Enable elf_backend_rela_normal for AArch64
[binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include "bfd.h"
25 #include "symtab.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "language.h"
31 #include "target.h"
32 #include "value.h"
33 #include "demangle.h"
34 #include "complaints.h"
35 #include "gdbcmd.h"
36 #include "cp-abi.h"
37 #include "gdb_assert.h"
38 #include "hashtab.h"
39 #include "exceptions.h"
40 #include "cp-support.h"
41 #include "bcache.h"
42 #include "dwarf2loc.h"
43 #include "gdbcore.h"
44
45 /* Initialize BADNESS constants. */
46
47 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
48
49 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
50 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
51
52 const struct rank EXACT_MATCH_BADNESS = {0,0};
53
54 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
55 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
56 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
57 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62 const struct rank BASE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
65 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
66 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
67
68 /* Floatformat pairs. */
69 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ieee_half_big,
71 &floatformat_ieee_half_little
72 };
73 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ieee_single_big,
75 &floatformat_ieee_single_little
76 };
77 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ieee_double_big,
79 &floatformat_ieee_double_little
80 };
81 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_ieee_double_big,
83 &floatformat_ieee_double_littlebyte_bigword
84 };
85 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_i387_ext,
87 &floatformat_i387_ext
88 };
89 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_m68881_ext,
91 &floatformat_m68881_ext
92 };
93 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
94 &floatformat_arm_ext_big,
95 &floatformat_arm_ext_littlebyte_bigword
96 };
97 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
98 &floatformat_ia64_spill_big,
99 &floatformat_ia64_spill_little
100 };
101 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
102 &floatformat_ia64_quad_big,
103 &floatformat_ia64_quad_little
104 };
105 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
106 &floatformat_vax_f,
107 &floatformat_vax_f
108 };
109 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
110 &floatformat_vax_d,
111 &floatformat_vax_d
112 };
113 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
114 &floatformat_ibm_long_double_big,
115 &floatformat_ibm_long_double_little
116 };
117
118 /* Should opaque types be resolved? */
119
120 static int opaque_type_resolution = 1;
121
122 /* A flag to enable printing of debugging information of C++
123 overloading. */
124
125 unsigned int overload_debug = 0;
126
127 /* A flag to enable strict type checking. */
128
129 static int strict_type_checking = 1;
130
131 /* A function to show whether opaque types are resolved. */
132
133 static void
134 show_opaque_type_resolution (struct ui_file *file, int from_tty,
135 struct cmd_list_element *c,
136 const char *value)
137 {
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
140 value);
141 }
142
143 /* A function to show whether C++ overload debugging is enabled. */
144
145 static void
146 show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148 {
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
151 }
152
153 /* A function to show the status of strict type checking. */
154
155 static void
156 show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160 }
161
162 \f
163 /* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
166
167 struct type *
168 alloc_type (struct objfile *objfile)
169 {
170 struct type *type;
171
172 gdb_assert (objfile != NULL);
173
174 /* Alloc the structure and start off with all fields zeroed. */
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
179
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
182
183 /* Initialize the fields that might not be zero. */
184
185 TYPE_CODE (type) = TYPE_CODE_UNDEF;
186 TYPE_VPTR_FIELDNO (type) = -1;
187 TYPE_CHAIN (type) = type; /* Chain back to itself. */
188
189 return type;
190 }
191
192 /* Allocate a new GDBARCH-associated type structure and fill it
193 with some defaults. Space for the type structure is allocated
194 on the heap. */
195
196 struct type *
197 alloc_type_arch (struct gdbarch *gdbarch)
198 {
199 struct type *type;
200
201 gdb_assert (gdbarch != NULL);
202
203 /* Alloc the structure and start off with all fields zeroed. */
204
205 type = XCNEW (struct type);
206 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
207
208 TYPE_OBJFILE_OWNED (type) = 0;
209 TYPE_OWNER (type).gdbarch = gdbarch;
210
211 /* Initialize the fields that might not be zero. */
212
213 TYPE_CODE (type) = TYPE_CODE_UNDEF;
214 TYPE_VPTR_FIELDNO (type) = -1;
215 TYPE_CHAIN (type) = type; /* Chain back to itself. */
216
217 return type;
218 }
219
220 /* If TYPE is objfile-associated, allocate a new type structure
221 associated with the same objfile. If TYPE is gdbarch-associated,
222 allocate a new type structure associated with the same gdbarch. */
223
224 struct type *
225 alloc_type_copy (const struct type *type)
226 {
227 if (TYPE_OBJFILE_OWNED (type))
228 return alloc_type (TYPE_OWNER (type).objfile);
229 else
230 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
231 }
232
233 /* If TYPE is gdbarch-associated, return that architecture.
234 If TYPE is objfile-associated, return that objfile's architecture. */
235
236 struct gdbarch *
237 get_type_arch (const struct type *type)
238 {
239 if (TYPE_OBJFILE_OWNED (type))
240 return get_objfile_arch (TYPE_OWNER (type).objfile);
241 else
242 return TYPE_OWNER (type).gdbarch;
243 }
244
245 /* See gdbtypes.h. */
246
247 struct type *
248 get_target_type (struct type *type)
249 {
250 if (type != NULL)
251 {
252 type = TYPE_TARGET_TYPE (type);
253 if (type != NULL)
254 type = check_typedef (type);
255 }
256
257 return type;
258 }
259
260 /* Alloc a new type instance structure, fill it with some defaults,
261 and point it at OLDTYPE. Allocate the new type instance from the
262 same place as OLDTYPE. */
263
264 static struct type *
265 alloc_type_instance (struct type *oldtype)
266 {
267 struct type *type;
268
269 /* Allocate the structure. */
270
271 if (! TYPE_OBJFILE_OWNED (oldtype))
272 type = XCNEW (struct type);
273 else
274 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
275 struct type);
276
277 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
278
279 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
280
281 return type;
282 }
283
284 /* Clear all remnants of the previous type at TYPE, in preparation for
285 replacing it with something else. Preserve owner information. */
286
287 static void
288 smash_type (struct type *type)
289 {
290 int objfile_owned = TYPE_OBJFILE_OWNED (type);
291 union type_owner owner = TYPE_OWNER (type);
292
293 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
294
295 /* Restore owner information. */
296 TYPE_OBJFILE_OWNED (type) = objfile_owned;
297 TYPE_OWNER (type) = owner;
298
299 /* For now, delete the rings. */
300 TYPE_CHAIN (type) = type;
301
302 /* For now, leave the pointer/reference types alone. */
303 }
304
305 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
306 to a pointer to memory where the pointer type should be stored.
307 If *TYPEPTR is zero, update it to point to the pointer type we return.
308 We allocate new memory if needed. */
309
310 struct type *
311 make_pointer_type (struct type *type, struct type **typeptr)
312 {
313 struct type *ntype; /* New type */
314 struct type *chain;
315
316 ntype = TYPE_POINTER_TYPE (type);
317
318 if (ntype)
319 {
320 if (typeptr == 0)
321 return ntype; /* Don't care about alloc,
322 and have new type. */
323 else if (*typeptr == 0)
324 {
325 *typeptr = ntype; /* Tracking alloc, and have new type. */
326 return ntype;
327 }
328 }
329
330 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
331 {
332 ntype = alloc_type_copy (type);
333 if (typeptr)
334 *typeptr = ntype;
335 }
336 else /* We have storage, but need to reset it. */
337 {
338 ntype = *typeptr;
339 chain = TYPE_CHAIN (ntype);
340 smash_type (ntype);
341 TYPE_CHAIN (ntype) = chain;
342 }
343
344 TYPE_TARGET_TYPE (ntype) = type;
345 TYPE_POINTER_TYPE (type) = ntype;
346
347 /* FIXME! Assumes the machine has only one representation for pointers! */
348
349 TYPE_LENGTH (ntype)
350 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
351 TYPE_CODE (ntype) = TYPE_CODE_PTR;
352
353 /* Mark pointers as unsigned. The target converts between pointers
354 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
355 gdbarch_address_to_pointer. */
356 TYPE_UNSIGNED (ntype) = 1;
357
358 /* Update the length of all the other variants of this type. */
359 chain = TYPE_CHAIN (ntype);
360 while (chain != ntype)
361 {
362 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
363 chain = TYPE_CHAIN (chain);
364 }
365
366 return ntype;
367 }
368
369 /* Given a type TYPE, return a type of pointers to that type.
370 May need to construct such a type if this is the first use. */
371
372 struct type *
373 lookup_pointer_type (struct type *type)
374 {
375 return make_pointer_type (type, (struct type **) 0);
376 }
377
378 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
379 points to a pointer to memory where the reference type should be
380 stored. If *TYPEPTR is zero, update it to point to the reference
381 type we return. We allocate new memory if needed. */
382
383 struct type *
384 make_reference_type (struct type *type, struct type **typeptr)
385 {
386 struct type *ntype; /* New type */
387 struct type *chain;
388
389 ntype = TYPE_REFERENCE_TYPE (type);
390
391 if (ntype)
392 {
393 if (typeptr == 0)
394 return ntype; /* Don't care about alloc,
395 and have new type. */
396 else if (*typeptr == 0)
397 {
398 *typeptr = ntype; /* Tracking alloc, and have new type. */
399 return ntype;
400 }
401 }
402
403 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
404 {
405 ntype = alloc_type_copy (type);
406 if (typeptr)
407 *typeptr = ntype;
408 }
409 else /* We have storage, but need to reset it. */
410 {
411 ntype = *typeptr;
412 chain = TYPE_CHAIN (ntype);
413 smash_type (ntype);
414 TYPE_CHAIN (ntype) = chain;
415 }
416
417 TYPE_TARGET_TYPE (ntype) = type;
418 TYPE_REFERENCE_TYPE (type) = ntype;
419
420 /* FIXME! Assume the machine has only one representation for
421 references, and that it matches the (only) representation for
422 pointers! */
423
424 TYPE_LENGTH (ntype) =
425 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
426 TYPE_CODE (ntype) = TYPE_CODE_REF;
427
428 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
429 TYPE_REFERENCE_TYPE (type) = ntype;
430
431 /* Update the length of all the other variants of this type. */
432 chain = TYPE_CHAIN (ntype);
433 while (chain != ntype)
434 {
435 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
436 chain = TYPE_CHAIN (chain);
437 }
438
439 return ntype;
440 }
441
442 /* Same as above, but caller doesn't care about memory allocation
443 details. */
444
445 struct type *
446 lookup_reference_type (struct type *type)
447 {
448 return make_reference_type (type, (struct type **) 0);
449 }
450
451 /* Lookup a function type that returns type TYPE. TYPEPTR, if
452 nonzero, points to a pointer to memory where the function type
453 should be stored. If *TYPEPTR is zero, update it to point to the
454 function type we return. We allocate new memory if needed. */
455
456 struct type *
457 make_function_type (struct type *type, struct type **typeptr)
458 {
459 struct type *ntype; /* New type */
460
461 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
462 {
463 ntype = alloc_type_copy (type);
464 if (typeptr)
465 *typeptr = ntype;
466 }
467 else /* We have storage, but need to reset it. */
468 {
469 ntype = *typeptr;
470 smash_type (ntype);
471 }
472
473 TYPE_TARGET_TYPE (ntype) = type;
474
475 TYPE_LENGTH (ntype) = 1;
476 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
477
478 INIT_FUNC_SPECIFIC (ntype);
479
480 return ntype;
481 }
482
483 /* Given a type TYPE, return a type of functions that return that type.
484 May need to construct such a type if this is the first use. */
485
486 struct type *
487 lookup_function_type (struct type *type)
488 {
489 return make_function_type (type, (struct type **) 0);
490 }
491
492 /* Given a type TYPE and argument types, return the appropriate
493 function type. If the final type in PARAM_TYPES is NULL, make a
494 varargs function. */
495
496 struct type *
497 lookup_function_type_with_arguments (struct type *type,
498 int nparams,
499 struct type **param_types)
500 {
501 struct type *fn = make_function_type (type, (struct type **) 0);
502 int i;
503
504 if (nparams > 0)
505 {
506 if (param_types[nparams - 1] == NULL)
507 {
508 --nparams;
509 TYPE_VARARGS (fn) = 1;
510 }
511 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
512 == TYPE_CODE_VOID)
513 {
514 --nparams;
515 /* Caller should have ensured this. */
516 gdb_assert (nparams == 0);
517 TYPE_PROTOTYPED (fn) = 1;
518 }
519 }
520
521 TYPE_NFIELDS (fn) = nparams;
522 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
523 for (i = 0; i < nparams; ++i)
524 TYPE_FIELD_TYPE (fn, i) = param_types[i];
525
526 return fn;
527 }
528
529 /* Identify address space identifier by name --
530 return the integer flag defined in gdbtypes.h. */
531
532 int
533 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
534 {
535 int type_flags;
536
537 /* Check for known address space delimiters. */
538 if (!strcmp (space_identifier, "code"))
539 return TYPE_INSTANCE_FLAG_CODE_SPACE;
540 else if (!strcmp (space_identifier, "data"))
541 return TYPE_INSTANCE_FLAG_DATA_SPACE;
542 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
543 && gdbarch_address_class_name_to_type_flags (gdbarch,
544 space_identifier,
545 &type_flags))
546 return type_flags;
547 else
548 error (_("Unknown address space specifier: \"%s\""), space_identifier);
549 }
550
551 /* Identify address space identifier by integer flag as defined in
552 gdbtypes.h -- return the string version of the adress space name. */
553
554 const char *
555 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
556 {
557 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
558 return "code";
559 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
560 return "data";
561 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
562 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
563 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
564 else
565 return NULL;
566 }
567
568 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
569
570 If STORAGE is non-NULL, create the new type instance there.
571 STORAGE must be in the same obstack as TYPE. */
572
573 static struct type *
574 make_qualified_type (struct type *type, int new_flags,
575 struct type *storage)
576 {
577 struct type *ntype;
578
579 ntype = type;
580 do
581 {
582 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
583 return ntype;
584 ntype = TYPE_CHAIN (ntype);
585 }
586 while (ntype != type);
587
588 /* Create a new type instance. */
589 if (storage == NULL)
590 ntype = alloc_type_instance (type);
591 else
592 {
593 /* If STORAGE was provided, it had better be in the same objfile
594 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
595 if one objfile is freed and the other kept, we'd have
596 dangling pointers. */
597 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
598
599 ntype = storage;
600 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
601 TYPE_CHAIN (ntype) = ntype;
602 }
603
604 /* Pointers or references to the original type are not relevant to
605 the new type. */
606 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
607 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
608
609 /* Chain the new qualified type to the old type. */
610 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
611 TYPE_CHAIN (type) = ntype;
612
613 /* Now set the instance flags and return the new type. */
614 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
615
616 /* Set length of new type to that of the original type. */
617 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
618
619 return ntype;
620 }
621
622 /* Make an address-space-delimited variant of a type -- a type that
623 is identical to the one supplied except that it has an address
624 space attribute attached to it (such as "code" or "data").
625
626 The space attributes "code" and "data" are for Harvard
627 architectures. The address space attributes are for architectures
628 which have alternately sized pointers or pointers with alternate
629 representations. */
630
631 struct type *
632 make_type_with_address_space (struct type *type, int space_flag)
633 {
634 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
635 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
636 | TYPE_INSTANCE_FLAG_DATA_SPACE
637 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
638 | space_flag);
639
640 return make_qualified_type (type, new_flags, NULL);
641 }
642
643 /* Make a "c-v" variant of a type -- a type that is identical to the
644 one supplied except that it may have const or volatile attributes
645 CNST is a flag for setting the const attribute
646 VOLTL is a flag for setting the volatile attribute
647 TYPE is the base type whose variant we are creating.
648
649 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
650 storage to hold the new qualified type; *TYPEPTR and TYPE must be
651 in the same objfile. Otherwise, allocate fresh memory for the new
652 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
653 new type we construct. */
654
655 struct type *
656 make_cv_type (int cnst, int voltl,
657 struct type *type,
658 struct type **typeptr)
659 {
660 struct type *ntype; /* New type */
661
662 int new_flags = (TYPE_INSTANCE_FLAGS (type)
663 & ~(TYPE_INSTANCE_FLAG_CONST
664 | TYPE_INSTANCE_FLAG_VOLATILE));
665
666 if (cnst)
667 new_flags |= TYPE_INSTANCE_FLAG_CONST;
668
669 if (voltl)
670 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
671
672 if (typeptr && *typeptr != NULL)
673 {
674 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
675 a C-V variant chain that threads across objfiles: if one
676 objfile gets freed, then the other has a broken C-V chain.
677
678 This code used to try to copy over the main type from TYPE to
679 *TYPEPTR if they were in different objfiles, but that's
680 wrong, too: TYPE may have a field list or member function
681 lists, which refer to types of their own, etc. etc. The
682 whole shebang would need to be copied over recursively; you
683 can't have inter-objfile pointers. The only thing to do is
684 to leave stub types as stub types, and look them up afresh by
685 name each time you encounter them. */
686 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
687 }
688
689 ntype = make_qualified_type (type, new_flags,
690 typeptr ? *typeptr : NULL);
691
692 if (typeptr != NULL)
693 *typeptr = ntype;
694
695 return ntype;
696 }
697
698 /* Make a 'restrict'-qualified version of TYPE. */
699
700 struct type *
701 make_restrict_type (struct type *type)
702 {
703 return make_qualified_type (type,
704 (TYPE_INSTANCE_FLAGS (type)
705 | TYPE_INSTANCE_FLAG_RESTRICT),
706 NULL);
707 }
708
709 /* Replace the contents of ntype with the type *type. This changes the
710 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
711 the changes are propogated to all types in the TYPE_CHAIN.
712
713 In order to build recursive types, it's inevitable that we'll need
714 to update types in place --- but this sort of indiscriminate
715 smashing is ugly, and needs to be replaced with something more
716 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
717 clear if more steps are needed. */
718
719 void
720 replace_type (struct type *ntype, struct type *type)
721 {
722 struct type *chain;
723
724 /* These two types had better be in the same objfile. Otherwise,
725 the assignment of one type's main type structure to the other
726 will produce a type with references to objects (names; field
727 lists; etc.) allocated on an objfile other than its own. */
728 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
729
730 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
731
732 /* The type length is not a part of the main type. Update it for
733 each type on the variant chain. */
734 chain = ntype;
735 do
736 {
737 /* Assert that this element of the chain has no address-class bits
738 set in its flags. Such type variants might have type lengths
739 which are supposed to be different from the non-address-class
740 variants. This assertion shouldn't ever be triggered because
741 symbol readers which do construct address-class variants don't
742 call replace_type(). */
743 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
744
745 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
746 chain = TYPE_CHAIN (chain);
747 }
748 while (ntype != chain);
749
750 /* Assert that the two types have equivalent instance qualifiers.
751 This should be true for at least all of our debug readers. */
752 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
753 }
754
755 /* Implement direct support for MEMBER_TYPE in GNU C++.
756 May need to construct such a type if this is the first use.
757 The TYPE is the type of the member. The DOMAIN is the type
758 of the aggregate that the member belongs to. */
759
760 struct type *
761 lookup_memberptr_type (struct type *type, struct type *domain)
762 {
763 struct type *mtype;
764
765 mtype = alloc_type_copy (type);
766 smash_to_memberptr_type (mtype, domain, type);
767 return mtype;
768 }
769
770 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
771
772 struct type *
773 lookup_methodptr_type (struct type *to_type)
774 {
775 struct type *mtype;
776
777 mtype = alloc_type_copy (to_type);
778 smash_to_methodptr_type (mtype, to_type);
779 return mtype;
780 }
781
782 /* Allocate a stub method whose return type is TYPE. This apparently
783 happens for speed of symbol reading, since parsing out the
784 arguments to the method is cpu-intensive, the way we are doing it.
785 So, we will fill in arguments later. This always returns a fresh
786 type. */
787
788 struct type *
789 allocate_stub_method (struct type *type)
790 {
791 struct type *mtype;
792
793 mtype = alloc_type_copy (type);
794 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
795 TYPE_LENGTH (mtype) = 1;
796 TYPE_STUB (mtype) = 1;
797 TYPE_TARGET_TYPE (mtype) = type;
798 /* _DOMAIN_TYPE (mtype) = unknown yet */
799 return mtype;
800 }
801
802 /* Create a range type with a dynamic range from LOW_BOUND to
803 HIGH_BOUND, inclusive. See create_range_type for further details. */
804
805 struct type *
806 create_range_type (struct type *result_type, struct type *index_type,
807 const struct dynamic_prop *low_bound,
808 const struct dynamic_prop *high_bound)
809 {
810 if (result_type == NULL)
811 result_type = alloc_type_copy (index_type);
812 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
813 TYPE_TARGET_TYPE (result_type) = index_type;
814 if (TYPE_STUB (index_type))
815 TYPE_TARGET_STUB (result_type) = 1;
816 else
817 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
818
819 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
820 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
821 TYPE_RANGE_DATA (result_type)->low = *low_bound;
822 TYPE_RANGE_DATA (result_type)->high = *high_bound;
823
824 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
825 TYPE_UNSIGNED (result_type) = 1;
826
827 return result_type;
828 }
829
830 /* Create a range type using either a blank type supplied in
831 RESULT_TYPE, or creating a new type, inheriting the objfile from
832 INDEX_TYPE.
833
834 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
835 to HIGH_BOUND, inclusive.
836
837 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
838 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
839
840 struct type *
841 create_static_range_type (struct type *result_type, struct type *index_type,
842 LONGEST low_bound, LONGEST high_bound)
843 {
844 struct dynamic_prop low, high;
845
846 low.kind = PROP_CONST;
847 low.data.const_val = low_bound;
848
849 high.kind = PROP_CONST;
850 high.data.const_val = high_bound;
851
852 result_type = create_range_type (result_type, index_type, &low, &high);
853
854 return result_type;
855 }
856
857 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
858 are static, otherwise returns 0. */
859
860 static int
861 has_static_range (const struct range_bounds *bounds)
862 {
863 return (bounds->low.kind == PROP_CONST
864 && bounds->high.kind == PROP_CONST);
865 }
866
867
868 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
869 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
870 bounds will fit in LONGEST), or -1 otherwise. */
871
872 int
873 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
874 {
875 CHECK_TYPEDEF (type);
876 switch (TYPE_CODE (type))
877 {
878 case TYPE_CODE_RANGE:
879 *lowp = TYPE_LOW_BOUND (type);
880 *highp = TYPE_HIGH_BOUND (type);
881 return 1;
882 case TYPE_CODE_ENUM:
883 if (TYPE_NFIELDS (type) > 0)
884 {
885 /* The enums may not be sorted by value, so search all
886 entries. */
887 int i;
888
889 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
890 for (i = 0; i < TYPE_NFIELDS (type); i++)
891 {
892 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
893 *lowp = TYPE_FIELD_ENUMVAL (type, i);
894 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
895 *highp = TYPE_FIELD_ENUMVAL (type, i);
896 }
897
898 /* Set unsigned indicator if warranted. */
899 if (*lowp >= 0)
900 {
901 TYPE_UNSIGNED (type) = 1;
902 }
903 }
904 else
905 {
906 *lowp = 0;
907 *highp = -1;
908 }
909 return 0;
910 case TYPE_CODE_BOOL:
911 *lowp = 0;
912 *highp = 1;
913 return 0;
914 case TYPE_CODE_INT:
915 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
916 return -1;
917 if (!TYPE_UNSIGNED (type))
918 {
919 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
920 *highp = -*lowp - 1;
921 return 0;
922 }
923 /* ... fall through for unsigned ints ... */
924 case TYPE_CODE_CHAR:
925 *lowp = 0;
926 /* This round-about calculation is to avoid shifting by
927 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
928 if TYPE_LENGTH (type) == sizeof (LONGEST). */
929 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
930 *highp = (*highp - 1) | *highp;
931 return 0;
932 default:
933 return -1;
934 }
935 }
936
937 /* Assuming TYPE is a simple, non-empty array type, compute its upper
938 and lower bound. Save the low bound into LOW_BOUND if not NULL.
939 Save the high bound into HIGH_BOUND if not NULL.
940
941 Return 1 if the operation was successful. Return zero otherwise,
942 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
943
944 We now simply use get_discrete_bounds call to get the values
945 of the low and high bounds.
946 get_discrete_bounds can return three values:
947 1, meaning that index is a range,
948 0, meaning that index is a discrete type,
949 or -1 for failure. */
950
951 int
952 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
953 {
954 struct type *index = TYPE_INDEX_TYPE (type);
955 LONGEST low = 0;
956 LONGEST high = 0;
957 int res;
958
959 if (index == NULL)
960 return 0;
961
962 res = get_discrete_bounds (index, &low, &high);
963 if (res == -1)
964 return 0;
965
966 /* Check if the array bounds are undefined. */
967 if (res == 1
968 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
969 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
970 return 0;
971
972 if (low_bound)
973 *low_bound = low;
974
975 if (high_bound)
976 *high_bound = high;
977
978 return 1;
979 }
980
981 /* Create an array type using either a blank type supplied in
982 RESULT_TYPE, or creating a new type, inheriting the objfile from
983 RANGE_TYPE.
984
985 Elements will be of type ELEMENT_TYPE, the indices will be of type
986 RANGE_TYPE.
987
988 If BIT_STRIDE is not zero, build a packed array type whose element
989 size is BIT_STRIDE. Otherwise, ignore this parameter.
990
991 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
992 sure it is TYPE_CODE_UNDEF before we bash it into an array
993 type? */
994
995 struct type *
996 create_array_type_with_stride (struct type *result_type,
997 struct type *element_type,
998 struct type *range_type,
999 unsigned int bit_stride)
1000 {
1001 if (result_type == NULL)
1002 result_type = alloc_type_copy (range_type);
1003
1004 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1005 TYPE_TARGET_TYPE (result_type) = element_type;
1006 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1007 {
1008 LONGEST low_bound, high_bound;
1009
1010 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1011 low_bound = high_bound = 0;
1012 CHECK_TYPEDEF (element_type);
1013 /* Be careful when setting the array length. Ada arrays can be
1014 empty arrays with the high_bound being smaller than the low_bound.
1015 In such cases, the array length should be zero. */
1016 if (high_bound < low_bound)
1017 TYPE_LENGTH (result_type) = 0;
1018 else if (bit_stride > 0)
1019 TYPE_LENGTH (result_type) =
1020 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1021 else
1022 TYPE_LENGTH (result_type) =
1023 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1024 }
1025 else
1026 {
1027 /* This type is dynamic and its length needs to be computed
1028 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1029 undefined by setting it to zero. Although we are not expected
1030 to trust TYPE_LENGTH in this case, setting the size to zero
1031 allows us to avoid allocating objects of random sizes in case
1032 we accidently do. */
1033 TYPE_LENGTH (result_type) = 0;
1034 }
1035
1036 TYPE_NFIELDS (result_type) = 1;
1037 TYPE_FIELDS (result_type) =
1038 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1039 TYPE_INDEX_TYPE (result_type) = range_type;
1040 TYPE_VPTR_FIELDNO (result_type) = -1;
1041 if (bit_stride > 0)
1042 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1043
1044 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1045 if (TYPE_LENGTH (result_type) == 0)
1046 TYPE_TARGET_STUB (result_type) = 1;
1047
1048 return result_type;
1049 }
1050
1051 /* Same as create_array_type_with_stride but with no bit_stride
1052 (BIT_STRIDE = 0), thus building an unpacked array. */
1053
1054 struct type *
1055 create_array_type (struct type *result_type,
1056 struct type *element_type,
1057 struct type *range_type)
1058 {
1059 return create_array_type_with_stride (result_type, element_type,
1060 range_type, 0);
1061 }
1062
1063 struct type *
1064 lookup_array_range_type (struct type *element_type,
1065 LONGEST low_bound, LONGEST high_bound)
1066 {
1067 struct gdbarch *gdbarch = get_type_arch (element_type);
1068 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1069 struct type *range_type
1070 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1071
1072 return create_array_type (NULL, element_type, range_type);
1073 }
1074
1075 /* Create a string type using either a blank type supplied in
1076 RESULT_TYPE, or creating a new type. String types are similar
1077 enough to array of char types that we can use create_array_type to
1078 build the basic type and then bash it into a string type.
1079
1080 For fixed length strings, the range type contains 0 as the lower
1081 bound and the length of the string minus one as the upper bound.
1082
1083 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1084 sure it is TYPE_CODE_UNDEF before we bash it into a string
1085 type? */
1086
1087 struct type *
1088 create_string_type (struct type *result_type,
1089 struct type *string_char_type,
1090 struct type *range_type)
1091 {
1092 result_type = create_array_type (result_type,
1093 string_char_type,
1094 range_type);
1095 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1096 return result_type;
1097 }
1098
1099 struct type *
1100 lookup_string_range_type (struct type *string_char_type,
1101 LONGEST low_bound, LONGEST high_bound)
1102 {
1103 struct type *result_type;
1104
1105 result_type = lookup_array_range_type (string_char_type,
1106 low_bound, high_bound);
1107 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1108 return result_type;
1109 }
1110
1111 struct type *
1112 create_set_type (struct type *result_type, struct type *domain_type)
1113 {
1114 if (result_type == NULL)
1115 result_type = alloc_type_copy (domain_type);
1116
1117 TYPE_CODE (result_type) = TYPE_CODE_SET;
1118 TYPE_NFIELDS (result_type) = 1;
1119 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1120
1121 if (!TYPE_STUB (domain_type))
1122 {
1123 LONGEST low_bound, high_bound, bit_length;
1124
1125 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1126 low_bound = high_bound = 0;
1127 bit_length = high_bound - low_bound + 1;
1128 TYPE_LENGTH (result_type)
1129 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1130 if (low_bound >= 0)
1131 TYPE_UNSIGNED (result_type) = 1;
1132 }
1133 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1134
1135 return result_type;
1136 }
1137
1138 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1139 and any array types nested inside it. */
1140
1141 void
1142 make_vector_type (struct type *array_type)
1143 {
1144 struct type *inner_array, *elt_type;
1145 int flags;
1146
1147 /* Find the innermost array type, in case the array is
1148 multi-dimensional. */
1149 inner_array = array_type;
1150 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1151 inner_array = TYPE_TARGET_TYPE (inner_array);
1152
1153 elt_type = TYPE_TARGET_TYPE (inner_array);
1154 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1155 {
1156 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1157 elt_type = make_qualified_type (elt_type, flags, NULL);
1158 TYPE_TARGET_TYPE (inner_array) = elt_type;
1159 }
1160
1161 TYPE_VECTOR (array_type) = 1;
1162 }
1163
1164 struct type *
1165 init_vector_type (struct type *elt_type, int n)
1166 {
1167 struct type *array_type;
1168
1169 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1170 make_vector_type (array_type);
1171 return array_type;
1172 }
1173
1174 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1175 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1176 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1177 TYPE doesn't include the offset (that's the value of the MEMBER
1178 itself), but does include the structure type into which it points
1179 (for some reason).
1180
1181 When "smashing" the type, we preserve the objfile that the old type
1182 pointed to, since we aren't changing where the type is actually
1183 allocated. */
1184
1185 void
1186 smash_to_memberptr_type (struct type *type, struct type *domain,
1187 struct type *to_type)
1188 {
1189 smash_type (type);
1190 TYPE_TARGET_TYPE (type) = to_type;
1191 TYPE_DOMAIN_TYPE (type) = domain;
1192 /* Assume that a data member pointer is the same size as a normal
1193 pointer. */
1194 TYPE_LENGTH (type)
1195 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1196 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1197 }
1198
1199 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1200
1201 When "smashing" the type, we preserve the objfile that the old type
1202 pointed to, since we aren't changing where the type is actually
1203 allocated. */
1204
1205 void
1206 smash_to_methodptr_type (struct type *type, struct type *to_type)
1207 {
1208 smash_type (type);
1209 TYPE_TARGET_TYPE (type) = to_type;
1210 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1211 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1212 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1213 }
1214
1215 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1216 METHOD just means `function that gets an extra "this" argument'.
1217
1218 When "smashing" the type, we preserve the objfile that the old type
1219 pointed to, since we aren't changing where the type is actually
1220 allocated. */
1221
1222 void
1223 smash_to_method_type (struct type *type, struct type *domain,
1224 struct type *to_type, struct field *args,
1225 int nargs, int varargs)
1226 {
1227 smash_type (type);
1228 TYPE_TARGET_TYPE (type) = to_type;
1229 TYPE_DOMAIN_TYPE (type) = domain;
1230 TYPE_FIELDS (type) = args;
1231 TYPE_NFIELDS (type) = nargs;
1232 if (varargs)
1233 TYPE_VARARGS (type) = 1;
1234 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1235 TYPE_CODE (type) = TYPE_CODE_METHOD;
1236 }
1237
1238 /* Return a typename for a struct/union/enum type without "struct ",
1239 "union ", or "enum ". If the type has a NULL name, return NULL. */
1240
1241 const char *
1242 type_name_no_tag (const struct type *type)
1243 {
1244 if (TYPE_TAG_NAME (type) != NULL)
1245 return TYPE_TAG_NAME (type);
1246
1247 /* Is there code which expects this to return the name if there is
1248 no tag name? My guess is that this is mainly used for C++ in
1249 cases where the two will always be the same. */
1250 return TYPE_NAME (type);
1251 }
1252
1253 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1254 Since GCC PR debug/47510 DWARF provides associated information to detect the
1255 anonymous class linkage name from its typedef.
1256
1257 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1258 apply it itself. */
1259
1260 const char *
1261 type_name_no_tag_or_error (struct type *type)
1262 {
1263 struct type *saved_type = type;
1264 const char *name;
1265 struct objfile *objfile;
1266
1267 CHECK_TYPEDEF (type);
1268
1269 name = type_name_no_tag (type);
1270 if (name != NULL)
1271 return name;
1272
1273 name = type_name_no_tag (saved_type);
1274 objfile = TYPE_OBJFILE (saved_type);
1275 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1276 name ? name : "<anonymous>",
1277 objfile ? objfile_name (objfile) : "<arch>");
1278 }
1279
1280 /* Lookup a typedef or primitive type named NAME, visible in lexical
1281 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1282 suitably defined. */
1283
1284 struct type *
1285 lookup_typename (const struct language_defn *language,
1286 struct gdbarch *gdbarch, const char *name,
1287 const struct block *block, int noerr)
1288 {
1289 struct symbol *sym;
1290 struct type *type;
1291
1292 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1293 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1294 return SYMBOL_TYPE (sym);
1295
1296 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1297 if (type)
1298 return type;
1299
1300 if (noerr)
1301 return NULL;
1302 error (_("No type named %s."), name);
1303 }
1304
1305 struct type *
1306 lookup_unsigned_typename (const struct language_defn *language,
1307 struct gdbarch *gdbarch, const char *name)
1308 {
1309 char *uns = alloca (strlen (name) + 10);
1310
1311 strcpy (uns, "unsigned ");
1312 strcpy (uns + 9, name);
1313 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1314 }
1315
1316 struct type *
1317 lookup_signed_typename (const struct language_defn *language,
1318 struct gdbarch *gdbarch, const char *name)
1319 {
1320 struct type *t;
1321 char *uns = alloca (strlen (name) + 8);
1322
1323 strcpy (uns, "signed ");
1324 strcpy (uns + 7, name);
1325 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1326 /* If we don't find "signed FOO" just try again with plain "FOO". */
1327 if (t != NULL)
1328 return t;
1329 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1330 }
1331
1332 /* Lookup a structure type named "struct NAME",
1333 visible in lexical block BLOCK. */
1334
1335 struct type *
1336 lookup_struct (const char *name, const struct block *block)
1337 {
1338 struct symbol *sym;
1339
1340 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1341
1342 if (sym == NULL)
1343 {
1344 error (_("No struct type named %s."), name);
1345 }
1346 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1347 {
1348 error (_("This context has class, union or enum %s, not a struct."),
1349 name);
1350 }
1351 return (SYMBOL_TYPE (sym));
1352 }
1353
1354 /* Lookup a union type named "union NAME",
1355 visible in lexical block BLOCK. */
1356
1357 struct type *
1358 lookup_union (const char *name, const struct block *block)
1359 {
1360 struct symbol *sym;
1361 struct type *t;
1362
1363 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1364
1365 if (sym == NULL)
1366 error (_("No union type named %s."), name);
1367
1368 t = SYMBOL_TYPE (sym);
1369
1370 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1371 return t;
1372
1373 /* If we get here, it's not a union. */
1374 error (_("This context has class, struct or enum %s, not a union."),
1375 name);
1376 }
1377
1378 /* Lookup an enum type named "enum NAME",
1379 visible in lexical block BLOCK. */
1380
1381 struct type *
1382 lookup_enum (const char *name, const struct block *block)
1383 {
1384 struct symbol *sym;
1385
1386 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1387 if (sym == NULL)
1388 {
1389 error (_("No enum type named %s."), name);
1390 }
1391 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1392 {
1393 error (_("This context has class, struct or union %s, not an enum."),
1394 name);
1395 }
1396 return (SYMBOL_TYPE (sym));
1397 }
1398
1399 /* Lookup a template type named "template NAME<TYPE>",
1400 visible in lexical block BLOCK. */
1401
1402 struct type *
1403 lookup_template_type (char *name, struct type *type,
1404 const struct block *block)
1405 {
1406 struct symbol *sym;
1407 char *nam = (char *)
1408 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1409
1410 strcpy (nam, name);
1411 strcat (nam, "<");
1412 strcat (nam, TYPE_NAME (type));
1413 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1414
1415 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1416
1417 if (sym == NULL)
1418 {
1419 error (_("No template type named %s."), name);
1420 }
1421 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1422 {
1423 error (_("This context has class, union or enum %s, not a struct."),
1424 name);
1425 }
1426 return (SYMBOL_TYPE (sym));
1427 }
1428
1429 /* Given a type TYPE, lookup the type of the component of type named
1430 NAME.
1431
1432 TYPE can be either a struct or union, or a pointer or reference to
1433 a struct or union. If it is a pointer or reference, its target
1434 type is automatically used. Thus '.' and '->' are interchangable,
1435 as specified for the definitions of the expression element types
1436 STRUCTOP_STRUCT and STRUCTOP_PTR.
1437
1438 If NOERR is nonzero, return zero if NAME is not suitably defined.
1439 If NAME is the name of a baseclass type, return that type. */
1440
1441 struct type *
1442 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1443 {
1444 int i;
1445 char *typename;
1446
1447 for (;;)
1448 {
1449 CHECK_TYPEDEF (type);
1450 if (TYPE_CODE (type) != TYPE_CODE_PTR
1451 && TYPE_CODE (type) != TYPE_CODE_REF)
1452 break;
1453 type = TYPE_TARGET_TYPE (type);
1454 }
1455
1456 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1457 && TYPE_CODE (type) != TYPE_CODE_UNION)
1458 {
1459 typename = type_to_string (type);
1460 make_cleanup (xfree, typename);
1461 error (_("Type %s is not a structure or union type."), typename);
1462 }
1463
1464 #if 0
1465 /* FIXME: This change put in by Michael seems incorrect for the case
1466 where the structure tag name is the same as the member name.
1467 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1468 foo; } bell;" Disabled by fnf. */
1469 {
1470 char *typename;
1471
1472 typename = type_name_no_tag (type);
1473 if (typename != NULL && strcmp (typename, name) == 0)
1474 return type;
1475 }
1476 #endif
1477
1478 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1479 {
1480 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1481
1482 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1483 {
1484 return TYPE_FIELD_TYPE (type, i);
1485 }
1486 else if (!t_field_name || *t_field_name == '\0')
1487 {
1488 struct type *subtype
1489 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1490
1491 if (subtype != NULL)
1492 return subtype;
1493 }
1494 }
1495
1496 /* OK, it's not in this class. Recursively check the baseclasses. */
1497 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1498 {
1499 struct type *t;
1500
1501 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1502 if (t != NULL)
1503 {
1504 return t;
1505 }
1506 }
1507
1508 if (noerr)
1509 {
1510 return NULL;
1511 }
1512
1513 typename = type_to_string (type);
1514 make_cleanup (xfree, typename);
1515 error (_("Type %s has no component named %s."), typename, name);
1516 }
1517
1518 /* Store in *MAX the largest number representable by unsigned integer type
1519 TYPE. */
1520
1521 void
1522 get_unsigned_type_max (struct type *type, ULONGEST *max)
1523 {
1524 unsigned int n;
1525
1526 CHECK_TYPEDEF (type);
1527 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1528 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1529
1530 /* Written this way to avoid overflow. */
1531 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1532 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1533 }
1534
1535 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1536 signed integer type TYPE. */
1537
1538 void
1539 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1540 {
1541 unsigned int n;
1542
1543 CHECK_TYPEDEF (type);
1544 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1545 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1546
1547 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1548 *min = -((ULONGEST) 1 << (n - 1));
1549 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1550 }
1551
1552 /* Lookup the vptr basetype/fieldno values for TYPE.
1553 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1554 vptr_fieldno. Also, if found and basetype is from the same objfile,
1555 cache the results.
1556 If not found, return -1 and ignore BASETYPEP.
1557 Callers should be aware that in some cases (for example,
1558 the type or one of its baseclasses is a stub type and we are
1559 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1560 this function will not be able to find the
1561 virtual function table pointer, and vptr_fieldno will remain -1 and
1562 vptr_basetype will remain NULL or incomplete. */
1563
1564 int
1565 get_vptr_fieldno (struct type *type, struct type **basetypep)
1566 {
1567 CHECK_TYPEDEF (type);
1568
1569 if (TYPE_VPTR_FIELDNO (type) < 0)
1570 {
1571 int i;
1572
1573 /* We must start at zero in case the first (and only) baseclass
1574 is virtual (and hence we cannot share the table pointer). */
1575 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1576 {
1577 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1578 int fieldno;
1579 struct type *basetype;
1580
1581 fieldno = get_vptr_fieldno (baseclass, &basetype);
1582 if (fieldno >= 0)
1583 {
1584 /* If the type comes from a different objfile we can't cache
1585 it, it may have a different lifetime. PR 2384 */
1586 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1587 {
1588 TYPE_VPTR_FIELDNO (type) = fieldno;
1589 TYPE_VPTR_BASETYPE (type) = basetype;
1590 }
1591 if (basetypep)
1592 *basetypep = basetype;
1593 return fieldno;
1594 }
1595 }
1596
1597 /* Not found. */
1598 return -1;
1599 }
1600 else
1601 {
1602 if (basetypep)
1603 *basetypep = TYPE_VPTR_BASETYPE (type);
1604 return TYPE_VPTR_FIELDNO (type);
1605 }
1606 }
1607
1608 static void
1609 stub_noname_complaint (void)
1610 {
1611 complaint (&symfile_complaints, _("stub type has NULL name"));
1612 }
1613
1614 /* See gdbtypes.h. */
1615
1616 int
1617 is_dynamic_type (struct type *type)
1618 {
1619 type = check_typedef (type);
1620
1621 if (TYPE_CODE (type) == TYPE_CODE_REF)
1622 type = check_typedef (TYPE_TARGET_TYPE (type));
1623
1624 switch (TYPE_CODE (type))
1625 {
1626 case TYPE_CODE_RANGE:
1627 return !has_static_range (TYPE_RANGE_DATA (type));
1628
1629 case TYPE_CODE_ARRAY:
1630 {
1631 gdb_assert (TYPE_NFIELDS (type) == 1);
1632
1633 /* The array is dynamic if either the bounds are dynamic,
1634 or the elements it contains have a dynamic contents. */
1635 if (is_dynamic_type (TYPE_INDEX_TYPE (type)))
1636 return 1;
1637 return is_dynamic_type (TYPE_TARGET_TYPE (type));
1638 }
1639
1640 case TYPE_CODE_STRUCT:
1641 case TYPE_CODE_UNION:
1642 {
1643 int i;
1644
1645 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1646 if (!field_is_static (&TYPE_FIELD (type, i))
1647 && is_dynamic_type (TYPE_FIELD_TYPE (type, i)))
1648 return 1;
1649 }
1650 break;
1651 }
1652
1653 return 0;
1654 }
1655
1656 /* Given a dynamic range type (dyn_range_type), return a static version
1657 of that type. */
1658
1659 static struct type *
1660 resolve_dynamic_range (struct type *dyn_range_type)
1661 {
1662 CORE_ADDR value;
1663 struct type *static_range_type;
1664 const struct dynamic_prop *prop;
1665 const struct dwarf2_locexpr_baton *baton;
1666 struct dynamic_prop low_bound, high_bound;
1667
1668 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1669
1670 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1671 if (dwarf2_evaluate_property (prop, &value))
1672 {
1673 low_bound.kind = PROP_CONST;
1674 low_bound.data.const_val = value;
1675 }
1676 else
1677 {
1678 low_bound.kind = PROP_UNDEFINED;
1679 low_bound.data.const_val = 0;
1680 }
1681
1682 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1683 if (dwarf2_evaluate_property (prop, &value))
1684 {
1685 high_bound.kind = PROP_CONST;
1686 high_bound.data.const_val = value;
1687
1688 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1689 high_bound.data.const_val
1690 = low_bound.data.const_val + high_bound.data.const_val - 1;
1691 }
1692 else
1693 {
1694 high_bound.kind = PROP_UNDEFINED;
1695 high_bound.data.const_val = 0;
1696 }
1697
1698 static_range_type = create_range_type (copy_type (dyn_range_type),
1699 TYPE_TARGET_TYPE (dyn_range_type),
1700 &low_bound, &high_bound);
1701 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1702 return static_range_type;
1703 }
1704
1705 /* Resolves dynamic bound values of an array type TYPE to static ones.
1706 ADDRESS might be needed to resolve the subrange bounds, it is the location
1707 of the associated array. */
1708
1709 static struct type *
1710 resolve_dynamic_array (struct type *type)
1711 {
1712 CORE_ADDR value;
1713 struct type *elt_type;
1714 struct type *range_type;
1715 struct type *ary_dim;
1716
1717 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1718
1719 elt_type = type;
1720 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1721 range_type = resolve_dynamic_range (range_type);
1722
1723 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1724
1725 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1726 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type));
1727 else
1728 elt_type = TYPE_TARGET_TYPE (type);
1729
1730 return create_array_type (copy_type (type),
1731 elt_type,
1732 range_type);
1733 }
1734
1735 /* Resolve dynamic bounds of members of the union TYPE to static
1736 bounds. */
1737
1738 static struct type *
1739 resolve_dynamic_union (struct type *type, CORE_ADDR addr)
1740 {
1741 struct type *resolved_type;
1742 int i;
1743 unsigned int max_len = 0;
1744
1745 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1746
1747 resolved_type = copy_type (type);
1748 TYPE_FIELDS (resolved_type)
1749 = TYPE_ALLOC (resolved_type,
1750 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1751 memcpy (TYPE_FIELDS (resolved_type),
1752 TYPE_FIELDS (type),
1753 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1754 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1755 {
1756 struct type *t;
1757
1758 if (field_is_static (&TYPE_FIELD (type, i)))
1759 continue;
1760
1761 t = resolve_dynamic_type (TYPE_FIELD_TYPE (resolved_type, i), addr);
1762 TYPE_FIELD_TYPE (resolved_type, i) = t;
1763 if (TYPE_LENGTH (t) > max_len)
1764 max_len = TYPE_LENGTH (t);
1765 }
1766
1767 TYPE_LENGTH (resolved_type) = max_len;
1768 return resolved_type;
1769 }
1770
1771 /* Resolve dynamic bounds of members of the struct TYPE to static
1772 bounds. */
1773
1774 static struct type *
1775 resolve_dynamic_struct (struct type *type, CORE_ADDR addr)
1776 {
1777 struct type *resolved_type;
1778 int i;
1779 int vla_field = TYPE_NFIELDS (type) - 1;
1780
1781 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1782 gdb_assert (TYPE_NFIELDS (type) > 0);
1783
1784 resolved_type = copy_type (type);
1785 TYPE_FIELDS (resolved_type)
1786 = TYPE_ALLOC (resolved_type,
1787 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1788 memcpy (TYPE_FIELDS (resolved_type),
1789 TYPE_FIELDS (type),
1790 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1791 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1792 {
1793 struct type *t;
1794
1795 if (field_is_static (&TYPE_FIELD (type, i)))
1796 continue;
1797
1798 t = resolve_dynamic_type (TYPE_FIELD_TYPE (resolved_type, i), addr);
1799
1800 /* This is a bit odd. We do not support a VLA in any position
1801 of a struct except for the last. GCC does have an extension
1802 that allows a VLA in the middle of a structure, but the DWARF
1803 it emits is relatively useless to us, so we can't represent
1804 such a type properly -- and even if we could, we do not have
1805 enough information to redo structure layout anyway.
1806 Nevertheless, we check all the fields in case something odd
1807 slips through, since it's better to see an error than
1808 incorrect results. */
1809 if (t != TYPE_FIELD_TYPE (resolved_type, i)
1810 && i != vla_field)
1811 error (_("Attempt to resolve a variably-sized type which appears "
1812 "in the interior of a structure type"));
1813
1814 TYPE_FIELD_TYPE (resolved_type, i) = t;
1815 }
1816
1817 /* Due to the above restrictions we can successfully compute
1818 the size of the resulting structure here, as the offset of
1819 the final field plus its size. */
1820 TYPE_LENGTH (resolved_type)
1821 = (TYPE_FIELD_BITPOS (resolved_type, vla_field) / TARGET_CHAR_BIT
1822 + TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, vla_field)));
1823 return resolved_type;
1824 }
1825
1826 /* See gdbtypes.h */
1827
1828 struct type *
1829 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1830 {
1831 struct type *real_type = check_typedef (type);
1832 struct type *resolved_type = type;
1833
1834 if (!is_dynamic_type (real_type))
1835 return type;
1836
1837 switch (TYPE_CODE (type))
1838 {
1839 case TYPE_CODE_TYPEDEF:
1840 resolved_type = copy_type (type);
1841 TYPE_TARGET_TYPE (resolved_type)
1842 = resolve_dynamic_type (TYPE_TARGET_TYPE (type), addr);
1843 break;
1844
1845 case TYPE_CODE_REF:
1846 {
1847 CORE_ADDR target_addr = read_memory_typed_address (addr, type);
1848
1849 resolved_type = copy_type (type);
1850 TYPE_TARGET_TYPE (resolved_type)
1851 = resolve_dynamic_type (TYPE_TARGET_TYPE (type), target_addr);
1852 break;
1853 }
1854
1855 case TYPE_CODE_ARRAY:
1856 resolved_type = resolve_dynamic_array (type);
1857 break;
1858
1859 case TYPE_CODE_RANGE:
1860 resolved_type = resolve_dynamic_range (type);
1861 break;
1862
1863 case TYPE_CODE_UNION:
1864 resolved_type = resolve_dynamic_union (type, addr);
1865 break;
1866
1867 case TYPE_CODE_STRUCT:
1868 resolved_type = resolve_dynamic_struct (type, addr);
1869 break;
1870 }
1871
1872 return resolved_type;
1873 }
1874
1875 /* Find the real type of TYPE. This function returns the real type,
1876 after removing all layers of typedefs, and completing opaque or stub
1877 types. Completion changes the TYPE argument, but stripping of
1878 typedefs does not.
1879
1880 Instance flags (e.g. const/volatile) are preserved as typedefs are
1881 stripped. If necessary a new qualified form of the underlying type
1882 is created.
1883
1884 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1885 not been computed and we're either in the middle of reading symbols, or
1886 there was no name for the typedef in the debug info.
1887
1888 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1889 QUITs in the symbol reading code can also throw.
1890 Thus this function can throw an exception.
1891
1892 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1893 the target type.
1894
1895 If this is a stubbed struct (i.e. declared as struct foo *), see if
1896 we can find a full definition in some other file. If so, copy this
1897 definition, so we can use it in future. There used to be a comment
1898 (but not any code) that if we don't find a full definition, we'd
1899 set a flag so we don't spend time in the future checking the same
1900 type. That would be a mistake, though--we might load in more
1901 symbols which contain a full definition for the type. */
1902
1903 struct type *
1904 check_typedef (struct type *type)
1905 {
1906 struct type *orig_type = type;
1907 /* While we're removing typedefs, we don't want to lose qualifiers.
1908 E.g., const/volatile. */
1909 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1910
1911 gdb_assert (type);
1912
1913 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1914 {
1915 if (!TYPE_TARGET_TYPE (type))
1916 {
1917 const char *name;
1918 struct symbol *sym;
1919
1920 /* It is dangerous to call lookup_symbol if we are currently
1921 reading a symtab. Infinite recursion is one danger. */
1922 if (currently_reading_symtab)
1923 return make_qualified_type (type, instance_flags, NULL);
1924
1925 name = type_name_no_tag (type);
1926 /* FIXME: shouldn't we separately check the TYPE_NAME and
1927 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1928 VAR_DOMAIN as appropriate? (this code was written before
1929 TYPE_NAME and TYPE_TAG_NAME were separate). */
1930 if (name == NULL)
1931 {
1932 stub_noname_complaint ();
1933 return make_qualified_type (type, instance_flags, NULL);
1934 }
1935 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1936 if (sym)
1937 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1938 else /* TYPE_CODE_UNDEF */
1939 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1940 }
1941 type = TYPE_TARGET_TYPE (type);
1942
1943 /* Preserve the instance flags as we traverse down the typedef chain.
1944
1945 Handling address spaces/classes is nasty, what do we do if there's a
1946 conflict?
1947 E.g., what if an outer typedef marks the type as class_1 and an inner
1948 typedef marks the type as class_2?
1949 This is the wrong place to do such error checking. We leave it to
1950 the code that created the typedef in the first place to flag the
1951 error. We just pick the outer address space (akin to letting the
1952 outer cast in a chain of casting win), instead of assuming
1953 "it can't happen". */
1954 {
1955 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1956 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1957 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1958 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1959
1960 /* Treat code vs data spaces and address classes separately. */
1961 if ((instance_flags & ALL_SPACES) != 0)
1962 new_instance_flags &= ~ALL_SPACES;
1963 if ((instance_flags & ALL_CLASSES) != 0)
1964 new_instance_flags &= ~ALL_CLASSES;
1965
1966 instance_flags |= new_instance_flags;
1967 }
1968 }
1969
1970 /* If this is a struct/class/union with no fields, then check
1971 whether a full definition exists somewhere else. This is for
1972 systems where a type definition with no fields is issued for such
1973 types, instead of identifying them as stub types in the first
1974 place. */
1975
1976 if (TYPE_IS_OPAQUE (type)
1977 && opaque_type_resolution
1978 && !currently_reading_symtab)
1979 {
1980 const char *name = type_name_no_tag (type);
1981 struct type *newtype;
1982
1983 if (name == NULL)
1984 {
1985 stub_noname_complaint ();
1986 return make_qualified_type (type, instance_flags, NULL);
1987 }
1988 newtype = lookup_transparent_type (name);
1989
1990 if (newtype)
1991 {
1992 /* If the resolved type and the stub are in the same
1993 objfile, then replace the stub type with the real deal.
1994 But if they're in separate objfiles, leave the stub
1995 alone; we'll just look up the transparent type every time
1996 we call check_typedef. We can't create pointers between
1997 types allocated to different objfiles, since they may
1998 have different lifetimes. Trying to copy NEWTYPE over to
1999 TYPE's objfile is pointless, too, since you'll have to
2000 move over any other types NEWTYPE refers to, which could
2001 be an unbounded amount of stuff. */
2002 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2003 type = make_qualified_type (newtype,
2004 TYPE_INSTANCE_FLAGS (type),
2005 type);
2006 else
2007 type = newtype;
2008 }
2009 }
2010 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2011 types. */
2012 else if (TYPE_STUB (type) && !currently_reading_symtab)
2013 {
2014 const char *name = type_name_no_tag (type);
2015 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2016 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2017 as appropriate? (this code was written before TYPE_NAME and
2018 TYPE_TAG_NAME were separate). */
2019 struct symbol *sym;
2020
2021 if (name == NULL)
2022 {
2023 stub_noname_complaint ();
2024 return make_qualified_type (type, instance_flags, NULL);
2025 }
2026 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2027 if (sym)
2028 {
2029 /* Same as above for opaque types, we can replace the stub
2030 with the complete type only if they are in the same
2031 objfile. */
2032 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2033 type = make_qualified_type (SYMBOL_TYPE (sym),
2034 TYPE_INSTANCE_FLAGS (type),
2035 type);
2036 else
2037 type = SYMBOL_TYPE (sym);
2038 }
2039 }
2040
2041 if (TYPE_TARGET_STUB (type))
2042 {
2043 struct type *range_type;
2044 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2045
2046 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2047 {
2048 /* Nothing we can do. */
2049 }
2050 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2051 {
2052 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2053 TYPE_TARGET_STUB (type) = 0;
2054 }
2055 }
2056
2057 type = make_qualified_type (type, instance_flags, NULL);
2058
2059 /* Cache TYPE_LENGTH for future use. */
2060 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2061
2062 return type;
2063 }
2064
2065 /* Parse a type expression in the string [P..P+LENGTH). If an error
2066 occurs, silently return a void type. */
2067
2068 static struct type *
2069 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2070 {
2071 struct ui_file *saved_gdb_stderr;
2072 struct type *type = NULL; /* Initialize to keep gcc happy. */
2073 volatile struct gdb_exception except;
2074
2075 /* Suppress error messages. */
2076 saved_gdb_stderr = gdb_stderr;
2077 gdb_stderr = ui_file_new ();
2078
2079 /* Call parse_and_eval_type() without fear of longjmp()s. */
2080 TRY_CATCH (except, RETURN_MASK_ERROR)
2081 {
2082 type = parse_and_eval_type (p, length);
2083 }
2084
2085 if (except.reason < 0)
2086 type = builtin_type (gdbarch)->builtin_void;
2087
2088 /* Stop suppressing error messages. */
2089 ui_file_delete (gdb_stderr);
2090 gdb_stderr = saved_gdb_stderr;
2091
2092 return type;
2093 }
2094
2095 /* Ugly hack to convert method stubs into method types.
2096
2097 He ain't kiddin'. This demangles the name of the method into a
2098 string including argument types, parses out each argument type,
2099 generates a string casting a zero to that type, evaluates the
2100 string, and stuffs the resulting type into an argtype vector!!!
2101 Then it knows the type of the whole function (including argument
2102 types for overloading), which info used to be in the stab's but was
2103 removed to hack back the space required for them. */
2104
2105 static void
2106 check_stub_method (struct type *type, int method_id, int signature_id)
2107 {
2108 struct gdbarch *gdbarch = get_type_arch (type);
2109 struct fn_field *f;
2110 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2111 char *demangled_name = gdb_demangle (mangled_name,
2112 DMGL_PARAMS | DMGL_ANSI);
2113 char *argtypetext, *p;
2114 int depth = 0, argcount = 1;
2115 struct field *argtypes;
2116 struct type *mtype;
2117
2118 /* Make sure we got back a function string that we can use. */
2119 if (demangled_name)
2120 p = strchr (demangled_name, '(');
2121 else
2122 p = NULL;
2123
2124 if (demangled_name == NULL || p == NULL)
2125 error (_("Internal: Cannot demangle mangled name `%s'."),
2126 mangled_name);
2127
2128 /* Now, read in the parameters that define this type. */
2129 p += 1;
2130 argtypetext = p;
2131 while (*p)
2132 {
2133 if (*p == '(' || *p == '<')
2134 {
2135 depth += 1;
2136 }
2137 else if (*p == ')' || *p == '>')
2138 {
2139 depth -= 1;
2140 }
2141 else if (*p == ',' && depth == 0)
2142 {
2143 argcount += 1;
2144 }
2145
2146 p += 1;
2147 }
2148
2149 /* If we read one argument and it was ``void'', don't count it. */
2150 if (strncmp (argtypetext, "(void)", 6) == 0)
2151 argcount -= 1;
2152
2153 /* We need one extra slot, for the THIS pointer. */
2154
2155 argtypes = (struct field *)
2156 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2157 p = argtypetext;
2158
2159 /* Add THIS pointer for non-static methods. */
2160 f = TYPE_FN_FIELDLIST1 (type, method_id);
2161 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2162 argcount = 0;
2163 else
2164 {
2165 argtypes[0].type = lookup_pointer_type (type);
2166 argcount = 1;
2167 }
2168
2169 if (*p != ')') /* () means no args, skip while. */
2170 {
2171 depth = 0;
2172 while (*p)
2173 {
2174 if (depth <= 0 && (*p == ',' || *p == ')'))
2175 {
2176 /* Avoid parsing of ellipsis, they will be handled below.
2177 Also avoid ``void'' as above. */
2178 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2179 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2180 {
2181 argtypes[argcount].type =
2182 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2183 argcount += 1;
2184 }
2185 argtypetext = p + 1;
2186 }
2187
2188 if (*p == '(' || *p == '<')
2189 {
2190 depth += 1;
2191 }
2192 else if (*p == ')' || *p == '>')
2193 {
2194 depth -= 1;
2195 }
2196
2197 p += 1;
2198 }
2199 }
2200
2201 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2202
2203 /* Now update the old "stub" type into a real type. */
2204 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2205 TYPE_DOMAIN_TYPE (mtype) = type;
2206 TYPE_FIELDS (mtype) = argtypes;
2207 TYPE_NFIELDS (mtype) = argcount;
2208 TYPE_STUB (mtype) = 0;
2209 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2210 if (p[-2] == '.')
2211 TYPE_VARARGS (mtype) = 1;
2212
2213 xfree (demangled_name);
2214 }
2215
2216 /* This is the external interface to check_stub_method, above. This
2217 function unstubs all of the signatures for TYPE's METHOD_ID method
2218 name. After calling this function TYPE_FN_FIELD_STUB will be
2219 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2220 correct.
2221
2222 This function unfortunately can not die until stabs do. */
2223
2224 void
2225 check_stub_method_group (struct type *type, int method_id)
2226 {
2227 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2228 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2229 int j, found_stub = 0;
2230
2231 for (j = 0; j < len; j++)
2232 if (TYPE_FN_FIELD_STUB (f, j))
2233 {
2234 found_stub = 1;
2235 check_stub_method (type, method_id, j);
2236 }
2237
2238 /* GNU v3 methods with incorrect names were corrected when we read
2239 in type information, because it was cheaper to do it then. The
2240 only GNU v2 methods with incorrect method names are operators and
2241 destructors; destructors were also corrected when we read in type
2242 information.
2243
2244 Therefore the only thing we need to handle here are v2 operator
2245 names. */
2246 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2247 {
2248 int ret;
2249 char dem_opname[256];
2250
2251 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2252 method_id),
2253 dem_opname, DMGL_ANSI);
2254 if (!ret)
2255 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2256 method_id),
2257 dem_opname, 0);
2258 if (ret)
2259 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2260 }
2261 }
2262
2263 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2264 const struct cplus_struct_type cplus_struct_default = { };
2265
2266 void
2267 allocate_cplus_struct_type (struct type *type)
2268 {
2269 if (HAVE_CPLUS_STRUCT (type))
2270 /* Structure was already allocated. Nothing more to do. */
2271 return;
2272
2273 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2274 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2275 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2276 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2277 }
2278
2279 const struct gnat_aux_type gnat_aux_default =
2280 { NULL };
2281
2282 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2283 and allocate the associated gnat-specific data. The gnat-specific
2284 data is also initialized to gnat_aux_default. */
2285
2286 void
2287 allocate_gnat_aux_type (struct type *type)
2288 {
2289 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2290 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2291 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2292 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2293 }
2294
2295 /* Helper function to initialize the standard scalar types.
2296
2297 If NAME is non-NULL, then it is used to initialize the type name.
2298 Note that NAME is not copied; it is required to have a lifetime at
2299 least as long as OBJFILE. */
2300
2301 struct type *
2302 init_type (enum type_code code, int length, int flags,
2303 const char *name, struct objfile *objfile)
2304 {
2305 struct type *type;
2306
2307 type = alloc_type (objfile);
2308 TYPE_CODE (type) = code;
2309 TYPE_LENGTH (type) = length;
2310
2311 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2312 if (flags & TYPE_FLAG_UNSIGNED)
2313 TYPE_UNSIGNED (type) = 1;
2314 if (flags & TYPE_FLAG_NOSIGN)
2315 TYPE_NOSIGN (type) = 1;
2316 if (flags & TYPE_FLAG_STUB)
2317 TYPE_STUB (type) = 1;
2318 if (flags & TYPE_FLAG_TARGET_STUB)
2319 TYPE_TARGET_STUB (type) = 1;
2320 if (flags & TYPE_FLAG_STATIC)
2321 TYPE_STATIC (type) = 1;
2322 if (flags & TYPE_FLAG_PROTOTYPED)
2323 TYPE_PROTOTYPED (type) = 1;
2324 if (flags & TYPE_FLAG_INCOMPLETE)
2325 TYPE_INCOMPLETE (type) = 1;
2326 if (flags & TYPE_FLAG_VARARGS)
2327 TYPE_VARARGS (type) = 1;
2328 if (flags & TYPE_FLAG_VECTOR)
2329 TYPE_VECTOR (type) = 1;
2330 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2331 TYPE_STUB_SUPPORTED (type) = 1;
2332 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2333 TYPE_FIXED_INSTANCE (type) = 1;
2334 if (flags & TYPE_FLAG_GNU_IFUNC)
2335 TYPE_GNU_IFUNC (type) = 1;
2336
2337 TYPE_NAME (type) = name;
2338
2339 /* C++ fancies. */
2340
2341 if (name && strcmp (name, "char") == 0)
2342 TYPE_NOSIGN (type) = 1;
2343
2344 switch (code)
2345 {
2346 case TYPE_CODE_STRUCT:
2347 case TYPE_CODE_UNION:
2348 case TYPE_CODE_NAMESPACE:
2349 INIT_CPLUS_SPECIFIC (type);
2350 break;
2351 case TYPE_CODE_FLT:
2352 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2353 break;
2354 case TYPE_CODE_FUNC:
2355 INIT_FUNC_SPECIFIC (type);
2356 break;
2357 }
2358 return type;
2359 }
2360 \f
2361 /* Queries on types. */
2362
2363 int
2364 can_dereference (struct type *t)
2365 {
2366 /* FIXME: Should we return true for references as well as
2367 pointers? */
2368 CHECK_TYPEDEF (t);
2369 return
2370 (t != NULL
2371 && TYPE_CODE (t) == TYPE_CODE_PTR
2372 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2373 }
2374
2375 int
2376 is_integral_type (struct type *t)
2377 {
2378 CHECK_TYPEDEF (t);
2379 return
2380 ((t != NULL)
2381 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2382 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2383 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2384 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2385 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2386 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2387 }
2388
2389 /* Return true if TYPE is scalar. */
2390
2391 static int
2392 is_scalar_type (struct type *type)
2393 {
2394 CHECK_TYPEDEF (type);
2395
2396 switch (TYPE_CODE (type))
2397 {
2398 case TYPE_CODE_ARRAY:
2399 case TYPE_CODE_STRUCT:
2400 case TYPE_CODE_UNION:
2401 case TYPE_CODE_SET:
2402 case TYPE_CODE_STRING:
2403 return 0;
2404 default:
2405 return 1;
2406 }
2407 }
2408
2409 /* Return true if T is scalar, or a composite type which in practice has
2410 the memory layout of a scalar type. E.g., an array or struct with only
2411 one scalar element inside it, or a union with only scalar elements. */
2412
2413 int
2414 is_scalar_type_recursive (struct type *t)
2415 {
2416 CHECK_TYPEDEF (t);
2417
2418 if (is_scalar_type (t))
2419 return 1;
2420 /* Are we dealing with an array or string of known dimensions? */
2421 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2422 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2423 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2424 {
2425 LONGEST low_bound, high_bound;
2426 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2427
2428 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2429
2430 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2431 }
2432 /* Are we dealing with a struct with one element? */
2433 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2434 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2435 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2436 {
2437 int i, n = TYPE_NFIELDS (t);
2438
2439 /* If all elements of the union are scalar, then the union is scalar. */
2440 for (i = 0; i < n; i++)
2441 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2442 return 0;
2443
2444 return 1;
2445 }
2446
2447 return 0;
2448 }
2449
2450 /* A helper function which returns true if types A and B represent the
2451 "same" class type. This is true if the types have the same main
2452 type, or the same name. */
2453
2454 int
2455 class_types_same_p (const struct type *a, const struct type *b)
2456 {
2457 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2458 || (TYPE_NAME (a) && TYPE_NAME (b)
2459 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2460 }
2461
2462 /* If BASE is an ancestor of DCLASS return the distance between them.
2463 otherwise return -1;
2464 eg:
2465
2466 class A {};
2467 class B: public A {};
2468 class C: public B {};
2469 class D: C {};
2470
2471 distance_to_ancestor (A, A, 0) = 0
2472 distance_to_ancestor (A, B, 0) = 1
2473 distance_to_ancestor (A, C, 0) = 2
2474 distance_to_ancestor (A, D, 0) = 3
2475
2476 If PUBLIC is 1 then only public ancestors are considered,
2477 and the function returns the distance only if BASE is a public ancestor
2478 of DCLASS.
2479 Eg:
2480
2481 distance_to_ancestor (A, D, 1) = -1. */
2482
2483 static int
2484 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2485 {
2486 int i;
2487 int d;
2488
2489 CHECK_TYPEDEF (base);
2490 CHECK_TYPEDEF (dclass);
2491
2492 if (class_types_same_p (base, dclass))
2493 return 0;
2494
2495 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2496 {
2497 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2498 continue;
2499
2500 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2501 if (d >= 0)
2502 return 1 + d;
2503 }
2504
2505 return -1;
2506 }
2507
2508 /* Check whether BASE is an ancestor or base class or DCLASS
2509 Return 1 if so, and 0 if not.
2510 Note: If BASE and DCLASS are of the same type, this function
2511 will return 1. So for some class A, is_ancestor (A, A) will
2512 return 1. */
2513
2514 int
2515 is_ancestor (struct type *base, struct type *dclass)
2516 {
2517 return distance_to_ancestor (base, dclass, 0) >= 0;
2518 }
2519
2520 /* Like is_ancestor, but only returns true when BASE is a public
2521 ancestor of DCLASS. */
2522
2523 int
2524 is_public_ancestor (struct type *base, struct type *dclass)
2525 {
2526 return distance_to_ancestor (base, dclass, 1) >= 0;
2527 }
2528
2529 /* A helper function for is_unique_ancestor. */
2530
2531 static int
2532 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2533 int *offset,
2534 const gdb_byte *valaddr, int embedded_offset,
2535 CORE_ADDR address, struct value *val)
2536 {
2537 int i, count = 0;
2538
2539 CHECK_TYPEDEF (base);
2540 CHECK_TYPEDEF (dclass);
2541
2542 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2543 {
2544 struct type *iter;
2545 int this_offset;
2546
2547 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2548
2549 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2550 address, val);
2551
2552 if (class_types_same_p (base, iter))
2553 {
2554 /* If this is the first subclass, set *OFFSET and set count
2555 to 1. Otherwise, if this is at the same offset as
2556 previous instances, do nothing. Otherwise, increment
2557 count. */
2558 if (*offset == -1)
2559 {
2560 *offset = this_offset;
2561 count = 1;
2562 }
2563 else if (this_offset == *offset)
2564 {
2565 /* Nothing. */
2566 }
2567 else
2568 ++count;
2569 }
2570 else
2571 count += is_unique_ancestor_worker (base, iter, offset,
2572 valaddr,
2573 embedded_offset + this_offset,
2574 address, val);
2575 }
2576
2577 return count;
2578 }
2579
2580 /* Like is_ancestor, but only returns true if BASE is a unique base
2581 class of the type of VAL. */
2582
2583 int
2584 is_unique_ancestor (struct type *base, struct value *val)
2585 {
2586 int offset = -1;
2587
2588 return is_unique_ancestor_worker (base, value_type (val), &offset,
2589 value_contents_for_printing (val),
2590 value_embedded_offset (val),
2591 value_address (val), val) == 1;
2592 }
2593
2594 \f
2595 /* Overload resolution. */
2596
2597 /* Return the sum of the rank of A with the rank of B. */
2598
2599 struct rank
2600 sum_ranks (struct rank a, struct rank b)
2601 {
2602 struct rank c;
2603 c.rank = a.rank + b.rank;
2604 c.subrank = a.subrank + b.subrank;
2605 return c;
2606 }
2607
2608 /* Compare rank A and B and return:
2609 0 if a = b
2610 1 if a is better than b
2611 -1 if b is better than a. */
2612
2613 int
2614 compare_ranks (struct rank a, struct rank b)
2615 {
2616 if (a.rank == b.rank)
2617 {
2618 if (a.subrank == b.subrank)
2619 return 0;
2620 if (a.subrank < b.subrank)
2621 return 1;
2622 if (a.subrank > b.subrank)
2623 return -1;
2624 }
2625
2626 if (a.rank < b.rank)
2627 return 1;
2628
2629 /* a.rank > b.rank */
2630 return -1;
2631 }
2632
2633 /* Functions for overload resolution begin here. */
2634
2635 /* Compare two badness vectors A and B and return the result.
2636 0 => A and B are identical
2637 1 => A and B are incomparable
2638 2 => A is better than B
2639 3 => A is worse than B */
2640
2641 int
2642 compare_badness (struct badness_vector *a, struct badness_vector *b)
2643 {
2644 int i;
2645 int tmp;
2646 short found_pos = 0; /* any positives in c? */
2647 short found_neg = 0; /* any negatives in c? */
2648
2649 /* differing lengths => incomparable */
2650 if (a->length != b->length)
2651 return 1;
2652
2653 /* Subtract b from a */
2654 for (i = 0; i < a->length; i++)
2655 {
2656 tmp = compare_ranks (b->rank[i], a->rank[i]);
2657 if (tmp > 0)
2658 found_pos = 1;
2659 else if (tmp < 0)
2660 found_neg = 1;
2661 }
2662
2663 if (found_pos)
2664 {
2665 if (found_neg)
2666 return 1; /* incomparable */
2667 else
2668 return 3; /* A > B */
2669 }
2670 else
2671 /* no positives */
2672 {
2673 if (found_neg)
2674 return 2; /* A < B */
2675 else
2676 return 0; /* A == B */
2677 }
2678 }
2679
2680 /* Rank a function by comparing its parameter types (PARMS, length
2681 NPARMS), to the types of an argument list (ARGS, length NARGS).
2682 Return a pointer to a badness vector. This has NARGS + 1
2683 entries. */
2684
2685 struct badness_vector *
2686 rank_function (struct type **parms, int nparms,
2687 struct value **args, int nargs)
2688 {
2689 int i;
2690 struct badness_vector *bv;
2691 int min_len = nparms < nargs ? nparms : nargs;
2692
2693 bv = xmalloc (sizeof (struct badness_vector));
2694 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2695 bv->rank = XNEWVEC (struct rank, nargs + 1);
2696
2697 /* First compare the lengths of the supplied lists.
2698 If there is a mismatch, set it to a high value. */
2699
2700 /* pai/1997-06-03 FIXME: when we have debug info about default
2701 arguments and ellipsis parameter lists, we should consider those
2702 and rank the length-match more finely. */
2703
2704 LENGTH_MATCH (bv) = (nargs != nparms)
2705 ? LENGTH_MISMATCH_BADNESS
2706 : EXACT_MATCH_BADNESS;
2707
2708 /* Now rank all the parameters of the candidate function. */
2709 for (i = 1; i <= min_len; i++)
2710 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2711 args[i - 1]);
2712
2713 /* If more arguments than parameters, add dummy entries. */
2714 for (i = min_len + 1; i <= nargs; i++)
2715 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2716
2717 return bv;
2718 }
2719
2720 /* Compare the names of two integer types, assuming that any sign
2721 qualifiers have been checked already. We do it this way because
2722 there may be an "int" in the name of one of the types. */
2723
2724 static int
2725 integer_types_same_name_p (const char *first, const char *second)
2726 {
2727 int first_p, second_p;
2728
2729 /* If both are shorts, return 1; if neither is a short, keep
2730 checking. */
2731 first_p = (strstr (first, "short") != NULL);
2732 second_p = (strstr (second, "short") != NULL);
2733 if (first_p && second_p)
2734 return 1;
2735 if (first_p || second_p)
2736 return 0;
2737
2738 /* Likewise for long. */
2739 first_p = (strstr (first, "long") != NULL);
2740 second_p = (strstr (second, "long") != NULL);
2741 if (first_p && second_p)
2742 return 1;
2743 if (first_p || second_p)
2744 return 0;
2745
2746 /* Likewise for char. */
2747 first_p = (strstr (first, "char") != NULL);
2748 second_p = (strstr (second, "char") != NULL);
2749 if (first_p && second_p)
2750 return 1;
2751 if (first_p || second_p)
2752 return 0;
2753
2754 /* They must both be ints. */
2755 return 1;
2756 }
2757
2758 /* Compares type A to type B returns 1 if the represent the same type
2759 0 otherwise. */
2760
2761 int
2762 types_equal (struct type *a, struct type *b)
2763 {
2764 /* Identical type pointers. */
2765 /* However, this still doesn't catch all cases of same type for b
2766 and a. The reason is that builtin types are different from
2767 the same ones constructed from the object. */
2768 if (a == b)
2769 return 1;
2770
2771 /* Resolve typedefs */
2772 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2773 a = check_typedef (a);
2774 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2775 b = check_typedef (b);
2776
2777 /* If after resolving typedefs a and b are not of the same type
2778 code then they are not equal. */
2779 if (TYPE_CODE (a) != TYPE_CODE (b))
2780 return 0;
2781
2782 /* If a and b are both pointers types or both reference types then
2783 they are equal of the same type iff the objects they refer to are
2784 of the same type. */
2785 if (TYPE_CODE (a) == TYPE_CODE_PTR
2786 || TYPE_CODE (a) == TYPE_CODE_REF)
2787 return types_equal (TYPE_TARGET_TYPE (a),
2788 TYPE_TARGET_TYPE (b));
2789
2790 /* Well, damnit, if the names are exactly the same, I'll say they
2791 are exactly the same. This happens when we generate method
2792 stubs. The types won't point to the same address, but they
2793 really are the same. */
2794
2795 if (TYPE_NAME (a) && TYPE_NAME (b)
2796 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2797 return 1;
2798
2799 /* Check if identical after resolving typedefs. */
2800 if (a == b)
2801 return 1;
2802
2803 /* Two function types are equal if their argument and return types
2804 are equal. */
2805 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2806 {
2807 int i;
2808
2809 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2810 return 0;
2811
2812 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2813 return 0;
2814
2815 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2816 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2817 return 0;
2818
2819 return 1;
2820 }
2821
2822 return 0;
2823 }
2824 \f
2825 /* Deep comparison of types. */
2826
2827 /* An entry in the type-equality bcache. */
2828
2829 typedef struct type_equality_entry
2830 {
2831 struct type *type1, *type2;
2832 } type_equality_entry_d;
2833
2834 DEF_VEC_O (type_equality_entry_d);
2835
2836 /* A helper function to compare two strings. Returns 1 if they are
2837 the same, 0 otherwise. Handles NULLs properly. */
2838
2839 static int
2840 compare_maybe_null_strings (const char *s, const char *t)
2841 {
2842 if (s == NULL && t != NULL)
2843 return 0;
2844 else if (s != NULL && t == NULL)
2845 return 0;
2846 else if (s == NULL && t== NULL)
2847 return 1;
2848 return strcmp (s, t) == 0;
2849 }
2850
2851 /* A helper function for check_types_worklist that checks two types for
2852 "deep" equality. Returns non-zero if the types are considered the
2853 same, zero otherwise. */
2854
2855 static int
2856 check_types_equal (struct type *type1, struct type *type2,
2857 VEC (type_equality_entry_d) **worklist)
2858 {
2859 CHECK_TYPEDEF (type1);
2860 CHECK_TYPEDEF (type2);
2861
2862 if (type1 == type2)
2863 return 1;
2864
2865 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2866 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2867 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2868 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2869 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2870 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2871 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2872 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2873 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2874 return 0;
2875
2876 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2877 TYPE_TAG_NAME (type2)))
2878 return 0;
2879 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2880 return 0;
2881
2882 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2883 {
2884 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2885 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2886 return 0;
2887 }
2888 else
2889 {
2890 int i;
2891
2892 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2893 {
2894 const struct field *field1 = &TYPE_FIELD (type1, i);
2895 const struct field *field2 = &TYPE_FIELD (type2, i);
2896 struct type_equality_entry entry;
2897
2898 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2899 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2900 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2901 return 0;
2902 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2903 FIELD_NAME (*field2)))
2904 return 0;
2905 switch (FIELD_LOC_KIND (*field1))
2906 {
2907 case FIELD_LOC_KIND_BITPOS:
2908 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2909 return 0;
2910 break;
2911 case FIELD_LOC_KIND_ENUMVAL:
2912 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2913 return 0;
2914 break;
2915 case FIELD_LOC_KIND_PHYSADDR:
2916 if (FIELD_STATIC_PHYSADDR (*field1)
2917 != FIELD_STATIC_PHYSADDR (*field2))
2918 return 0;
2919 break;
2920 case FIELD_LOC_KIND_PHYSNAME:
2921 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2922 FIELD_STATIC_PHYSNAME (*field2)))
2923 return 0;
2924 break;
2925 case FIELD_LOC_KIND_DWARF_BLOCK:
2926 {
2927 struct dwarf2_locexpr_baton *block1, *block2;
2928
2929 block1 = FIELD_DWARF_BLOCK (*field1);
2930 block2 = FIELD_DWARF_BLOCK (*field2);
2931 if (block1->per_cu != block2->per_cu
2932 || block1->size != block2->size
2933 || memcmp (block1->data, block2->data, block1->size) != 0)
2934 return 0;
2935 }
2936 break;
2937 default:
2938 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
2939 "%d by check_types_equal"),
2940 FIELD_LOC_KIND (*field1));
2941 }
2942
2943 entry.type1 = FIELD_TYPE (*field1);
2944 entry.type2 = FIELD_TYPE (*field2);
2945 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2946 }
2947 }
2948
2949 if (TYPE_TARGET_TYPE (type1) != NULL)
2950 {
2951 struct type_equality_entry entry;
2952
2953 if (TYPE_TARGET_TYPE (type2) == NULL)
2954 return 0;
2955
2956 entry.type1 = TYPE_TARGET_TYPE (type1);
2957 entry.type2 = TYPE_TARGET_TYPE (type2);
2958 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2959 }
2960 else if (TYPE_TARGET_TYPE (type2) != NULL)
2961 return 0;
2962
2963 return 1;
2964 }
2965
2966 /* Check types on a worklist for equality. Returns zero if any pair
2967 is not equal, non-zero if they are all considered equal. */
2968
2969 static int
2970 check_types_worklist (VEC (type_equality_entry_d) **worklist,
2971 struct bcache *cache)
2972 {
2973 while (!VEC_empty (type_equality_entry_d, *worklist))
2974 {
2975 struct type_equality_entry entry;
2976 int added;
2977
2978 entry = *VEC_last (type_equality_entry_d, *worklist);
2979 VEC_pop (type_equality_entry_d, *worklist);
2980
2981 /* If the type pair has already been visited, we know it is
2982 ok. */
2983 bcache_full (&entry, sizeof (entry), cache, &added);
2984 if (!added)
2985 continue;
2986
2987 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
2988 return 0;
2989 }
2990
2991 return 1;
2992 }
2993
2994 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
2995 "deep comparison". Otherwise return zero. */
2996
2997 int
2998 types_deeply_equal (struct type *type1, struct type *type2)
2999 {
3000 volatile struct gdb_exception except;
3001 int result = 0;
3002 struct bcache *cache;
3003 VEC (type_equality_entry_d) *worklist = NULL;
3004 struct type_equality_entry entry;
3005
3006 gdb_assert (type1 != NULL && type2 != NULL);
3007
3008 /* Early exit for the simple case. */
3009 if (type1 == type2)
3010 return 1;
3011
3012 cache = bcache_xmalloc (NULL, NULL);
3013
3014 entry.type1 = type1;
3015 entry.type2 = type2;
3016 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3017
3018 TRY_CATCH (except, RETURN_MASK_ALL)
3019 {
3020 result = check_types_worklist (&worklist, cache);
3021 }
3022 /* check_types_worklist calls several nested helper functions,
3023 some of which can raise a GDB Exception, so we just check
3024 and rethrow here. If there is a GDB exception, a comparison
3025 is not capable (or trusted), so exit. */
3026 bcache_xfree (cache);
3027 VEC_free (type_equality_entry_d, worklist);
3028 /* Rethrow if there was a problem. */
3029 if (except.reason < 0)
3030 throw_exception (except);
3031
3032 return result;
3033 }
3034 \f
3035 /* Compare one type (PARM) for compatibility with another (ARG).
3036 * PARM is intended to be the parameter type of a function; and
3037 * ARG is the supplied argument's type. This function tests if
3038 * the latter can be converted to the former.
3039 * VALUE is the argument's value or NULL if none (or called recursively)
3040 *
3041 * Return 0 if they are identical types;
3042 * Otherwise, return an integer which corresponds to how compatible
3043 * PARM is to ARG. The higher the return value, the worse the match.
3044 * Generally the "bad" conversions are all uniformly assigned a 100. */
3045
3046 struct rank
3047 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3048 {
3049 struct rank rank = {0,0};
3050
3051 if (types_equal (parm, arg))
3052 return EXACT_MATCH_BADNESS;
3053
3054 /* Resolve typedefs */
3055 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3056 parm = check_typedef (parm);
3057 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3058 arg = check_typedef (arg);
3059
3060 /* See through references, since we can almost make non-references
3061 references. */
3062 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3063 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3064 REFERENCE_CONVERSION_BADNESS));
3065 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3066 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3067 REFERENCE_CONVERSION_BADNESS));
3068 if (overload_debug)
3069 /* Debugging only. */
3070 fprintf_filtered (gdb_stderr,
3071 "------ Arg is %s [%d], parm is %s [%d]\n",
3072 TYPE_NAME (arg), TYPE_CODE (arg),
3073 TYPE_NAME (parm), TYPE_CODE (parm));
3074
3075 /* x -> y means arg of type x being supplied for parameter of type y. */
3076
3077 switch (TYPE_CODE (parm))
3078 {
3079 case TYPE_CODE_PTR:
3080 switch (TYPE_CODE (arg))
3081 {
3082 case TYPE_CODE_PTR:
3083
3084 /* Allowed pointer conversions are:
3085 (a) pointer to void-pointer conversion. */
3086 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3087 return VOID_PTR_CONVERSION_BADNESS;
3088
3089 /* (b) pointer to ancestor-pointer conversion. */
3090 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3091 TYPE_TARGET_TYPE (arg),
3092 0);
3093 if (rank.subrank >= 0)
3094 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3095
3096 return INCOMPATIBLE_TYPE_BADNESS;
3097 case TYPE_CODE_ARRAY:
3098 if (types_equal (TYPE_TARGET_TYPE (parm),
3099 TYPE_TARGET_TYPE (arg)))
3100 return EXACT_MATCH_BADNESS;
3101 return INCOMPATIBLE_TYPE_BADNESS;
3102 case TYPE_CODE_FUNC:
3103 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3104 case TYPE_CODE_INT:
3105 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3106 {
3107 if (value_as_long (value) == 0)
3108 {
3109 /* Null pointer conversion: allow it to be cast to a pointer.
3110 [4.10.1 of C++ standard draft n3290] */
3111 return NULL_POINTER_CONVERSION_BADNESS;
3112 }
3113 else
3114 {
3115 /* If type checking is disabled, allow the conversion. */
3116 if (!strict_type_checking)
3117 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3118 }
3119 }
3120 /* fall through */
3121 case TYPE_CODE_ENUM:
3122 case TYPE_CODE_FLAGS:
3123 case TYPE_CODE_CHAR:
3124 case TYPE_CODE_RANGE:
3125 case TYPE_CODE_BOOL:
3126 default:
3127 return INCOMPATIBLE_TYPE_BADNESS;
3128 }
3129 case TYPE_CODE_ARRAY:
3130 switch (TYPE_CODE (arg))
3131 {
3132 case TYPE_CODE_PTR:
3133 case TYPE_CODE_ARRAY:
3134 return rank_one_type (TYPE_TARGET_TYPE (parm),
3135 TYPE_TARGET_TYPE (arg), NULL);
3136 default:
3137 return INCOMPATIBLE_TYPE_BADNESS;
3138 }
3139 case TYPE_CODE_FUNC:
3140 switch (TYPE_CODE (arg))
3141 {
3142 case TYPE_CODE_PTR: /* funcptr -> func */
3143 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3144 default:
3145 return INCOMPATIBLE_TYPE_BADNESS;
3146 }
3147 case TYPE_CODE_INT:
3148 switch (TYPE_CODE (arg))
3149 {
3150 case TYPE_CODE_INT:
3151 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3152 {
3153 /* Deal with signed, unsigned, and plain chars and
3154 signed and unsigned ints. */
3155 if (TYPE_NOSIGN (parm))
3156 {
3157 /* This case only for character types. */
3158 if (TYPE_NOSIGN (arg))
3159 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3160 else /* signed/unsigned char -> plain char */
3161 return INTEGER_CONVERSION_BADNESS;
3162 }
3163 else if (TYPE_UNSIGNED (parm))
3164 {
3165 if (TYPE_UNSIGNED (arg))
3166 {
3167 /* unsigned int -> unsigned int, or
3168 unsigned long -> unsigned long */
3169 if (integer_types_same_name_p (TYPE_NAME (parm),
3170 TYPE_NAME (arg)))
3171 return EXACT_MATCH_BADNESS;
3172 else if (integer_types_same_name_p (TYPE_NAME (arg),
3173 "int")
3174 && integer_types_same_name_p (TYPE_NAME (parm),
3175 "long"))
3176 /* unsigned int -> unsigned long */
3177 return INTEGER_PROMOTION_BADNESS;
3178 else
3179 /* unsigned long -> unsigned int */
3180 return INTEGER_CONVERSION_BADNESS;
3181 }
3182 else
3183 {
3184 if (integer_types_same_name_p (TYPE_NAME (arg),
3185 "long")
3186 && integer_types_same_name_p (TYPE_NAME (parm),
3187 "int"))
3188 /* signed long -> unsigned int */
3189 return INTEGER_CONVERSION_BADNESS;
3190 else
3191 /* signed int/long -> unsigned int/long */
3192 return INTEGER_CONVERSION_BADNESS;
3193 }
3194 }
3195 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3196 {
3197 if (integer_types_same_name_p (TYPE_NAME (parm),
3198 TYPE_NAME (arg)))
3199 return EXACT_MATCH_BADNESS;
3200 else if (integer_types_same_name_p (TYPE_NAME (arg),
3201 "int")
3202 && integer_types_same_name_p (TYPE_NAME (parm),
3203 "long"))
3204 return INTEGER_PROMOTION_BADNESS;
3205 else
3206 return INTEGER_CONVERSION_BADNESS;
3207 }
3208 else
3209 return INTEGER_CONVERSION_BADNESS;
3210 }
3211 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3212 return INTEGER_PROMOTION_BADNESS;
3213 else
3214 return INTEGER_CONVERSION_BADNESS;
3215 case TYPE_CODE_ENUM:
3216 case TYPE_CODE_FLAGS:
3217 case TYPE_CODE_CHAR:
3218 case TYPE_CODE_RANGE:
3219 case TYPE_CODE_BOOL:
3220 if (TYPE_DECLARED_CLASS (arg))
3221 return INCOMPATIBLE_TYPE_BADNESS;
3222 return INTEGER_PROMOTION_BADNESS;
3223 case TYPE_CODE_FLT:
3224 return INT_FLOAT_CONVERSION_BADNESS;
3225 case TYPE_CODE_PTR:
3226 return NS_POINTER_CONVERSION_BADNESS;
3227 default:
3228 return INCOMPATIBLE_TYPE_BADNESS;
3229 }
3230 break;
3231 case TYPE_CODE_ENUM:
3232 switch (TYPE_CODE (arg))
3233 {
3234 case TYPE_CODE_INT:
3235 case TYPE_CODE_CHAR:
3236 case TYPE_CODE_RANGE:
3237 case TYPE_CODE_BOOL:
3238 case TYPE_CODE_ENUM:
3239 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3240 return INCOMPATIBLE_TYPE_BADNESS;
3241 return INTEGER_CONVERSION_BADNESS;
3242 case TYPE_CODE_FLT:
3243 return INT_FLOAT_CONVERSION_BADNESS;
3244 default:
3245 return INCOMPATIBLE_TYPE_BADNESS;
3246 }
3247 break;
3248 case TYPE_CODE_CHAR:
3249 switch (TYPE_CODE (arg))
3250 {
3251 case TYPE_CODE_RANGE:
3252 case TYPE_CODE_BOOL:
3253 case TYPE_CODE_ENUM:
3254 if (TYPE_DECLARED_CLASS (arg))
3255 return INCOMPATIBLE_TYPE_BADNESS;
3256 return INTEGER_CONVERSION_BADNESS;
3257 case TYPE_CODE_FLT:
3258 return INT_FLOAT_CONVERSION_BADNESS;
3259 case TYPE_CODE_INT:
3260 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3261 return INTEGER_CONVERSION_BADNESS;
3262 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3263 return INTEGER_PROMOTION_BADNESS;
3264 /* >>> !! else fall through !! <<< */
3265 case TYPE_CODE_CHAR:
3266 /* Deal with signed, unsigned, and plain chars for C++ and
3267 with int cases falling through from previous case. */
3268 if (TYPE_NOSIGN (parm))
3269 {
3270 if (TYPE_NOSIGN (arg))
3271 return EXACT_MATCH_BADNESS;
3272 else
3273 return INTEGER_CONVERSION_BADNESS;
3274 }
3275 else if (TYPE_UNSIGNED (parm))
3276 {
3277 if (TYPE_UNSIGNED (arg))
3278 return EXACT_MATCH_BADNESS;
3279 else
3280 return INTEGER_PROMOTION_BADNESS;
3281 }
3282 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3283 return EXACT_MATCH_BADNESS;
3284 else
3285 return INTEGER_CONVERSION_BADNESS;
3286 default:
3287 return INCOMPATIBLE_TYPE_BADNESS;
3288 }
3289 break;
3290 case TYPE_CODE_RANGE:
3291 switch (TYPE_CODE (arg))
3292 {
3293 case TYPE_CODE_INT:
3294 case TYPE_CODE_CHAR:
3295 case TYPE_CODE_RANGE:
3296 case TYPE_CODE_BOOL:
3297 case TYPE_CODE_ENUM:
3298 return INTEGER_CONVERSION_BADNESS;
3299 case TYPE_CODE_FLT:
3300 return INT_FLOAT_CONVERSION_BADNESS;
3301 default:
3302 return INCOMPATIBLE_TYPE_BADNESS;
3303 }
3304 break;
3305 case TYPE_CODE_BOOL:
3306 switch (TYPE_CODE (arg))
3307 {
3308 /* n3290 draft, section 4.12.1 (conv.bool):
3309
3310 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3311 pointer to member type can be converted to a prvalue of type
3312 bool. A zero value, null pointer value, or null member pointer
3313 value is converted to false; any other value is converted to
3314 true. A prvalue of type std::nullptr_t can be converted to a
3315 prvalue of type bool; the resulting value is false." */
3316 case TYPE_CODE_INT:
3317 case TYPE_CODE_CHAR:
3318 case TYPE_CODE_ENUM:
3319 case TYPE_CODE_FLT:
3320 case TYPE_CODE_MEMBERPTR:
3321 case TYPE_CODE_PTR:
3322 return BOOL_CONVERSION_BADNESS;
3323 case TYPE_CODE_RANGE:
3324 return INCOMPATIBLE_TYPE_BADNESS;
3325 case TYPE_CODE_BOOL:
3326 return EXACT_MATCH_BADNESS;
3327 default:
3328 return INCOMPATIBLE_TYPE_BADNESS;
3329 }
3330 break;
3331 case TYPE_CODE_FLT:
3332 switch (TYPE_CODE (arg))
3333 {
3334 case TYPE_CODE_FLT:
3335 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3336 return FLOAT_PROMOTION_BADNESS;
3337 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3338 return EXACT_MATCH_BADNESS;
3339 else
3340 return FLOAT_CONVERSION_BADNESS;
3341 case TYPE_CODE_INT:
3342 case TYPE_CODE_BOOL:
3343 case TYPE_CODE_ENUM:
3344 case TYPE_CODE_RANGE:
3345 case TYPE_CODE_CHAR:
3346 return INT_FLOAT_CONVERSION_BADNESS;
3347 default:
3348 return INCOMPATIBLE_TYPE_BADNESS;
3349 }
3350 break;
3351 case TYPE_CODE_COMPLEX:
3352 switch (TYPE_CODE (arg))
3353 { /* Strictly not needed for C++, but... */
3354 case TYPE_CODE_FLT:
3355 return FLOAT_PROMOTION_BADNESS;
3356 case TYPE_CODE_COMPLEX:
3357 return EXACT_MATCH_BADNESS;
3358 default:
3359 return INCOMPATIBLE_TYPE_BADNESS;
3360 }
3361 break;
3362 case TYPE_CODE_STRUCT:
3363 /* currently same as TYPE_CODE_CLASS. */
3364 switch (TYPE_CODE (arg))
3365 {
3366 case TYPE_CODE_STRUCT:
3367 /* Check for derivation */
3368 rank.subrank = distance_to_ancestor (parm, arg, 0);
3369 if (rank.subrank >= 0)
3370 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3371 /* else fall through */
3372 default:
3373 return INCOMPATIBLE_TYPE_BADNESS;
3374 }
3375 break;
3376 case TYPE_CODE_UNION:
3377 switch (TYPE_CODE (arg))
3378 {
3379 case TYPE_CODE_UNION:
3380 default:
3381 return INCOMPATIBLE_TYPE_BADNESS;
3382 }
3383 break;
3384 case TYPE_CODE_MEMBERPTR:
3385 switch (TYPE_CODE (arg))
3386 {
3387 default:
3388 return INCOMPATIBLE_TYPE_BADNESS;
3389 }
3390 break;
3391 case TYPE_CODE_METHOD:
3392 switch (TYPE_CODE (arg))
3393 {
3394
3395 default:
3396 return INCOMPATIBLE_TYPE_BADNESS;
3397 }
3398 break;
3399 case TYPE_CODE_REF:
3400 switch (TYPE_CODE (arg))
3401 {
3402
3403 default:
3404 return INCOMPATIBLE_TYPE_BADNESS;
3405 }
3406
3407 break;
3408 case TYPE_CODE_SET:
3409 switch (TYPE_CODE (arg))
3410 {
3411 /* Not in C++ */
3412 case TYPE_CODE_SET:
3413 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3414 TYPE_FIELD_TYPE (arg, 0), NULL);
3415 default:
3416 return INCOMPATIBLE_TYPE_BADNESS;
3417 }
3418 break;
3419 case TYPE_CODE_VOID:
3420 default:
3421 return INCOMPATIBLE_TYPE_BADNESS;
3422 } /* switch (TYPE_CODE (arg)) */
3423 }
3424
3425 /* End of functions for overload resolution. */
3426 \f
3427 /* Routines to pretty-print types. */
3428
3429 static void
3430 print_bit_vector (B_TYPE *bits, int nbits)
3431 {
3432 int bitno;
3433
3434 for (bitno = 0; bitno < nbits; bitno++)
3435 {
3436 if ((bitno % 8) == 0)
3437 {
3438 puts_filtered (" ");
3439 }
3440 if (B_TST (bits, bitno))
3441 printf_filtered (("1"));
3442 else
3443 printf_filtered (("0"));
3444 }
3445 }
3446
3447 /* Note the first arg should be the "this" pointer, we may not want to
3448 include it since we may get into a infinitely recursive
3449 situation. */
3450
3451 static void
3452 print_arg_types (struct field *args, int nargs, int spaces)
3453 {
3454 if (args != NULL)
3455 {
3456 int i;
3457
3458 for (i = 0; i < nargs; i++)
3459 recursive_dump_type (args[i].type, spaces + 2);
3460 }
3461 }
3462
3463 int
3464 field_is_static (struct field *f)
3465 {
3466 /* "static" fields are the fields whose location is not relative
3467 to the address of the enclosing struct. It would be nice to
3468 have a dedicated flag that would be set for static fields when
3469 the type is being created. But in practice, checking the field
3470 loc_kind should give us an accurate answer. */
3471 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3472 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3473 }
3474
3475 static void
3476 dump_fn_fieldlists (struct type *type, int spaces)
3477 {
3478 int method_idx;
3479 int overload_idx;
3480 struct fn_field *f;
3481
3482 printfi_filtered (spaces, "fn_fieldlists ");
3483 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3484 printf_filtered ("\n");
3485 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3486 {
3487 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3488 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3489 method_idx,
3490 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3491 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3492 gdb_stdout);
3493 printf_filtered (_(") length %d\n"),
3494 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3495 for (overload_idx = 0;
3496 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3497 overload_idx++)
3498 {
3499 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3500 overload_idx,
3501 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3502 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3503 gdb_stdout);
3504 printf_filtered (")\n");
3505 printfi_filtered (spaces + 8, "type ");
3506 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3507 gdb_stdout);
3508 printf_filtered ("\n");
3509
3510 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3511 spaces + 8 + 2);
3512
3513 printfi_filtered (spaces + 8, "args ");
3514 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3515 gdb_stdout);
3516 printf_filtered ("\n");
3517
3518 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
3519 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
3520 overload_idx)),
3521 spaces);
3522 printfi_filtered (spaces + 8, "fcontext ");
3523 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3524 gdb_stdout);
3525 printf_filtered ("\n");
3526
3527 printfi_filtered (spaces + 8, "is_const %d\n",
3528 TYPE_FN_FIELD_CONST (f, overload_idx));
3529 printfi_filtered (spaces + 8, "is_volatile %d\n",
3530 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3531 printfi_filtered (spaces + 8, "is_private %d\n",
3532 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3533 printfi_filtered (spaces + 8, "is_protected %d\n",
3534 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3535 printfi_filtered (spaces + 8, "is_stub %d\n",
3536 TYPE_FN_FIELD_STUB (f, overload_idx));
3537 printfi_filtered (spaces + 8, "voffset %u\n",
3538 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3539 }
3540 }
3541 }
3542
3543 static void
3544 print_cplus_stuff (struct type *type, int spaces)
3545 {
3546 printfi_filtered (spaces, "n_baseclasses %d\n",
3547 TYPE_N_BASECLASSES (type));
3548 printfi_filtered (spaces, "nfn_fields %d\n",
3549 TYPE_NFN_FIELDS (type));
3550 if (TYPE_N_BASECLASSES (type) > 0)
3551 {
3552 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3553 TYPE_N_BASECLASSES (type));
3554 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3555 gdb_stdout);
3556 printf_filtered (")");
3557
3558 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3559 TYPE_N_BASECLASSES (type));
3560 puts_filtered ("\n");
3561 }
3562 if (TYPE_NFIELDS (type) > 0)
3563 {
3564 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3565 {
3566 printfi_filtered (spaces,
3567 "private_field_bits (%d bits at *",
3568 TYPE_NFIELDS (type));
3569 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3570 gdb_stdout);
3571 printf_filtered (")");
3572 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3573 TYPE_NFIELDS (type));
3574 puts_filtered ("\n");
3575 }
3576 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3577 {
3578 printfi_filtered (spaces,
3579 "protected_field_bits (%d bits at *",
3580 TYPE_NFIELDS (type));
3581 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3582 gdb_stdout);
3583 printf_filtered (")");
3584 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3585 TYPE_NFIELDS (type));
3586 puts_filtered ("\n");
3587 }
3588 }
3589 if (TYPE_NFN_FIELDS (type) > 0)
3590 {
3591 dump_fn_fieldlists (type, spaces);
3592 }
3593 }
3594
3595 /* Print the contents of the TYPE's type_specific union, assuming that
3596 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3597
3598 static void
3599 print_gnat_stuff (struct type *type, int spaces)
3600 {
3601 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3602
3603 recursive_dump_type (descriptive_type, spaces + 2);
3604 }
3605
3606 static struct obstack dont_print_type_obstack;
3607
3608 void
3609 recursive_dump_type (struct type *type, int spaces)
3610 {
3611 int idx;
3612
3613 if (spaces == 0)
3614 obstack_begin (&dont_print_type_obstack, 0);
3615
3616 if (TYPE_NFIELDS (type) > 0
3617 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3618 {
3619 struct type **first_dont_print
3620 = (struct type **) obstack_base (&dont_print_type_obstack);
3621
3622 int i = (struct type **)
3623 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3624
3625 while (--i >= 0)
3626 {
3627 if (type == first_dont_print[i])
3628 {
3629 printfi_filtered (spaces, "type node ");
3630 gdb_print_host_address (type, gdb_stdout);
3631 printf_filtered (_(" <same as already seen type>\n"));
3632 return;
3633 }
3634 }
3635
3636 obstack_ptr_grow (&dont_print_type_obstack, type);
3637 }
3638
3639 printfi_filtered (spaces, "type node ");
3640 gdb_print_host_address (type, gdb_stdout);
3641 printf_filtered ("\n");
3642 printfi_filtered (spaces, "name '%s' (",
3643 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3644 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3645 printf_filtered (")\n");
3646 printfi_filtered (spaces, "tagname '%s' (",
3647 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3648 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3649 printf_filtered (")\n");
3650 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3651 switch (TYPE_CODE (type))
3652 {
3653 case TYPE_CODE_UNDEF:
3654 printf_filtered ("(TYPE_CODE_UNDEF)");
3655 break;
3656 case TYPE_CODE_PTR:
3657 printf_filtered ("(TYPE_CODE_PTR)");
3658 break;
3659 case TYPE_CODE_ARRAY:
3660 printf_filtered ("(TYPE_CODE_ARRAY)");
3661 break;
3662 case TYPE_CODE_STRUCT:
3663 printf_filtered ("(TYPE_CODE_STRUCT)");
3664 break;
3665 case TYPE_CODE_UNION:
3666 printf_filtered ("(TYPE_CODE_UNION)");
3667 break;
3668 case TYPE_CODE_ENUM:
3669 printf_filtered ("(TYPE_CODE_ENUM)");
3670 break;
3671 case TYPE_CODE_FLAGS:
3672 printf_filtered ("(TYPE_CODE_FLAGS)");
3673 break;
3674 case TYPE_CODE_FUNC:
3675 printf_filtered ("(TYPE_CODE_FUNC)");
3676 break;
3677 case TYPE_CODE_INT:
3678 printf_filtered ("(TYPE_CODE_INT)");
3679 break;
3680 case TYPE_CODE_FLT:
3681 printf_filtered ("(TYPE_CODE_FLT)");
3682 break;
3683 case TYPE_CODE_VOID:
3684 printf_filtered ("(TYPE_CODE_VOID)");
3685 break;
3686 case TYPE_CODE_SET:
3687 printf_filtered ("(TYPE_CODE_SET)");
3688 break;
3689 case TYPE_CODE_RANGE:
3690 printf_filtered ("(TYPE_CODE_RANGE)");
3691 break;
3692 case TYPE_CODE_STRING:
3693 printf_filtered ("(TYPE_CODE_STRING)");
3694 break;
3695 case TYPE_CODE_ERROR:
3696 printf_filtered ("(TYPE_CODE_ERROR)");
3697 break;
3698 case TYPE_CODE_MEMBERPTR:
3699 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3700 break;
3701 case TYPE_CODE_METHODPTR:
3702 printf_filtered ("(TYPE_CODE_METHODPTR)");
3703 break;
3704 case TYPE_CODE_METHOD:
3705 printf_filtered ("(TYPE_CODE_METHOD)");
3706 break;
3707 case TYPE_CODE_REF:
3708 printf_filtered ("(TYPE_CODE_REF)");
3709 break;
3710 case TYPE_CODE_CHAR:
3711 printf_filtered ("(TYPE_CODE_CHAR)");
3712 break;
3713 case TYPE_CODE_BOOL:
3714 printf_filtered ("(TYPE_CODE_BOOL)");
3715 break;
3716 case TYPE_CODE_COMPLEX:
3717 printf_filtered ("(TYPE_CODE_COMPLEX)");
3718 break;
3719 case TYPE_CODE_TYPEDEF:
3720 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3721 break;
3722 case TYPE_CODE_NAMESPACE:
3723 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3724 break;
3725 default:
3726 printf_filtered ("(UNKNOWN TYPE CODE)");
3727 break;
3728 }
3729 puts_filtered ("\n");
3730 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3731 if (TYPE_OBJFILE_OWNED (type))
3732 {
3733 printfi_filtered (spaces, "objfile ");
3734 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3735 }
3736 else
3737 {
3738 printfi_filtered (spaces, "gdbarch ");
3739 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3740 }
3741 printf_filtered ("\n");
3742 printfi_filtered (spaces, "target_type ");
3743 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3744 printf_filtered ("\n");
3745 if (TYPE_TARGET_TYPE (type) != NULL)
3746 {
3747 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3748 }
3749 printfi_filtered (spaces, "pointer_type ");
3750 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3751 printf_filtered ("\n");
3752 printfi_filtered (spaces, "reference_type ");
3753 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3754 printf_filtered ("\n");
3755 printfi_filtered (spaces, "type_chain ");
3756 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3757 printf_filtered ("\n");
3758 printfi_filtered (spaces, "instance_flags 0x%x",
3759 TYPE_INSTANCE_FLAGS (type));
3760 if (TYPE_CONST (type))
3761 {
3762 puts_filtered (" TYPE_FLAG_CONST");
3763 }
3764 if (TYPE_VOLATILE (type))
3765 {
3766 puts_filtered (" TYPE_FLAG_VOLATILE");
3767 }
3768 if (TYPE_CODE_SPACE (type))
3769 {
3770 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3771 }
3772 if (TYPE_DATA_SPACE (type))
3773 {
3774 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3775 }
3776 if (TYPE_ADDRESS_CLASS_1 (type))
3777 {
3778 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3779 }
3780 if (TYPE_ADDRESS_CLASS_2 (type))
3781 {
3782 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3783 }
3784 if (TYPE_RESTRICT (type))
3785 {
3786 puts_filtered (" TYPE_FLAG_RESTRICT");
3787 }
3788 puts_filtered ("\n");
3789
3790 printfi_filtered (spaces, "flags");
3791 if (TYPE_UNSIGNED (type))
3792 {
3793 puts_filtered (" TYPE_FLAG_UNSIGNED");
3794 }
3795 if (TYPE_NOSIGN (type))
3796 {
3797 puts_filtered (" TYPE_FLAG_NOSIGN");
3798 }
3799 if (TYPE_STUB (type))
3800 {
3801 puts_filtered (" TYPE_FLAG_STUB");
3802 }
3803 if (TYPE_TARGET_STUB (type))
3804 {
3805 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3806 }
3807 if (TYPE_STATIC (type))
3808 {
3809 puts_filtered (" TYPE_FLAG_STATIC");
3810 }
3811 if (TYPE_PROTOTYPED (type))
3812 {
3813 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3814 }
3815 if (TYPE_INCOMPLETE (type))
3816 {
3817 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3818 }
3819 if (TYPE_VARARGS (type))
3820 {
3821 puts_filtered (" TYPE_FLAG_VARARGS");
3822 }
3823 /* This is used for things like AltiVec registers on ppc. Gcc emits
3824 an attribute for the array type, which tells whether or not we
3825 have a vector, instead of a regular array. */
3826 if (TYPE_VECTOR (type))
3827 {
3828 puts_filtered (" TYPE_FLAG_VECTOR");
3829 }
3830 if (TYPE_FIXED_INSTANCE (type))
3831 {
3832 puts_filtered (" TYPE_FIXED_INSTANCE");
3833 }
3834 if (TYPE_STUB_SUPPORTED (type))
3835 {
3836 puts_filtered (" TYPE_STUB_SUPPORTED");
3837 }
3838 if (TYPE_NOTTEXT (type))
3839 {
3840 puts_filtered (" TYPE_NOTTEXT");
3841 }
3842 puts_filtered ("\n");
3843 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3844 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3845 puts_filtered ("\n");
3846 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3847 {
3848 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3849 printfi_filtered (spaces + 2,
3850 "[%d] enumval %s type ",
3851 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3852 else
3853 printfi_filtered (spaces + 2,
3854 "[%d] bitpos %d bitsize %d type ",
3855 idx, TYPE_FIELD_BITPOS (type, idx),
3856 TYPE_FIELD_BITSIZE (type, idx));
3857 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3858 printf_filtered (" name '%s' (",
3859 TYPE_FIELD_NAME (type, idx) != NULL
3860 ? TYPE_FIELD_NAME (type, idx)
3861 : "<NULL>");
3862 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3863 printf_filtered (")\n");
3864 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3865 {
3866 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3867 }
3868 }
3869 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3870 {
3871 printfi_filtered (spaces, "low %s%s high %s%s\n",
3872 plongest (TYPE_LOW_BOUND (type)),
3873 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3874 plongest (TYPE_HIGH_BOUND (type)),
3875 TYPE_HIGH_BOUND_UNDEFINED (type)
3876 ? " (undefined)" : "");
3877 }
3878 printfi_filtered (spaces, "vptr_basetype ");
3879 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3880 puts_filtered ("\n");
3881 if (TYPE_VPTR_BASETYPE (type) != NULL)
3882 {
3883 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3884 }
3885 printfi_filtered (spaces, "vptr_fieldno %d\n",
3886 TYPE_VPTR_FIELDNO (type));
3887
3888 switch (TYPE_SPECIFIC_FIELD (type))
3889 {
3890 case TYPE_SPECIFIC_CPLUS_STUFF:
3891 printfi_filtered (spaces, "cplus_stuff ");
3892 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3893 gdb_stdout);
3894 puts_filtered ("\n");
3895 print_cplus_stuff (type, spaces);
3896 break;
3897
3898 case TYPE_SPECIFIC_GNAT_STUFF:
3899 printfi_filtered (spaces, "gnat_stuff ");
3900 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3901 puts_filtered ("\n");
3902 print_gnat_stuff (type, spaces);
3903 break;
3904
3905 case TYPE_SPECIFIC_FLOATFORMAT:
3906 printfi_filtered (spaces, "floatformat ");
3907 if (TYPE_FLOATFORMAT (type) == NULL)
3908 puts_filtered ("(null)");
3909 else
3910 {
3911 puts_filtered ("{ ");
3912 if (TYPE_FLOATFORMAT (type)[0] == NULL
3913 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3914 puts_filtered ("(null)");
3915 else
3916 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3917
3918 puts_filtered (", ");
3919 if (TYPE_FLOATFORMAT (type)[1] == NULL
3920 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3921 puts_filtered ("(null)");
3922 else
3923 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3924
3925 puts_filtered (" }");
3926 }
3927 puts_filtered ("\n");
3928 break;
3929
3930 case TYPE_SPECIFIC_FUNC:
3931 printfi_filtered (spaces, "calling_convention %d\n",
3932 TYPE_CALLING_CONVENTION (type));
3933 /* tail_call_list is not printed. */
3934 break;
3935 }
3936
3937 if (spaces == 0)
3938 obstack_free (&dont_print_type_obstack, NULL);
3939 }
3940 \f
3941 /* Trivial helpers for the libiberty hash table, for mapping one
3942 type to another. */
3943
3944 struct type_pair
3945 {
3946 struct type *old, *new;
3947 };
3948
3949 static hashval_t
3950 type_pair_hash (const void *item)
3951 {
3952 const struct type_pair *pair = item;
3953
3954 return htab_hash_pointer (pair->old);
3955 }
3956
3957 static int
3958 type_pair_eq (const void *item_lhs, const void *item_rhs)
3959 {
3960 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3961
3962 return lhs->old == rhs->old;
3963 }
3964
3965 /* Allocate the hash table used by copy_type_recursive to walk
3966 types without duplicates. We use OBJFILE's obstack, because
3967 OBJFILE is about to be deleted. */
3968
3969 htab_t
3970 create_copied_types_hash (struct objfile *objfile)
3971 {
3972 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3973 NULL, &objfile->objfile_obstack,
3974 hashtab_obstack_allocate,
3975 dummy_obstack_deallocate);
3976 }
3977
3978 /* Recursively copy (deep copy) TYPE, if it is associated with
3979 OBJFILE. Return a new type allocated using malloc, a saved type if
3980 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3981 not associated with OBJFILE. */
3982
3983 struct type *
3984 copy_type_recursive (struct objfile *objfile,
3985 struct type *type,
3986 htab_t copied_types)
3987 {
3988 struct type_pair *stored, pair;
3989 void **slot;
3990 struct type *new_type;
3991
3992 if (! TYPE_OBJFILE_OWNED (type))
3993 return type;
3994
3995 /* This type shouldn't be pointing to any types in other objfiles;
3996 if it did, the type might disappear unexpectedly. */
3997 gdb_assert (TYPE_OBJFILE (type) == objfile);
3998
3999 pair.old = type;
4000 slot = htab_find_slot (copied_types, &pair, INSERT);
4001 if (*slot != NULL)
4002 return ((struct type_pair *) *slot)->new;
4003
4004 new_type = alloc_type_arch (get_type_arch (type));
4005
4006 /* We must add the new type to the hash table immediately, in case
4007 we encounter this type again during a recursive call below. */
4008 stored
4009 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4010 stored->old = type;
4011 stored->new = new_type;
4012 *slot = stored;
4013
4014 /* Copy the common fields of types. For the main type, we simply
4015 copy the entire thing and then update specific fields as needed. */
4016 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4017 TYPE_OBJFILE_OWNED (new_type) = 0;
4018 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4019
4020 if (TYPE_NAME (type))
4021 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4022 if (TYPE_TAG_NAME (type))
4023 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4024
4025 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4026 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4027
4028 /* Copy the fields. */
4029 if (TYPE_NFIELDS (type))
4030 {
4031 int i, nfields;
4032
4033 nfields = TYPE_NFIELDS (type);
4034 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4035 for (i = 0; i < nfields; i++)
4036 {
4037 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4038 TYPE_FIELD_ARTIFICIAL (type, i);
4039 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4040 if (TYPE_FIELD_TYPE (type, i))
4041 TYPE_FIELD_TYPE (new_type, i)
4042 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4043 copied_types);
4044 if (TYPE_FIELD_NAME (type, i))
4045 TYPE_FIELD_NAME (new_type, i) =
4046 xstrdup (TYPE_FIELD_NAME (type, i));
4047 switch (TYPE_FIELD_LOC_KIND (type, i))
4048 {
4049 case FIELD_LOC_KIND_BITPOS:
4050 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4051 TYPE_FIELD_BITPOS (type, i));
4052 break;
4053 case FIELD_LOC_KIND_ENUMVAL:
4054 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4055 TYPE_FIELD_ENUMVAL (type, i));
4056 break;
4057 case FIELD_LOC_KIND_PHYSADDR:
4058 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4059 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4060 break;
4061 case FIELD_LOC_KIND_PHYSNAME:
4062 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4063 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4064 i)));
4065 break;
4066 default:
4067 internal_error (__FILE__, __LINE__,
4068 _("Unexpected type field location kind: %d"),
4069 TYPE_FIELD_LOC_KIND (type, i));
4070 }
4071 }
4072 }
4073
4074 /* For range types, copy the bounds information. */
4075 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4076 {
4077 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4078 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4079 }
4080
4081 /* Copy pointers to other types. */
4082 if (TYPE_TARGET_TYPE (type))
4083 TYPE_TARGET_TYPE (new_type) =
4084 copy_type_recursive (objfile,
4085 TYPE_TARGET_TYPE (type),
4086 copied_types);
4087 if (TYPE_VPTR_BASETYPE (type))
4088 TYPE_VPTR_BASETYPE (new_type) =
4089 copy_type_recursive (objfile,
4090 TYPE_VPTR_BASETYPE (type),
4091 copied_types);
4092 /* Maybe copy the type_specific bits.
4093
4094 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4095 base classes and methods. There's no fundamental reason why we
4096 can't, but at the moment it is not needed. */
4097
4098 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4099 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4100 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4101 || TYPE_CODE (type) == TYPE_CODE_UNION
4102 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
4103 INIT_CPLUS_SPECIFIC (new_type);
4104
4105 return new_type;
4106 }
4107
4108 /* Make a copy of the given TYPE, except that the pointer & reference
4109 types are not preserved.
4110
4111 This function assumes that the given type has an associated objfile.
4112 This objfile is used to allocate the new type. */
4113
4114 struct type *
4115 copy_type (const struct type *type)
4116 {
4117 struct type *new_type;
4118
4119 gdb_assert (TYPE_OBJFILE_OWNED (type));
4120
4121 new_type = alloc_type_copy (type);
4122 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4123 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4124 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4125 sizeof (struct main_type));
4126
4127 return new_type;
4128 }
4129 \f
4130 /* Helper functions to initialize architecture-specific types. */
4131
4132 /* Allocate a type structure associated with GDBARCH and set its
4133 CODE, LENGTH, and NAME fields. */
4134
4135 struct type *
4136 arch_type (struct gdbarch *gdbarch,
4137 enum type_code code, int length, char *name)
4138 {
4139 struct type *type;
4140
4141 type = alloc_type_arch (gdbarch);
4142 TYPE_CODE (type) = code;
4143 TYPE_LENGTH (type) = length;
4144
4145 if (name)
4146 TYPE_NAME (type) = xstrdup (name);
4147
4148 return type;
4149 }
4150
4151 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4152 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4153 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4154
4155 struct type *
4156 arch_integer_type (struct gdbarch *gdbarch,
4157 int bit, int unsigned_p, char *name)
4158 {
4159 struct type *t;
4160
4161 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4162 if (unsigned_p)
4163 TYPE_UNSIGNED (t) = 1;
4164 if (name && strcmp (name, "char") == 0)
4165 TYPE_NOSIGN (t) = 1;
4166
4167 return t;
4168 }
4169
4170 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4171 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4172 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4173
4174 struct type *
4175 arch_character_type (struct gdbarch *gdbarch,
4176 int bit, int unsigned_p, char *name)
4177 {
4178 struct type *t;
4179
4180 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4181 if (unsigned_p)
4182 TYPE_UNSIGNED (t) = 1;
4183
4184 return t;
4185 }
4186
4187 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4188 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4189 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4190
4191 struct type *
4192 arch_boolean_type (struct gdbarch *gdbarch,
4193 int bit, int unsigned_p, char *name)
4194 {
4195 struct type *t;
4196
4197 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4198 if (unsigned_p)
4199 TYPE_UNSIGNED (t) = 1;
4200
4201 return t;
4202 }
4203
4204 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4205 BIT is the type size in bits; if BIT equals -1, the size is
4206 determined by the floatformat. NAME is the type name. Set the
4207 TYPE_FLOATFORMAT from FLOATFORMATS. */
4208
4209 struct type *
4210 arch_float_type (struct gdbarch *gdbarch,
4211 int bit, char *name, const struct floatformat **floatformats)
4212 {
4213 struct type *t;
4214
4215 if (bit == -1)
4216 {
4217 gdb_assert (floatformats != NULL);
4218 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4219 bit = floatformats[0]->totalsize;
4220 }
4221 gdb_assert (bit >= 0);
4222
4223 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4224 TYPE_FLOATFORMAT (t) = floatformats;
4225 return t;
4226 }
4227
4228 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4229 NAME is the type name. TARGET_TYPE is the component float type. */
4230
4231 struct type *
4232 arch_complex_type (struct gdbarch *gdbarch,
4233 char *name, struct type *target_type)
4234 {
4235 struct type *t;
4236
4237 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4238 2 * TYPE_LENGTH (target_type), name);
4239 TYPE_TARGET_TYPE (t) = target_type;
4240 return t;
4241 }
4242
4243 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4244 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4245
4246 struct type *
4247 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4248 {
4249 int nfields = length * TARGET_CHAR_BIT;
4250 struct type *type;
4251
4252 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4253 TYPE_UNSIGNED (type) = 1;
4254 TYPE_NFIELDS (type) = nfields;
4255 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4256
4257 return type;
4258 }
4259
4260 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4261 position BITPOS is called NAME. */
4262
4263 void
4264 append_flags_type_flag (struct type *type, int bitpos, char *name)
4265 {
4266 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4267 gdb_assert (bitpos < TYPE_NFIELDS (type));
4268 gdb_assert (bitpos >= 0);
4269
4270 if (name)
4271 {
4272 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4273 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4274 }
4275 else
4276 {
4277 /* Don't show this field to the user. */
4278 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4279 }
4280 }
4281
4282 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4283 specified by CODE) associated with GDBARCH. NAME is the type name. */
4284
4285 struct type *
4286 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4287 {
4288 struct type *t;
4289
4290 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4291 t = arch_type (gdbarch, code, 0, NULL);
4292 TYPE_TAG_NAME (t) = name;
4293 INIT_CPLUS_SPECIFIC (t);
4294 return t;
4295 }
4296
4297 /* Add new field with name NAME and type FIELD to composite type T.
4298 Do not set the field's position or adjust the type's length;
4299 the caller should do so. Return the new field. */
4300
4301 struct field *
4302 append_composite_type_field_raw (struct type *t, char *name,
4303 struct type *field)
4304 {
4305 struct field *f;
4306
4307 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4308 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4309 sizeof (struct field) * TYPE_NFIELDS (t));
4310 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4311 memset (f, 0, sizeof f[0]);
4312 FIELD_TYPE (f[0]) = field;
4313 FIELD_NAME (f[0]) = name;
4314 return f;
4315 }
4316
4317 /* Add new field with name NAME and type FIELD to composite type T.
4318 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4319
4320 void
4321 append_composite_type_field_aligned (struct type *t, char *name,
4322 struct type *field, int alignment)
4323 {
4324 struct field *f = append_composite_type_field_raw (t, name, field);
4325
4326 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4327 {
4328 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4329 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4330 }
4331 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4332 {
4333 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4334 if (TYPE_NFIELDS (t) > 1)
4335 {
4336 SET_FIELD_BITPOS (f[0],
4337 (FIELD_BITPOS (f[-1])
4338 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4339 * TARGET_CHAR_BIT)));
4340
4341 if (alignment)
4342 {
4343 int left;
4344
4345 alignment *= TARGET_CHAR_BIT;
4346 left = FIELD_BITPOS (f[0]) % alignment;
4347
4348 if (left)
4349 {
4350 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4351 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4352 }
4353 }
4354 }
4355 }
4356 }
4357
4358 /* Add new field with name NAME and type FIELD to composite type T. */
4359
4360 void
4361 append_composite_type_field (struct type *t, char *name,
4362 struct type *field)
4363 {
4364 append_composite_type_field_aligned (t, name, field, 0);
4365 }
4366
4367 static struct gdbarch_data *gdbtypes_data;
4368
4369 const struct builtin_type *
4370 builtin_type (struct gdbarch *gdbarch)
4371 {
4372 return gdbarch_data (gdbarch, gdbtypes_data);
4373 }
4374
4375 static void *
4376 gdbtypes_post_init (struct gdbarch *gdbarch)
4377 {
4378 struct builtin_type *builtin_type
4379 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4380
4381 /* Basic types. */
4382 builtin_type->builtin_void
4383 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4384 builtin_type->builtin_char
4385 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4386 !gdbarch_char_signed (gdbarch), "char");
4387 builtin_type->builtin_signed_char
4388 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4389 0, "signed char");
4390 builtin_type->builtin_unsigned_char
4391 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4392 1, "unsigned char");
4393 builtin_type->builtin_short
4394 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4395 0, "short");
4396 builtin_type->builtin_unsigned_short
4397 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4398 1, "unsigned short");
4399 builtin_type->builtin_int
4400 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4401 0, "int");
4402 builtin_type->builtin_unsigned_int
4403 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4404 1, "unsigned int");
4405 builtin_type->builtin_long
4406 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4407 0, "long");
4408 builtin_type->builtin_unsigned_long
4409 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4410 1, "unsigned long");
4411 builtin_type->builtin_long_long
4412 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4413 0, "long long");
4414 builtin_type->builtin_unsigned_long_long
4415 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4416 1, "unsigned long long");
4417 builtin_type->builtin_float
4418 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4419 "float", gdbarch_float_format (gdbarch));
4420 builtin_type->builtin_double
4421 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4422 "double", gdbarch_double_format (gdbarch));
4423 builtin_type->builtin_long_double
4424 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4425 "long double", gdbarch_long_double_format (gdbarch));
4426 builtin_type->builtin_complex
4427 = arch_complex_type (gdbarch, "complex",
4428 builtin_type->builtin_float);
4429 builtin_type->builtin_double_complex
4430 = arch_complex_type (gdbarch, "double complex",
4431 builtin_type->builtin_double);
4432 builtin_type->builtin_string
4433 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4434 builtin_type->builtin_bool
4435 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4436
4437 /* The following three are about decimal floating point types, which
4438 are 32-bits, 64-bits and 128-bits respectively. */
4439 builtin_type->builtin_decfloat
4440 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4441 builtin_type->builtin_decdouble
4442 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4443 builtin_type->builtin_declong
4444 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4445
4446 /* "True" character types. */
4447 builtin_type->builtin_true_char
4448 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4449 builtin_type->builtin_true_unsigned_char
4450 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4451
4452 /* Fixed-size integer types. */
4453 builtin_type->builtin_int0
4454 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4455 builtin_type->builtin_int8
4456 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4457 builtin_type->builtin_uint8
4458 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4459 builtin_type->builtin_int16
4460 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4461 builtin_type->builtin_uint16
4462 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4463 builtin_type->builtin_int32
4464 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4465 builtin_type->builtin_uint32
4466 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4467 builtin_type->builtin_int64
4468 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4469 builtin_type->builtin_uint64
4470 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4471 builtin_type->builtin_int128
4472 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4473 builtin_type->builtin_uint128
4474 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4475 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4476 TYPE_INSTANCE_FLAG_NOTTEXT;
4477 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4478 TYPE_INSTANCE_FLAG_NOTTEXT;
4479
4480 /* Wide character types. */
4481 builtin_type->builtin_char16
4482 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4483 builtin_type->builtin_char32
4484 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4485
4486
4487 /* Default data/code pointer types. */
4488 builtin_type->builtin_data_ptr
4489 = lookup_pointer_type (builtin_type->builtin_void);
4490 builtin_type->builtin_func_ptr
4491 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4492 builtin_type->builtin_func_func
4493 = lookup_function_type (builtin_type->builtin_func_ptr);
4494
4495 /* This type represents a GDB internal function. */
4496 builtin_type->internal_fn
4497 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4498 "<internal function>");
4499
4500 /* This type represents an xmethod. */
4501 builtin_type->xmethod
4502 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4503
4504 return builtin_type;
4505 }
4506
4507 /* This set of objfile-based types is intended to be used by symbol
4508 readers as basic types. */
4509
4510 static const struct objfile_data *objfile_type_data;
4511
4512 const struct objfile_type *
4513 objfile_type (struct objfile *objfile)
4514 {
4515 struct gdbarch *gdbarch;
4516 struct objfile_type *objfile_type
4517 = objfile_data (objfile, objfile_type_data);
4518
4519 if (objfile_type)
4520 return objfile_type;
4521
4522 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4523 1, struct objfile_type);
4524
4525 /* Use the objfile architecture to determine basic type properties. */
4526 gdbarch = get_objfile_arch (objfile);
4527
4528 /* Basic types. */
4529 objfile_type->builtin_void
4530 = init_type (TYPE_CODE_VOID, 1,
4531 0,
4532 "void", objfile);
4533
4534 objfile_type->builtin_char
4535 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4536 (TYPE_FLAG_NOSIGN
4537 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4538 "char", objfile);
4539 objfile_type->builtin_signed_char
4540 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4541 0,
4542 "signed char", objfile);
4543 objfile_type->builtin_unsigned_char
4544 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4545 TYPE_FLAG_UNSIGNED,
4546 "unsigned char", objfile);
4547 objfile_type->builtin_short
4548 = init_type (TYPE_CODE_INT,
4549 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4550 0, "short", objfile);
4551 objfile_type->builtin_unsigned_short
4552 = init_type (TYPE_CODE_INT,
4553 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4554 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4555 objfile_type->builtin_int
4556 = init_type (TYPE_CODE_INT,
4557 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4558 0, "int", objfile);
4559 objfile_type->builtin_unsigned_int
4560 = init_type (TYPE_CODE_INT,
4561 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4562 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4563 objfile_type->builtin_long
4564 = init_type (TYPE_CODE_INT,
4565 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4566 0, "long", objfile);
4567 objfile_type->builtin_unsigned_long
4568 = init_type (TYPE_CODE_INT,
4569 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4570 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4571 objfile_type->builtin_long_long
4572 = init_type (TYPE_CODE_INT,
4573 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4574 0, "long long", objfile);
4575 objfile_type->builtin_unsigned_long_long
4576 = init_type (TYPE_CODE_INT,
4577 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4578 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4579
4580 objfile_type->builtin_float
4581 = init_type (TYPE_CODE_FLT,
4582 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4583 0, "float", objfile);
4584 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4585 = gdbarch_float_format (gdbarch);
4586 objfile_type->builtin_double
4587 = init_type (TYPE_CODE_FLT,
4588 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4589 0, "double", objfile);
4590 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4591 = gdbarch_double_format (gdbarch);
4592 objfile_type->builtin_long_double
4593 = init_type (TYPE_CODE_FLT,
4594 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4595 0, "long double", objfile);
4596 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4597 = gdbarch_long_double_format (gdbarch);
4598
4599 /* This type represents a type that was unrecognized in symbol read-in. */
4600 objfile_type->builtin_error
4601 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4602
4603 /* The following set of types is used for symbols with no
4604 debug information. */
4605 objfile_type->nodebug_text_symbol
4606 = init_type (TYPE_CODE_FUNC, 1, 0,
4607 "<text variable, no debug info>", objfile);
4608 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4609 = objfile_type->builtin_int;
4610 objfile_type->nodebug_text_gnu_ifunc_symbol
4611 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4612 "<text gnu-indirect-function variable, no debug info>",
4613 objfile);
4614 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4615 = objfile_type->nodebug_text_symbol;
4616 objfile_type->nodebug_got_plt_symbol
4617 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4618 "<text from jump slot in .got.plt, no debug info>",
4619 objfile);
4620 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4621 = objfile_type->nodebug_text_symbol;
4622 objfile_type->nodebug_data_symbol
4623 = init_type (TYPE_CODE_INT,
4624 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4625 "<data variable, no debug info>", objfile);
4626 objfile_type->nodebug_unknown_symbol
4627 = init_type (TYPE_CODE_INT, 1, 0,
4628 "<variable (not text or data), no debug info>", objfile);
4629 objfile_type->nodebug_tls_symbol
4630 = init_type (TYPE_CODE_INT,
4631 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4632 "<thread local variable, no debug info>", objfile);
4633
4634 /* NOTE: on some targets, addresses and pointers are not necessarily
4635 the same.
4636
4637 The upshot is:
4638 - gdb's `struct type' always describes the target's
4639 representation.
4640 - gdb's `struct value' objects should always hold values in
4641 target form.
4642 - gdb's CORE_ADDR values are addresses in the unified virtual
4643 address space that the assembler and linker work with. Thus,
4644 since target_read_memory takes a CORE_ADDR as an argument, it
4645 can access any memory on the target, even if the processor has
4646 separate code and data address spaces.
4647
4648 In this context, objfile_type->builtin_core_addr is a bit odd:
4649 it's a target type for a value the target will never see. It's
4650 only used to hold the values of (typeless) linker symbols, which
4651 are indeed in the unified virtual address space. */
4652
4653 objfile_type->builtin_core_addr
4654 = init_type (TYPE_CODE_INT,
4655 gdbarch_addr_bit (gdbarch) / 8,
4656 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4657
4658 set_objfile_data (objfile, objfile_type_data, objfile_type);
4659 return objfile_type;
4660 }
4661
4662 extern initialize_file_ftype _initialize_gdbtypes;
4663
4664 void
4665 _initialize_gdbtypes (void)
4666 {
4667 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4668 objfile_type_data = register_objfile_data ();
4669
4670 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4671 _("Set debugging of C++ overloading."),
4672 _("Show debugging of C++ overloading."),
4673 _("When enabled, ranking of the "
4674 "functions is displayed."),
4675 NULL,
4676 show_overload_debug,
4677 &setdebuglist, &showdebuglist);
4678
4679 /* Add user knob for controlling resolution of opaque types. */
4680 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4681 &opaque_type_resolution,
4682 _("Set resolution of opaque struct/class/union"
4683 " types (if set before loading symbols)."),
4684 _("Show resolution of opaque struct/class/union"
4685 " types (if set before loading symbols)."),
4686 NULL, NULL,
4687 show_opaque_type_resolution,
4688 &setlist, &showlist);
4689
4690 /* Add an option to permit non-strict type checking. */
4691 add_setshow_boolean_cmd ("type", class_support,
4692 &strict_type_checking,
4693 _("Set strict type checking."),
4694 _("Show strict type checking."),
4695 NULL, NULL,
4696 show_strict_type_checking,
4697 &setchecklist, &showchecklist);
4698 }