, struct rank b)
3402 {
3403 if (a.rank == b.rank)
3404 {
3405 if (a.subrank == b.subrank)
3406 return 0;
3407 if (a.subrank < b.subrank)
3408 return 1;
3409 if (a.subrank > b.subrank)
3410 return -1;
3411 }
3412
3413 if (a.rank < b.rank)
3414 return 1;
3415
3416 /* a.rank > b.rank */
3417 return -1;
3418 }
3419
3420 /* Functions for overload resolution begin here. */
3421
3422 /* Compare two badness vectors A and B and return the result.
3423 0 => A and B are identical
3424 1 => A and B are incomparable
3425 2 => A is better than B
3426 3 => A is worse than B */
3427
3428 int
3429 compare_badness (struct badness_vector *a, struct badness_vector *b)
3430 {
3431 int i;
3432 int tmp;
3433 short found_pos = 0; /* any positives in c? */
3434 short found_neg = 0; /* any negatives in c? */
3435
3436 /* differing lengths => incomparable */
3437 if (a->length != b->length)
3438 return 1;
3439
3440 /* Subtract b from a */
3441 for (i = 0; i < a->length; i++)
3442 {
3443 tmp = compare_ranks (b->rank[i], a->rank[i]);
3444 if (tmp > 0)
3445 found_pos = 1;
3446 else if (tmp < 0)
3447 found_neg = 1;
3448 }
3449
3450 if (found_pos)
3451 {
3452 if (found_neg)
3453 return 1; /* incomparable */
3454 else
3455 return 3; /* A > B */
3456 }
3457 else
3458 /* no positives */
3459 {
3460 if (found_neg)
3461 return 2; /* A < B */
3462 else
3463 return 0; /* A == B */
3464 }
3465 }
3466
3467 /* Rank a function by comparing its parameter types (PARMS), to the
3468 types of an argument list (ARGS). Return a pointer to a badness
3469 vector. This has ARGS.size() + 1 entries. */
3470
3471 struct badness_vector *
3472 rank_function (gdb::array_view<type *> parms,
3473 gdb::array_view<value *> args)
3474 {
3475 int i;
3476 struct badness_vector *bv = XNEW (struct badness_vector);
3477 size_t min_len = std::min (parms.size (), args.size ());
3478
3479 bv->length = args.size () + 1; /* add 1 for the length-match rank. */
3480 bv->rank = XNEWVEC (struct rank, args.size () + 1);
3481
3482 /* First compare the lengths of the supplied lists.
3483 If there is a mismatch, set it to a high value. */
3484
3485 /* pai/1997-06-03 FIXME: when we have debug info about default
3486 arguments and ellipsis parameter lists, we should consider those
3487 and rank the length-match more finely. */
3488
3489 LENGTH_MATCH (bv) = (args.size () != parms.size ())
3490 ? LENGTH_MISMATCH_BADNESS
3491 : EXACT_MATCH_BADNESS;
3492
3493 /* Now rank all the parameters of the candidate function. */
3494 for (i = 1; i <= min_len; i++)
3495 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3496 args[i - 1]);
3497
3498 /* If more arguments than parameters, add dummy entries. */
3499 for (i = min_len + 1; i <= args.size (); i++)
3500 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3501
3502 return bv;
3503 }
3504
3505 /* Compare the names of two integer types, assuming that any sign
3506 qualifiers have been checked already. We do it this way because
3507 there may be an "int" in the name of one of the types. */
3508
3509 static int
3510 integer_types_same_name_p (const char *first, const char *second)
3511 {
3512 int first_p, second_p;
3513
3514 /* If both are shorts, return 1; if neither is a short, keep
3515 checking. */
3516 first_p = (strstr (first, "short") != NULL);
3517 second_p = (strstr (second, "short") != NULL);
3518 if (first_p && second_p)
3519 return 1;
3520 if (first_p || second_p)
3521 return 0;
3522
3523 /* Likewise for long. */
3524 first_p = (strstr (first, "long") != NULL);
3525 second_p = (strstr (second, "long") != NULL);
3526 if (first_p && second_p)
3527 return 1;
3528 if (first_p || second_p)
3529 return 0;
3530
3531 /* Likewise for char. */
3532 first_p = (strstr (first, "char") != NULL);
3533 second_p = (strstr (second, "char") != NULL);
3534 if (first_p && second_p)
3535 return 1;
3536 if (first_p || second_p)
3537 return 0;
3538
3539 /* They must both be ints. */
3540 return 1;
3541 }
3542
3543 /* Compares type A to type B. Returns true if they represent the same
3544 type, false otherwise. */
3545
3546 bool
3547 types_equal (struct type *a, struct type *b)
3548 {
3549 /* Identical type pointers. */
3550 /* However, this still doesn't catch all cases of same type for b
3551 and a. The reason is that builtin types are different from
3552 the same ones constructed from the object. */
3553 if (a == b)
3554 return true;
3555
3556 /* Resolve typedefs */
3557 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3558 a = check_typedef (a);
3559 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3560 b = check_typedef (b);
3561
3562 /* If after resolving typedefs a and b are not of the same type
3563 code then they are not equal. */
3564 if (TYPE_CODE (a) != TYPE_CODE (b))
3565 return false;
3566
3567 /* If a and b are both pointers types or both reference types then
3568 they are equal of the same type iff the objects they refer to are
3569 of the same type. */
3570 if (TYPE_CODE (a) == TYPE_CODE_PTR
3571 || TYPE_CODE (a) == TYPE_CODE_REF)
3572 return types_equal (TYPE_TARGET_TYPE (a),
3573 TYPE_TARGET_TYPE (b));
3574
3575 /* Well, damnit, if the names are exactly the same, I'll say they
3576 are exactly the same. This happens when we generate method
3577 stubs. The types won't point to the same address, but they
3578 really are the same. */
3579
3580 if (TYPE_NAME (a) && TYPE_NAME (b)
3581 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3582 return true;
3583
3584 /* Check if identical after resolving typedefs. */
3585 if (a == b)
3586 return true;
3587
3588 /* Two function types are equal if their argument and return types
3589 are equal. */
3590 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3591 {
3592 int i;
3593
3594 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3595 return false;
3596
3597 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3598 return false;
3599
3600 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3601 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3602 return false;
3603
3604 return true;
3605 }
3606
3607 return false;
3608 }
3609 \f
3610 /* Deep comparison of types. */
3611
3612 /* An entry in the type-equality bcache. */
3613
3614 struct type_equality_entry
3615 {
3616 type_equality_entry (struct type *t1, struct type *t2)
3617 : type1 (t1),
3618 type2 (t2)
3619 {
3620 }
3621
3622 struct type *type1, *type2;
3623 };
3624
3625 /* A helper function to compare two strings. Returns true if they are
3626 the same, false otherwise. Handles NULLs properly. */
3627
3628 static bool
3629 compare_maybe_null_strings (const char *s, const char *t)
3630 {
3631 if (s == NULL || t == NULL)
3632 return s == t;
3633 return strcmp (s, t) == 0;
3634 }
3635
3636 /* A helper function for check_types_worklist that checks two types for
3637 "deep" equality. Returns true if the types are considered the
3638 same, false otherwise. */
3639
3640 static bool
3641 check_types_equal (struct type *type1, struct type *type2,
3642 std::vector<type_equality_entry> *worklist)
3643 {
3644 type1 = check_typedef (type1);
3645 type2 = check_typedef (type2);
3646
3647 if (type1 == type2)
3648 return true;
3649
3650 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3651 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3652 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3653 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3654 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3655 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3656 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3657 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3658 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3659 return false;
3660
3661 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3662 return false;
3663 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3664 return false;
3665
3666 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3667 {
3668 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3669 return false;
3670 }
3671 else
3672 {
3673 int i;
3674
3675 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3676 {
3677 const struct field *field1 = &TYPE_FIELD (type1, i);
3678 const struct field *field2 = &TYPE_FIELD (type2, i);
3679
3680 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3681 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3682 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3683 return false;
3684 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3685 FIELD_NAME (*field2)))
3686 return false;
3687 switch (FIELD_LOC_KIND (*field1))
3688 {
3689 case FIELD_LOC_KIND_BITPOS:
3690 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3691 return false;
3692 break;
3693 case FIELD_LOC_KIND_ENUMVAL:
3694 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3695 return false;
3696 break;
3697 case FIELD_LOC_KIND_PHYSADDR:
3698 if (FIELD_STATIC_PHYSADDR (*field1)
3699 != FIELD_STATIC_PHYSADDR (*field2))
3700 return false;
3701 break;
3702 case FIELD_LOC_KIND_PHYSNAME:
3703 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3704 FIELD_STATIC_PHYSNAME (*field2)))
3705 return false;
3706 break;
3707 case FIELD_LOC_KIND_DWARF_BLOCK:
3708 {
3709 struct dwarf2_locexpr_baton *block1, *block2;
3710
3711 block1 = FIELD_DWARF_BLOCK (*field1);
3712 block2 = FIELD_DWARF_BLOCK (*field2);
3713 if (block1->per_cu != block2->per_cu
3714 || block1->size != block2->size
3715 || memcmp (block1->data, block2->data, block1->size) != 0)
3716 return false;
3717 }
3718 break;
3719 default:
3720 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3721 "%d by check_types_equal"),
3722 FIELD_LOC_KIND (*field1));
3723 }
3724
3725 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
3726 }
3727 }
3728
3729 if (TYPE_TARGET_TYPE (type1) != NULL)
3730 {
3731 if (TYPE_TARGET_TYPE (type2) == NULL)
3732 return false;
3733
3734 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3735 TYPE_TARGET_TYPE (type2));
3736 }
3737 else if (TYPE_TARGET_TYPE (type2) != NULL)
3738 return false;
3739
3740 return true;
3741 }
3742
3743 /* Check types on a worklist for equality. Returns false if any pair
3744 is not equal, true if they are all considered equal. */
3745
3746 static bool
3747 check_types_worklist (std::vector<type_equality_entry> *worklist,
3748 struct bcache *cache)
3749 {
3750 while (!worklist->empty ())
3751 {
3752 int added;
3753
3754 struct type_equality_entry entry = std::move (worklist->back ());
3755 worklist->pop_back ();
3756
3757 /* If the type pair has already been visited, we know it is
3758 ok. */
3759 bcache_full (&entry, sizeof (entry), cache, &added);
3760 if (!added)
3761 continue;
3762
3763 if (!check_types_equal (entry.type1, entry.type2, worklist))
3764 return false;
3765 }
3766
3767 return true;
3768 }
3769
3770 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3771 "deep comparison". Otherwise return false. */
3772
3773 bool
3774 types_deeply_equal (struct type *type1, struct type *type2)
3775 {
3776 struct gdb_exception except = exception_none;
3777 bool result = false;
3778 struct bcache *cache;
3779 std::vector<type_equality_entry> worklist;
3780
3781 gdb_assert (type1 != NULL && type2 != NULL);
3782
3783 /* Early exit for the simple case. */
3784 if (type1 == type2)
3785 return true;
3786
3787 cache = bcache_xmalloc (NULL, NULL);
3788
3789 worklist.emplace_back (type1, type2);
3790
3791 /* check_types_worklist calls several nested helper functions, some
3792 of which can raise a GDB exception, so we just check and rethrow
3793 here. If there is a GDB exception, a comparison is not capable
3794 (or trusted), so exit. */
3795 TRY
3796 {
3797 result = check_types_worklist (&worklist, cache);
3798 }
3799 CATCH (ex, RETURN_MASK_ALL)
3800 {
3801 except = ex;
3802 }
3803 END_CATCH
3804
3805 bcache_xfree (cache);
3806
3807 /* Rethrow if there was a problem. */
3808 if (except.reason < 0)
3809 throw_exception (except);
3810
3811 return result;
3812 }
3813
3814 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3815 Otherwise return one. */
3816
3817 int
3818 type_not_allocated (const struct type *type)
3819 {
3820 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3821
3822 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3823 && !TYPE_DYN_PROP_ADDR (prop));
3824 }
3825
3826 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3827 Otherwise return one. */
3828
3829 int
3830 type_not_associated (const struct type *type)
3831 {
3832 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3833
3834 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3835 && !TYPE_DYN_PROP_ADDR (prop));
3836 }
3837 \f
3838 /* Compare one type (PARM) for compatibility with another (ARG).
3839 * PARM is intended to be the parameter type of a function; and
3840 * ARG is the supplied argument's type. This function tests if
3841 * the latter can be converted to the former.
3842 * VALUE is the argument's value or NULL if none (or called recursively)
3843 *
3844 * Return 0 if they are identical types;
3845 * Otherwise, return an integer which corresponds to how compatible
3846 * PARM is to ARG. The higher the return value, the worse the match.
3847 * Generally the "bad" conversions are all uniformly assigned a 100. */
3848
3849 struct rank
3850 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3851 {
3852 struct rank rank = {0,0};
3853
3854 /* Resolve typedefs */
3855 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3856 parm = check_typedef (parm);
3857 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3858 arg = check_typedef (arg);
3859
3860 if (TYPE_IS_REFERENCE (parm) && value != NULL)
3861 {
3862 if (VALUE_LVAL (value) == not_lval)
3863 {
3864 /* Rvalues should preferably bind to rvalue references or const
3865 lvalue references. */
3866 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3867 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3868 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
3869 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
3870 else
3871 return INCOMPATIBLE_TYPE_BADNESS;
3872 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3873 }
3874 else
3875 {
3876 /* Lvalues should prefer lvalue overloads. */
3877 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3878 {
3879 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3880 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3881 }
3882 }
3883 }
3884
3885 if (types_equal (parm, arg))
3886 {
3887 struct type *t1 = parm;
3888 struct type *t2 = arg;
3889
3890 /* For pointers and references, compare target type. */
3891 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
3892 {
3893 t1 = TYPE_TARGET_TYPE (parm);
3894 t2 = TYPE_TARGET_TYPE (arg);
3895 }
3896
3897 /* Make sure they are CV equal, too. */
3898 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3899 rank.subrank |= CV_CONVERSION_CONST;
3900 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3901 rank.subrank |= CV_CONVERSION_VOLATILE;
3902 if (rank.subrank != 0)
3903 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3904 return EXACT_MATCH_BADNESS;
3905 }
3906
3907 /* See through references, since we can almost make non-references
3908 references. */
3909
3910 if (TYPE_IS_REFERENCE (arg))
3911 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3912 REFERENCE_CONVERSION_BADNESS));
3913 if (TYPE_IS_REFERENCE (parm))
3914 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3915 REFERENCE_CONVERSION_BADNESS));
3916 if (overload_debug)
3917 /* Debugging only. */
3918 fprintf_filtered (gdb_stderr,
3919 "------ Arg is %s [%d], parm is %s [%d]\n",
3920 TYPE_NAME (arg), TYPE_CODE (arg),
3921 TYPE_NAME (parm), TYPE_CODE (parm));
3922
3923 /* x -> y means arg of type x being supplied for parameter of type y. */
3924
3925 switch (TYPE_CODE (parm))
3926 {
3927 case TYPE_CODE_PTR:
3928 switch (TYPE_CODE (arg))
3929 {
3930 case TYPE_CODE_PTR:
3931
3932 /* Allowed pointer conversions are:
3933 (a) pointer to void-pointer conversion. */
3934 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3935 return VOID_PTR_CONVERSION_BADNESS;
3936
3937 /* (b) pointer to ancestor-pointer conversion. */
3938 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3939 TYPE_TARGET_TYPE (arg),
3940 0);
3941 if (rank.subrank >= 0)
3942 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3943
3944 return INCOMPATIBLE_TYPE_BADNESS;
3945 case TYPE_CODE_ARRAY:
3946 {
3947 struct type *t1 = TYPE_TARGET_TYPE (parm);
3948 struct type *t2 = TYPE_TARGET_TYPE (arg);
3949
3950 if (types_equal (t1, t2))
3951 {
3952 /* Make sure they are CV equal. */
3953 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3954 rank.subrank |= CV_CONVERSION_CONST;
3955 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3956 rank.subrank |= CV_CONVERSION_VOLATILE;
3957 if (rank.subrank != 0)
3958 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3959 return EXACT_MATCH_BADNESS;
3960 }
3961 return INCOMPATIBLE_TYPE_BADNESS;
3962 }
3963 case TYPE_CODE_FUNC:
3964 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3965 case TYPE_CODE_INT:
3966 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3967 {
3968 if (value_as_long (value) == 0)
3969 {
3970 /* Null pointer conversion: allow it to be cast to a pointer.
3971 [4.10.1 of C++ standard draft n3290] */
3972 return NULL_POINTER_CONVERSION_BADNESS;
3973 }
3974 else
3975 {
3976 /* If type checking is disabled, allow the conversion. */
3977 if (!strict_type_checking)
3978 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3979 }
3980 }
3981 /* fall through */
3982 case TYPE_CODE_ENUM:
3983 case TYPE_CODE_FLAGS:
3984 case TYPE_CODE_CHAR:
3985 case TYPE_CODE_RANGE:
3986 case TYPE_CODE_BOOL:
3987 default:
3988 return INCOMPATIBLE_TYPE_BADNESS;
3989 }
3990 case TYPE_CODE_ARRAY:
3991 switch (TYPE_CODE (arg))
3992 {
3993 case TYPE_CODE_PTR:
3994 case TYPE_CODE_ARRAY:
3995 return rank_one_type (TYPE_TARGET_TYPE (parm),
3996 TYPE_TARGET_TYPE (arg), NULL);
3997 default:
3998 return INCOMPATIBLE_TYPE_BADNESS;
3999 }
4000 case TYPE_CODE_FUNC:
4001 switch (TYPE_CODE (arg))
4002 {
4003 case TYPE_CODE_PTR: /* funcptr -> func */
4004 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4005 default:
4006 return INCOMPATIBLE_TYPE_BADNESS;
4007 }
4008 case TYPE_CODE_INT:
4009 switch (TYPE_CODE (arg))
4010 {
4011 case TYPE_CODE_INT:
4012 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4013 {
4014 /* Deal with signed, unsigned, and plain chars and
4015 signed and unsigned ints. */
4016 if (TYPE_NOSIGN (parm))
4017 {
4018 /* This case only for character types. */
4019 if (TYPE_NOSIGN (arg))
4020 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4021 else /* signed/unsigned char -> plain char */
4022 return INTEGER_CONVERSION_BADNESS;
4023 }
4024 else if (TYPE_UNSIGNED (parm))
4025 {
4026 if (TYPE_UNSIGNED (arg))
4027 {
4028 /* unsigned int -> unsigned int, or
4029 unsigned long -> unsigned long */
4030 if (integer_types_same_name_p (TYPE_NAME (parm),
4031 TYPE_NAME (arg)))
4032 return EXACT_MATCH_BADNESS;
4033 else if (integer_types_same_name_p (TYPE_NAME (arg),
4034 "int")
4035 && integer_types_same_name_p (TYPE_NAME (parm),
4036 "long"))
4037 /* unsigned int -> unsigned long */
4038 return INTEGER_PROMOTION_BADNESS;
4039 else
4040 /* unsigned long -> unsigned int */
4041 return INTEGER_CONVERSION_BADNESS;
4042 }
4043 else
4044 {
4045 if (integer_types_same_name_p (TYPE_NAME (arg),
4046 "long")
4047 && integer_types_same_name_p (TYPE_NAME (parm),
4048 "int"))
4049 /* signed long -> unsigned int */
4050 return INTEGER_CONVERSION_BADNESS;
4051 else
4052 /* signed int/long -> unsigned int/long */
4053 return INTEGER_CONVERSION_BADNESS;
4054 }
4055 }
4056 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4057 {
4058 if (integer_types_same_name_p (TYPE_NAME (parm),
4059 TYPE_NAME (arg)))
4060 return EXACT_MATCH_BADNESS;
4061 else if (integer_types_same_name_p (TYPE_NAME (arg),
4062 "int")
4063 && integer_types_same_name_p (TYPE_NAME (parm),
4064 "long"))
4065 return INTEGER_PROMOTION_BADNESS;
4066 else
4067 return INTEGER_CONVERSION_BADNESS;
4068 }
4069 else
4070 return INTEGER_CONVERSION_BADNESS;
4071 }
4072 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4073 return INTEGER_PROMOTION_BADNESS;
4074 else
4075 return INTEGER_CONVERSION_BADNESS;
4076 case TYPE_CODE_ENUM:
4077 case TYPE_CODE_FLAGS:
4078 case TYPE_CODE_CHAR:
4079 case TYPE_CODE_RANGE:
4080 case TYPE_CODE_BOOL:
4081 if (TYPE_DECLARED_CLASS (arg))
4082 return INCOMPATIBLE_TYPE_BADNESS;
4083 return INTEGER_PROMOTION_BADNESS;
4084 case TYPE_CODE_FLT:
4085 return INT_FLOAT_CONVERSION_BADNESS;
4086 case TYPE_CODE_PTR:
4087 return NS_POINTER_CONVERSION_BADNESS;
4088 default:
4089 return INCOMPATIBLE_TYPE_BADNESS;
4090 }
4091 break;
4092 case TYPE_CODE_ENUM:
4093 switch (TYPE_CODE (arg))
4094 {
4095 case TYPE_CODE_INT:
4096 case TYPE_CODE_CHAR:
4097 case TYPE_CODE_RANGE:
4098 case TYPE_CODE_BOOL:
4099 case TYPE_CODE_ENUM:
4100 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4101 return INCOMPATIBLE_TYPE_BADNESS;
4102 return INTEGER_CONVERSION_BADNESS;
4103 case TYPE_CODE_FLT:
4104 return INT_FLOAT_CONVERSION_BADNESS;
4105 default:
4106 return INCOMPATIBLE_TYPE_BADNESS;
4107 }
4108 break;
4109 case TYPE_CODE_CHAR:
4110 switch (TYPE_CODE (arg))
4111 {
4112 case TYPE_CODE_RANGE:
4113 case TYPE_CODE_BOOL:
4114 case TYPE_CODE_ENUM:
4115 if (TYPE_DECLARED_CLASS (arg))
4116 return INCOMPATIBLE_TYPE_BADNESS;
4117 return INTEGER_CONVERSION_BADNESS;
4118 case TYPE_CODE_FLT:
4119 return INT_FLOAT_CONVERSION_BADNESS;
4120 case TYPE_CODE_INT:
4121 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4122 return INTEGER_CONVERSION_BADNESS;
4123 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4124 return INTEGER_PROMOTION_BADNESS;
4125 /* fall through */
4126 case TYPE_CODE_CHAR:
4127 /* Deal with signed, unsigned, and plain chars for C++ and
4128 with int cases falling through from previous case. */
4129 if (TYPE_NOSIGN (parm))
4130 {
4131 if (TYPE_NOSIGN (arg))
4132 return EXACT_MATCH_BADNESS;
4133 else
4134 return INTEGER_CONVERSION_BADNESS;
4135 }
4136 else if (TYPE_UNSIGNED (parm))
4137 {
4138 if (TYPE_UNSIGNED (arg))
4139 return EXACT_MATCH_BADNESS;
4140 else
4141 return INTEGER_PROMOTION_BADNESS;
4142 }
4143 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4144 return EXACT_MATCH_BADNESS;
4145 else
4146 return INTEGER_CONVERSION_BADNESS;
4147 default:
4148 return INCOMPATIBLE_TYPE_BADNESS;
4149 }
4150 break;
4151 case TYPE_CODE_RANGE:
4152 switch (TYPE_CODE (arg))
4153 {
4154 case TYPE_CODE_INT:
4155 case TYPE_CODE_CHAR:
4156 case TYPE_CODE_RANGE:
4157 case TYPE_CODE_BOOL:
4158 case TYPE_CODE_ENUM:
4159 return INTEGER_CONVERSION_BADNESS;
4160 case TYPE_CODE_FLT:
4161 return INT_FLOAT_CONVERSION_BADNESS;
4162 default:
4163 return INCOMPATIBLE_TYPE_BADNESS;
4164 }
4165 break;
4166 case TYPE_CODE_BOOL:
4167 switch (TYPE_CODE (arg))
4168 {
4169 /* n3290 draft, section 4.12.1 (conv.bool):
4170
4171 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4172 pointer to member type can be converted to a prvalue of type
4173 bool. A zero value, null pointer value, or null member pointer
4174 value is converted to false; any other value is converted to
4175 true. A prvalue of type std::nullptr_t can be converted to a
4176 prvalue of type bool; the resulting value is false." */
4177 case TYPE_CODE_INT:
4178 case TYPE_CODE_CHAR:
4179 case TYPE_CODE_ENUM:
4180 case TYPE_CODE_FLT:
4181 case TYPE_CODE_MEMBERPTR:
4182 case TYPE_CODE_PTR:
4183 return BOOL_CONVERSION_BADNESS;
4184 case TYPE_CODE_RANGE:
4185 return INCOMPATIBLE_TYPE_BADNESS;
4186 case TYPE_CODE_BOOL:
4187 return EXACT_MATCH_BADNESS;
4188 default:
4189 return INCOMPATIBLE_TYPE_BADNESS;
4190 }
4191 break;
4192 case TYPE_CODE_FLT:
4193 switch (TYPE_CODE (arg))
4194 {
4195 case TYPE_CODE_FLT:
4196 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4197 return FLOAT_PROMOTION_BADNESS;
4198 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4199 return EXACT_MATCH_BADNESS;
4200 else
4201 return FLOAT_CONVERSION_BADNESS;
4202 case TYPE_CODE_INT:
4203 case TYPE_CODE_BOOL:
4204 case TYPE_CODE_ENUM:
4205 case TYPE_CODE_RANGE:
4206 case TYPE_CODE_CHAR:
4207 return INT_FLOAT_CONVERSION_BADNESS;
4208 default:
4209 return INCOMPATIBLE_TYPE_BADNESS;
4210 }
4211 break;
4212 case TYPE_CODE_COMPLEX:
4213 switch (TYPE_CODE (arg))
4214 { /* Strictly not needed for C++, but... */
4215 case TYPE_CODE_FLT:
4216 return FLOAT_PROMOTION_BADNESS;
4217 case TYPE_CODE_COMPLEX:
4218 return EXACT_MATCH_BADNESS;
4219 default:
4220 return INCOMPATIBLE_TYPE_BADNESS;
4221 }
4222 break;
4223 case TYPE_CODE_STRUCT:
4224 switch (TYPE_CODE (arg))
4225 {
4226 case TYPE_CODE_STRUCT:
4227 /* Check for derivation */
4228 rank.subrank = distance_to_ancestor (parm, arg, 0);
4229 if (rank.subrank >= 0)
4230 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4231 /* fall through */
4232 default:
4233 return INCOMPATIBLE_TYPE_BADNESS;
4234 }
4235 break;
4236 case TYPE_CODE_UNION:
4237 switch (TYPE_CODE (arg))
4238 {
4239 case TYPE_CODE_UNION:
4240 default:
4241 return INCOMPATIBLE_TYPE_BADNESS;
4242 }
4243 break;
4244 case TYPE_CODE_MEMBERPTR:
4245 switch (TYPE_CODE (arg))
4246 {
4247 default:
4248 return INCOMPATIBLE_TYPE_BADNESS;
4249 }
4250 break;
4251 case TYPE_CODE_METHOD:
4252 switch (TYPE_CODE (arg))
4253 {
4254
4255 default:
4256 return INCOMPATIBLE_TYPE_BADNESS;
4257 }
4258 break;
4259 case TYPE_CODE_REF:
4260 switch (TYPE_CODE (arg))
4261 {
4262
4263 default:
4264 return INCOMPATIBLE_TYPE_BADNESS;
4265 }
4266
4267 break;
4268 case TYPE_CODE_SET:
4269 switch (TYPE_CODE (arg))
4270 {
4271 /* Not in C++ */
4272 case TYPE_CODE_SET:
4273 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4274 TYPE_FIELD_TYPE (arg, 0), NULL);
4275 default:
4276 return INCOMPATIBLE_TYPE_BADNESS;
4277 }
4278 break;
4279 case TYPE_CODE_VOID:
4280 default:
4281 return INCOMPATIBLE_TYPE_BADNESS;
4282 } /* switch (TYPE_CODE (arg)) */
4283 }
4284
4285 /* End of functions for overload resolution. */
4286 \f
4287 /* Routines to pretty-print types. */
4288
4289 static void
4290 print_bit_vector (B_TYPE *bits, int nbits)
4291 {
4292 int bitno;
4293
4294 for (bitno = 0; bitno < nbits; bitno++)
4295 {
4296 if ((bitno % 8) == 0)
4297 {
4298 puts_filtered (" ");
4299 }
4300 if (B_TST (bits, bitno))
4301 printf_filtered (("1"));
4302 else
4303 printf_filtered (("0"));
4304 }
4305 }
4306
4307 /* Note the first arg should be the "this" pointer, we may not want to
4308 include it since we may get into a infinitely recursive
4309 situation. */
4310
4311 static void
4312 print_args (struct field *args, int nargs, int spaces)
4313 {
4314 if (args != NULL)
4315 {
4316 int i;
4317
4318 for (i = 0; i < nargs; i++)
4319 {
4320 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4321 args[i].name != NULL ? args[i].name : "<NULL>");
4322 recursive_dump_type (args[i].type, spaces + 2);
4323 }
4324 }
4325 }
4326
4327 int
4328 field_is_static (struct field *f)
4329 {
4330 /* "static" fields are the fields whose location is not relative
4331 to the address of the enclosing struct. It would be nice to
4332 have a dedicated flag that would be set for static fields when
4333 the type is being created. But in practice, checking the field
4334 loc_kind should give us an accurate answer. */
4335 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4336 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4337 }
4338
4339 static void
4340 dump_fn_fieldlists (struct type *type, int spaces)
4341 {
4342 int method_idx;
4343 int overload_idx;
4344 struct fn_field *f;
4345
4346 printfi_filtered (spaces, "fn_fieldlists ");
4347 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4348 printf_filtered ("\n");
4349 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4350 {
4351 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4352 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4353 method_idx,
4354 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4355 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4356 gdb_stdout);
4357 printf_filtered (_(") length %d\n"),
4358 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4359 for (overload_idx = 0;
4360 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4361 overload_idx++)
4362 {
4363 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4364 overload_idx,
4365 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4366 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4367 gdb_stdout);
4368 printf_filtered (")\n");
4369 printfi_filtered (spaces + 8, "type ");
4370 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4371 gdb_stdout);
4372 printf_filtered ("\n");
4373
4374 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4375 spaces + 8 + 2);
4376
4377 printfi_filtered (spaces + 8, "args ");
4378 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4379 gdb_stdout);
4380 printf_filtered ("\n");
4381 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4382 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4383 spaces + 8 + 2);
4384 printfi_filtered (spaces + 8, "fcontext ");
4385 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4386 gdb_stdout);
4387 printf_filtered ("\n");
4388
4389 printfi_filtered (spaces + 8, "is_const %d\n",
4390 TYPE_FN_FIELD_CONST (f, overload_idx));
4391 printfi_filtered (spaces + 8, "is_volatile %d\n",
4392 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4393 printfi_filtered (spaces + 8, "is_private %d\n",
4394 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4395 printfi_filtered (spaces + 8, "is_protected %d\n",
4396 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4397 printfi_filtered (spaces + 8, "is_stub %d\n",
4398 TYPE_FN_FIELD_STUB (f, overload_idx));
4399 printfi_filtered (spaces + 8, "voffset %u\n",
4400 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4401 }
4402 }
4403 }
4404
4405 static void
4406 print_cplus_stuff (struct type *type, int spaces)
4407 {
4408 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4409 printfi_filtered (spaces, "vptr_basetype ");
4410 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4411 puts_filtered ("\n");
4412 if (TYPE_VPTR_BASETYPE (type) != NULL)
4413 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4414
4415 printfi_filtered (spaces, "n_baseclasses %d\n",
4416 TYPE_N_BASECLASSES (type));
4417 printfi_filtered (spaces, "nfn_fields %d\n",
4418 TYPE_NFN_FIELDS (type));
4419 if (TYPE_N_BASECLASSES (type) > 0)
4420 {
4421 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4422 TYPE_N_BASECLASSES (type));
4423 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4424 gdb_stdout);
4425 printf_filtered (")");
4426
4427 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4428 TYPE_N_BASECLASSES (type));
4429 puts_filtered ("\n");
4430 }
4431 if (TYPE_NFIELDS (type) > 0)
4432 {
4433 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4434 {
4435 printfi_filtered (spaces,
4436 "private_field_bits (%d bits at *",
4437 TYPE_NFIELDS (type));
4438 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4439 gdb_stdout);
4440 printf_filtered (")");
4441 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4442 TYPE_NFIELDS (type));
4443 puts_filtered ("\n");
4444 }
4445 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4446 {
4447 printfi_filtered (spaces,
4448 "protected_field_bits (%d bits at *",
4449 TYPE_NFIELDS (type));
4450 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4451 gdb_stdout);
4452 printf_filtered (")");
4453 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4454 TYPE_NFIELDS (type));
4455 puts_filtered ("\n");
4456 }
4457 }
4458 if (TYPE_NFN_FIELDS (type) > 0)
4459 {
4460 dump_fn_fieldlists (type, spaces);
4461 }
4462 }
4463
4464 /* Print the contents of the TYPE's type_specific union, assuming that
4465 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4466
4467 static void
4468 print_gnat_stuff (struct type *type, int spaces)
4469 {
4470 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4471
4472 if (descriptive_type == NULL)
4473 printfi_filtered (spaces + 2, "no descriptive type\n");
4474 else
4475 {
4476 printfi_filtered (spaces + 2, "descriptive type\n");
4477 recursive_dump_type (descriptive_type, spaces + 4);
4478 }
4479 }
4480
4481 static struct obstack dont_print_type_obstack;
4482
4483 void
4484 recursive_dump_type (struct type *type, int spaces)
4485 {
4486 int idx;
4487
4488 if (spaces == 0)
4489 obstack_begin (&dont_print_type_obstack, 0);
4490
4491 if (TYPE_NFIELDS (type) > 0
4492 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4493 {
4494 struct type **first_dont_print
4495 = (struct type **) obstack_base (&dont_print_type_obstack);
4496
4497 int i = (struct type **)
4498 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4499
4500 while (--i >= 0)
4501 {
4502 if (type == first_dont_print[i])
4503 {
4504 printfi_filtered (spaces, "type node ");
4505 gdb_print_host_address (type, gdb_stdout);
4506 printf_filtered (_(" <same as already seen type>\n"));
4507 return;
4508 }
4509 }
4510
4511 obstack_ptr_grow (&dont_print_type_obstack, type);
4512 }
4513
4514 printfi_filtered (spaces, "type node ");
4515 gdb_print_host_address (type, gdb_stdout);
4516 printf_filtered ("\n");
4517 printfi_filtered (spaces, "name '%s' (",
4518 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4519 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4520 printf_filtered (")\n");
4521 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4522 switch (TYPE_CODE (type))
4523 {
4524 case TYPE_CODE_UNDEF:
4525 printf_filtered ("(TYPE_CODE_UNDEF)");
4526 break;
4527 case TYPE_CODE_PTR:
4528 printf_filtered ("(TYPE_CODE_PTR)");
4529 break;
4530 case TYPE_CODE_ARRAY:
4531 printf_filtered ("(TYPE_CODE_ARRAY)");
4532 break;
4533 case TYPE_CODE_STRUCT:
4534 printf_filtered ("(TYPE_CODE_STRUCT)");
4535 break;
4536 case TYPE_CODE_UNION:
4537 printf_filtered ("(TYPE_CODE_UNION)");
4538 break;
4539 case TYPE_CODE_ENUM:
4540 printf_filtered ("(TYPE_CODE_ENUM)");
4541 break;
4542 case TYPE_CODE_FLAGS:
4543 printf_filtered ("(TYPE_CODE_FLAGS)");
4544 break;
4545 case TYPE_CODE_FUNC:
4546 printf_filtered ("(TYPE_CODE_FUNC)");
4547 break;
4548 case TYPE_CODE_INT:
4549 printf_filtered ("(TYPE_CODE_INT)");
4550 break;
4551 case TYPE_CODE_FLT:
4552 printf_filtered ("(TYPE_CODE_FLT)");
4553 break;
4554 case TYPE_CODE_VOID:
4555 printf_filtered ("(TYPE_CODE_VOID)");
4556 break;
4557 case TYPE_CODE_SET:
4558 printf_filtered ("(TYPE_CODE_SET)");
4559 break;
4560 case TYPE_CODE_RANGE:
4561 printf_filtered ("(TYPE_CODE_RANGE)");
4562 break;
4563 case TYPE_CODE_STRING:
4564 printf_filtered ("(TYPE_CODE_STRING)");
4565 break;
4566 case TYPE_CODE_ERROR:
4567 printf_filtered ("(TYPE_CODE_ERROR)");
4568 break;
4569 case TYPE_CODE_MEMBERPTR:
4570 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4571 break;
4572 case TYPE_CODE_METHODPTR:
4573 printf_filtered ("(TYPE_CODE_METHODPTR)");
4574 break;
4575 case TYPE_CODE_METHOD:
4576 printf_filtered ("(TYPE_CODE_METHOD)");
4577 break;
4578 case TYPE_CODE_REF:
4579 printf_filtered ("(TYPE_CODE_REF)");
4580 break;
4581 case TYPE_CODE_CHAR:
4582 printf_filtered ("(TYPE_CODE_CHAR)");
4583 break;
4584 case TYPE_CODE_BOOL:
4585 printf_filtered ("(TYPE_CODE_BOOL)");
4586 break;
4587 case TYPE_CODE_COMPLEX:
4588 printf_filtered ("(TYPE_CODE_COMPLEX)");
4589 break;
4590 case TYPE_CODE_TYPEDEF:
4591 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4592 break;
4593 case TYPE_CODE_NAMESPACE:
4594 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4595 break;
4596 default:
4597 printf_filtered ("(UNKNOWN TYPE CODE)");
4598 break;
4599 }
4600 puts_filtered ("\n");
4601 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4602 if (TYPE_OBJFILE_OWNED (type))
4603 {
4604 printfi_filtered (spaces, "objfile ");
4605 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4606 }
4607 else
4608 {
4609 printfi_filtered (spaces, "gdbarch ");
4610 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4611 }
4612 printf_filtered ("\n");
4613 printfi_filtered (spaces, "target_type ");
4614 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4615 printf_filtered ("\n");
4616 if (TYPE_TARGET_TYPE (type) != NULL)
4617 {
4618 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4619 }
4620 printfi_filtered (spaces, "pointer_type ");
4621 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4622 printf_filtered ("\n");
4623 printfi_filtered (spaces, "reference_type ");
4624 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4625 printf_filtered ("\n");
4626 printfi_filtered (spaces, "type_chain ");
4627 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4628 printf_filtered ("\n");
4629 printfi_filtered (spaces, "instance_flags 0x%x",
4630 TYPE_INSTANCE_FLAGS (type));
4631 if (TYPE_CONST (type))
4632 {
4633 puts_filtered (" TYPE_CONST");
4634 }
4635 if (TYPE_VOLATILE (type))
4636 {
4637 puts_filtered (" TYPE_VOLATILE");
4638 }
4639 if (TYPE_CODE_SPACE (type))
4640 {
4641 puts_filtered (" TYPE_CODE_SPACE");
4642 }
4643 if (TYPE_DATA_SPACE (type))
4644 {
4645 puts_filtered (" TYPE_DATA_SPACE");
4646 }
4647 if (TYPE_ADDRESS_CLASS_1 (type))
4648 {
4649 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4650 }
4651 if (TYPE_ADDRESS_CLASS_2 (type))
4652 {
4653 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4654 }
4655 if (TYPE_RESTRICT (type))
4656 {
4657 puts_filtered (" TYPE_RESTRICT");
4658 }
4659 if (TYPE_ATOMIC (type))
4660 {
4661 puts_filtered (" TYPE_ATOMIC");
4662 }
4663 puts_filtered ("\n");
4664
4665 printfi_filtered (spaces, "flags");
4666 if (TYPE_UNSIGNED (type))
4667 {
4668 puts_filtered (" TYPE_UNSIGNED");
4669 }
4670 if (TYPE_NOSIGN (type))
4671 {
4672 puts_filtered (" TYPE_NOSIGN");
4673 }
4674 if (TYPE_STUB (type))
4675 {
4676 puts_filtered (" TYPE_STUB");
4677 }
4678 if (TYPE_TARGET_STUB (type))
4679 {
4680 puts_filtered (" TYPE_TARGET_STUB");
4681 }
4682 if (TYPE_PROTOTYPED (type))
4683 {
4684 puts_filtered (" TYPE_PROTOTYPED");
4685 }
4686 if (TYPE_INCOMPLETE (type))
4687 {
4688 puts_filtered (" TYPE_INCOMPLETE");
4689 }
4690 if (TYPE_VARARGS (type))
4691 {
4692 puts_filtered (" TYPE_VARARGS");
4693 }
4694 /* This is used for things like AltiVec registers on ppc. Gcc emits
4695 an attribute for the array type, which tells whether or not we
4696 have a vector, instead of a regular array. */
4697 if (TYPE_VECTOR (type))
4698 {
4699 puts_filtered (" TYPE_VECTOR");
4700 }
4701 if (TYPE_FIXED_INSTANCE (type))
4702 {
4703 puts_filtered (" TYPE_FIXED_INSTANCE");
4704 }
4705 if (TYPE_STUB_SUPPORTED (type))
4706 {
4707 puts_filtered (" TYPE_STUB_SUPPORTED");
4708 }
4709 if (TYPE_NOTTEXT (type))
4710 {
4711 puts_filtered (" TYPE_NOTTEXT");
4712 }
4713 puts_filtered ("\n");
4714 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4715 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4716 puts_filtered ("\n");
4717 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4718 {
4719 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4720 printfi_filtered (spaces + 2,
4721 "[%d] enumval %s type ",
4722 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4723 else
4724 printfi_filtered (spaces + 2,
4725 "[%d] bitpos %s bitsize %d type ",
4726 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4727 TYPE_FIELD_BITSIZE (type, idx));
4728 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4729 printf_filtered (" name '%s' (",
4730 TYPE_FIELD_NAME (type, idx) != NULL
4731 ? TYPE_FIELD_NAME (type, idx)
4732 : "<NULL>");
4733 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4734 printf_filtered (")\n");
4735 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4736 {
4737 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4738 }
4739 }
4740 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4741 {
4742 printfi_filtered (spaces, "low %s%s high %s%s\n",
4743 plongest (TYPE_LOW_BOUND (type)),
4744 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4745 plongest (TYPE_HIGH_BOUND (type)),
4746 TYPE_HIGH_BOUND_UNDEFINED (type)
4747 ? " (undefined)" : "");
4748 }
4749
4750 switch (TYPE_SPECIFIC_FIELD (type))
4751 {
4752 case TYPE_SPECIFIC_CPLUS_STUFF:
4753 printfi_filtered (spaces, "cplus_stuff ");
4754 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4755 gdb_stdout);
4756 puts_filtered ("\n");
4757 print_cplus_stuff (type, spaces);
4758 break;
4759
4760 case TYPE_SPECIFIC_GNAT_STUFF:
4761 printfi_filtered (spaces, "gnat_stuff ");
4762 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4763 puts_filtered ("\n");
4764 print_gnat_stuff (type, spaces);
4765 break;
4766
4767 case TYPE_SPECIFIC_FLOATFORMAT:
4768 printfi_filtered (spaces, "floatformat ");
4769 if (TYPE_FLOATFORMAT (type) == NULL
4770 || TYPE_FLOATFORMAT (type)->name == NULL)
4771 puts_filtered ("(null)");
4772 else
4773 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4774 puts_filtered ("\n");
4775 break;
4776
4777 case TYPE_SPECIFIC_FUNC:
4778 printfi_filtered (spaces, "calling_convention %d\n",
4779 TYPE_CALLING_CONVENTION (type));
4780 /* tail_call_list is not printed. */
4781 break;
4782
4783 case TYPE_SPECIFIC_SELF_TYPE:
4784 printfi_filtered (spaces, "self_type ");
4785 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4786 puts_filtered ("\n");
4787 break;
4788 }
4789
4790 if (spaces == 0)
4791 obstack_free (&dont_print_type_obstack, NULL);
4792 }
4793 \f
4794 /* Trivial helpers for the libiberty hash table, for mapping one
4795 type to another. */
4796
4797 struct type_pair : public allocate_on_obstack
4798 {
4799 type_pair (struct type *old_, struct type *newobj_)
4800 : old (old_), newobj (newobj_)
4801 {}
4802
4803 struct type * const old, * const newobj;
4804 };
4805
4806 static hashval_t
4807 type_pair_hash (const void *item)
4808 {
4809 const struct type_pair *pair = (const struct type_pair *) item;
4810
4811 return htab_hash_pointer (pair->old);
4812 }
4813
4814 static int
4815 type_pair_eq (const void *item_lhs, const void *item_rhs)
4816 {
4817 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4818 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4819
4820 return lhs->old == rhs->old;
4821 }
4822
4823 /* Allocate the hash table used by copy_type_recursive to walk
4824 types without duplicates. We use OBJFILE's obstack, because
4825 OBJFILE is about to be deleted. */
4826
4827 htab_t
4828 create_copied_types_hash (struct objfile *objfile)
4829 {
4830 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4831 NULL, &objfile->objfile_obstack,
4832 hashtab_obstack_allocate,
4833 dummy_obstack_deallocate);
4834 }
4835
4836 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4837
4838 static struct dynamic_prop_list *
4839 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4840 struct dynamic_prop_list *list)
4841 {
4842 struct dynamic_prop_list *copy = list;
4843 struct dynamic_prop_list **node_ptr = &copy;
4844
4845 while (*node_ptr != NULL)
4846 {
4847 struct dynamic_prop_list *node_copy;
4848
4849 node_copy = ((struct dynamic_prop_list *)
4850 obstack_copy (objfile_obstack, *node_ptr,
4851 sizeof (struct dynamic_prop_list)));
4852 node_copy->prop = (*node_ptr)->prop;
4853 *node_ptr = node_copy;
4854
4855 node_ptr = &node_copy->next;
4856 }
4857
4858 return copy;
4859 }
4860
4861 /* Recursively copy (deep copy) TYPE, if it is associated with
4862 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4863 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4864 it is not associated with OBJFILE. */
4865
4866 struct type *
4867 copy_type_recursive (struct objfile *objfile,
4868 struct type *type,
4869 htab_t copied_types)
4870 {
4871 void **slot;
4872 struct type *new_type;
4873
4874 if (! TYPE_OBJFILE_OWNED (type))
4875 return type;
4876
4877 /* This type shouldn't be pointing to any types in other objfiles;
4878 if it did, the type might disappear unexpectedly. */
4879 gdb_assert (TYPE_OBJFILE (type) == objfile);
4880
4881 struct type_pair pair (type, nullptr);
4882
4883 slot = htab_find_slot (copied_types, &pair, INSERT);
4884 if (*slot != NULL)
4885 return ((struct type_pair *) *slot)->newobj;
4886
4887 new_type = alloc_type_arch (get_type_arch (type));
4888
4889 /* We must add the new type to the hash table immediately, in case
4890 we encounter this type again during a recursive call below. */
4891 struct type_pair *stored
4892 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4893
4894 *slot = stored;
4895
4896 /* Copy the common fields of types. For the main type, we simply
4897 copy the entire thing and then update specific fields as needed. */
4898 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4899 TYPE_OBJFILE_OWNED (new_type) = 0;
4900 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4901
4902 if (TYPE_NAME (type))
4903 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4904
4905 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4906 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4907
4908 /* Copy the fields. */
4909 if (TYPE_NFIELDS (type))
4910 {
4911 int i, nfields;
4912
4913 nfields = TYPE_NFIELDS (type);
4914 TYPE_FIELDS (new_type) = (struct field *)
4915 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
4916 for (i = 0; i < nfields; i++)
4917 {
4918 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4919 TYPE_FIELD_ARTIFICIAL (type, i);
4920 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4921 if (TYPE_FIELD_TYPE (type, i))
4922 TYPE_FIELD_TYPE (new_type, i)
4923 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4924 copied_types);
4925 if (TYPE_FIELD_NAME (type, i))
4926 TYPE_FIELD_NAME (new_type, i) =
4927 xstrdup (TYPE_FIELD_NAME (type, i));
4928 switch (TYPE_FIELD_LOC_KIND (type, i))
4929 {
4930 case FIELD_LOC_KIND_BITPOS:
4931 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4932 TYPE_FIELD_BITPOS (type, i));
4933 break;
4934 case FIELD_LOC_KIND_ENUMVAL:
4935 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4936 TYPE_FIELD_ENUMVAL (type, i));
4937 break;
4938 case FIELD_LOC_KIND_PHYSADDR:
4939 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4940 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4941 break;
4942 case FIELD_LOC_KIND_PHYSNAME:
4943 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4944 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4945 i)));
4946 break;
4947 default:
4948 internal_error (__FILE__, __LINE__,
4949 _("Unexpected type field location kind: %d"),
4950 TYPE_FIELD_LOC_KIND (type, i));
4951 }
4952 }
4953 }
4954
4955 /* For range types, copy the bounds information. */
4956 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4957 {
4958 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
4959 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
4960 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4961 }
4962
4963 if (TYPE_DYN_PROP_LIST (type) != NULL)
4964 TYPE_DYN_PROP_LIST (new_type)
4965 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4966 TYPE_DYN_PROP_LIST (type));
4967
4968
4969 /* Copy pointers to other types. */
4970 if (TYPE_TARGET_TYPE (type))
4971 TYPE_TARGET_TYPE (new_type) =
4972 copy_type_recursive (objfile,
4973 TYPE_TARGET_TYPE (type),
4974 copied_types);
4975
4976 /* Maybe copy the type_specific bits.
4977
4978 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4979 base classes and methods. There's no fundamental reason why we
4980 can't, but at the moment it is not needed. */
4981
4982 switch (TYPE_SPECIFIC_FIELD (type))
4983 {
4984 case TYPE_SPECIFIC_NONE:
4985 break;
4986 case TYPE_SPECIFIC_FUNC:
4987 INIT_FUNC_SPECIFIC (new_type);
4988 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4989 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4990 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4991 break;
4992 case TYPE_SPECIFIC_FLOATFORMAT:
4993 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4994 break;
4995 case TYPE_SPECIFIC_CPLUS_STUFF:
4996 INIT_CPLUS_SPECIFIC (new_type);
4997 break;
4998 case TYPE_SPECIFIC_GNAT_STUFF:
4999 INIT_GNAT_SPECIFIC (new_type);
5000 break;
5001 case TYPE_SPECIFIC_SELF_TYPE:
5002 set_type_self_type (new_type,
5003 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5004 copied_types));
5005 break;
5006 default:
5007 gdb_assert_not_reached ("bad type_specific_kind");
5008 }
5009
5010 return new_type;
5011 }
5012
5013 /* Make a copy of the given TYPE, except that the pointer & reference
5014 types are not preserved.
5015
5016 This function assumes that the given type has an associated objfile.
5017 This objfile is used to allocate the new type. */
5018
5019 struct type *
5020 copy_type (const struct type *type)
5021 {
5022 struct type *new_type;
5023
5024 gdb_assert (TYPE_OBJFILE_OWNED (type));
5025
5026 new_type = alloc_type_copy (type);
5027 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5028 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5029 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5030 sizeof (struct main_type));
5031 if (TYPE_DYN_PROP_LIST (type) != NULL)
5032 TYPE_DYN_PROP_LIST (new_type)
5033 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5034 TYPE_DYN_PROP_LIST (type));
5035
5036 return new_type;
5037 }
5038 \f
5039 /* Helper functions to initialize architecture-specific types. */
5040
5041 /* Allocate a type structure associated with GDBARCH and set its
5042 CODE, LENGTH, and NAME fields. */
5043
5044 struct type *
5045 arch_type (struct gdbarch *gdbarch,
5046 enum type_code code, int bit, const char *name)
5047 {
5048 struct type *type;
5049
5050 type = alloc_type_arch (gdbarch);
5051 set_type_code (type, code);
5052 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5053 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5054
5055 if (name)
5056 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5057
5058 return type;
5059 }
5060
5061 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5062 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5063 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5064
5065 struct type *
5066 arch_integer_type (struct gdbarch *gdbarch,
5067 int bit, int unsigned_p, const char *name)
5068 {
5069 struct type *t;
5070
5071 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5072 if (unsigned_p)
5073 TYPE_UNSIGNED (t) = 1;
5074
5075 return t;
5076 }
5077
5078 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5079 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5080 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5081
5082 struct type *
5083 arch_character_type (struct gdbarch *gdbarch,
5084 int bit, int unsigned_p, const char *name)
5085 {
5086 struct type *t;
5087
5088 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5089 if (unsigned_p)
5090 TYPE_UNSIGNED (t) = 1;
5091
5092 return t;
5093 }
5094
5095 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5096 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5097 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5098
5099 struct type *
5100 arch_boolean_type (struct gdbarch *gdbarch,
5101 int bit, int unsigned_p, const char *name)
5102 {
5103 struct type *t;
5104
5105 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5106 if (unsigned_p)
5107 TYPE_UNSIGNED (t) = 1;
5108
5109 return t;
5110 }
5111
5112 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5113 BIT is the type size in bits; if BIT equals -1, the size is
5114 determined by the floatformat. NAME is the type name. Set the
5115 TYPE_FLOATFORMAT from FLOATFORMATS. */
5116
5117 struct type *
5118 arch_float_type (struct gdbarch *gdbarch,
5119 int bit, const char *name,
5120 const struct floatformat **floatformats)
5121 {
5122 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5123 struct type *t;
5124
5125 bit = verify_floatformat (bit, fmt);
5126 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5127 TYPE_FLOATFORMAT (t) = fmt;
5128
5129 return t;
5130 }
5131
5132 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5133 BIT is the type size in bits. NAME is the type name. */
5134
5135 struct type *
5136 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5137 {
5138 struct type *t;
5139
5140 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5141 return t;
5142 }
5143
5144 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5145 NAME is the type name. TARGET_TYPE is the component float type. */
5146
5147 struct type *
5148 arch_complex_type (struct gdbarch *gdbarch,
5149 const char *name, struct type *target_type)
5150 {
5151 struct type *t;
5152
5153 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5154 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5155 TYPE_TARGET_TYPE (t) = target_type;
5156 return t;
5157 }
5158
5159 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5160 BIT is the pointer type size in bits. NAME is the type name.
5161 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5162 TYPE_UNSIGNED flag. */
5163
5164 struct type *
5165 arch_pointer_type (struct gdbarch *gdbarch,
5166 int bit, const char *name, struct type *target_type)
5167 {
5168 struct type *t;
5169
5170 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5171 TYPE_TARGET_TYPE (t) = target_type;
5172 TYPE_UNSIGNED (t) = 1;
5173 return t;
5174 }
5175
5176 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5177 NAME is the type name. BIT is the size of the flag word in bits. */
5178
5179 struct type *
5180 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5181 {
5182 struct type *type;
5183
5184 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5185 TYPE_UNSIGNED (type) = 1;
5186 TYPE_NFIELDS (type) = 0;
5187 /* Pre-allocate enough space assuming every field is one bit. */
5188 TYPE_FIELDS (type)
5189 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5190
5191 return type;
5192 }
5193
5194 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5195 position BITPOS is called NAME. Pass NAME as "" for fields that
5196 should not be printed. */
5197
5198 void
5199 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5200 struct type *field_type, const char *name)
5201 {
5202 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5203 int field_nr = TYPE_NFIELDS (type);
5204
5205 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5206 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5207 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5208 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5209 gdb_assert (name != NULL);
5210
5211 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5212 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5213 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5214 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5215 ++TYPE_NFIELDS (type);
5216 }
5217
5218 /* Special version of append_flags_type_field to add a flag field.
5219 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5220 position BITPOS is called NAME. */
5221
5222 void
5223 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5224 {
5225 struct gdbarch *gdbarch = get_type_arch (type);
5226
5227 append_flags_type_field (type, bitpos, 1,
5228 builtin_type (gdbarch)->builtin_bool,
5229 name);
5230 }
5231
5232 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5233 specified by CODE) associated with GDBARCH. NAME is the type name. */
5234
5235 struct type *
5236 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5237 enum type_code code)
5238 {
5239 struct type *t;
5240
5241 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5242 t = arch_type (gdbarch, code, 0, NULL);
5243 TYPE_NAME (t) = name;
5244 INIT_CPLUS_SPECIFIC (t);
5245 return t;
5246 }
5247
5248 /* Add new field with name NAME and type FIELD to composite type T.
5249 Do not set the field's position or adjust the type's length;
5250 the caller should do so. Return the new field. */
5251
5252 struct field *
5253 append_composite_type_field_raw (struct type *t, const char *name,
5254 struct type *field)
5255 {
5256 struct field *f;
5257
5258 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5259 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5260 TYPE_NFIELDS (t));
5261 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5262 memset (f, 0, sizeof f[0]);
5263 FIELD_TYPE (f[0]) = field;
5264 FIELD_NAME (f[0]) = name;
5265 return f;
5266 }
5267
5268 /* Add new field with name NAME and type FIELD to composite type T.
5269 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5270
5271 void
5272 append_composite_type_field_aligned (struct type *t, const char *name,
5273 struct type *field, int alignment)
5274 {
5275 struct field *f = append_composite_type_field_raw (t, name, field);
5276
5277 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5278 {
5279 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5280 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5281 }
5282 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5283 {
5284 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5285 if (TYPE_NFIELDS (t) > 1)
5286 {
5287 SET_FIELD_BITPOS (f[0],
5288 (FIELD_BITPOS (f[-1])
5289 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5290 * TARGET_CHAR_BIT)));
5291
5292 if (alignment)
5293 {
5294 int left;
5295
5296 alignment *= TARGET_CHAR_BIT;
5297 left = FIELD_BITPOS (f[0]) % alignment;
5298
5299 if (left)
5300 {
5301 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5302 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5303 }
5304 }
5305 }
5306 }
5307 }
5308
5309 /* Add new field with name NAME and type FIELD to composite type T. */
5310
5311 void
5312 append_composite_type_field (struct type *t, const char *name,
5313 struct type *field)
5314 {
5315 append_composite_type_field_aligned (t, name, field, 0);
5316 }
5317
5318 static struct gdbarch_data *gdbtypes_data;
5319
5320 const struct builtin_type *
5321 builtin_type (struct gdbarch *gdbarch)
5322 {
5323 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5324 }
5325
5326 static void *
5327 gdbtypes_post_init (struct gdbarch *gdbarch)
5328 {
5329 struct builtin_type *builtin_type
5330 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5331
5332 /* Basic types. */
5333 builtin_type->builtin_void
5334 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5335 builtin_type->builtin_char
5336 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5337 !gdbarch_char_signed (gdbarch), "char");
5338 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5339 builtin_type->builtin_signed_char
5340 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5341 0, "signed char");
5342 builtin_type->builtin_unsigned_char
5343 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5344 1, "unsigned char");
5345 builtin_type->builtin_short
5346 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5347 0, "short");
5348 builtin_type->builtin_unsigned_short
5349 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5350 1, "unsigned short");
5351 builtin_type->builtin_int
5352 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5353 0, "int");
5354 builtin_type->builtin_unsigned_int
5355 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5356 1, "unsigned int");
5357 builtin_type->builtin_long
5358 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5359 0, "long");
5360 builtin_type->builtin_unsigned_long
5361 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5362 1, "unsigned long");
5363 builtin_type->builtin_long_long
5364 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5365 0, "long long");
5366 builtin_type->builtin_unsigned_long_long
5367 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5368 1, "unsigned long long");
5369 builtin_type->builtin_float
5370 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5371 "float", gdbarch_float_format (gdbarch));
5372 builtin_type->builtin_double
5373 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5374 "double", gdbarch_double_format (gdbarch));
5375 builtin_type->builtin_long_double
5376 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5377 "long double", gdbarch_long_double_format (gdbarch));
5378 builtin_type->builtin_complex
5379 = arch_complex_type (gdbarch, "complex",
5380 builtin_type->builtin_float);
5381 builtin_type->builtin_double_complex
5382 = arch_complex_type (gdbarch, "double complex",
5383 builtin_type->builtin_double);
5384 builtin_type->builtin_string
5385 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5386 builtin_type->builtin_bool
5387 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5388
5389 /* The following three are about decimal floating point types, which
5390 are 32-bits, 64-bits and 128-bits respectively. */
5391 builtin_type->builtin_decfloat
5392 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5393 builtin_type->builtin_decdouble
5394 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5395 builtin_type->builtin_declong
5396 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5397
5398 /* "True" character types. */
5399 builtin_type->builtin_true_char
5400 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5401 builtin_type->builtin_true_unsigned_char
5402 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5403
5404 /* Fixed-size integer types. */
5405 builtin_type->builtin_int0
5406 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5407 builtin_type->builtin_int8
5408 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5409 builtin_type->builtin_uint8
5410 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5411 builtin_type->builtin_int16
5412 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5413 builtin_type->builtin_uint16
5414 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5415 builtin_type->builtin_int24
5416 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5417 builtin_type->builtin_uint24
5418 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5419 builtin_type->builtin_int32
5420 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5421 builtin_type->builtin_uint32
5422 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5423 builtin_type->builtin_int64
5424 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5425 builtin_type->builtin_uint64
5426 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5427 builtin_type->builtin_int128
5428 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5429 builtin_type->builtin_uint128
5430 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5431 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5432 TYPE_INSTANCE_FLAG_NOTTEXT;
5433 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5434 TYPE_INSTANCE_FLAG_NOTTEXT;
5435
5436 /* Wide character types. */
5437 builtin_type->builtin_char16
5438 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5439 builtin_type->builtin_char32
5440 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5441 builtin_type->builtin_wchar
5442 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5443 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5444
5445 /* Default data/code pointer types. */
5446 builtin_type->builtin_data_ptr
5447 = lookup_pointer_type (builtin_type->builtin_void);
5448 builtin_type->builtin_func_ptr
5449 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5450 builtin_type->builtin_func_func
5451 = lookup_function_type (builtin_type->builtin_func_ptr);
5452
5453 /* This type represents a GDB internal function. */
5454 builtin_type->internal_fn
5455 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5456 "<internal function>");
5457
5458 /* This type represents an xmethod. */
5459 builtin_type->xmethod
5460 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5461
5462 return builtin_type;
5463 }
5464
5465 /* This set of objfile-based types is intended to be used by symbol
5466 readers as basic types. */
5467
5468 static const struct objfile_data *objfile_type_data;
5469
5470 const struct objfile_type *
5471 objfile_type (struct objfile *objfile)
5472 {
5473 struct gdbarch *gdbarch;
5474 struct objfile_type *objfile_type
5475 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5476
5477 if (objfile_type)
5478 return objfile_type;
5479
5480 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5481 1, struct objfile_type);
5482
5483 /* Use the objfile architecture to determine basic type properties. */
5484 gdbarch = get_objfile_arch (objfile);
5485
5486 /* Basic types. */
5487 objfile_type->builtin_void
5488 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5489 objfile_type->builtin_char
5490 = init_integer_type (objfile, TARGET_CHAR_BIT,
5491 !gdbarch_char_signed (gdbarch), "char");
5492 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5493 objfile_type->builtin_signed_char
5494 = init_integer_type (objfile, TARGET_CHAR_BIT,
5495 0, "signed char");
5496 objfile_type->builtin_unsigned_char
5497 = init_integer_type (objfile, TARGET_CHAR_BIT,
5498 1, "unsigned char");
5499 objfile_type->builtin_short
5500 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5501 0, "short");
5502 objfile_type->builtin_unsigned_short
5503 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5504 1, "unsigned short");
5505 objfile_type->builtin_int
5506 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5507 0, "int");
5508 objfile_type->builtin_unsigned_int
5509 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5510 1, "unsigned int");
5511 objfile_type->builtin_long
5512 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5513 0, "long");
5514 objfile_type->builtin_unsigned_long
5515 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5516 1, "unsigned long");
5517 objfile_type->builtin_long_long
5518 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5519 0, "long long");
5520 objfile_type->builtin_unsigned_long_long
5521 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5522 1, "unsigned long long");
5523 objfile_type->builtin_float
5524 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5525 "float", gdbarch_float_format (gdbarch));
5526 objfile_type->builtin_double
5527 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5528 "double", gdbarch_double_format (gdbarch));
5529 objfile_type->builtin_long_double
5530 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5531 "long double", gdbarch_long_double_format (gdbarch));
5532
5533 /* This type represents a type that was unrecognized in symbol read-in. */
5534 objfile_type->builtin_error
5535 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5536
5537 /* The following set of types is used for symbols with no
5538 debug information. */
5539 objfile_type->nodebug_text_symbol
5540 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5541 "<text variable, no debug info>");
5542 objfile_type->nodebug_text_gnu_ifunc_symbol
5543 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5544 "<text gnu-indirect-function variable, no debug info>");
5545 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5546 objfile_type->nodebug_got_plt_symbol
5547 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5548 "<text from jump slot in .got.plt, no debug info>",
5549 objfile_type->nodebug_text_symbol);
5550 objfile_type->nodebug_data_symbol
5551 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5552 objfile_type->nodebug_unknown_symbol
5553 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5554 objfile_type->nodebug_tls_symbol
5555 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5556
5557 /* NOTE: on some targets, addresses and pointers are not necessarily
5558 the same.
5559
5560 The upshot is:
5561 - gdb's `struct type' always describes the target's
5562 representation.
5563 - gdb's `struct value' objects should always hold values in
5564 target form.
5565 - gdb's CORE_ADDR values are addresses in the unified virtual
5566 address space that the assembler and linker work with. Thus,
5567 since target_read_memory takes a CORE_ADDR as an argument, it
5568 can access any memory on the target, even if the processor has
5569 separate code and data address spaces.
5570
5571 In this context, objfile_type->builtin_core_addr is a bit odd:
5572 it's a target type for a value the target will never see. It's
5573 only used to hold the values of (typeless) linker symbols, which
5574 are indeed in the unified virtual address space. */
5575
5576 objfile_type->builtin_core_addr
5577 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5578 "__CORE_ADDR");
5579
5580 set_objfile_data (objfile, objfile_type_data, objfile_type);
5581 return objfile_type;
5582 }
5583
5584 void
5585 _initialize_gdbtypes (void)
5586 {
5587 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5588 objfile_type_data = register_objfile_data ();
5589
5590 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5591 _("Set debugging of C++ overloading."),
5592 _("Show debugging of C++ overloading."),
5593 _("When enabled, ranking of the "
5594 "functions is displayed."),
5595 NULL,
5596 show_overload_debug,
5597 &setdebuglist, &showdebuglist);
5598
5599 /* Add user knob for controlling resolution of opaque types. */
5600 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5601 &opaque_type_resolution,
5602 _("Set resolution of opaque struct/class/union"
5603 " types (if set before loading symbols)."),
5604 _("Show resolution of opaque struct/class/union"
5605 " types (if set before loading symbols)."),
5606 NULL, NULL,
5607 show_opaque_type_resolution,
5608 &setlist, &showlist);
5609
5610 /* Add an option to permit non-strict type checking. */
5611 add_setshow_boolean_cmd ("type", class_support,
5612 &strict_type_checking,
5613 _("Set strict type checking."),
5614 _("Show strict type checking."),
5615 NULL, NULL,
5616 show_strict_type_checking,
5617 &setchecklist, &showchecklist);
5618 }