2007-10-25 Wu Zhou <woodzltc@cn.ibm.com>
[binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "bfd.h"
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbtypes.h"
30 #include "expression.h"
31 #include "language.h"
32 #include "target.h"
33 #include "value.h"
34 #include "demangle.h"
35 #include "complaints.h"
36 #include "gdbcmd.h"
37 #include "wrapper.h"
38 #include "cp-abi.h"
39 #include "gdb_assert.h"
40 #include "hashtab.h"
41
42 /* These variables point to the objects
43 representing the predefined C data types. */
44
45 struct type *builtin_type_int0;
46 struct type *builtin_type_int8;
47 struct type *builtin_type_uint8;
48 struct type *builtin_type_int16;
49 struct type *builtin_type_uint16;
50 struct type *builtin_type_int32;
51 struct type *builtin_type_uint32;
52 struct type *builtin_type_int64;
53 struct type *builtin_type_uint64;
54 struct type *builtin_type_int128;
55 struct type *builtin_type_uint128;
56
57 /* Floatformat pairs. */
58 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
59 &floatformat_ieee_single_big,
60 &floatformat_ieee_single_little
61 };
62 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
63 &floatformat_ieee_double_big,
64 &floatformat_ieee_double_little
65 };
66 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_double_big,
68 &floatformat_ieee_double_littlebyte_bigword
69 };
70 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_i387_ext,
72 &floatformat_i387_ext
73 };
74 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_m68881_ext,
76 &floatformat_m68881_ext
77 };
78 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_arm_ext_big,
80 &floatformat_arm_ext_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ia64_spill_big,
84 &floatformat_ia64_spill_little
85 };
86 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_ia64_quad_big,
88 &floatformat_ia64_quad_little
89 };
90 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_vax_f,
92 &floatformat_vax_f
93 };
94 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_vax_d,
96 &floatformat_vax_d
97 };
98
99 struct type *builtin_type_ieee_single;
100 struct type *builtin_type_ieee_double;
101 struct type *builtin_type_i387_ext;
102 struct type *builtin_type_m68881_ext;
103 struct type *builtin_type_arm_ext;
104 struct type *builtin_type_ia64_spill;
105 struct type *builtin_type_ia64_quad;
106
107
108 int opaque_type_resolution = 1;
109 static void
110 show_opaque_type_resolution (struct ui_file *file, int from_tty,
111 struct cmd_list_element *c,
112 const char *value)
113 {
114 fprintf_filtered (file, _("\
115 Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
116 value);
117 }
118
119 int overload_debug = 0;
120 static void
121 show_overload_debug (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c, const char *value)
123 {
124 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
125 value);
126 }
127
128 struct extra
129 {
130 char str[128];
131 int len;
132 }; /* Maximum extension is 128! FIXME */
133
134 static void print_bit_vector (B_TYPE *, int);
135 static void print_arg_types (struct field *, int, int);
136 static void dump_fn_fieldlists (struct type *, int);
137 static void print_cplus_stuff (struct type *, int);
138 static void virtual_base_list_aux (struct type *dclass);
139
140
141 /* Alloc a new type structure and fill it with some defaults. If
142 OBJFILE is non-NULL, then allocate the space for the type structure
143 in that objfile's objfile_obstack. Otherwise allocate the new type
144 structure by xmalloc () (for permanent types). */
145
146 struct type *
147 alloc_type (struct objfile *objfile)
148 {
149 struct type *type;
150
151 /* Alloc the structure and start off with all fields zeroed. */
152
153 if (objfile == NULL)
154 {
155 type = xmalloc (sizeof (struct type));
156 memset (type, 0, sizeof (struct type));
157 TYPE_MAIN_TYPE (type) = xmalloc (sizeof (struct main_type));
158 }
159 else
160 {
161 type = obstack_alloc (&objfile->objfile_obstack,
162 sizeof (struct type));
163 memset (type, 0, sizeof (struct type));
164 TYPE_MAIN_TYPE (type) = obstack_alloc (&objfile->objfile_obstack,
165 sizeof (struct main_type));
166 OBJSTAT (objfile, n_types++);
167 }
168 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
169
170 /* Initialize the fields that might not be zero. */
171
172 TYPE_CODE (type) = TYPE_CODE_UNDEF;
173 TYPE_OBJFILE (type) = objfile;
174 TYPE_VPTR_FIELDNO (type) = -1;
175 TYPE_CHAIN (type) = type; /* Chain back to itself. */
176
177 return (type);
178 }
179
180 /* Alloc a new type instance structure, fill it with some defaults,
181 and point it at OLDTYPE. Allocate the new type instance from the
182 same place as OLDTYPE. */
183
184 static struct type *
185 alloc_type_instance (struct type *oldtype)
186 {
187 struct type *type;
188
189 /* Allocate the structure. */
190
191 if (TYPE_OBJFILE (oldtype) == NULL)
192 {
193 type = xmalloc (sizeof (struct type));
194 memset (type, 0, sizeof (struct type));
195 }
196 else
197 {
198 type = obstack_alloc (&TYPE_OBJFILE (oldtype)->objfile_obstack,
199 sizeof (struct type));
200 memset (type, 0, sizeof (struct type));
201 }
202 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
203
204 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
205
206 return (type);
207 }
208
209 /* Clear all remnants of the previous type at TYPE, in preparation for
210 replacing it with something else. */
211 static void
212 smash_type (struct type *type)
213 {
214 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
215
216 /* For now, delete the rings. */
217 TYPE_CHAIN (type) = type;
218
219 /* For now, leave the pointer/reference types alone. */
220 }
221
222 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
223 to a pointer to memory where the pointer type should be stored.
224 If *TYPEPTR is zero, update it to point to the pointer type we return.
225 We allocate new memory if needed. */
226
227 struct type *
228 make_pointer_type (struct type *type, struct type **typeptr)
229 {
230 struct type *ntype; /* New type */
231 struct objfile *objfile;
232 struct type *chain;
233
234 ntype = TYPE_POINTER_TYPE (type);
235
236 if (ntype)
237 {
238 if (typeptr == 0)
239 return ntype; /* Don't care about alloc,
240 and have new type. */
241 else if (*typeptr == 0)
242 {
243 *typeptr = ntype; /* Tracking alloc, and have new type. */
244 return ntype;
245 }
246 }
247
248 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
249 {
250 ntype = alloc_type (TYPE_OBJFILE (type));
251 if (typeptr)
252 *typeptr = ntype;
253 }
254 else /* We have storage, but need to reset it. */
255 {
256 ntype = *typeptr;
257 objfile = TYPE_OBJFILE (ntype);
258 chain = TYPE_CHAIN (ntype);
259 smash_type (ntype);
260 TYPE_CHAIN (ntype) = chain;
261 TYPE_OBJFILE (ntype) = objfile;
262 }
263
264 TYPE_TARGET_TYPE (ntype) = type;
265 TYPE_POINTER_TYPE (type) = ntype;
266
267 /* FIXME! Assume the machine has only one representation for
268 pointers! */
269
270 TYPE_LENGTH (ntype) =
271 gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
272 TYPE_CODE (ntype) = TYPE_CODE_PTR;
273
274 /* Mark pointers as unsigned. The target converts between pointers
275 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
276 gdbarch_address_to_pointer. */
277 TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED;
278
279 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
280 TYPE_POINTER_TYPE (type) = ntype;
281
282 /* Update the length of all the other variants of this type. */
283 chain = TYPE_CHAIN (ntype);
284 while (chain != ntype)
285 {
286 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
287 chain = TYPE_CHAIN (chain);
288 }
289
290 return ntype;
291 }
292
293 /* Given a type TYPE, return a type of pointers to that type.
294 May need to construct such a type if this is the first use. */
295
296 struct type *
297 lookup_pointer_type (struct type *type)
298 {
299 return make_pointer_type (type, (struct type **) 0);
300 }
301
302 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
303 points to a pointer to memory where the reference type should be
304 stored. If *TYPEPTR is zero, update it to point to the reference
305 type we return. We allocate new memory if needed. */
306
307 struct type *
308 make_reference_type (struct type *type, struct type **typeptr)
309 {
310 struct type *ntype; /* New type */
311 struct objfile *objfile;
312 struct type *chain;
313
314 ntype = TYPE_REFERENCE_TYPE (type);
315
316 if (ntype)
317 {
318 if (typeptr == 0)
319 return ntype; /* Don't care about alloc,
320 and have new type. */
321 else if (*typeptr == 0)
322 {
323 *typeptr = ntype; /* Tracking alloc, and have new type. */
324 return ntype;
325 }
326 }
327
328 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
329 {
330 ntype = alloc_type (TYPE_OBJFILE (type));
331 if (typeptr)
332 *typeptr = ntype;
333 }
334 else /* We have storage, but need to reset it. */
335 {
336 ntype = *typeptr;
337 objfile = TYPE_OBJFILE (ntype);
338 chain = TYPE_CHAIN (ntype);
339 smash_type (ntype);
340 TYPE_CHAIN (ntype) = chain;
341 TYPE_OBJFILE (ntype) = objfile;
342 }
343
344 TYPE_TARGET_TYPE (ntype) = type;
345 TYPE_REFERENCE_TYPE (type) = ntype;
346
347 /* FIXME! Assume the machine has only one representation for
348 references, and that it matches the (only) representation for
349 pointers! */
350
351 TYPE_LENGTH (ntype) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
352 TYPE_CODE (ntype) = TYPE_CODE_REF;
353
354 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
355 TYPE_REFERENCE_TYPE (type) = ntype;
356
357 /* Update the length of all the other variants of this type. */
358 chain = TYPE_CHAIN (ntype);
359 while (chain != ntype)
360 {
361 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
362 chain = TYPE_CHAIN (chain);
363 }
364
365 return ntype;
366 }
367
368 /* Same as above, but caller doesn't care about memory allocation
369 details. */
370
371 struct type *
372 lookup_reference_type (struct type *type)
373 {
374 return make_reference_type (type, (struct type **) 0);
375 }
376
377 /* Lookup a function type that returns type TYPE. TYPEPTR, if
378 nonzero, points to a pointer to memory where the function type
379 should be stored. If *TYPEPTR is zero, update it to point to the
380 function type we return. We allocate new memory if needed. */
381
382 struct type *
383 make_function_type (struct type *type, struct type **typeptr)
384 {
385 struct type *ntype; /* New type */
386 struct objfile *objfile;
387
388 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
389 {
390 ntype = alloc_type (TYPE_OBJFILE (type));
391 if (typeptr)
392 *typeptr = ntype;
393 }
394 else /* We have storage, but need to reset it. */
395 {
396 ntype = *typeptr;
397 objfile = TYPE_OBJFILE (ntype);
398 smash_type (ntype);
399 TYPE_OBJFILE (ntype) = objfile;
400 }
401
402 TYPE_TARGET_TYPE (ntype) = type;
403
404 TYPE_LENGTH (ntype) = 1;
405 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
406
407 return ntype;
408 }
409
410
411 /* Given a type TYPE, return a type of functions that return that type.
412 May need to construct such a type if this is the first use. */
413
414 struct type *
415 lookup_function_type (struct type *type)
416 {
417 return make_function_type (type, (struct type **) 0);
418 }
419
420 /* Identify address space identifier by name --
421 return the integer flag defined in gdbtypes.h. */
422 extern int
423 address_space_name_to_int (char *space_identifier)
424 {
425 struct gdbarch *gdbarch = current_gdbarch;
426 int type_flags;
427 /* Check for known address space delimiters. */
428 if (!strcmp (space_identifier, "code"))
429 return TYPE_FLAG_CODE_SPACE;
430 else if (!strcmp (space_identifier, "data"))
431 return TYPE_FLAG_DATA_SPACE;
432 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
433 && gdbarch_address_class_name_to_type_flags (gdbarch,
434 space_identifier,
435 &type_flags))
436 return type_flags;
437 else
438 error (_("Unknown address space specifier: \"%s\""), space_identifier);
439 }
440
441 /* Identify address space identifier by integer flag as defined in
442 gdbtypes.h -- return the string version of the adress space name. */
443
444 const char *
445 address_space_int_to_name (int space_flag)
446 {
447 struct gdbarch *gdbarch = current_gdbarch;
448 if (space_flag & TYPE_FLAG_CODE_SPACE)
449 return "code";
450 else if (space_flag & TYPE_FLAG_DATA_SPACE)
451 return "data";
452 else if ((space_flag & TYPE_FLAG_ADDRESS_CLASS_ALL)
453 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
454 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
455 else
456 return NULL;
457 }
458
459 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
460
461 If STORAGE is non-NULL, create the new type instance there.
462 STORAGE must be in the same obstack as TYPE. */
463
464 static struct type *
465 make_qualified_type (struct type *type, int new_flags,
466 struct type *storage)
467 {
468 struct type *ntype;
469
470 ntype = type;
471 do {
472 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
473 return ntype;
474 ntype = TYPE_CHAIN (ntype);
475 } while (ntype != type);
476
477 /* Create a new type instance. */
478 if (storage == NULL)
479 ntype = alloc_type_instance (type);
480 else
481 {
482 /* If STORAGE was provided, it had better be in the same objfile
483 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
484 if one objfile is freed and the other kept, we'd have
485 dangling pointers. */
486 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
487
488 ntype = storage;
489 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
490 TYPE_CHAIN (ntype) = ntype;
491 }
492
493 /* Pointers or references to the original type are not relevant to
494 the new type. */
495 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
496 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
497
498 /* Chain the new qualified type to the old type. */
499 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
500 TYPE_CHAIN (type) = ntype;
501
502 /* Now set the instance flags and return the new type. */
503 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
504
505 /* Set length of new type to that of the original type. */
506 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
507
508 return ntype;
509 }
510
511 /* Make an address-space-delimited variant of a type -- a type that
512 is identical to the one supplied except that it has an address
513 space attribute attached to it (such as "code" or "data").
514
515 The space attributes "code" and "data" are for Harvard
516 architectures. The address space attributes are for architectures
517 which have alternately sized pointers or pointers with alternate
518 representations. */
519
520 struct type *
521 make_type_with_address_space (struct type *type, int space_flag)
522 {
523 struct type *ntype;
524 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
525 & ~(TYPE_FLAG_CODE_SPACE | TYPE_FLAG_DATA_SPACE
526 | TYPE_FLAG_ADDRESS_CLASS_ALL))
527 | space_flag);
528
529 return make_qualified_type (type, new_flags, NULL);
530 }
531
532 /* Make a "c-v" variant of a type -- a type that is identical to the
533 one supplied except that it may have const or volatile attributes
534 CNST is a flag for setting the const attribute
535 VOLTL is a flag for setting the volatile attribute
536 TYPE is the base type whose variant we are creating.
537
538 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
539 storage to hold the new qualified type; *TYPEPTR and TYPE must be
540 in the same objfile. Otherwise, allocate fresh memory for the new
541 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
542 new type we construct. */
543 struct type *
544 make_cv_type (int cnst, int voltl,
545 struct type *type,
546 struct type **typeptr)
547 {
548 struct type *ntype; /* New type */
549 struct type *tmp_type = type; /* tmp type */
550 struct objfile *objfile;
551
552 int new_flags = (TYPE_INSTANCE_FLAGS (type)
553 & ~(TYPE_FLAG_CONST | TYPE_FLAG_VOLATILE));
554
555 if (cnst)
556 new_flags |= TYPE_FLAG_CONST;
557
558 if (voltl)
559 new_flags |= TYPE_FLAG_VOLATILE;
560
561 if (typeptr && *typeptr != NULL)
562 {
563 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
564 a C-V variant chain that threads across objfiles: if one
565 objfile gets freed, then the other has a broken C-V chain.
566
567 This code used to try to copy over the main type from TYPE to
568 *TYPEPTR if they were in different objfiles, but that's
569 wrong, too: TYPE may have a field list or member function
570 lists, which refer to types of their own, etc. etc. The
571 whole shebang would need to be copied over recursively; you
572 can't have inter-objfile pointers. The only thing to do is
573 to leave stub types as stub types, and look them up afresh by
574 name each time you encounter them. */
575 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
576 }
577
578 ntype = make_qualified_type (type, new_flags,
579 typeptr ? *typeptr : NULL);
580
581 if (typeptr != NULL)
582 *typeptr = ntype;
583
584 return ntype;
585 }
586
587 /* Replace the contents of ntype with the type *type. This changes the
588 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
589 the changes are propogated to all types in the TYPE_CHAIN.
590
591 In order to build recursive types, it's inevitable that we'll need
592 to update types in place --- but this sort of indiscriminate
593 smashing is ugly, and needs to be replaced with something more
594 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
595 clear if more steps are needed. */
596 void
597 replace_type (struct type *ntype, struct type *type)
598 {
599 struct type *chain;
600
601 /* These two types had better be in the same objfile. Otherwise,
602 the assignment of one type's main type structure to the other
603 will produce a type with references to objects (names; field
604 lists; etc.) allocated on an objfile other than its own. */
605 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
606
607 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
608
609 /* The type length is not a part of the main type. Update it for
610 each type on the variant chain. */
611 chain = ntype;
612 do {
613 /* Assert that this element of the chain has no address-class bits
614 set in its flags. Such type variants might have type lengths
615 which are supposed to be different from the non-address-class
616 variants. This assertion shouldn't ever be triggered because
617 symbol readers which do construct address-class variants don't
618 call replace_type(). */
619 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
620
621 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
622 chain = TYPE_CHAIN (chain);
623 } while (ntype != chain);
624
625 /* Assert that the two types have equivalent instance qualifiers.
626 This should be true for at least all of our debug readers. */
627 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
628 }
629
630 /* Implement direct support for MEMBER_TYPE in GNU C++.
631 May need to construct such a type if this is the first use.
632 The TYPE is the type of the member. The DOMAIN is the type
633 of the aggregate that the member belongs to. */
634
635 struct type *
636 lookup_memberptr_type (struct type *type, struct type *domain)
637 {
638 struct type *mtype;
639
640 mtype = alloc_type (TYPE_OBJFILE (type));
641 smash_to_memberptr_type (mtype, domain, type);
642 return (mtype);
643 }
644
645 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
646
647 struct type *
648 lookup_methodptr_type (struct type *to_type)
649 {
650 struct type *mtype;
651
652 mtype = alloc_type (TYPE_OBJFILE (to_type));
653 TYPE_TARGET_TYPE (mtype) = to_type;
654 TYPE_DOMAIN_TYPE (mtype) = TYPE_DOMAIN_TYPE (to_type);
655 TYPE_LENGTH (mtype) = cplus_method_ptr_size ();
656 TYPE_CODE (mtype) = TYPE_CODE_METHODPTR;
657 return mtype;
658 }
659
660 /* Allocate a stub method whose return type is TYPE. This apparently
661 happens for speed of symbol reading, since parsing out the
662 arguments to the method is cpu-intensive, the way we are doing it.
663 So, we will fill in arguments later. This always returns a fresh
664 type. */
665
666 struct type *
667 allocate_stub_method (struct type *type)
668 {
669 struct type *mtype;
670
671 mtype = init_type (TYPE_CODE_METHOD, 1, TYPE_FLAG_STUB, NULL,
672 TYPE_OBJFILE (type));
673 TYPE_TARGET_TYPE (mtype) = type;
674 /* _DOMAIN_TYPE (mtype) = unknown yet */
675 return (mtype);
676 }
677
678 /* Create a range type using either a blank type supplied in
679 RESULT_TYPE, or creating a new type, inheriting the objfile from
680 INDEX_TYPE.
681
682 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
683 to HIGH_BOUND, inclusive.
684
685 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
686 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
687
688 struct type *
689 create_range_type (struct type *result_type, struct type *index_type,
690 int low_bound, int high_bound)
691 {
692 if (result_type == NULL)
693 {
694 result_type = alloc_type (TYPE_OBJFILE (index_type));
695 }
696 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
697 TYPE_TARGET_TYPE (result_type) = index_type;
698 if (TYPE_STUB (index_type))
699 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
700 else
701 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
702 TYPE_NFIELDS (result_type) = 2;
703 TYPE_FIELDS (result_type) = (struct field *)
704 TYPE_ALLOC (result_type, 2 * sizeof (struct field));
705 memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field));
706 TYPE_FIELD_BITPOS (result_type, 0) = low_bound;
707 TYPE_FIELD_BITPOS (result_type, 1) = high_bound;
708
709 if (low_bound >= 0)
710 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
711
712 return (result_type);
713 }
714
715 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
716 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
717 bounds will fit in LONGEST), or -1 otherwise. */
718
719 int
720 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
721 {
722 CHECK_TYPEDEF (type);
723 switch (TYPE_CODE (type))
724 {
725 case TYPE_CODE_RANGE:
726 *lowp = TYPE_LOW_BOUND (type);
727 *highp = TYPE_HIGH_BOUND (type);
728 return 1;
729 case TYPE_CODE_ENUM:
730 if (TYPE_NFIELDS (type) > 0)
731 {
732 /* The enums may not be sorted by value, so search all
733 entries */
734 int i;
735
736 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
737 for (i = 0; i < TYPE_NFIELDS (type); i++)
738 {
739 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
740 *lowp = TYPE_FIELD_BITPOS (type, i);
741 if (TYPE_FIELD_BITPOS (type, i) > *highp)
742 *highp = TYPE_FIELD_BITPOS (type, i);
743 }
744
745 /* Set unsigned indicator if warranted. */
746 if (*lowp >= 0)
747 {
748 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
749 }
750 }
751 else
752 {
753 *lowp = 0;
754 *highp = -1;
755 }
756 return 0;
757 case TYPE_CODE_BOOL:
758 *lowp = 0;
759 *highp = 1;
760 return 0;
761 case TYPE_CODE_INT:
762 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
763 return -1;
764 if (!TYPE_UNSIGNED (type))
765 {
766 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
767 *highp = -*lowp - 1;
768 return 0;
769 }
770 /* ... fall through for unsigned ints ... */
771 case TYPE_CODE_CHAR:
772 *lowp = 0;
773 /* This round-about calculation is to avoid shifting by
774 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
775 if TYPE_LENGTH (type) == sizeof (LONGEST). */
776 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
777 *highp = (*highp - 1) | *highp;
778 return 0;
779 default:
780 return -1;
781 }
782 }
783
784 /* Create an array type using either a blank type supplied in
785 RESULT_TYPE, or creating a new type, inheriting the objfile from
786 RANGE_TYPE.
787
788 Elements will be of type ELEMENT_TYPE, the indices will be of type
789 RANGE_TYPE.
790
791 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
792 sure it is TYPE_CODE_UNDEF before we bash it into an array
793 type? */
794
795 struct type *
796 create_array_type (struct type *result_type,
797 struct type *element_type,
798 struct type *range_type)
799 {
800 LONGEST low_bound, high_bound;
801
802 if (result_type == NULL)
803 {
804 result_type = alloc_type (TYPE_OBJFILE (range_type));
805 }
806 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
807 TYPE_TARGET_TYPE (result_type) = element_type;
808 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
809 low_bound = high_bound = 0;
810 CHECK_TYPEDEF (element_type);
811 TYPE_LENGTH (result_type) =
812 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
813 TYPE_NFIELDS (result_type) = 1;
814 TYPE_FIELDS (result_type) =
815 (struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
816 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
817 TYPE_FIELD_TYPE (result_type, 0) = range_type;
818 TYPE_VPTR_FIELDNO (result_type) = -1;
819
820 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
821 if (TYPE_LENGTH (result_type) == 0)
822 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
823
824 return (result_type);
825 }
826
827 /* Create a string type using either a blank type supplied in
828 RESULT_TYPE, or creating a new type. String types are similar
829 enough to array of char types that we can use create_array_type to
830 build the basic type and then bash it into a string type.
831
832 For fixed length strings, the range type contains 0 as the lower
833 bound and the length of the string minus one as the upper bound.
834
835 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
836 sure it is TYPE_CODE_UNDEF before we bash it into a string
837 type? */
838
839 struct type *
840 create_string_type (struct type *result_type,
841 struct type *range_type)
842 {
843 struct type *string_char_type;
844
845 string_char_type = language_string_char_type (current_language,
846 current_gdbarch);
847 result_type = create_array_type (result_type,
848 string_char_type,
849 range_type);
850 TYPE_CODE (result_type) = TYPE_CODE_STRING;
851 return (result_type);
852 }
853
854 struct type *
855 create_set_type (struct type *result_type, struct type *domain_type)
856 {
857 if (result_type == NULL)
858 {
859 result_type = alloc_type (TYPE_OBJFILE (domain_type));
860 }
861 TYPE_CODE (result_type) = TYPE_CODE_SET;
862 TYPE_NFIELDS (result_type) = 1;
863 TYPE_FIELDS (result_type) = (struct field *)
864 TYPE_ALLOC (result_type, 1 * sizeof (struct field));
865 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
866
867 if (!TYPE_STUB (domain_type))
868 {
869 LONGEST low_bound, high_bound, bit_length;
870 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
871 low_bound = high_bound = 0;
872 bit_length = high_bound - low_bound + 1;
873 TYPE_LENGTH (result_type)
874 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
875 if (low_bound >= 0)
876 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
877 }
878 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
879
880 return (result_type);
881 }
882
883 void
884 append_flags_type_flag (struct type *type, int bitpos, char *name)
885 {
886 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
887 gdb_assert (bitpos < TYPE_NFIELDS (type));
888 gdb_assert (bitpos >= 0);
889
890 if (name)
891 {
892 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
893 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
894 }
895 else
896 {
897 /* Don't show this field to the user. */
898 TYPE_FIELD_BITPOS (type, bitpos) = -1;
899 }
900 }
901
902 struct type *
903 init_flags_type (char *name, int length)
904 {
905 int nfields = length * TARGET_CHAR_BIT;
906 struct type *type;
907
908 type = init_type (TYPE_CODE_FLAGS, length,
909 TYPE_FLAG_UNSIGNED, name, NULL);
910 TYPE_NFIELDS (type) = nfields;
911 TYPE_FIELDS (type) = TYPE_ALLOC (type,
912 nfields * sizeof (struct field));
913 memset (TYPE_FIELDS (type), 0, nfields * sizeof (struct field));
914
915 return type;
916 }
917
918 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
919 and any array types nested inside it. */
920
921 void
922 make_vector_type (struct type *array_type)
923 {
924 struct type *inner_array, *elt_type;
925 int flags;
926
927 /* Find the innermost array type, in case the array is
928 multi-dimensional. */
929 inner_array = array_type;
930 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
931 inner_array = TYPE_TARGET_TYPE (inner_array);
932
933 elt_type = TYPE_TARGET_TYPE (inner_array);
934 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
935 {
936 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
937 elt_type = make_qualified_type (elt_type, flags, NULL);
938 TYPE_TARGET_TYPE (inner_array) = elt_type;
939 }
940
941 TYPE_FLAGS (array_type) |= TYPE_FLAG_VECTOR;
942 }
943
944 struct type *
945 init_vector_type (struct type *elt_type, int n)
946 {
947 struct type *array_type;
948
949 array_type = create_array_type (0, elt_type,
950 create_range_type (0,
951 builtin_type_int32,
952 0, n-1));
953 make_vector_type (array_type);
954 return array_type;
955 }
956
957 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
958 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
959 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
960 TYPE doesn't include the offset (that's the value of the MEMBER
961 itself), but does include the structure type into which it points
962 (for some reason).
963
964 When "smashing" the type, we preserve the objfile that the old type
965 pointed to, since we aren't changing where the type is actually
966 allocated. */
967
968 void
969 smash_to_memberptr_type (struct type *type, struct type *domain,
970 struct type *to_type)
971 {
972 struct objfile *objfile;
973
974 objfile = TYPE_OBJFILE (type);
975
976 smash_type (type);
977 TYPE_OBJFILE (type) = objfile;
978 TYPE_TARGET_TYPE (type) = to_type;
979 TYPE_DOMAIN_TYPE (type) = domain;
980 /* Assume that a data member pointer is the same size as a normal
981 pointer. */
982 TYPE_LENGTH (type) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
983 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
984 }
985
986 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
987 METHOD just means `function that gets an extra "this" argument'.
988
989 When "smashing" the type, we preserve the objfile that the old type
990 pointed to, since we aren't changing where the type is actually
991 allocated. */
992
993 void
994 smash_to_method_type (struct type *type, struct type *domain,
995 struct type *to_type, struct field *args,
996 int nargs, int varargs)
997 {
998 struct objfile *objfile;
999
1000 objfile = TYPE_OBJFILE (type);
1001
1002 smash_type (type);
1003 TYPE_OBJFILE (type) = objfile;
1004 TYPE_TARGET_TYPE (type) = to_type;
1005 TYPE_DOMAIN_TYPE (type) = domain;
1006 TYPE_FIELDS (type) = args;
1007 TYPE_NFIELDS (type) = nargs;
1008 if (varargs)
1009 TYPE_FLAGS (type) |= TYPE_FLAG_VARARGS;
1010 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1011 TYPE_CODE (type) = TYPE_CODE_METHOD;
1012 }
1013
1014 /* Return a typename for a struct/union/enum type without "struct ",
1015 "union ", or "enum ". If the type has a NULL name, return NULL. */
1016
1017 char *
1018 type_name_no_tag (const struct type *type)
1019 {
1020 if (TYPE_TAG_NAME (type) != NULL)
1021 return TYPE_TAG_NAME (type);
1022
1023 /* Is there code which expects this to return the name if there is
1024 no tag name? My guess is that this is mainly used for C++ in
1025 cases where the two will always be the same. */
1026 return TYPE_NAME (type);
1027 }
1028
1029 /* Lookup a typedef or primitive type named NAME, visible in lexical
1030 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1031 suitably defined. */
1032
1033 struct type *
1034 lookup_typename (char *name, struct block *block, int noerr)
1035 {
1036 struct symbol *sym;
1037 struct type *tmp;
1038
1039 sym = lookup_symbol (name, block, VAR_DOMAIN, 0,
1040 (struct symtab **) NULL);
1041 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1042 {
1043 tmp = language_lookup_primitive_type_by_name (current_language,
1044 current_gdbarch,
1045 name);
1046 if (tmp)
1047 {
1048 return (tmp);
1049 }
1050 else if (!tmp && noerr)
1051 {
1052 return (NULL);
1053 }
1054 else
1055 {
1056 error (_("No type named %s."), name);
1057 }
1058 }
1059 return (SYMBOL_TYPE (sym));
1060 }
1061
1062 struct type *
1063 lookup_unsigned_typename (char *name)
1064 {
1065 char *uns = alloca (strlen (name) + 10);
1066
1067 strcpy (uns, "unsigned ");
1068 strcpy (uns + 9, name);
1069 return (lookup_typename (uns, (struct block *) NULL, 0));
1070 }
1071
1072 struct type *
1073 lookup_signed_typename (char *name)
1074 {
1075 struct type *t;
1076 char *uns = alloca (strlen (name) + 8);
1077
1078 strcpy (uns, "signed ");
1079 strcpy (uns + 7, name);
1080 t = lookup_typename (uns, (struct block *) NULL, 1);
1081 /* If we don't find "signed FOO" just try again with plain "FOO". */
1082 if (t != NULL)
1083 return t;
1084 return lookup_typename (name, (struct block *) NULL, 0);
1085 }
1086
1087 /* Lookup a structure type named "struct NAME",
1088 visible in lexical block BLOCK. */
1089
1090 struct type *
1091 lookup_struct (char *name, struct block *block)
1092 {
1093 struct symbol *sym;
1094
1095 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
1096 (struct symtab **) NULL);
1097
1098 if (sym == NULL)
1099 {
1100 error (_("No struct type named %s."), name);
1101 }
1102 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1103 {
1104 error (_("This context has class, union or enum %s, not a struct."),
1105 name);
1106 }
1107 return (SYMBOL_TYPE (sym));
1108 }
1109
1110 /* Lookup a union type named "union NAME",
1111 visible in lexical block BLOCK. */
1112
1113 struct type *
1114 lookup_union (char *name, struct block *block)
1115 {
1116 struct symbol *sym;
1117 struct type *t;
1118
1119 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
1120 (struct symtab **) NULL);
1121
1122 if (sym == NULL)
1123 error (_("No union type named %s."), name);
1124
1125 t = SYMBOL_TYPE (sym);
1126
1127 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1128 return (t);
1129
1130 /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
1131 * a further "declared_type" field to discover it is really a union.
1132 */
1133 if (HAVE_CPLUS_STRUCT (t))
1134 if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
1135 return (t);
1136
1137 /* If we get here, it's not a union. */
1138 error (_("This context has class, struct or enum %s, not a union."),
1139 name);
1140 }
1141
1142
1143 /* Lookup an enum type named "enum NAME",
1144 visible in lexical block BLOCK. */
1145
1146 struct type *
1147 lookup_enum (char *name, struct block *block)
1148 {
1149 struct symbol *sym;
1150
1151 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
1152 (struct symtab **) NULL);
1153 if (sym == NULL)
1154 {
1155 error (_("No enum type named %s."), name);
1156 }
1157 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1158 {
1159 error (_("This context has class, struct or union %s, not an enum."),
1160 name);
1161 }
1162 return (SYMBOL_TYPE (sym));
1163 }
1164
1165 /* Lookup a template type named "template NAME<TYPE>",
1166 visible in lexical block BLOCK. */
1167
1168 struct type *
1169 lookup_template_type (char *name, struct type *type,
1170 struct block *block)
1171 {
1172 struct symbol *sym;
1173 char *nam = (char *)
1174 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1175 strcpy (nam, name);
1176 strcat (nam, "<");
1177 strcat (nam, TYPE_NAME (type));
1178 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1179
1180 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0,
1181 (struct symtab **) NULL);
1182
1183 if (sym == NULL)
1184 {
1185 error (_("No template type named %s."), name);
1186 }
1187 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1188 {
1189 error (_("This context has class, union or enum %s, not a struct."),
1190 name);
1191 }
1192 return (SYMBOL_TYPE (sym));
1193 }
1194
1195 /* Given a type TYPE, lookup the type of the component of type named
1196 NAME.
1197
1198 TYPE can be either a struct or union, or a pointer or reference to
1199 a struct or union. If it is a pointer or reference, its target
1200 type is automatically used. Thus '.' and '->' are interchangable,
1201 as specified for the definitions of the expression element types
1202 STRUCTOP_STRUCT and STRUCTOP_PTR.
1203
1204 If NOERR is nonzero, return zero if NAME is not suitably defined.
1205 If NAME is the name of a baseclass type, return that type. */
1206
1207 struct type *
1208 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1209 {
1210 int i;
1211
1212 for (;;)
1213 {
1214 CHECK_TYPEDEF (type);
1215 if (TYPE_CODE (type) != TYPE_CODE_PTR
1216 && TYPE_CODE (type) != TYPE_CODE_REF)
1217 break;
1218 type = TYPE_TARGET_TYPE (type);
1219 }
1220
1221 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1222 && TYPE_CODE (type) != TYPE_CODE_UNION)
1223 {
1224 target_terminal_ours ();
1225 gdb_flush (gdb_stdout);
1226 fprintf_unfiltered (gdb_stderr, "Type ");
1227 type_print (type, "", gdb_stderr, -1);
1228 error (_(" is not a structure or union type."));
1229 }
1230
1231 #if 0
1232 /* FIXME: This change put in by Michael seems incorrect for the case
1233 where the structure tag name is the same as the member name.
1234 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1235 foo; } bell;" Disabled by fnf. */
1236 {
1237 char *typename;
1238
1239 typename = type_name_no_tag (type);
1240 if (typename != NULL && strcmp (typename, name) == 0)
1241 return type;
1242 }
1243 #endif
1244
1245 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1246 {
1247 char *t_field_name = TYPE_FIELD_NAME (type, i);
1248
1249 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1250 {
1251 return TYPE_FIELD_TYPE (type, i);
1252 }
1253 }
1254
1255 /* OK, it's not in this class. Recursively check the baseclasses. */
1256 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1257 {
1258 struct type *t;
1259
1260 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1261 if (t != NULL)
1262 {
1263 return t;
1264 }
1265 }
1266
1267 if (noerr)
1268 {
1269 return NULL;
1270 }
1271
1272 target_terminal_ours ();
1273 gdb_flush (gdb_stdout);
1274 fprintf_unfiltered (gdb_stderr, "Type ");
1275 type_print (type, "", gdb_stderr, -1);
1276 fprintf_unfiltered (gdb_stderr, " has no component named ");
1277 fputs_filtered (name, gdb_stderr);
1278 error (("."));
1279 return (struct type *) -1; /* For lint */
1280 }
1281
1282 /* If possible, make the vptr_fieldno and vptr_basetype fields of TYPE
1283 valid. Callers should be aware that in some cases (for example,
1284 the type or one of its baseclasses is a stub type and we are
1285 debugging a .o file), this function will not be able to find the
1286 virtual function table pointer, and vptr_fieldno will remain -1 and
1287 vptr_basetype will remain NULL. */
1288
1289 void
1290 fill_in_vptr_fieldno (struct type *type)
1291 {
1292 CHECK_TYPEDEF (type);
1293
1294 if (TYPE_VPTR_FIELDNO (type) < 0)
1295 {
1296 int i;
1297
1298 /* We must start at zero in case the first (and only) baseclass
1299 is virtual (and hence we cannot share the table pointer). */
1300 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1301 {
1302 struct type *baseclass = check_typedef (TYPE_BASECLASS (type,
1303 i));
1304 fill_in_vptr_fieldno (baseclass);
1305 if (TYPE_VPTR_FIELDNO (baseclass) >= 0)
1306 {
1307 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (baseclass);
1308 TYPE_VPTR_BASETYPE (type) = TYPE_VPTR_BASETYPE (baseclass);
1309 break;
1310 }
1311 }
1312 }
1313 }
1314
1315 /* Find the method and field indices for the destructor in class type T.
1316 Return 1 if the destructor was found, otherwise, return 0. */
1317
1318 int
1319 get_destructor_fn_field (struct type *t,
1320 int *method_indexp,
1321 int *field_indexp)
1322 {
1323 int i;
1324
1325 for (i = 0; i < TYPE_NFN_FIELDS (t); i++)
1326 {
1327 int j;
1328 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1329
1330 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (t, i); j++)
1331 {
1332 if (is_destructor_name (TYPE_FN_FIELD_PHYSNAME (f, j)) != 0)
1333 {
1334 *method_indexp = i;
1335 *field_indexp = j;
1336 return 1;
1337 }
1338 }
1339 }
1340 return 0;
1341 }
1342
1343 static void
1344 stub_noname_complaint (void)
1345 {
1346 complaint (&symfile_complaints, _("stub type has NULL name"));
1347 }
1348
1349 /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1350
1351 If this is a stubbed struct (i.e. declared as struct foo *), see if
1352 we can find a full definition in some other file. If so, copy this
1353 definition, so we can use it in future. There used to be a comment
1354 (but not any code) that if we don't find a full definition, we'd
1355 set a flag so we don't spend time in the future checking the same
1356 type. That would be a mistake, though--we might load in more
1357 symbols which contain a full definition for the type.
1358
1359 This used to be coded as a macro, but I don't think it is called
1360 often enough to merit such treatment. */
1361
1362 /* Find the real type of TYPE. This function returns the real type,
1363 after removing all layers of typedefs and completing opaque or stub
1364 types. Completion changes the TYPE argument, but stripping of
1365 typedefs does not. */
1366
1367 struct type *
1368 check_typedef (struct type *type)
1369 {
1370 struct type *orig_type = type;
1371 int is_const, is_volatile;
1372
1373 gdb_assert (type);
1374
1375 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1376 {
1377 if (!TYPE_TARGET_TYPE (type))
1378 {
1379 char *name;
1380 struct symbol *sym;
1381
1382 /* It is dangerous to call lookup_symbol if we are currently
1383 reading a symtab. Infinite recursion is one danger. */
1384 if (currently_reading_symtab)
1385 return type;
1386
1387 name = type_name_no_tag (type);
1388 /* FIXME: shouldn't we separately check the TYPE_NAME and
1389 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1390 VAR_DOMAIN as appropriate? (this code was written before
1391 TYPE_NAME and TYPE_TAG_NAME were separate). */
1392 if (name == NULL)
1393 {
1394 stub_noname_complaint ();
1395 return type;
1396 }
1397 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0,
1398 (struct symtab **) NULL);
1399 if (sym)
1400 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1401 else /* TYPE_CODE_UNDEF */
1402 TYPE_TARGET_TYPE (type) = alloc_type (NULL);
1403 }
1404 type = TYPE_TARGET_TYPE (type);
1405 }
1406
1407 is_const = TYPE_CONST (type);
1408 is_volatile = TYPE_VOLATILE (type);
1409
1410 /* If this is a struct/class/union with no fields, then check
1411 whether a full definition exists somewhere else. This is for
1412 systems where a type definition with no fields is issued for such
1413 types, instead of identifying them as stub types in the first
1414 place. */
1415
1416 if (TYPE_IS_OPAQUE (type)
1417 && opaque_type_resolution
1418 && !currently_reading_symtab)
1419 {
1420 char *name = type_name_no_tag (type);
1421 struct type *newtype;
1422 if (name == NULL)
1423 {
1424 stub_noname_complaint ();
1425 return type;
1426 }
1427 newtype = lookup_transparent_type (name);
1428
1429 if (newtype)
1430 {
1431 /* If the resolved type and the stub are in the same
1432 objfile, then replace the stub type with the real deal.
1433 But if they're in separate objfiles, leave the stub
1434 alone; we'll just look up the transparent type every time
1435 we call check_typedef. We can't create pointers between
1436 types allocated to different objfiles, since they may
1437 have different lifetimes. Trying to copy NEWTYPE over to
1438 TYPE's objfile is pointless, too, since you'll have to
1439 move over any other types NEWTYPE refers to, which could
1440 be an unbounded amount of stuff. */
1441 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1442 make_cv_type (is_const, is_volatile, newtype, &type);
1443 else
1444 type = newtype;
1445 }
1446 }
1447 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1448 types. */
1449 else if (TYPE_STUB (type) && !currently_reading_symtab)
1450 {
1451 char *name = type_name_no_tag (type);
1452 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1453 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1454 as appropriate? (this code was written before TYPE_NAME and
1455 TYPE_TAG_NAME were separate). */
1456 struct symbol *sym;
1457 if (name == NULL)
1458 {
1459 stub_noname_complaint ();
1460 return type;
1461 }
1462 sym = lookup_symbol (name, 0, STRUCT_DOMAIN,
1463 0, (struct symtab **) NULL);
1464 if (sym)
1465 {
1466 /* Same as above for opaque types, we can replace the stub
1467 with the complete type only if they are int the same
1468 objfile. */
1469 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1470 make_cv_type (is_const, is_volatile,
1471 SYMBOL_TYPE (sym), &type);
1472 else
1473 type = SYMBOL_TYPE (sym);
1474 }
1475 }
1476
1477 if (TYPE_TARGET_STUB (type))
1478 {
1479 struct type *range_type;
1480 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1481
1482 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1483 {
1484 /* Empty. */
1485 }
1486 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1487 && TYPE_NFIELDS (type) == 1
1488 && (TYPE_CODE (range_type = TYPE_FIELD_TYPE (type, 0))
1489 == TYPE_CODE_RANGE))
1490 {
1491 /* Now recompute the length of the array type, based on its
1492 number of elements and the target type's length. */
1493 TYPE_LENGTH (type) =
1494 ((TYPE_FIELD_BITPOS (range_type, 1)
1495 - TYPE_FIELD_BITPOS (range_type, 0) + 1)
1496 * TYPE_LENGTH (target_type));
1497 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1498 }
1499 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1500 {
1501 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1502 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1503 }
1504 }
1505 /* Cache TYPE_LENGTH for future use. */
1506 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1507 return type;
1508 }
1509
1510 /* Parse a type expression in the string [P..P+LENGTH). If an error
1511 occurs, silently return builtin_type_void. */
1512
1513 static struct type *
1514 safe_parse_type (char *p, int length)
1515 {
1516 struct ui_file *saved_gdb_stderr;
1517 struct type *type;
1518
1519 /* Suppress error messages. */
1520 saved_gdb_stderr = gdb_stderr;
1521 gdb_stderr = ui_file_new ();
1522
1523 /* Call parse_and_eval_type() without fear of longjmp()s. */
1524 if (!gdb_parse_and_eval_type (p, length, &type))
1525 type = builtin_type_void;
1526
1527 /* Stop suppressing error messages. */
1528 ui_file_delete (gdb_stderr);
1529 gdb_stderr = saved_gdb_stderr;
1530
1531 return type;
1532 }
1533
1534 /* Ugly hack to convert method stubs into method types.
1535
1536 He ain't kiddin'. This demangles the name of the method into a
1537 string including argument types, parses out each argument type,
1538 generates a string casting a zero to that type, evaluates the
1539 string, and stuffs the resulting type into an argtype vector!!!
1540 Then it knows the type of the whole function (including argument
1541 types for overloading), which info used to be in the stab's but was
1542 removed to hack back the space required for them. */
1543
1544 static void
1545 check_stub_method (struct type *type, int method_id, int signature_id)
1546 {
1547 struct fn_field *f;
1548 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1549 char *demangled_name = cplus_demangle (mangled_name,
1550 DMGL_PARAMS | DMGL_ANSI);
1551 char *argtypetext, *p;
1552 int depth = 0, argcount = 1;
1553 struct field *argtypes;
1554 struct type *mtype;
1555
1556 /* Make sure we got back a function string that we can use. */
1557 if (demangled_name)
1558 p = strchr (demangled_name, '(');
1559 else
1560 p = NULL;
1561
1562 if (demangled_name == NULL || p == NULL)
1563 error (_("Internal: Cannot demangle mangled name `%s'."),
1564 mangled_name);
1565
1566 /* Now, read in the parameters that define this type. */
1567 p += 1;
1568 argtypetext = p;
1569 while (*p)
1570 {
1571 if (*p == '(' || *p == '<')
1572 {
1573 depth += 1;
1574 }
1575 else if (*p == ')' || *p == '>')
1576 {
1577 depth -= 1;
1578 }
1579 else if (*p == ',' && depth == 0)
1580 {
1581 argcount += 1;
1582 }
1583
1584 p += 1;
1585 }
1586
1587 /* If we read one argument and it was ``void'', don't count it. */
1588 if (strncmp (argtypetext, "(void)", 6) == 0)
1589 argcount -= 1;
1590
1591 /* We need one extra slot, for the THIS pointer. */
1592
1593 argtypes = (struct field *)
1594 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1595 p = argtypetext;
1596
1597 /* Add THIS pointer for non-static methods. */
1598 f = TYPE_FN_FIELDLIST1 (type, method_id);
1599 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1600 argcount = 0;
1601 else
1602 {
1603 argtypes[0].type = lookup_pointer_type (type);
1604 argcount = 1;
1605 }
1606
1607 if (*p != ')') /* () means no args, skip while */
1608 {
1609 depth = 0;
1610 while (*p)
1611 {
1612 if (depth <= 0 && (*p == ',' || *p == ')'))
1613 {
1614 /* Avoid parsing of ellipsis, they will be handled below.
1615 Also avoid ``void'' as above. */
1616 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1617 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1618 {
1619 argtypes[argcount].type =
1620 safe_parse_type (argtypetext, p - argtypetext);
1621 argcount += 1;
1622 }
1623 argtypetext = p + 1;
1624 }
1625
1626 if (*p == '(' || *p == '<')
1627 {
1628 depth += 1;
1629 }
1630 else if (*p == ')' || *p == '>')
1631 {
1632 depth -= 1;
1633 }
1634
1635 p += 1;
1636 }
1637 }
1638
1639 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1640
1641 /* Now update the old "stub" type into a real type. */
1642 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1643 TYPE_DOMAIN_TYPE (mtype) = type;
1644 TYPE_FIELDS (mtype) = argtypes;
1645 TYPE_NFIELDS (mtype) = argcount;
1646 TYPE_FLAGS (mtype) &= ~TYPE_FLAG_STUB;
1647 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1648 if (p[-2] == '.')
1649 TYPE_FLAGS (mtype) |= TYPE_FLAG_VARARGS;
1650
1651 xfree (demangled_name);
1652 }
1653
1654 /* This is the external interface to check_stub_method, above. This
1655 function unstubs all of the signatures for TYPE's METHOD_ID method
1656 name. After calling this function TYPE_FN_FIELD_STUB will be
1657 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1658 correct.
1659
1660 This function unfortunately can not die until stabs do. */
1661
1662 void
1663 check_stub_method_group (struct type *type, int method_id)
1664 {
1665 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1666 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1667 int j, found_stub = 0;
1668
1669 for (j = 0; j < len; j++)
1670 if (TYPE_FN_FIELD_STUB (f, j))
1671 {
1672 found_stub = 1;
1673 check_stub_method (type, method_id, j);
1674 }
1675
1676 /* GNU v3 methods with incorrect names were corrected when we read
1677 in type information, because it was cheaper to do it then. The
1678 only GNU v2 methods with incorrect method names are operators and
1679 destructors; destructors were also corrected when we read in type
1680 information.
1681
1682 Therefore the only thing we need to handle here are v2 operator
1683 names. */
1684 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1685 {
1686 int ret;
1687 char dem_opname[256];
1688
1689 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1690 method_id),
1691 dem_opname, DMGL_ANSI);
1692 if (!ret)
1693 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1694 method_id),
1695 dem_opname, 0);
1696 if (ret)
1697 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1698 }
1699 }
1700
1701 const struct cplus_struct_type cplus_struct_default;
1702
1703 void
1704 allocate_cplus_struct_type (struct type *type)
1705 {
1706 if (!HAVE_CPLUS_STRUCT (type))
1707 {
1708 TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1709 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1710 *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1711 }
1712 }
1713
1714 /* Helper function to initialize the standard scalar types.
1715
1716 If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy of
1717 the string pointed to by name in the objfile_obstack for that
1718 objfile, and initialize the type name to that copy. There are
1719 places (mipsread.c in particular, where init_type is called with a
1720 NULL value for NAME). */
1721
1722 struct type *
1723 init_type (enum type_code code, int length, int flags,
1724 char *name, struct objfile *objfile)
1725 {
1726 struct type *type;
1727
1728 type = alloc_type (objfile);
1729 TYPE_CODE (type) = code;
1730 TYPE_LENGTH (type) = length;
1731 TYPE_FLAGS (type) |= flags;
1732 if ((name != NULL) && (objfile != NULL))
1733 {
1734 TYPE_NAME (type) = obsavestring (name, strlen (name),
1735 &objfile->objfile_obstack);
1736 }
1737 else
1738 {
1739 TYPE_NAME (type) = name;
1740 }
1741
1742 /* C++ fancies. */
1743
1744 if (name && strcmp (name, "char") == 0)
1745 TYPE_FLAGS (type) |= TYPE_FLAG_NOSIGN;
1746
1747 if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
1748 || code == TYPE_CODE_NAMESPACE)
1749 {
1750 INIT_CPLUS_SPECIFIC (type);
1751 }
1752 return (type);
1753 }
1754
1755 /* Helper function. Create an empty composite type. */
1756
1757 struct type *
1758 init_composite_type (char *name, enum type_code code)
1759 {
1760 struct type *t;
1761 gdb_assert (code == TYPE_CODE_STRUCT
1762 || code == TYPE_CODE_UNION);
1763 t = init_type (code, 0, 0, NULL, NULL);
1764 TYPE_TAG_NAME (t) = name;
1765 return t;
1766 }
1767
1768 /* Helper function. Append a field to a composite type. */
1769
1770 void
1771 append_composite_type_field (struct type *t, char *name,
1772 struct type *field)
1773 {
1774 struct field *f;
1775 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
1776 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
1777 sizeof (struct field) * TYPE_NFIELDS (t));
1778 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
1779 memset (f, 0, sizeof f[0]);
1780 FIELD_TYPE (f[0]) = field;
1781 FIELD_NAME (f[0]) = name;
1782 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1783 {
1784 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
1785 TYPE_LENGTH (t) = TYPE_LENGTH (field);
1786 }
1787 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
1788 {
1789 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
1790 if (TYPE_NFIELDS (t) > 1)
1791 {
1792 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
1793 + TYPE_LENGTH (field) * TARGET_CHAR_BIT);
1794 }
1795 }
1796 }
1797
1798 /* Look up a fundamental type for the specified objfile.
1799 May need to construct such a type if this is the first use.
1800
1801 Some object file formats (ELF, COFF, etc) do not define fundamental
1802 types such as "int" or "double". Others (stabs for example), do
1803 define fundamental types.
1804
1805 For the formats which don't provide fundamental types, gdb can
1806 create such types, using defaults reasonable for the current
1807 language and the current target machine.
1808
1809 NOTE: This routine is obsolescent. Each debugging format reader
1810 should manage it's own fundamental types, either creating them from
1811 suitable defaults or reading them from the debugging information,
1812 whichever is appropriate. The DWARF reader has already been fixed
1813 to do this. Once the other readers are fixed, this routine will go
1814 away. Also note that fundamental types should be managed on a
1815 compilation unit basis in a multi-language environment, not on a
1816 linkage unit basis as is done here. */
1817
1818
1819 struct type *
1820 lookup_fundamental_type (struct objfile *objfile, int typeid)
1821 {
1822 struct type **typep;
1823 int nbytes;
1824
1825 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
1826 {
1827 error (_("internal error - invalid fundamental type id %d"),
1828 typeid);
1829 }
1830
1831 /* If this is the first time we need a fundamental type for this
1832 objfile then we need to initialize the vector of type
1833 pointers. */
1834
1835 if (objfile->fundamental_types == NULL)
1836 {
1837 nbytes = FT_NUM_MEMBERS * sizeof (struct type *);
1838 objfile->fundamental_types = (struct type **)
1839 obstack_alloc (&objfile->objfile_obstack, nbytes);
1840 memset ((char *) objfile->fundamental_types, 0, nbytes);
1841 OBJSTAT (objfile, n_types += FT_NUM_MEMBERS);
1842 }
1843
1844 /* Look for this particular type in the fundamental type vector. If
1845 one is not found, create and install one appropriate for the
1846 current language. */
1847
1848 typep = objfile->fundamental_types + typeid;
1849 if (*typep == NULL)
1850 {
1851 *typep = create_fundamental_type (objfile, typeid);
1852 }
1853
1854 return (*typep);
1855 }
1856
1857 int
1858 can_dereference (struct type *t)
1859 {
1860 /* FIXME: Should we return true for references as well as
1861 pointers? */
1862 CHECK_TYPEDEF (t);
1863 return
1864 (t != NULL
1865 && TYPE_CODE (t) == TYPE_CODE_PTR
1866 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1867 }
1868
1869 int
1870 is_integral_type (struct type *t)
1871 {
1872 CHECK_TYPEDEF (t);
1873 return
1874 ((t != NULL)
1875 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1876 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1877 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1878 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1879 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1880 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1881 }
1882
1883 /* Check whether BASE is an ancestor or base class or DCLASS
1884 Return 1 if so, and 0 if not.
1885 Note: callers may want to check for identity of the types before
1886 calling this function -- identical types are considered to satisfy
1887 the ancestor relationship even if they're identical. */
1888
1889 int
1890 is_ancestor (struct type *base, struct type *dclass)
1891 {
1892 int i;
1893
1894 CHECK_TYPEDEF (base);
1895 CHECK_TYPEDEF (dclass);
1896
1897 if (base == dclass)
1898 return 1;
1899 if (TYPE_NAME (base) && TYPE_NAME (dclass)
1900 && !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
1901 return 1;
1902
1903 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1904 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1905 return 1;
1906
1907 return 0;
1908 }
1909
1910
1911
1912 /* See whether DCLASS has a virtual table. This routine is aimed at
1913 the HP/Taligent ANSI C++ runtime model, and may not work with other
1914 runtime models. Return 1 => Yes, 0 => No. */
1915
1916 int
1917 has_vtable (struct type *dclass)
1918 {
1919 /* In the HP ANSI C++ runtime model, a class has a vtable only if it
1920 has virtual functions or virtual bases. */
1921
1922 int i;
1923
1924 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
1925 return 0;
1926
1927 /* First check for the presence of virtual bases. */
1928 if (TYPE_FIELD_VIRTUAL_BITS (dclass))
1929 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1930 if (B_TST (TYPE_FIELD_VIRTUAL_BITS (dclass), i))
1931 return 1;
1932
1933 /* Next check for virtual functions. */
1934 if (TYPE_FN_FIELDLISTS (dclass))
1935 for (i = 0; i < TYPE_NFN_FIELDS (dclass); i++)
1936 if (TYPE_FN_FIELD_VIRTUAL_P (TYPE_FN_FIELDLIST1 (dclass, i), 0))
1937 return 1;
1938
1939 /* Recurse on non-virtual bases to see if any of them needs a
1940 vtable. */
1941 if (TYPE_FIELD_VIRTUAL_BITS (dclass))
1942 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1943 if ((!B_TST (TYPE_FIELD_VIRTUAL_BITS (dclass), i))
1944 && (has_vtable (TYPE_FIELD_TYPE (dclass, i))))
1945 return 1;
1946
1947 /* Well, maybe we don't need a virtual table. */
1948 return 0;
1949 }
1950
1951 /* Return a pointer to the "primary base class" of DCLASS.
1952
1953 A NULL return indicates that DCLASS has no primary base, or that it
1954 couldn't be found (insufficient information).
1955
1956 This routine is aimed at the HP/Taligent ANSI C++ runtime model,
1957 and may not work with other runtime models. */
1958
1959 struct type *
1960 primary_base_class (struct type *dclass)
1961 {
1962 /* In HP ANSI C++'s runtime model, a "primary base class" of a class
1963 is the first directly inherited, non-virtual base class that
1964 requires a virtual table. */
1965
1966 int i;
1967
1968 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
1969 return NULL;
1970
1971 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1972 if (!TYPE_FIELD_VIRTUAL (dclass, i)
1973 && has_vtable (TYPE_FIELD_TYPE (dclass, i)))
1974 return TYPE_FIELD_TYPE (dclass, i);
1975
1976 return NULL;
1977 }
1978
1979 /* Global manipulated by virtual_base_list[_aux](). */
1980
1981 static struct vbase *current_vbase_list = NULL;
1982
1983 /* Return a pointer to a null-terminated list of struct vbase items.
1984 The vbasetype pointer of each item in the list points to the type
1985 information for a virtual base of the argument DCLASS.
1986
1987 Helper function for virtual_base_list().
1988 Note: the list goes backward, right-to-left.
1989 virtual_base_list() copies the items out in reverse order. */
1990
1991 static void
1992 virtual_base_list_aux (struct type *dclass)
1993 {
1994 struct vbase *tmp_vbase;
1995 int i;
1996
1997 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
1998 return;
1999
2000 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2001 {
2002 /* Recurse on this ancestor, first */
2003 virtual_base_list_aux (TYPE_FIELD_TYPE (dclass, i));
2004
2005 /* If this current base is itself virtual, add it to the list */
2006 if (BASETYPE_VIA_VIRTUAL (dclass, i))
2007 {
2008 struct type *basetype = TYPE_FIELD_TYPE (dclass, i);
2009
2010 /* Check if base already recorded */
2011 tmp_vbase = current_vbase_list;
2012 while (tmp_vbase)
2013 {
2014 if (tmp_vbase->vbasetype == basetype)
2015 break; /* found it */
2016 tmp_vbase = tmp_vbase->next;
2017 }
2018
2019 if (!tmp_vbase) /* normal exit from loop */
2020 {
2021 /* Allocate new item for this virtual base */
2022 tmp_vbase = (struct vbase *) xmalloc (sizeof (struct vbase));
2023
2024 /* Stick it on at the end of the list */
2025 tmp_vbase->vbasetype = basetype;
2026 tmp_vbase->next = current_vbase_list;
2027 current_vbase_list = tmp_vbase;
2028 }
2029 } /* if virtual */
2030 } /* for loop over bases */
2031 }
2032
2033
2034 /* Compute the list of virtual bases in the right order. Virtual
2035 bases are laid out in the object's memory area in order of their
2036 occurrence in a depth-first, left-to-right search through the
2037 ancestors.
2038
2039 Argument DCLASS is the type whose virtual bases are required.
2040 Return value is the address of a null-terminated array of pointers
2041 to struct type items.
2042
2043 This routine is aimed at the HP/Taligent ANSI C++ runtime model,
2044 and may not work with other runtime models.
2045
2046 This routine merely hands off the argument to virtual_base_list_aux()
2047 and then copies the result into an array to save space. */
2048
2049 static struct type **
2050 virtual_base_list (struct type *dclass)
2051 {
2052 struct vbase *tmp_vbase;
2053 struct vbase *tmp_vbase_2;
2054 int i;
2055 int count;
2056 struct type **vbase_array;
2057
2058 current_vbase_list = NULL;
2059 virtual_base_list_aux (dclass);
2060
2061 for (i = 0, tmp_vbase = current_vbase_list;
2062 tmp_vbase != NULL;
2063 i++, tmp_vbase = tmp_vbase->next)
2064 /* no body */ ;
2065
2066 count = i;
2067
2068 vbase_array = (struct type **)
2069 xmalloc ((count + 1) * sizeof (struct type *));
2070
2071 for (i = count - 1, tmp_vbase = current_vbase_list;
2072 i >= 0; i--,
2073 tmp_vbase = tmp_vbase->next)
2074 vbase_array[i] = tmp_vbase->vbasetype;
2075
2076 /* Get rid of constructed chain. */
2077 tmp_vbase_2 = tmp_vbase = current_vbase_list;
2078 while (tmp_vbase)
2079 {
2080 tmp_vbase = tmp_vbase->next;
2081 xfree (tmp_vbase_2);
2082 tmp_vbase_2 = tmp_vbase;
2083 }
2084
2085 vbase_array[count] = NULL;
2086 return vbase_array;
2087 }
2088
2089 /* Return the length of the virtual base list of the type DCLASS. */
2090
2091 int
2092 virtual_base_list_length (struct type *dclass)
2093 {
2094 int i;
2095 struct vbase *tmp_vbase;
2096
2097 current_vbase_list = NULL;
2098 virtual_base_list_aux (dclass);
2099
2100 for (i = 0, tmp_vbase = current_vbase_list;
2101 tmp_vbase != NULL;
2102 i++, tmp_vbase = tmp_vbase->next)
2103 /* no body */ ;
2104 return i;
2105 }
2106
2107 /* Return the number of elements of the virtual base list of the type
2108 DCLASS, ignoring those appearing in the primary base (and its
2109 primary base, recursively). */
2110
2111 int
2112 virtual_base_list_length_skip_primaries (struct type *dclass)
2113 {
2114 int i;
2115 struct vbase *tmp_vbase;
2116 struct type *primary;
2117
2118 primary = TYPE_RUNTIME_PTR (dclass) ? TYPE_PRIMARY_BASE (dclass) : NULL;
2119
2120 if (!primary)
2121 return virtual_base_list_length (dclass);
2122
2123 current_vbase_list = NULL;
2124 virtual_base_list_aux (dclass);
2125
2126 for (i = 0, tmp_vbase = current_vbase_list;
2127 tmp_vbase != NULL;
2128 tmp_vbase = tmp_vbase->next)
2129 {
2130 if (virtual_base_index (tmp_vbase->vbasetype, primary) >= 0)
2131 continue;
2132 i++;
2133 }
2134 return i;
2135 }
2136
2137 /* Return the index (position) of type BASE, which is a virtual base
2138 class of DCLASS, in the latter's virtual base list. A return of -1
2139 indicates "not found" or a problem. */
2140
2141 int
2142 virtual_base_index (struct type *base, struct type *dclass)
2143 {
2144 struct type *vbase, **vbase_list;
2145 int i;
2146
2147 if ((TYPE_CODE (dclass) != TYPE_CODE_CLASS)
2148 || (TYPE_CODE (base) != TYPE_CODE_CLASS))
2149 return -1;
2150
2151 vbase_list = virtual_base_list (dclass);
2152 for (i = 0, vbase = vbase_list[0];
2153 vbase != NULL;
2154 vbase = vbase_list[++i])
2155 if (vbase == base)
2156 break;
2157
2158 xfree (vbase_list);
2159 return vbase ? i : -1;
2160 }
2161
2162 /* Return the index (position) of type BASE, which is a virtual base
2163 class of DCLASS, in the latter's virtual base list. Skip over all
2164 bases that may appear in the virtual base list of the primary base
2165 class of DCLASS (recursively). A return of -1 indicates "not
2166 found" or a problem. */
2167
2168 int
2169 virtual_base_index_skip_primaries (struct type *base,
2170 struct type *dclass)
2171 {
2172 struct type *vbase, **vbase_list;
2173 int i, j;
2174 struct type *primary;
2175
2176 if ((TYPE_CODE (dclass) != TYPE_CODE_CLASS)
2177 || (TYPE_CODE (base) != TYPE_CODE_CLASS))
2178 return -1;
2179
2180 primary = TYPE_RUNTIME_PTR (dclass) ? TYPE_PRIMARY_BASE (dclass) : NULL;
2181
2182 vbase_list = virtual_base_list (dclass);
2183 for (i = 0, j = -1, vbase = vbase_list[0];
2184 vbase != NULL;
2185 vbase = vbase_list[++i])
2186 {
2187 if (!primary
2188 || (virtual_base_index_skip_primaries (vbase, primary) < 0))
2189 j++;
2190 if (vbase == base)
2191 break;
2192 }
2193 xfree (vbase_list);
2194 return vbase ? j : -1;
2195 }
2196
2197 /* Return position of a derived class DCLASS in the list of primary
2198 bases starting with the remotest ancestor. Position returned is
2199 0-based. */
2200
2201 int
2202 class_index_in_primary_list (struct type *dclass)
2203 {
2204 struct type *pbc; /* primary base class */
2205
2206 /* Simply recurse on primary base */
2207 pbc = TYPE_PRIMARY_BASE (dclass);
2208 if (pbc)
2209 return 1 + class_index_in_primary_list (pbc);
2210 else
2211 return 0;
2212 }
2213
2214 /* Return a count of the number of virtual functions a type has. This
2215 includes all the virtual functions it inherits from its base
2216 classes too. */
2217
2218 /* pai: FIXME This doesn't do the right thing: count redefined virtual
2219 functions only once (latest redefinition). */
2220
2221 int
2222 count_virtual_fns (struct type *dclass)
2223 {
2224 int fn, oi; /* function and overloaded instance indices */
2225 int vfuncs; /* count to return */
2226
2227 /* recurse on bases that can share virtual table */
2228 struct type *pbc = primary_base_class (dclass);
2229 if (pbc)
2230 vfuncs = count_virtual_fns (pbc);
2231 else
2232 vfuncs = 0;
2233
2234 for (fn = 0; fn < TYPE_NFN_FIELDS (dclass); fn++)
2235 for (oi = 0; oi < TYPE_FN_FIELDLIST_LENGTH (dclass, fn); oi++)
2236 if (TYPE_FN_FIELD_VIRTUAL_P (TYPE_FN_FIELDLIST1 (dclass, fn), oi))
2237 vfuncs++;
2238
2239 return vfuncs;
2240 }
2241 \f
2242
2243
2244 /* Functions for overload resolution begin here */
2245
2246 /* Compare two badness vectors A and B and return the result.
2247 0 => A and B are identical
2248 1 => A and B are incomparable
2249 2 => A is better than B
2250 3 => A is worse than B */
2251
2252 int
2253 compare_badness (struct badness_vector *a, struct badness_vector *b)
2254 {
2255 int i;
2256 int tmp;
2257 short found_pos = 0; /* any positives in c? */
2258 short found_neg = 0; /* any negatives in c? */
2259
2260 /* differing lengths => incomparable */
2261 if (a->length != b->length)
2262 return 1;
2263
2264 /* Subtract b from a */
2265 for (i = 0; i < a->length; i++)
2266 {
2267 tmp = a->rank[i] - b->rank[i];
2268 if (tmp > 0)
2269 found_pos = 1;
2270 else if (tmp < 0)
2271 found_neg = 1;
2272 }
2273
2274 if (found_pos)
2275 {
2276 if (found_neg)
2277 return 1; /* incomparable */
2278 else
2279 return 3; /* A > B */
2280 }
2281 else
2282 /* no positives */
2283 {
2284 if (found_neg)
2285 return 2; /* A < B */
2286 else
2287 return 0; /* A == B */
2288 }
2289 }
2290
2291 /* Rank a function by comparing its parameter types (PARMS, length
2292 NPARMS), to the types of an argument list (ARGS, length NARGS).
2293 Return a pointer to a badness vector. This has NARGS + 1
2294 entries. */
2295
2296 struct badness_vector *
2297 rank_function (struct type **parms, int nparms,
2298 struct type **args, int nargs)
2299 {
2300 int i;
2301 struct badness_vector *bv;
2302 int min_len = nparms < nargs ? nparms : nargs;
2303
2304 bv = xmalloc (sizeof (struct badness_vector));
2305 bv->length = nargs + 1; /* add 1 for the length-match rank */
2306 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2307
2308 /* First compare the lengths of the supplied lists.
2309 If there is a mismatch, set it to a high value. */
2310
2311 /* pai/1997-06-03 FIXME: when we have debug info about default
2312 arguments and ellipsis parameter lists, we should consider those
2313 and rank the length-match more finely. */
2314
2315 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
2316
2317 /* Now rank all the parameters of the candidate function */
2318 for (i = 1; i <= min_len; i++)
2319 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
2320
2321 /* If more arguments than parameters, add dummy entries */
2322 for (i = min_len + 1; i <= nargs; i++)
2323 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2324
2325 return bv;
2326 }
2327
2328 /* Compare the names of two integer types, assuming that any sign
2329 qualifiers have been checked already. We do it this way because
2330 there may be an "int" in the name of one of the types. */
2331
2332 static int
2333 integer_types_same_name_p (const char *first, const char *second)
2334 {
2335 int first_p, second_p;
2336
2337 /* If both are shorts, return 1; if neither is a short, keep
2338 checking. */
2339 first_p = (strstr (first, "short") != NULL);
2340 second_p = (strstr (second, "short") != NULL);
2341 if (first_p && second_p)
2342 return 1;
2343 if (first_p || second_p)
2344 return 0;
2345
2346 /* Likewise for long. */
2347 first_p = (strstr (first, "long") != NULL);
2348 second_p = (strstr (second, "long") != NULL);
2349 if (first_p && second_p)
2350 return 1;
2351 if (first_p || second_p)
2352 return 0;
2353
2354 /* Likewise for char. */
2355 first_p = (strstr (first, "char") != NULL);
2356 second_p = (strstr (second, "char") != NULL);
2357 if (first_p && second_p)
2358 return 1;
2359 if (first_p || second_p)
2360 return 0;
2361
2362 /* They must both be ints. */
2363 return 1;
2364 }
2365
2366 /* Compare one type (PARM) for compatibility with another (ARG).
2367 * PARM is intended to be the parameter type of a function; and
2368 * ARG is the supplied argument's type. This function tests if
2369 * the latter can be converted to the former.
2370 *
2371 * Return 0 if they are identical types;
2372 * Otherwise, return an integer which corresponds to how compatible
2373 * PARM is to ARG. The higher the return value, the worse the match.
2374 * Generally the "bad" conversions are all uniformly assigned a 100. */
2375
2376 int
2377 rank_one_type (struct type *parm, struct type *arg)
2378 {
2379 /* Identical type pointers. */
2380 /* However, this still doesn't catch all cases of same type for arg
2381 and param. The reason is that builtin types are different from
2382 the same ones constructed from the object. */
2383 if (parm == arg)
2384 return 0;
2385
2386 /* Resolve typedefs */
2387 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2388 parm = check_typedef (parm);
2389 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2390 arg = check_typedef (arg);
2391
2392 /*
2393 Well, damnit, if the names are exactly the same, I'll say they
2394 are exactly the same. This happens when we generate method
2395 stubs. The types won't point to the same address, but they
2396 really are the same.
2397 */
2398
2399 if (TYPE_NAME (parm) && TYPE_NAME (arg)
2400 && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
2401 return 0;
2402
2403 /* Check if identical after resolving typedefs. */
2404 if (parm == arg)
2405 return 0;
2406
2407 /* See through references, since we can almost make non-references
2408 references. */
2409 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2410 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
2411 + REFERENCE_CONVERSION_BADNESS);
2412 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2413 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
2414 + REFERENCE_CONVERSION_BADNESS);
2415 if (overload_debug)
2416 /* Debugging only. */
2417 fprintf_filtered (gdb_stderr,
2418 "------ Arg is %s [%d], parm is %s [%d]\n",
2419 TYPE_NAME (arg), TYPE_CODE (arg),
2420 TYPE_NAME (parm), TYPE_CODE (parm));
2421
2422 /* x -> y means arg of type x being supplied for parameter of type y */
2423
2424 switch (TYPE_CODE (parm))
2425 {
2426 case TYPE_CODE_PTR:
2427 switch (TYPE_CODE (arg))
2428 {
2429 case TYPE_CODE_PTR:
2430 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2431 return VOID_PTR_CONVERSION_BADNESS;
2432 else
2433 return rank_one_type (TYPE_TARGET_TYPE (parm),
2434 TYPE_TARGET_TYPE (arg));
2435 case TYPE_CODE_ARRAY:
2436 return rank_one_type (TYPE_TARGET_TYPE (parm),
2437 TYPE_TARGET_TYPE (arg));
2438 case TYPE_CODE_FUNC:
2439 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2440 case TYPE_CODE_INT:
2441 case TYPE_CODE_ENUM:
2442 case TYPE_CODE_FLAGS:
2443 case TYPE_CODE_CHAR:
2444 case TYPE_CODE_RANGE:
2445 case TYPE_CODE_BOOL:
2446 return POINTER_CONVERSION_BADNESS;
2447 default:
2448 return INCOMPATIBLE_TYPE_BADNESS;
2449 }
2450 case TYPE_CODE_ARRAY:
2451 switch (TYPE_CODE (arg))
2452 {
2453 case TYPE_CODE_PTR:
2454 case TYPE_CODE_ARRAY:
2455 return rank_one_type (TYPE_TARGET_TYPE (parm),
2456 TYPE_TARGET_TYPE (arg));
2457 default:
2458 return INCOMPATIBLE_TYPE_BADNESS;
2459 }
2460 case TYPE_CODE_FUNC:
2461 switch (TYPE_CODE (arg))
2462 {
2463 case TYPE_CODE_PTR: /* funcptr -> func */
2464 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2465 default:
2466 return INCOMPATIBLE_TYPE_BADNESS;
2467 }
2468 case TYPE_CODE_INT:
2469 switch (TYPE_CODE (arg))
2470 {
2471 case TYPE_CODE_INT:
2472 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2473 {
2474 /* Deal with signed, unsigned, and plain chars and
2475 signed and unsigned ints. */
2476 if (TYPE_NOSIGN (parm))
2477 {
2478 /* This case only for character types */
2479 if (TYPE_NOSIGN (arg))
2480 return 0; /* plain char -> plain char */
2481 else /* signed/unsigned char -> plain char */
2482 return INTEGER_CONVERSION_BADNESS;
2483 }
2484 else if (TYPE_UNSIGNED (parm))
2485 {
2486 if (TYPE_UNSIGNED (arg))
2487 {
2488 /* unsigned int -> unsigned int, or
2489 unsigned long -> unsigned long */
2490 if (integer_types_same_name_p (TYPE_NAME (parm),
2491 TYPE_NAME (arg)))
2492 return 0;
2493 else if (integer_types_same_name_p (TYPE_NAME (arg),
2494 "int")
2495 && integer_types_same_name_p (TYPE_NAME (parm),
2496 "long"))
2497 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2498 else
2499 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
2500 }
2501 else
2502 {
2503 if (integer_types_same_name_p (TYPE_NAME (arg),
2504 "long")
2505 && integer_types_same_name_p (TYPE_NAME (parm),
2506 "int"))
2507 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
2508 else
2509 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2510 }
2511 }
2512 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2513 {
2514 if (integer_types_same_name_p (TYPE_NAME (parm),
2515 TYPE_NAME (arg)))
2516 return 0;
2517 else if (integer_types_same_name_p (TYPE_NAME (arg),
2518 "int")
2519 && integer_types_same_name_p (TYPE_NAME (parm),
2520 "long"))
2521 return INTEGER_PROMOTION_BADNESS;
2522 else
2523 return INTEGER_CONVERSION_BADNESS;
2524 }
2525 else
2526 return INTEGER_CONVERSION_BADNESS;
2527 }
2528 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2529 return INTEGER_PROMOTION_BADNESS;
2530 else
2531 return INTEGER_CONVERSION_BADNESS;
2532 case TYPE_CODE_ENUM:
2533 case TYPE_CODE_FLAGS:
2534 case TYPE_CODE_CHAR:
2535 case TYPE_CODE_RANGE:
2536 case TYPE_CODE_BOOL:
2537 return INTEGER_PROMOTION_BADNESS;
2538 case TYPE_CODE_FLT:
2539 return INT_FLOAT_CONVERSION_BADNESS;
2540 case TYPE_CODE_PTR:
2541 return NS_POINTER_CONVERSION_BADNESS;
2542 default:
2543 return INCOMPATIBLE_TYPE_BADNESS;
2544 }
2545 break;
2546 case TYPE_CODE_ENUM:
2547 switch (TYPE_CODE (arg))
2548 {
2549 case TYPE_CODE_INT:
2550 case TYPE_CODE_CHAR:
2551 case TYPE_CODE_RANGE:
2552 case TYPE_CODE_BOOL:
2553 case TYPE_CODE_ENUM:
2554 return INTEGER_CONVERSION_BADNESS;
2555 case TYPE_CODE_FLT:
2556 return INT_FLOAT_CONVERSION_BADNESS;
2557 default:
2558 return INCOMPATIBLE_TYPE_BADNESS;
2559 }
2560 break;
2561 case TYPE_CODE_CHAR:
2562 switch (TYPE_CODE (arg))
2563 {
2564 case TYPE_CODE_RANGE:
2565 case TYPE_CODE_BOOL:
2566 case TYPE_CODE_ENUM:
2567 return INTEGER_CONVERSION_BADNESS;
2568 case TYPE_CODE_FLT:
2569 return INT_FLOAT_CONVERSION_BADNESS;
2570 case TYPE_CODE_INT:
2571 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2572 return INTEGER_CONVERSION_BADNESS;
2573 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2574 return INTEGER_PROMOTION_BADNESS;
2575 /* >>> !! else fall through !! <<< */
2576 case TYPE_CODE_CHAR:
2577 /* Deal with signed, unsigned, and plain chars for C++ and
2578 with int cases falling through from previous case. */
2579 if (TYPE_NOSIGN (parm))
2580 {
2581 if (TYPE_NOSIGN (arg))
2582 return 0;
2583 else
2584 return INTEGER_CONVERSION_BADNESS;
2585 }
2586 else if (TYPE_UNSIGNED (parm))
2587 {
2588 if (TYPE_UNSIGNED (arg))
2589 return 0;
2590 else
2591 return INTEGER_PROMOTION_BADNESS;
2592 }
2593 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2594 return 0;
2595 else
2596 return INTEGER_CONVERSION_BADNESS;
2597 default:
2598 return INCOMPATIBLE_TYPE_BADNESS;
2599 }
2600 break;
2601 case TYPE_CODE_RANGE:
2602 switch (TYPE_CODE (arg))
2603 {
2604 case TYPE_CODE_INT:
2605 case TYPE_CODE_CHAR:
2606 case TYPE_CODE_RANGE:
2607 case TYPE_CODE_BOOL:
2608 case TYPE_CODE_ENUM:
2609 return INTEGER_CONVERSION_BADNESS;
2610 case TYPE_CODE_FLT:
2611 return INT_FLOAT_CONVERSION_BADNESS;
2612 default:
2613 return INCOMPATIBLE_TYPE_BADNESS;
2614 }
2615 break;
2616 case TYPE_CODE_BOOL:
2617 switch (TYPE_CODE (arg))
2618 {
2619 case TYPE_CODE_INT:
2620 case TYPE_CODE_CHAR:
2621 case TYPE_CODE_RANGE:
2622 case TYPE_CODE_ENUM:
2623 case TYPE_CODE_FLT:
2624 case TYPE_CODE_PTR:
2625 return BOOLEAN_CONVERSION_BADNESS;
2626 case TYPE_CODE_BOOL:
2627 return 0;
2628 default:
2629 return INCOMPATIBLE_TYPE_BADNESS;
2630 }
2631 break;
2632 case TYPE_CODE_FLT:
2633 switch (TYPE_CODE (arg))
2634 {
2635 case TYPE_CODE_FLT:
2636 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2637 return FLOAT_PROMOTION_BADNESS;
2638 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2639 return 0;
2640 else
2641 return FLOAT_CONVERSION_BADNESS;
2642 case TYPE_CODE_INT:
2643 case TYPE_CODE_BOOL:
2644 case TYPE_CODE_ENUM:
2645 case TYPE_CODE_RANGE:
2646 case TYPE_CODE_CHAR:
2647 return INT_FLOAT_CONVERSION_BADNESS;
2648 default:
2649 return INCOMPATIBLE_TYPE_BADNESS;
2650 }
2651 break;
2652 case TYPE_CODE_COMPLEX:
2653 switch (TYPE_CODE (arg))
2654 { /* Strictly not needed for C++, but... */
2655 case TYPE_CODE_FLT:
2656 return FLOAT_PROMOTION_BADNESS;
2657 case TYPE_CODE_COMPLEX:
2658 return 0;
2659 default:
2660 return INCOMPATIBLE_TYPE_BADNESS;
2661 }
2662 break;
2663 case TYPE_CODE_STRUCT:
2664 /* currently same as TYPE_CODE_CLASS */
2665 switch (TYPE_CODE (arg))
2666 {
2667 case TYPE_CODE_STRUCT:
2668 /* Check for derivation */
2669 if (is_ancestor (parm, arg))
2670 return BASE_CONVERSION_BADNESS;
2671 /* else fall through */
2672 default:
2673 return INCOMPATIBLE_TYPE_BADNESS;
2674 }
2675 break;
2676 case TYPE_CODE_UNION:
2677 switch (TYPE_CODE (arg))
2678 {
2679 case TYPE_CODE_UNION:
2680 default:
2681 return INCOMPATIBLE_TYPE_BADNESS;
2682 }
2683 break;
2684 case TYPE_CODE_MEMBERPTR:
2685 switch (TYPE_CODE (arg))
2686 {
2687 default:
2688 return INCOMPATIBLE_TYPE_BADNESS;
2689 }
2690 break;
2691 case TYPE_CODE_METHOD:
2692 switch (TYPE_CODE (arg))
2693 {
2694
2695 default:
2696 return INCOMPATIBLE_TYPE_BADNESS;
2697 }
2698 break;
2699 case TYPE_CODE_REF:
2700 switch (TYPE_CODE (arg))
2701 {
2702
2703 default:
2704 return INCOMPATIBLE_TYPE_BADNESS;
2705 }
2706
2707 break;
2708 case TYPE_CODE_SET:
2709 switch (TYPE_CODE (arg))
2710 {
2711 /* Not in C++ */
2712 case TYPE_CODE_SET:
2713 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2714 TYPE_FIELD_TYPE (arg, 0));
2715 default:
2716 return INCOMPATIBLE_TYPE_BADNESS;
2717 }
2718 break;
2719 case TYPE_CODE_VOID:
2720 default:
2721 return INCOMPATIBLE_TYPE_BADNESS;
2722 } /* switch (TYPE_CODE (arg)) */
2723 }
2724
2725
2726 /* End of functions for overload resolution */
2727
2728 static void
2729 print_bit_vector (B_TYPE *bits, int nbits)
2730 {
2731 int bitno;
2732
2733 for (bitno = 0; bitno < nbits; bitno++)
2734 {
2735 if ((bitno % 8) == 0)
2736 {
2737 puts_filtered (" ");
2738 }
2739 if (B_TST (bits, bitno))
2740 printf_filtered (("1"));
2741 else
2742 printf_filtered (("0"));
2743 }
2744 }
2745
2746 /* Note the first arg should be the "this" pointer, we may not want to
2747 include it since we may get into a infinitely recursive
2748 situation. */
2749
2750 static void
2751 print_arg_types (struct field *args, int nargs, int spaces)
2752 {
2753 if (args != NULL)
2754 {
2755 int i;
2756
2757 for (i = 0; i < nargs; i++)
2758 recursive_dump_type (args[i].type, spaces + 2);
2759 }
2760 }
2761
2762 static void
2763 dump_fn_fieldlists (struct type *type, int spaces)
2764 {
2765 int method_idx;
2766 int overload_idx;
2767 struct fn_field *f;
2768
2769 printfi_filtered (spaces, "fn_fieldlists ");
2770 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2771 printf_filtered ("\n");
2772 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2773 {
2774 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2775 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2776 method_idx,
2777 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2778 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2779 gdb_stdout);
2780 printf_filtered (_(") length %d\n"),
2781 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2782 for (overload_idx = 0;
2783 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2784 overload_idx++)
2785 {
2786 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2787 overload_idx,
2788 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2789 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2790 gdb_stdout);
2791 printf_filtered (")\n");
2792 printfi_filtered (spaces + 8, "type ");
2793 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2794 gdb_stdout);
2795 printf_filtered ("\n");
2796
2797 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2798 spaces + 8 + 2);
2799
2800 printfi_filtered (spaces + 8, "args ");
2801 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2802 gdb_stdout);
2803 printf_filtered ("\n");
2804
2805 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2806 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2807 overload_idx)),
2808 spaces);
2809 printfi_filtered (spaces + 8, "fcontext ");
2810 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2811 gdb_stdout);
2812 printf_filtered ("\n");
2813
2814 printfi_filtered (spaces + 8, "is_const %d\n",
2815 TYPE_FN_FIELD_CONST (f, overload_idx));
2816 printfi_filtered (spaces + 8, "is_volatile %d\n",
2817 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2818 printfi_filtered (spaces + 8, "is_private %d\n",
2819 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2820 printfi_filtered (spaces + 8, "is_protected %d\n",
2821 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2822 printfi_filtered (spaces + 8, "is_stub %d\n",
2823 TYPE_FN_FIELD_STUB (f, overload_idx));
2824 printfi_filtered (spaces + 8, "voffset %u\n",
2825 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2826 }
2827 }
2828 }
2829
2830 static void
2831 print_cplus_stuff (struct type *type, int spaces)
2832 {
2833 printfi_filtered (spaces, "n_baseclasses %d\n",
2834 TYPE_N_BASECLASSES (type));
2835 printfi_filtered (spaces, "nfn_fields %d\n",
2836 TYPE_NFN_FIELDS (type));
2837 printfi_filtered (spaces, "nfn_fields_total %d\n",
2838 TYPE_NFN_FIELDS_TOTAL (type));
2839 if (TYPE_N_BASECLASSES (type) > 0)
2840 {
2841 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2842 TYPE_N_BASECLASSES (type));
2843 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2844 gdb_stdout);
2845 printf_filtered (")");
2846
2847 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2848 TYPE_N_BASECLASSES (type));
2849 puts_filtered ("\n");
2850 }
2851 if (TYPE_NFIELDS (type) > 0)
2852 {
2853 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2854 {
2855 printfi_filtered (spaces,
2856 "private_field_bits (%d bits at *",
2857 TYPE_NFIELDS (type));
2858 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2859 gdb_stdout);
2860 printf_filtered (")");
2861 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2862 TYPE_NFIELDS (type));
2863 puts_filtered ("\n");
2864 }
2865 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2866 {
2867 printfi_filtered (spaces,
2868 "protected_field_bits (%d bits at *",
2869 TYPE_NFIELDS (type));
2870 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2871 gdb_stdout);
2872 printf_filtered (")");
2873 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2874 TYPE_NFIELDS (type));
2875 puts_filtered ("\n");
2876 }
2877 }
2878 if (TYPE_NFN_FIELDS (type) > 0)
2879 {
2880 dump_fn_fieldlists (type, spaces);
2881 }
2882 }
2883
2884 static void
2885 print_bound_type (int bt)
2886 {
2887 switch (bt)
2888 {
2889 case BOUND_CANNOT_BE_DETERMINED:
2890 printf_filtered ("(BOUND_CANNOT_BE_DETERMINED)");
2891 break;
2892 case BOUND_BY_REF_ON_STACK:
2893 printf_filtered ("(BOUND_BY_REF_ON_STACK)");
2894 break;
2895 case BOUND_BY_VALUE_ON_STACK:
2896 printf_filtered ("(BOUND_BY_VALUE_ON_STACK)");
2897 break;
2898 case BOUND_BY_REF_IN_REG:
2899 printf_filtered ("(BOUND_BY_REF_IN_REG)");
2900 break;
2901 case BOUND_BY_VALUE_IN_REG:
2902 printf_filtered ("(BOUND_BY_VALUE_IN_REG)");
2903 break;
2904 case BOUND_SIMPLE:
2905 printf_filtered ("(BOUND_SIMPLE)");
2906 break;
2907 default:
2908 printf_filtered (_("(unknown bound type)"));
2909 break;
2910 }
2911 }
2912
2913 static struct obstack dont_print_type_obstack;
2914
2915 void
2916 recursive_dump_type (struct type *type, int spaces)
2917 {
2918 int idx;
2919
2920 if (spaces == 0)
2921 obstack_begin (&dont_print_type_obstack, 0);
2922
2923 if (TYPE_NFIELDS (type) > 0
2924 || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
2925 {
2926 struct type **first_dont_print
2927 = (struct type **) obstack_base (&dont_print_type_obstack);
2928
2929 int i = (struct type **)
2930 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2931
2932 while (--i >= 0)
2933 {
2934 if (type == first_dont_print[i])
2935 {
2936 printfi_filtered (spaces, "type node ");
2937 gdb_print_host_address (type, gdb_stdout);
2938 printf_filtered (_(" <same as already seen type>\n"));
2939 return;
2940 }
2941 }
2942
2943 obstack_ptr_grow (&dont_print_type_obstack, type);
2944 }
2945
2946 printfi_filtered (spaces, "type node ");
2947 gdb_print_host_address (type, gdb_stdout);
2948 printf_filtered ("\n");
2949 printfi_filtered (spaces, "name '%s' (",
2950 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2951 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2952 printf_filtered (")\n");
2953 printfi_filtered (spaces, "tagname '%s' (",
2954 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2955 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2956 printf_filtered (")\n");
2957 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2958 switch (TYPE_CODE (type))
2959 {
2960 case TYPE_CODE_UNDEF:
2961 printf_filtered ("(TYPE_CODE_UNDEF)");
2962 break;
2963 case TYPE_CODE_PTR:
2964 printf_filtered ("(TYPE_CODE_PTR)");
2965 break;
2966 case TYPE_CODE_ARRAY:
2967 printf_filtered ("(TYPE_CODE_ARRAY)");
2968 break;
2969 case TYPE_CODE_STRUCT:
2970 printf_filtered ("(TYPE_CODE_STRUCT)");
2971 break;
2972 case TYPE_CODE_UNION:
2973 printf_filtered ("(TYPE_CODE_UNION)");
2974 break;
2975 case TYPE_CODE_ENUM:
2976 printf_filtered ("(TYPE_CODE_ENUM)");
2977 break;
2978 case TYPE_CODE_FLAGS:
2979 printf_filtered ("(TYPE_CODE_FLAGS)");
2980 break;
2981 case TYPE_CODE_FUNC:
2982 printf_filtered ("(TYPE_CODE_FUNC)");
2983 break;
2984 case TYPE_CODE_INT:
2985 printf_filtered ("(TYPE_CODE_INT)");
2986 break;
2987 case TYPE_CODE_FLT:
2988 printf_filtered ("(TYPE_CODE_FLT)");
2989 break;
2990 case TYPE_CODE_VOID:
2991 printf_filtered ("(TYPE_CODE_VOID)");
2992 break;
2993 case TYPE_CODE_SET:
2994 printf_filtered ("(TYPE_CODE_SET)");
2995 break;
2996 case TYPE_CODE_RANGE:
2997 printf_filtered ("(TYPE_CODE_RANGE)");
2998 break;
2999 case TYPE_CODE_STRING:
3000 printf_filtered ("(TYPE_CODE_STRING)");
3001 break;
3002 case TYPE_CODE_BITSTRING:
3003 printf_filtered ("(TYPE_CODE_BITSTRING)");
3004 break;
3005 case TYPE_CODE_ERROR:
3006 printf_filtered ("(TYPE_CODE_ERROR)");
3007 break;
3008 case TYPE_CODE_MEMBERPTR:
3009 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3010 break;
3011 case TYPE_CODE_METHODPTR:
3012 printf_filtered ("(TYPE_CODE_METHODPTR)");
3013 break;
3014 case TYPE_CODE_METHOD:
3015 printf_filtered ("(TYPE_CODE_METHOD)");
3016 break;
3017 case TYPE_CODE_REF:
3018 printf_filtered ("(TYPE_CODE_REF)");
3019 break;
3020 case TYPE_CODE_CHAR:
3021 printf_filtered ("(TYPE_CODE_CHAR)");
3022 break;
3023 case TYPE_CODE_BOOL:
3024 printf_filtered ("(TYPE_CODE_BOOL)");
3025 break;
3026 case TYPE_CODE_COMPLEX:
3027 printf_filtered ("(TYPE_CODE_COMPLEX)");
3028 break;
3029 case TYPE_CODE_TYPEDEF:
3030 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3031 break;
3032 case TYPE_CODE_TEMPLATE:
3033 printf_filtered ("(TYPE_CODE_TEMPLATE)");
3034 break;
3035 case TYPE_CODE_TEMPLATE_ARG:
3036 printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
3037 break;
3038 case TYPE_CODE_NAMESPACE:
3039 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3040 break;
3041 default:
3042 printf_filtered ("(UNKNOWN TYPE CODE)");
3043 break;
3044 }
3045 puts_filtered ("\n");
3046 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3047 printfi_filtered (spaces, "upper_bound_type 0x%x ",
3048 TYPE_ARRAY_UPPER_BOUND_TYPE (type));
3049 print_bound_type (TYPE_ARRAY_UPPER_BOUND_TYPE (type));
3050 puts_filtered ("\n");
3051 printfi_filtered (spaces, "lower_bound_type 0x%x ",
3052 TYPE_ARRAY_LOWER_BOUND_TYPE (type));
3053 print_bound_type (TYPE_ARRAY_LOWER_BOUND_TYPE (type));
3054 puts_filtered ("\n");
3055 printfi_filtered (spaces, "objfile ");
3056 gdb_print_host_address (TYPE_OBJFILE (type), gdb_stdout);
3057 printf_filtered ("\n");
3058 printfi_filtered (spaces, "target_type ");
3059 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3060 printf_filtered ("\n");
3061 if (TYPE_TARGET_TYPE (type) != NULL)
3062 {
3063 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3064 }
3065 printfi_filtered (spaces, "pointer_type ");
3066 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3067 printf_filtered ("\n");
3068 printfi_filtered (spaces, "reference_type ");
3069 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3070 printf_filtered ("\n");
3071 printfi_filtered (spaces, "type_chain ");
3072 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3073 printf_filtered ("\n");
3074 printfi_filtered (spaces, "instance_flags 0x%x",
3075 TYPE_INSTANCE_FLAGS (type));
3076 if (TYPE_CONST (type))
3077 {
3078 puts_filtered (" TYPE_FLAG_CONST");
3079 }
3080 if (TYPE_VOLATILE (type))
3081 {
3082 puts_filtered (" TYPE_FLAG_VOLATILE");
3083 }
3084 if (TYPE_CODE_SPACE (type))
3085 {
3086 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3087 }
3088 if (TYPE_DATA_SPACE (type))
3089 {
3090 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3091 }
3092 if (TYPE_ADDRESS_CLASS_1 (type))
3093 {
3094 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3095 }
3096 if (TYPE_ADDRESS_CLASS_2 (type))
3097 {
3098 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3099 }
3100 puts_filtered ("\n");
3101 printfi_filtered (spaces, "flags 0x%x", TYPE_FLAGS (type));
3102 if (TYPE_UNSIGNED (type))
3103 {
3104 puts_filtered (" TYPE_FLAG_UNSIGNED");
3105 }
3106 if (TYPE_NOSIGN (type))
3107 {
3108 puts_filtered (" TYPE_FLAG_NOSIGN");
3109 }
3110 if (TYPE_STUB (type))
3111 {
3112 puts_filtered (" TYPE_FLAG_STUB");
3113 }
3114 if (TYPE_TARGET_STUB (type))
3115 {
3116 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3117 }
3118 if (TYPE_STATIC (type))
3119 {
3120 puts_filtered (" TYPE_FLAG_STATIC");
3121 }
3122 if (TYPE_PROTOTYPED (type))
3123 {
3124 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3125 }
3126 if (TYPE_INCOMPLETE (type))
3127 {
3128 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3129 }
3130 if (TYPE_VARARGS (type))
3131 {
3132 puts_filtered (" TYPE_FLAG_VARARGS");
3133 }
3134 /* This is used for things like AltiVec registers on ppc. Gcc emits
3135 an attribute for the array type, which tells whether or not we
3136 have a vector, instead of a regular array. */
3137 if (TYPE_VECTOR (type))
3138 {
3139 puts_filtered (" TYPE_FLAG_VECTOR");
3140 }
3141 puts_filtered ("\n");
3142 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3143 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3144 puts_filtered ("\n");
3145 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3146 {
3147 printfi_filtered (spaces + 2,
3148 "[%d] bitpos %d bitsize %d type ",
3149 idx, TYPE_FIELD_BITPOS (type, idx),
3150 TYPE_FIELD_BITSIZE (type, idx));
3151 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3152 printf_filtered (" name '%s' (",
3153 TYPE_FIELD_NAME (type, idx) != NULL
3154 ? TYPE_FIELD_NAME (type, idx)
3155 : "<NULL>");
3156 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3157 printf_filtered (")\n");
3158 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3159 {
3160 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3161 }
3162 }
3163 printfi_filtered (spaces, "vptr_basetype ");
3164 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3165 puts_filtered ("\n");
3166 if (TYPE_VPTR_BASETYPE (type) != NULL)
3167 {
3168 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3169 }
3170 printfi_filtered (spaces, "vptr_fieldno %d\n",
3171 TYPE_VPTR_FIELDNO (type));
3172 switch (TYPE_CODE (type))
3173 {
3174 case TYPE_CODE_STRUCT:
3175 printfi_filtered (spaces, "cplus_stuff ");
3176 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3177 gdb_stdout);
3178 puts_filtered ("\n");
3179 print_cplus_stuff (type, spaces);
3180 break;
3181
3182 case TYPE_CODE_FLT:
3183 printfi_filtered (spaces, "floatformat ");
3184 if (TYPE_FLOATFORMAT (type) == NULL)
3185 puts_filtered ("(null)");
3186 else
3187 {
3188 puts_filtered ("{ ");
3189 if (TYPE_FLOATFORMAT (type)[0] == NULL
3190 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3191 puts_filtered ("(null)");
3192 else
3193 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3194
3195 puts_filtered (", ");
3196 if (TYPE_FLOATFORMAT (type)[1] == NULL
3197 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3198 puts_filtered ("(null)");
3199 else
3200 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3201
3202 puts_filtered (" }");
3203 }
3204 puts_filtered ("\n");
3205 break;
3206
3207 default:
3208 /* We have to pick one of the union types to be able print and
3209 test the value. Pick cplus_struct_type, even though we know
3210 it isn't any particular one. */
3211 printfi_filtered (spaces, "type_specific ");
3212 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
3213 if (TYPE_CPLUS_SPECIFIC (type) != NULL)
3214 {
3215 printf_filtered (_(" (unknown data form)"));
3216 }
3217 printf_filtered ("\n");
3218 break;
3219
3220 }
3221 if (spaces == 0)
3222 obstack_free (&dont_print_type_obstack, NULL);
3223 }
3224
3225 /* Trivial helpers for the libiberty hash table, for mapping one
3226 type to another. */
3227
3228 struct type_pair
3229 {
3230 struct type *old, *new;
3231 };
3232
3233 static hashval_t
3234 type_pair_hash (const void *item)
3235 {
3236 const struct type_pair *pair = item;
3237 return htab_hash_pointer (pair->old);
3238 }
3239
3240 static int
3241 type_pair_eq (const void *item_lhs, const void *item_rhs)
3242 {
3243 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3244 return lhs->old == rhs->old;
3245 }
3246
3247 /* Allocate the hash table used by copy_type_recursive to walk
3248 types without duplicates. We use OBJFILE's obstack, because
3249 OBJFILE is about to be deleted. */
3250
3251 htab_t
3252 create_copied_types_hash (struct objfile *objfile)
3253 {
3254 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3255 NULL, &objfile->objfile_obstack,
3256 hashtab_obstack_allocate,
3257 dummy_obstack_deallocate);
3258 }
3259
3260 /* Recursively copy (deep copy) TYPE, if it is associated with
3261 OBJFILE. Return a new type allocated using malloc, a saved type if
3262 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3263 not associated with OBJFILE. */
3264
3265 struct type *
3266 copy_type_recursive (struct objfile *objfile,
3267 struct type *type,
3268 htab_t copied_types)
3269 {
3270 struct type_pair *stored, pair;
3271 void **slot;
3272 struct type *new_type;
3273
3274 if (TYPE_OBJFILE (type) == NULL)
3275 return type;
3276
3277 /* This type shouldn't be pointing to any types in other objfiles;
3278 if it did, the type might disappear unexpectedly. */
3279 gdb_assert (TYPE_OBJFILE (type) == objfile);
3280
3281 pair.old = type;
3282 slot = htab_find_slot (copied_types, &pair, INSERT);
3283 if (*slot != NULL)
3284 return ((struct type_pair *) *slot)->new;
3285
3286 new_type = alloc_type (NULL);
3287
3288 /* We must add the new type to the hash table immediately, in case
3289 we encounter this type again during a recursive call below. */
3290 stored = xmalloc (sizeof (struct type_pair));
3291 stored->old = type;
3292 stored->new = new_type;
3293 *slot = stored;
3294
3295 /* Copy the common fields of types. */
3296 TYPE_CODE (new_type) = TYPE_CODE (type);
3297 TYPE_ARRAY_UPPER_BOUND_TYPE (new_type) =
3298 TYPE_ARRAY_UPPER_BOUND_TYPE (type);
3299 TYPE_ARRAY_LOWER_BOUND_TYPE (new_type) =
3300 TYPE_ARRAY_LOWER_BOUND_TYPE (type);
3301 if (TYPE_NAME (type))
3302 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3303 if (TYPE_TAG_NAME (type))
3304 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3305 TYPE_FLAGS (new_type) = TYPE_FLAGS (type);
3306 TYPE_VPTR_FIELDNO (new_type) = TYPE_VPTR_FIELDNO (type);
3307
3308 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3309 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3310
3311 /* Copy the fields. */
3312 TYPE_NFIELDS (new_type) = TYPE_NFIELDS (type);
3313 if (TYPE_NFIELDS (type))
3314 {
3315 int i, nfields;
3316
3317 nfields = TYPE_NFIELDS (type);
3318 TYPE_FIELDS (new_type) = xmalloc (sizeof (struct field) * nfields);
3319 for (i = 0; i < nfields; i++)
3320 {
3321 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3322 TYPE_FIELD_ARTIFICIAL (type, i);
3323 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3324 if (TYPE_FIELD_TYPE (type, i))
3325 TYPE_FIELD_TYPE (new_type, i)
3326 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3327 copied_types);
3328 if (TYPE_FIELD_NAME (type, i))
3329 TYPE_FIELD_NAME (new_type, i) =
3330 xstrdup (TYPE_FIELD_NAME (type, i));
3331 if (TYPE_FIELD_STATIC_HAS_ADDR (type, i))
3332 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3333 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3334 else if (TYPE_FIELD_STATIC (type, i))
3335 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3336 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3337 i)));
3338 else
3339 {
3340 TYPE_FIELD_BITPOS (new_type, i) =
3341 TYPE_FIELD_BITPOS (type, i);
3342 TYPE_FIELD_STATIC_KIND (new_type, i) = 0;
3343 }
3344 }
3345 }
3346
3347 /* Copy pointers to other types. */
3348 if (TYPE_TARGET_TYPE (type))
3349 TYPE_TARGET_TYPE (new_type) =
3350 copy_type_recursive (objfile,
3351 TYPE_TARGET_TYPE (type),
3352 copied_types);
3353 if (TYPE_VPTR_BASETYPE (type))
3354 TYPE_VPTR_BASETYPE (new_type) =
3355 copy_type_recursive (objfile,
3356 TYPE_VPTR_BASETYPE (type),
3357 copied_types);
3358 /* Maybe copy the type_specific bits.
3359
3360 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3361 base classes and methods. There's no fundamental reason why we
3362 can't, but at the moment it is not needed. */
3363
3364 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3365 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3366 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3367 || TYPE_CODE (type) == TYPE_CODE_UNION
3368 || TYPE_CODE (type) == TYPE_CODE_TEMPLATE
3369 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3370 INIT_CPLUS_SPECIFIC (new_type);
3371
3372 return new_type;
3373 }
3374
3375 static struct type *
3376 build_flt (int bit, char *name, const struct floatformat **floatformats)
3377 {
3378 struct type *t;
3379
3380 if (bit == -1)
3381 {
3382 gdb_assert (floatformats != NULL);
3383 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3384 bit = floatformats[0]->totalsize;
3385 }
3386 gdb_assert (bit >= 0);
3387
3388 t = init_type (TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, 0, name, NULL);
3389 TYPE_FLOATFORMAT (t) = floatformats;
3390 return t;
3391 }
3392
3393 static struct gdbarch_data *gdbtypes_data;
3394
3395 const struct builtin_type *
3396 builtin_type (struct gdbarch *gdbarch)
3397 {
3398 return gdbarch_data (gdbarch, gdbtypes_data);
3399 }
3400
3401
3402 static struct type *
3403 build_complex (int bit, char *name, struct type *target_type)
3404 {
3405 struct type *t;
3406 if (bit <= 0 || target_type == builtin_type_error)
3407 {
3408 gdb_assert (builtin_type_error != NULL);
3409 return builtin_type_error;
3410 }
3411 t = init_type (TYPE_CODE_COMPLEX, 2 * bit / TARGET_CHAR_BIT,
3412 0, name, (struct objfile *) NULL);
3413 TYPE_TARGET_TYPE (t) = target_type;
3414 return t;
3415 }
3416
3417 static void *
3418 gdbtypes_post_init (struct gdbarch *gdbarch)
3419 {
3420 struct builtin_type *builtin_type
3421 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3422
3423 builtin_type->builtin_void =
3424 init_type (TYPE_CODE_VOID, 1,
3425 0,
3426 "void", (struct objfile *) NULL);
3427 builtin_type->builtin_char =
3428 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3429 (TYPE_FLAG_NOSIGN
3430 | (gdbarch_char_signed (current_gdbarch) ?
3431 0 : TYPE_FLAG_UNSIGNED)),
3432 "char", (struct objfile *) NULL);
3433 builtin_type->builtin_true_char =
3434 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3435 0,
3436 "true character", (struct objfile *) NULL);
3437 builtin_type->builtin_true_unsigned_char =
3438 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3439 TYPE_FLAG_UNSIGNED,
3440 "true character", (struct objfile *) NULL);
3441 builtin_type->builtin_signed_char =
3442 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3443 0,
3444 "signed char", (struct objfile *) NULL);
3445 builtin_type->builtin_unsigned_char =
3446 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3447 TYPE_FLAG_UNSIGNED,
3448 "unsigned char", (struct objfile *) NULL);
3449 builtin_type->builtin_short =
3450 init_type (TYPE_CODE_INT,
3451 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
3452 0, "short", (struct objfile *) NULL);
3453 builtin_type->builtin_unsigned_short =
3454 init_type (TYPE_CODE_INT,
3455 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
3456 TYPE_FLAG_UNSIGNED, "unsigned short",
3457 (struct objfile *) NULL);
3458 builtin_type->builtin_int =
3459 init_type (TYPE_CODE_INT,
3460 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
3461 0, "int", (struct objfile *) NULL);
3462 builtin_type->builtin_unsigned_int =
3463 init_type (TYPE_CODE_INT,
3464 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
3465 TYPE_FLAG_UNSIGNED, "unsigned int",
3466 (struct objfile *) NULL);
3467 builtin_type->builtin_long =
3468 init_type (TYPE_CODE_INT,
3469 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
3470 0, "long", (struct objfile *) NULL);
3471 builtin_type->builtin_unsigned_long =
3472 init_type (TYPE_CODE_INT,
3473 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
3474 TYPE_FLAG_UNSIGNED, "unsigned long",
3475 (struct objfile *) NULL);
3476 builtin_type->builtin_long_long =
3477 init_type (TYPE_CODE_INT,
3478 gdbarch_long_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
3479 0, "long long", (struct objfile *) NULL);
3480 builtin_type->builtin_unsigned_long_long =
3481 init_type (TYPE_CODE_INT,
3482 gdbarch_long_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
3483 TYPE_FLAG_UNSIGNED, "unsigned long long",
3484 (struct objfile *) NULL);
3485 builtin_type->builtin_float
3486 = build_flt (gdbarch_float_bit (gdbarch), "float",
3487 gdbarch_float_format (gdbarch));
3488 builtin_type->builtin_double
3489 = build_flt (gdbarch_double_bit (gdbarch), "double",
3490 gdbarch_double_format (gdbarch));
3491 builtin_type->builtin_long_double
3492 = build_flt (gdbarch_long_double_bit (gdbarch), "long double",
3493 gdbarch_long_double_format (gdbarch));
3494 builtin_type->builtin_complex
3495 = build_complex (gdbarch_float_bit (gdbarch), "complex",
3496 builtin_type->builtin_float);
3497 builtin_type->builtin_double_complex
3498 = build_complex (gdbarch_double_bit (gdbarch), "double complex",
3499 builtin_type->builtin_double);
3500 builtin_type->builtin_string =
3501 init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3502 0,
3503 "string", (struct objfile *) NULL);
3504 builtin_type->builtin_bool =
3505 init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3506 0,
3507 "bool", (struct objfile *) NULL);
3508
3509 /* The following three are about decimal floating point types, which
3510 are 32-bits, 64-bits and 128-bits respectively. */
3511 builtin_type->builtin_decfloat
3512 = init_type (TYPE_CODE_DECFLOAT, 32 / 8,
3513 0,
3514 "decimal float", (struct objfile *) NULL);
3515 builtin_type->builtin_decdouble
3516 = init_type (TYPE_CODE_DECFLOAT, 64 / 8,
3517 0,
3518 "decimal double", (struct objfile *) NULL);
3519 builtin_type->builtin_declong
3520 = init_type (TYPE_CODE_DECFLOAT, 128 / 8,
3521 0,
3522 "decimal long double", (struct objfile *) NULL);
3523
3524 /* Pointer/Address types. */
3525
3526 /* NOTE: on some targets, addresses and pointers are not necessarily
3527 the same --- for example, on the D10V, pointers are 16 bits long,
3528 but addresses are 32 bits long. See doc/gdbint.texinfo,
3529 ``Pointers Are Not Always Addresses''.
3530
3531 The upshot is:
3532 - gdb's `struct type' always describes the target's
3533 representation.
3534 - gdb's `struct value' objects should always hold values in
3535 target form.
3536 - gdb's CORE_ADDR values are addresses in the unified virtual
3537 address space that the assembler and linker work with. Thus,
3538 since target_read_memory takes a CORE_ADDR as an argument, it
3539 can access any memory on the target, even if the processor has
3540 separate code and data address spaces.
3541
3542 So, for example:
3543 - If v is a value holding a D10V code pointer, its contents are
3544 in target form: a big-endian address left-shifted two bits.
3545 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3546 sizeof (void *) == 2 on the target.
3547
3548 In this context, builtin_type->CORE_ADDR is a bit odd: it's a
3549 target type for a value the target will never see. It's only
3550 used to hold the values of (typeless) linker symbols, which are
3551 indeed in the unified virtual address space. */
3552
3553 builtin_type->builtin_data_ptr =
3554 make_pointer_type (builtin_type->builtin_void, NULL);
3555 builtin_type->builtin_func_ptr =
3556 lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3557 builtin_type->builtin_core_addr =
3558 init_type (TYPE_CODE_INT,
3559 gdbarch_addr_bit (current_gdbarch) / 8,
3560 TYPE_FLAG_UNSIGNED,
3561 "__CORE_ADDR", (struct objfile *) NULL);
3562
3563
3564 /* The following set of types is used for symbols with no
3565 debug information. */
3566 builtin_type->nodebug_text_symbol =
3567 init_type (TYPE_CODE_FUNC, 1, 0,
3568 "<text variable, no debug info>", NULL);
3569 TYPE_TARGET_TYPE (builtin_type->nodebug_text_symbol) =
3570 builtin_type->builtin_int;
3571 builtin_type->nodebug_data_symbol =
3572 init_type (TYPE_CODE_INT,
3573 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3574 "<data variable, no debug info>", NULL);
3575 builtin_type->nodebug_unknown_symbol =
3576 init_type (TYPE_CODE_INT, 1, 0,
3577 "<variable (not text or data), no debug info>", NULL);
3578 builtin_type->nodebug_tls_symbol =
3579 init_type (TYPE_CODE_INT,
3580 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3581 "<thread local variable, no debug info>", NULL);
3582
3583 return builtin_type;
3584 }
3585
3586 extern void _initialize_gdbtypes (void);
3587 void
3588 _initialize_gdbtypes (void)
3589 {
3590 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3591
3592 /* FIXME: The following types are architecture-neutral. However,
3593 they contain pointer_type and reference_type fields potentially
3594 caching pointer or reference types that *are* architecture
3595 dependent. */
3596
3597 builtin_type_int0 =
3598 init_type (TYPE_CODE_INT, 0 / 8,
3599 0,
3600 "int0_t", (struct objfile *) NULL);
3601 builtin_type_int8 =
3602 init_type (TYPE_CODE_INT, 8 / 8,
3603 TYPE_FLAG_NOTTEXT,
3604 "int8_t", (struct objfile *) NULL);
3605 builtin_type_uint8 =
3606 init_type (TYPE_CODE_INT, 8 / 8,
3607 TYPE_FLAG_UNSIGNED | TYPE_FLAG_NOTTEXT,
3608 "uint8_t", (struct objfile *) NULL);
3609 builtin_type_int16 =
3610 init_type (TYPE_CODE_INT, 16 / 8,
3611 0,
3612 "int16_t", (struct objfile *) NULL);
3613 builtin_type_uint16 =
3614 init_type (TYPE_CODE_INT, 16 / 8,
3615 TYPE_FLAG_UNSIGNED,
3616 "uint16_t", (struct objfile *) NULL);
3617 builtin_type_int32 =
3618 init_type (TYPE_CODE_INT, 32 / 8,
3619 0,
3620 "int32_t", (struct objfile *) NULL);
3621 builtin_type_uint32 =
3622 init_type (TYPE_CODE_INT, 32 / 8,
3623 TYPE_FLAG_UNSIGNED,
3624 "uint32_t", (struct objfile *) NULL);
3625 builtin_type_int64 =
3626 init_type (TYPE_CODE_INT, 64 / 8,
3627 0,
3628 "int64_t", (struct objfile *) NULL);
3629 builtin_type_uint64 =
3630 init_type (TYPE_CODE_INT, 64 / 8,
3631 TYPE_FLAG_UNSIGNED,
3632 "uint64_t", (struct objfile *) NULL);
3633 builtin_type_int128 =
3634 init_type (TYPE_CODE_INT, 128 / 8,
3635 0,
3636 "int128_t", (struct objfile *) NULL);
3637 builtin_type_uint128 =
3638 init_type (TYPE_CODE_INT, 128 / 8,
3639 TYPE_FLAG_UNSIGNED,
3640 "uint128_t", (struct objfile *) NULL);
3641
3642 builtin_type_ieee_single =
3643 build_flt (-1, "builtin_type_ieee_single", floatformats_ieee_single);
3644 builtin_type_ieee_double =
3645 build_flt (-1, "builtin_type_ieee_double", floatformats_ieee_double);
3646 builtin_type_i387_ext =
3647 build_flt (-1, "builtin_type_i387_ext", floatformats_i387_ext);
3648 builtin_type_m68881_ext =
3649 build_flt (-1, "builtin_type_m68881_ext", floatformats_m68881_ext);
3650 builtin_type_arm_ext =
3651 build_flt (-1, "builtin_type_arm_ext", floatformats_arm_ext);
3652 builtin_type_ia64_spill =
3653 build_flt (-1, "builtin_type_ia64_spill", floatformats_ia64_spill);
3654 builtin_type_ia64_quad =
3655 build_flt (-1, "builtin_type_ia64_quad", floatformats_ia64_quad);
3656
3657 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3658 Set debugging of C++ overloading."), _("\
3659 Show debugging of C++ overloading."), _("\
3660 When enabled, ranking of the functions is displayed."),
3661 NULL,
3662 show_overload_debug,
3663 &setdebuglist, &showdebuglist);
3664
3665 /* Add user knob for controlling resolution of opaque types. */
3666 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3667 &opaque_type_resolution, _("\
3668 Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3669 Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3670 NULL,
3671 show_opaque_type_resolution,
3672 &setlist, &showlist);
3673 }