e983fe70bcc0d8bad5f4baf6a23ead87c3d2a82b
[binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "bfd.h"
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "target.h"
34 #include "value.h"
35 #include "demangle.h"
36 #include "complaints.h"
37 #include "gdbcmd.h"
38 #include "wrapper.h"
39 #include "cp-abi.h"
40 #include "gdb_assert.h"
41 #include "hashtab.h"
42
43
44 /* Floatformat pairs. */
45 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
46 &floatformat_ieee_half_big,
47 &floatformat_ieee_half_little
48 };
49 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
50 &floatformat_ieee_single_big,
51 &floatformat_ieee_single_little
52 };
53 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
54 &floatformat_ieee_double_big,
55 &floatformat_ieee_double_little
56 };
57 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
58 &floatformat_ieee_double_big,
59 &floatformat_ieee_double_littlebyte_bigword
60 };
61 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
62 &floatformat_i387_ext,
63 &floatformat_i387_ext
64 };
65 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
66 &floatformat_m68881_ext,
67 &floatformat_m68881_ext
68 };
69 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_arm_ext_big,
71 &floatformat_arm_ext_littlebyte_bigword
72 };
73 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ia64_spill_big,
75 &floatformat_ia64_spill_little
76 };
77 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ia64_quad_big,
79 &floatformat_ia64_quad_little
80 };
81 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_vax_f,
83 &floatformat_vax_f
84 };
85 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_vax_d,
87 &floatformat_vax_d
88 };
89 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_ibm_long_double,
91 &floatformat_ibm_long_double
92 };
93
94
95 int opaque_type_resolution = 1;
96 static void
97 show_opaque_type_resolution (struct ui_file *file, int from_tty,
98 struct cmd_list_element *c,
99 const char *value)
100 {
101 fprintf_filtered (file, _("\
102 Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
103 value);
104 }
105
106 int overload_debug = 0;
107 static void
108 show_overload_debug (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
112 value);
113 }
114
115 struct extra
116 {
117 char str[128];
118 int len;
119 }; /* Maximum extension is 128! FIXME */
120
121 static void print_bit_vector (B_TYPE *, int);
122 static void print_arg_types (struct field *, int, int);
123 static void dump_fn_fieldlists (struct type *, int);
124 static void print_cplus_stuff (struct type *, int);
125
126
127 /* Allocate a new OBJFILE-associated type structure and fill it
128 with some defaults. Space for the type structure is allocated
129 on the objfile's objfile_obstack. */
130
131 struct type *
132 alloc_type (struct objfile *objfile)
133 {
134 struct type *type;
135
136 gdb_assert (objfile != NULL);
137
138 /* Alloc the structure and start off with all fields zeroed. */
139 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
140 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
141 struct main_type);
142 OBJSTAT (objfile, n_types++);
143
144 TYPE_OBJFILE_OWNED (type) = 1;
145 TYPE_OWNER (type).objfile = objfile;
146
147 /* Initialize the fields that might not be zero. */
148
149 TYPE_CODE (type) = TYPE_CODE_UNDEF;
150 TYPE_VPTR_FIELDNO (type) = -1;
151 TYPE_CHAIN (type) = type; /* Chain back to itself. */
152
153 return type;
154 }
155
156 /* Allocate a new GDBARCH-associated type structure and fill it
157 with some defaults. Space for the type structure is allocated
158 on the heap. */
159
160 struct type *
161 alloc_type_arch (struct gdbarch *gdbarch)
162 {
163 struct type *type;
164
165 gdb_assert (gdbarch != NULL);
166
167 /* Alloc the structure and start off with all fields zeroed. */
168
169 type = XZALLOC (struct type);
170 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
171
172 TYPE_OBJFILE_OWNED (type) = 0;
173 TYPE_OWNER (type).gdbarch = gdbarch;
174
175 /* Initialize the fields that might not be zero. */
176
177 TYPE_CODE (type) = TYPE_CODE_UNDEF;
178 TYPE_VPTR_FIELDNO (type) = -1;
179 TYPE_CHAIN (type) = type; /* Chain back to itself. */
180
181 return type;
182 }
183
184 /* If TYPE is objfile-associated, allocate a new type structure
185 associated with the same objfile. If TYPE is gdbarch-associated,
186 allocate a new type structure associated with the same gdbarch. */
187
188 struct type *
189 alloc_type_copy (const struct type *type)
190 {
191 if (TYPE_OBJFILE_OWNED (type))
192 return alloc_type (TYPE_OWNER (type).objfile);
193 else
194 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
195 }
196
197 /* If TYPE is gdbarch-associated, return that architecture.
198 If TYPE is objfile-associated, return that objfile's architecture. */
199
200 struct gdbarch *
201 get_type_arch (const struct type *type)
202 {
203 if (TYPE_OBJFILE_OWNED (type))
204 return get_objfile_arch (TYPE_OWNER (type).objfile);
205 else
206 return TYPE_OWNER (type).gdbarch;
207 }
208
209
210 /* Alloc a new type instance structure, fill it with some defaults,
211 and point it at OLDTYPE. Allocate the new type instance from the
212 same place as OLDTYPE. */
213
214 static struct type *
215 alloc_type_instance (struct type *oldtype)
216 {
217 struct type *type;
218
219 /* Allocate the structure. */
220
221 if (! TYPE_OBJFILE_OWNED (oldtype))
222 type = XZALLOC (struct type);
223 else
224 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
225 struct type);
226
227 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
228
229 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
230
231 return type;
232 }
233
234 /* Clear all remnants of the previous type at TYPE, in preparation for
235 replacing it with something else. Preserve owner information. */
236 static void
237 smash_type (struct type *type)
238 {
239 int objfile_owned = TYPE_OBJFILE_OWNED (type);
240 union type_owner owner = TYPE_OWNER (type);
241
242 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
243
244 /* Restore owner information. */
245 TYPE_OBJFILE_OWNED (type) = objfile_owned;
246 TYPE_OWNER (type) = owner;
247
248 /* For now, delete the rings. */
249 TYPE_CHAIN (type) = type;
250
251 /* For now, leave the pointer/reference types alone. */
252 }
253
254 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
255 to a pointer to memory where the pointer type should be stored.
256 If *TYPEPTR is zero, update it to point to the pointer type we return.
257 We allocate new memory if needed. */
258
259 struct type *
260 make_pointer_type (struct type *type, struct type **typeptr)
261 {
262 struct type *ntype; /* New type */
263 struct type *chain;
264
265 ntype = TYPE_POINTER_TYPE (type);
266
267 if (ntype)
268 {
269 if (typeptr == 0)
270 return ntype; /* Don't care about alloc,
271 and have new type. */
272 else if (*typeptr == 0)
273 {
274 *typeptr = ntype; /* Tracking alloc, and have new type. */
275 return ntype;
276 }
277 }
278
279 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
280 {
281 ntype = alloc_type_copy (type);
282 if (typeptr)
283 *typeptr = ntype;
284 }
285 else /* We have storage, but need to reset it. */
286 {
287 ntype = *typeptr;
288 chain = TYPE_CHAIN (ntype);
289 smash_type (ntype);
290 TYPE_CHAIN (ntype) = chain;
291 }
292
293 TYPE_TARGET_TYPE (ntype) = type;
294 TYPE_POINTER_TYPE (type) = ntype;
295
296 /* FIXME! Assume the machine has only one representation for
297 pointers! */
298
299 TYPE_LENGTH (ntype)
300 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
301 TYPE_CODE (ntype) = TYPE_CODE_PTR;
302
303 /* Mark pointers as unsigned. The target converts between pointers
304 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
305 gdbarch_address_to_pointer. */
306 TYPE_UNSIGNED (ntype) = 1;
307
308 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
309 TYPE_POINTER_TYPE (type) = ntype;
310
311 /* Update the length of all the other variants of this type. */
312 chain = TYPE_CHAIN (ntype);
313 while (chain != ntype)
314 {
315 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
316 chain = TYPE_CHAIN (chain);
317 }
318
319 return ntype;
320 }
321
322 /* Given a type TYPE, return a type of pointers to that type.
323 May need to construct such a type if this is the first use. */
324
325 struct type *
326 lookup_pointer_type (struct type *type)
327 {
328 return make_pointer_type (type, (struct type **) 0);
329 }
330
331 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
332 points to a pointer to memory where the reference type should be
333 stored. If *TYPEPTR is zero, update it to point to the reference
334 type we return. We allocate new memory if needed. */
335
336 struct type *
337 make_reference_type (struct type *type, struct type **typeptr)
338 {
339 struct type *ntype; /* New type */
340 struct type *chain;
341
342 ntype = TYPE_REFERENCE_TYPE (type);
343
344 if (ntype)
345 {
346 if (typeptr == 0)
347 return ntype; /* Don't care about alloc,
348 and have new type. */
349 else if (*typeptr == 0)
350 {
351 *typeptr = ntype; /* Tracking alloc, and have new type. */
352 return ntype;
353 }
354 }
355
356 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
357 {
358 ntype = alloc_type_copy (type);
359 if (typeptr)
360 *typeptr = ntype;
361 }
362 else /* We have storage, but need to reset it. */
363 {
364 ntype = *typeptr;
365 chain = TYPE_CHAIN (ntype);
366 smash_type (ntype);
367 TYPE_CHAIN (ntype) = chain;
368 }
369
370 TYPE_TARGET_TYPE (ntype) = type;
371 TYPE_REFERENCE_TYPE (type) = ntype;
372
373 /* FIXME! Assume the machine has only one representation for
374 references, and that it matches the (only) representation for
375 pointers! */
376
377 TYPE_LENGTH (ntype) =
378 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
379 TYPE_CODE (ntype) = TYPE_CODE_REF;
380
381 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
382 TYPE_REFERENCE_TYPE (type) = ntype;
383
384 /* Update the length of all the other variants of this type. */
385 chain = TYPE_CHAIN (ntype);
386 while (chain != ntype)
387 {
388 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
389 chain = TYPE_CHAIN (chain);
390 }
391
392 return ntype;
393 }
394
395 /* Same as above, but caller doesn't care about memory allocation
396 details. */
397
398 struct type *
399 lookup_reference_type (struct type *type)
400 {
401 return make_reference_type (type, (struct type **) 0);
402 }
403
404 /* Lookup a function type that returns type TYPE. TYPEPTR, if
405 nonzero, points to a pointer to memory where the function type
406 should be stored. If *TYPEPTR is zero, update it to point to the
407 function type we return. We allocate new memory if needed. */
408
409 struct type *
410 make_function_type (struct type *type, struct type **typeptr)
411 {
412 struct type *ntype; /* New type */
413
414 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
415 {
416 ntype = alloc_type_copy (type);
417 if (typeptr)
418 *typeptr = ntype;
419 }
420 else /* We have storage, but need to reset it. */
421 {
422 ntype = *typeptr;
423 smash_type (ntype);
424 }
425
426 TYPE_TARGET_TYPE (ntype) = type;
427
428 TYPE_LENGTH (ntype) = 1;
429 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
430
431 return ntype;
432 }
433
434
435 /* Given a type TYPE, return a type of functions that return that type.
436 May need to construct such a type if this is the first use. */
437
438 struct type *
439 lookup_function_type (struct type *type)
440 {
441 return make_function_type (type, (struct type **) 0);
442 }
443
444 /* Identify address space identifier by name --
445 return the integer flag defined in gdbtypes.h. */
446 extern int
447 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
448 {
449 int type_flags;
450
451 /* Check for known address space delimiters. */
452 if (!strcmp (space_identifier, "code"))
453 return TYPE_INSTANCE_FLAG_CODE_SPACE;
454 else if (!strcmp (space_identifier, "data"))
455 return TYPE_INSTANCE_FLAG_DATA_SPACE;
456 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
457 && gdbarch_address_class_name_to_type_flags (gdbarch,
458 space_identifier,
459 &type_flags))
460 return type_flags;
461 else
462 error (_("Unknown address space specifier: \"%s\""), space_identifier);
463 }
464
465 /* Identify address space identifier by integer flag as defined in
466 gdbtypes.h -- return the string version of the adress space name. */
467
468 const char *
469 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
470 {
471 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
472 return "code";
473 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
474 return "data";
475 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
476 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
477 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
478 else
479 return NULL;
480 }
481
482 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
483
484 If STORAGE is non-NULL, create the new type instance there.
485 STORAGE must be in the same obstack as TYPE. */
486
487 static struct type *
488 make_qualified_type (struct type *type, int new_flags,
489 struct type *storage)
490 {
491 struct type *ntype;
492
493 ntype = type;
494 do
495 {
496 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
497 return ntype;
498 ntype = TYPE_CHAIN (ntype);
499 }
500 while (ntype != type);
501
502 /* Create a new type instance. */
503 if (storage == NULL)
504 ntype = alloc_type_instance (type);
505 else
506 {
507 /* If STORAGE was provided, it had better be in the same objfile
508 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
509 if one objfile is freed and the other kept, we'd have
510 dangling pointers. */
511 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
512
513 ntype = storage;
514 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
515 TYPE_CHAIN (ntype) = ntype;
516 }
517
518 /* Pointers or references to the original type are not relevant to
519 the new type. */
520 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
521 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
522
523 /* Chain the new qualified type to the old type. */
524 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
525 TYPE_CHAIN (type) = ntype;
526
527 /* Now set the instance flags and return the new type. */
528 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
529
530 /* Set length of new type to that of the original type. */
531 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
532
533 return ntype;
534 }
535
536 /* Make an address-space-delimited variant of a type -- a type that
537 is identical to the one supplied except that it has an address
538 space attribute attached to it (such as "code" or "data").
539
540 The space attributes "code" and "data" are for Harvard
541 architectures. The address space attributes are for architectures
542 which have alternately sized pointers or pointers with alternate
543 representations. */
544
545 struct type *
546 make_type_with_address_space (struct type *type, int space_flag)
547 {
548 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
549 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
550 | TYPE_INSTANCE_FLAG_DATA_SPACE
551 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
552 | space_flag);
553
554 return make_qualified_type (type, new_flags, NULL);
555 }
556
557 /* Make a "c-v" variant of a type -- a type that is identical to the
558 one supplied except that it may have const or volatile attributes
559 CNST is a flag for setting the const attribute
560 VOLTL is a flag for setting the volatile attribute
561 TYPE is the base type whose variant we are creating.
562
563 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
564 storage to hold the new qualified type; *TYPEPTR and TYPE must be
565 in the same objfile. Otherwise, allocate fresh memory for the new
566 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
567 new type we construct. */
568 struct type *
569 make_cv_type (int cnst, int voltl,
570 struct type *type,
571 struct type **typeptr)
572 {
573 struct type *ntype; /* New type */
574
575 int new_flags = (TYPE_INSTANCE_FLAGS (type)
576 & ~(TYPE_INSTANCE_FLAG_CONST
577 | TYPE_INSTANCE_FLAG_VOLATILE));
578
579 if (cnst)
580 new_flags |= TYPE_INSTANCE_FLAG_CONST;
581
582 if (voltl)
583 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
584
585 if (typeptr && *typeptr != NULL)
586 {
587 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
588 a C-V variant chain that threads across objfiles: if one
589 objfile gets freed, then the other has a broken C-V chain.
590
591 This code used to try to copy over the main type from TYPE to
592 *TYPEPTR if they were in different objfiles, but that's
593 wrong, too: TYPE may have a field list or member function
594 lists, which refer to types of their own, etc. etc. The
595 whole shebang would need to be copied over recursively; you
596 can't have inter-objfile pointers. The only thing to do is
597 to leave stub types as stub types, and look them up afresh by
598 name each time you encounter them. */
599 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
600 }
601
602 ntype = make_qualified_type (type, new_flags,
603 typeptr ? *typeptr : NULL);
604
605 if (typeptr != NULL)
606 *typeptr = ntype;
607
608 return ntype;
609 }
610
611 /* Replace the contents of ntype with the type *type. This changes the
612 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
613 the changes are propogated to all types in the TYPE_CHAIN.
614
615 In order to build recursive types, it's inevitable that we'll need
616 to update types in place --- but this sort of indiscriminate
617 smashing is ugly, and needs to be replaced with something more
618 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
619 clear if more steps are needed. */
620 void
621 replace_type (struct type *ntype, struct type *type)
622 {
623 struct type *chain;
624
625 /* These two types had better be in the same objfile. Otherwise,
626 the assignment of one type's main type structure to the other
627 will produce a type with references to objects (names; field
628 lists; etc.) allocated on an objfile other than its own. */
629 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
630
631 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
632
633 /* The type length is not a part of the main type. Update it for
634 each type on the variant chain. */
635 chain = ntype;
636 do
637 {
638 /* Assert that this element of the chain has no address-class bits
639 set in its flags. Such type variants might have type lengths
640 which are supposed to be different from the non-address-class
641 variants. This assertion shouldn't ever be triggered because
642 symbol readers which do construct address-class variants don't
643 call replace_type(). */
644 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
645
646 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
647 chain = TYPE_CHAIN (chain);
648 }
649 while (ntype != chain);
650
651 /* Assert that the two types have equivalent instance qualifiers.
652 This should be true for at least all of our debug readers. */
653 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
654 }
655
656 /* Implement direct support for MEMBER_TYPE in GNU C++.
657 May need to construct such a type if this is the first use.
658 The TYPE is the type of the member. The DOMAIN is the type
659 of the aggregate that the member belongs to. */
660
661 struct type *
662 lookup_memberptr_type (struct type *type, struct type *domain)
663 {
664 struct type *mtype;
665
666 mtype = alloc_type_copy (type);
667 smash_to_memberptr_type (mtype, domain, type);
668 return mtype;
669 }
670
671 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
672
673 struct type *
674 lookup_methodptr_type (struct type *to_type)
675 {
676 struct type *mtype;
677
678 mtype = alloc_type_copy (to_type);
679 smash_to_methodptr_type (mtype, to_type);
680 return mtype;
681 }
682
683 /* Allocate a stub method whose return type is TYPE. This apparently
684 happens for speed of symbol reading, since parsing out the
685 arguments to the method is cpu-intensive, the way we are doing it.
686 So, we will fill in arguments later. This always returns a fresh
687 type. */
688
689 struct type *
690 allocate_stub_method (struct type *type)
691 {
692 struct type *mtype;
693
694 mtype = alloc_type_copy (type);
695 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
696 TYPE_LENGTH (mtype) = 1;
697 TYPE_STUB (mtype) = 1;
698 TYPE_TARGET_TYPE (mtype) = type;
699 /* _DOMAIN_TYPE (mtype) = unknown yet */
700 return mtype;
701 }
702
703 /* Create a range type using either a blank type supplied in
704 RESULT_TYPE, or creating a new type, inheriting the objfile from
705 INDEX_TYPE.
706
707 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
708 to HIGH_BOUND, inclusive.
709
710 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
711 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
712
713 struct type *
714 create_range_type (struct type *result_type, struct type *index_type,
715 LONGEST low_bound, LONGEST high_bound)
716 {
717 if (result_type == NULL)
718 result_type = alloc_type_copy (index_type);
719 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
720 TYPE_TARGET_TYPE (result_type) = index_type;
721 if (TYPE_STUB (index_type))
722 TYPE_TARGET_STUB (result_type) = 1;
723 else
724 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
725 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
726 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
727 TYPE_LOW_BOUND (result_type) = low_bound;
728 TYPE_HIGH_BOUND (result_type) = high_bound;
729
730 if (low_bound >= 0)
731 TYPE_UNSIGNED (result_type) = 1;
732
733 return result_type;
734 }
735
736 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
737 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
738 bounds will fit in LONGEST), or -1 otherwise. */
739
740 int
741 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
742 {
743 CHECK_TYPEDEF (type);
744 switch (TYPE_CODE (type))
745 {
746 case TYPE_CODE_RANGE:
747 *lowp = TYPE_LOW_BOUND (type);
748 *highp = TYPE_HIGH_BOUND (type);
749 return 1;
750 case TYPE_CODE_ENUM:
751 if (TYPE_NFIELDS (type) > 0)
752 {
753 /* The enums may not be sorted by value, so search all
754 entries */
755 int i;
756
757 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
758 for (i = 0; i < TYPE_NFIELDS (type); i++)
759 {
760 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
761 *lowp = TYPE_FIELD_BITPOS (type, i);
762 if (TYPE_FIELD_BITPOS (type, i) > *highp)
763 *highp = TYPE_FIELD_BITPOS (type, i);
764 }
765
766 /* Set unsigned indicator if warranted. */
767 if (*lowp >= 0)
768 {
769 TYPE_UNSIGNED (type) = 1;
770 }
771 }
772 else
773 {
774 *lowp = 0;
775 *highp = -1;
776 }
777 return 0;
778 case TYPE_CODE_BOOL:
779 *lowp = 0;
780 *highp = 1;
781 return 0;
782 case TYPE_CODE_INT:
783 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
784 return -1;
785 if (!TYPE_UNSIGNED (type))
786 {
787 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
788 *highp = -*lowp - 1;
789 return 0;
790 }
791 /* ... fall through for unsigned ints ... */
792 case TYPE_CODE_CHAR:
793 *lowp = 0;
794 /* This round-about calculation is to avoid shifting by
795 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
796 if TYPE_LENGTH (type) == sizeof (LONGEST). */
797 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
798 *highp = (*highp - 1) | *highp;
799 return 0;
800 default:
801 return -1;
802 }
803 }
804
805 /* Create an array type using either a blank type supplied in
806 RESULT_TYPE, or creating a new type, inheriting the objfile from
807 RANGE_TYPE.
808
809 Elements will be of type ELEMENT_TYPE, the indices will be of type
810 RANGE_TYPE.
811
812 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
813 sure it is TYPE_CODE_UNDEF before we bash it into an array
814 type? */
815
816 struct type *
817 create_array_type (struct type *result_type,
818 struct type *element_type,
819 struct type *range_type)
820 {
821 LONGEST low_bound, high_bound;
822
823 if (result_type == NULL)
824 result_type = alloc_type_copy (range_type);
825
826 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
827 TYPE_TARGET_TYPE (result_type) = element_type;
828 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
829 low_bound = high_bound = 0;
830 CHECK_TYPEDEF (element_type);
831 /* Be careful when setting the array length. Ada arrays can be
832 empty arrays with the high_bound being smaller than the low_bound.
833 In such cases, the array length should be zero. */
834 if (high_bound < low_bound)
835 TYPE_LENGTH (result_type) = 0;
836 else
837 TYPE_LENGTH (result_type) =
838 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
839 TYPE_NFIELDS (result_type) = 1;
840 TYPE_FIELDS (result_type) =
841 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
842 TYPE_INDEX_TYPE (result_type) = range_type;
843 TYPE_VPTR_FIELDNO (result_type) = -1;
844
845 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
846 if (TYPE_LENGTH (result_type) == 0)
847 TYPE_TARGET_STUB (result_type) = 1;
848
849 return result_type;
850 }
851
852 struct type *
853 lookup_array_range_type (struct type *element_type,
854 int low_bound, int high_bound)
855 {
856 struct gdbarch *gdbarch = get_type_arch (element_type);
857 struct type *index_type = builtin_type (gdbarch)->builtin_int;
858 struct type *range_type
859 = create_range_type (NULL, index_type, low_bound, high_bound);
860
861 return create_array_type (NULL, element_type, range_type);
862 }
863
864 /* Create a string type using either a blank type supplied in
865 RESULT_TYPE, or creating a new type. String types are similar
866 enough to array of char types that we can use create_array_type to
867 build the basic type and then bash it into a string type.
868
869 For fixed length strings, the range type contains 0 as the lower
870 bound and the length of the string minus one as the upper bound.
871
872 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
873 sure it is TYPE_CODE_UNDEF before we bash it into a string
874 type? */
875
876 struct type *
877 create_string_type (struct type *result_type,
878 struct type *string_char_type,
879 struct type *range_type)
880 {
881 result_type = create_array_type (result_type,
882 string_char_type,
883 range_type);
884 TYPE_CODE (result_type) = TYPE_CODE_STRING;
885 return result_type;
886 }
887
888 struct type *
889 lookup_string_range_type (struct type *string_char_type,
890 int low_bound, int high_bound)
891 {
892 struct type *result_type;
893
894 result_type = lookup_array_range_type (string_char_type,
895 low_bound, high_bound);
896 TYPE_CODE (result_type) = TYPE_CODE_STRING;
897 return result_type;
898 }
899
900 struct type *
901 create_set_type (struct type *result_type, struct type *domain_type)
902 {
903 if (result_type == NULL)
904 result_type = alloc_type_copy (domain_type);
905
906 TYPE_CODE (result_type) = TYPE_CODE_SET;
907 TYPE_NFIELDS (result_type) = 1;
908 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
909
910 if (!TYPE_STUB (domain_type))
911 {
912 LONGEST low_bound, high_bound, bit_length;
913
914 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
915 low_bound = high_bound = 0;
916 bit_length = high_bound - low_bound + 1;
917 TYPE_LENGTH (result_type)
918 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
919 if (low_bound >= 0)
920 TYPE_UNSIGNED (result_type) = 1;
921 }
922 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
923
924 return result_type;
925 }
926
927 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
928 and any array types nested inside it. */
929
930 void
931 make_vector_type (struct type *array_type)
932 {
933 struct type *inner_array, *elt_type;
934 int flags;
935
936 /* Find the innermost array type, in case the array is
937 multi-dimensional. */
938 inner_array = array_type;
939 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
940 inner_array = TYPE_TARGET_TYPE (inner_array);
941
942 elt_type = TYPE_TARGET_TYPE (inner_array);
943 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
944 {
945 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
946 elt_type = make_qualified_type (elt_type, flags, NULL);
947 TYPE_TARGET_TYPE (inner_array) = elt_type;
948 }
949
950 TYPE_VECTOR (array_type) = 1;
951 }
952
953 struct type *
954 init_vector_type (struct type *elt_type, int n)
955 {
956 struct type *array_type;
957
958 array_type = lookup_array_range_type (elt_type, 0, n - 1);
959 make_vector_type (array_type);
960 return array_type;
961 }
962
963 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
964 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
965 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
966 TYPE doesn't include the offset (that's the value of the MEMBER
967 itself), but does include the structure type into which it points
968 (for some reason).
969
970 When "smashing" the type, we preserve the objfile that the old type
971 pointed to, since we aren't changing where the type is actually
972 allocated. */
973
974 void
975 smash_to_memberptr_type (struct type *type, struct type *domain,
976 struct type *to_type)
977 {
978 smash_type (type);
979 TYPE_TARGET_TYPE (type) = to_type;
980 TYPE_DOMAIN_TYPE (type) = domain;
981 /* Assume that a data member pointer is the same size as a normal
982 pointer. */
983 TYPE_LENGTH (type)
984 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
985 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
986 }
987
988 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
989
990 When "smashing" the type, we preserve the objfile that the old type
991 pointed to, since we aren't changing where the type is actually
992 allocated. */
993
994 void
995 smash_to_methodptr_type (struct type *type, struct type *to_type)
996 {
997 smash_type (type);
998 TYPE_TARGET_TYPE (type) = to_type;
999 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1000 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1001 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1002 }
1003
1004 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1005 METHOD just means `function that gets an extra "this" argument'.
1006
1007 When "smashing" the type, we preserve the objfile that the old type
1008 pointed to, since we aren't changing where the type is actually
1009 allocated. */
1010
1011 void
1012 smash_to_method_type (struct type *type, struct type *domain,
1013 struct type *to_type, struct field *args,
1014 int nargs, int varargs)
1015 {
1016 smash_type (type);
1017 TYPE_TARGET_TYPE (type) = to_type;
1018 TYPE_DOMAIN_TYPE (type) = domain;
1019 TYPE_FIELDS (type) = args;
1020 TYPE_NFIELDS (type) = nargs;
1021 if (varargs)
1022 TYPE_VARARGS (type) = 1;
1023 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1024 TYPE_CODE (type) = TYPE_CODE_METHOD;
1025 }
1026
1027 /* Return a typename for a struct/union/enum type without "struct ",
1028 "union ", or "enum ". If the type has a NULL name, return NULL. */
1029
1030 char *
1031 type_name_no_tag (const struct type *type)
1032 {
1033 if (TYPE_TAG_NAME (type) != NULL)
1034 return TYPE_TAG_NAME (type);
1035
1036 /* Is there code which expects this to return the name if there is
1037 no tag name? My guess is that this is mainly used for C++ in
1038 cases where the two will always be the same. */
1039 return TYPE_NAME (type);
1040 }
1041
1042 /* Lookup a typedef or primitive type named NAME, visible in lexical
1043 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1044 suitably defined. */
1045
1046 struct type *
1047 lookup_typename (const struct language_defn *language,
1048 struct gdbarch *gdbarch, char *name,
1049 const struct block *block, int noerr)
1050 {
1051 struct symbol *sym;
1052 struct type *tmp;
1053
1054 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1055 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1056 {
1057 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
1058 if (tmp)
1059 {
1060 return tmp;
1061 }
1062 else if (!tmp && noerr)
1063 {
1064 return NULL;
1065 }
1066 else
1067 {
1068 error (_("No type named %s."), name);
1069 }
1070 }
1071 return (SYMBOL_TYPE (sym));
1072 }
1073
1074 struct type *
1075 lookup_unsigned_typename (const struct language_defn *language,
1076 struct gdbarch *gdbarch, char *name)
1077 {
1078 char *uns = alloca (strlen (name) + 10);
1079
1080 strcpy (uns, "unsigned ");
1081 strcpy (uns + 9, name);
1082 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1083 }
1084
1085 struct type *
1086 lookup_signed_typename (const struct language_defn *language,
1087 struct gdbarch *gdbarch, char *name)
1088 {
1089 struct type *t;
1090 char *uns = alloca (strlen (name) + 8);
1091
1092 strcpy (uns, "signed ");
1093 strcpy (uns + 7, name);
1094 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1095 /* If we don't find "signed FOO" just try again with plain "FOO". */
1096 if (t != NULL)
1097 return t;
1098 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1099 }
1100
1101 /* Lookup a structure type named "struct NAME",
1102 visible in lexical block BLOCK. */
1103
1104 struct type *
1105 lookup_struct (char *name, struct block *block)
1106 {
1107 struct symbol *sym;
1108
1109 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1110
1111 if (sym == NULL)
1112 {
1113 error (_("No struct type named %s."), name);
1114 }
1115 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1116 {
1117 error (_("This context has class, union or enum %s, not a struct."),
1118 name);
1119 }
1120 return (SYMBOL_TYPE (sym));
1121 }
1122
1123 /* Lookup a union type named "union NAME",
1124 visible in lexical block BLOCK. */
1125
1126 struct type *
1127 lookup_union (char *name, struct block *block)
1128 {
1129 struct symbol *sym;
1130 struct type *t;
1131
1132 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1133
1134 if (sym == NULL)
1135 error (_("No union type named %s."), name);
1136
1137 t = SYMBOL_TYPE (sym);
1138
1139 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1140 return t;
1141
1142 /* If we get here, it's not a union. */
1143 error (_("This context has class, struct or enum %s, not a union."),
1144 name);
1145 }
1146
1147
1148 /* Lookup an enum type named "enum NAME",
1149 visible in lexical block BLOCK. */
1150
1151 struct type *
1152 lookup_enum (char *name, struct block *block)
1153 {
1154 struct symbol *sym;
1155
1156 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1157 if (sym == NULL)
1158 {
1159 error (_("No enum type named %s."), name);
1160 }
1161 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1162 {
1163 error (_("This context has class, struct or union %s, not an enum."),
1164 name);
1165 }
1166 return (SYMBOL_TYPE (sym));
1167 }
1168
1169 /* Lookup a template type named "template NAME<TYPE>",
1170 visible in lexical block BLOCK. */
1171
1172 struct type *
1173 lookup_template_type (char *name, struct type *type,
1174 struct block *block)
1175 {
1176 struct symbol *sym;
1177 char *nam = (char *)
1178 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1179
1180 strcpy (nam, name);
1181 strcat (nam, "<");
1182 strcat (nam, TYPE_NAME (type));
1183 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1184
1185 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1186
1187 if (sym == NULL)
1188 {
1189 error (_("No template type named %s."), name);
1190 }
1191 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1192 {
1193 error (_("This context has class, union or enum %s, not a struct."),
1194 name);
1195 }
1196 return (SYMBOL_TYPE (sym));
1197 }
1198
1199 /* Given a type TYPE, lookup the type of the component of type named
1200 NAME.
1201
1202 TYPE can be either a struct or union, or a pointer or reference to
1203 a struct or union. If it is a pointer or reference, its target
1204 type is automatically used. Thus '.' and '->' are interchangable,
1205 as specified for the definitions of the expression element types
1206 STRUCTOP_STRUCT and STRUCTOP_PTR.
1207
1208 If NOERR is nonzero, return zero if NAME is not suitably defined.
1209 If NAME is the name of a baseclass type, return that type. */
1210
1211 struct type *
1212 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1213 {
1214 int i;
1215 char *typename;
1216
1217 for (;;)
1218 {
1219 CHECK_TYPEDEF (type);
1220 if (TYPE_CODE (type) != TYPE_CODE_PTR
1221 && TYPE_CODE (type) != TYPE_CODE_REF)
1222 break;
1223 type = TYPE_TARGET_TYPE (type);
1224 }
1225
1226 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1227 && TYPE_CODE (type) != TYPE_CODE_UNION)
1228 {
1229 typename = type_to_string (type);
1230 make_cleanup (xfree, typename);
1231 error (_("Type %s is not a structure or union type."), typename);
1232 }
1233
1234 #if 0
1235 /* FIXME: This change put in by Michael seems incorrect for the case
1236 where the structure tag name is the same as the member name.
1237 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1238 foo; } bell;" Disabled by fnf. */
1239 {
1240 char *typename;
1241
1242 typename = type_name_no_tag (type);
1243 if (typename != NULL && strcmp (typename, name) == 0)
1244 return type;
1245 }
1246 #endif
1247
1248 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1249 {
1250 char *t_field_name = TYPE_FIELD_NAME (type, i);
1251
1252 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1253 {
1254 return TYPE_FIELD_TYPE (type, i);
1255 }
1256 else if (!t_field_name || *t_field_name == '\0')
1257 {
1258 struct type *subtype
1259 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1260
1261 if (subtype != NULL)
1262 return subtype;
1263 }
1264 }
1265
1266 /* OK, it's not in this class. Recursively check the baseclasses. */
1267 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1268 {
1269 struct type *t;
1270
1271 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1272 if (t != NULL)
1273 {
1274 return t;
1275 }
1276 }
1277
1278 if (noerr)
1279 {
1280 return NULL;
1281 }
1282
1283 typename = type_to_string (type);
1284 make_cleanup (xfree, typename);
1285 error (_("Type %s has no component named %s."), typename, name);
1286 }
1287
1288 /* Lookup the vptr basetype/fieldno values for TYPE.
1289 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1290 vptr_fieldno. Also, if found and basetype is from the same objfile,
1291 cache the results.
1292 If not found, return -1 and ignore BASETYPEP.
1293 Callers should be aware that in some cases (for example,
1294 the type or one of its baseclasses is a stub type and we are
1295 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1296 this function will not be able to find the
1297 virtual function table pointer, and vptr_fieldno will remain -1 and
1298 vptr_basetype will remain NULL or incomplete. */
1299
1300 int
1301 get_vptr_fieldno (struct type *type, struct type **basetypep)
1302 {
1303 CHECK_TYPEDEF (type);
1304
1305 if (TYPE_VPTR_FIELDNO (type) < 0)
1306 {
1307 int i;
1308
1309 /* We must start at zero in case the first (and only) baseclass
1310 is virtual (and hence we cannot share the table pointer). */
1311 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1312 {
1313 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1314 int fieldno;
1315 struct type *basetype;
1316
1317 fieldno = get_vptr_fieldno (baseclass, &basetype);
1318 if (fieldno >= 0)
1319 {
1320 /* If the type comes from a different objfile we can't cache
1321 it, it may have a different lifetime. PR 2384 */
1322 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1323 {
1324 TYPE_VPTR_FIELDNO (type) = fieldno;
1325 TYPE_VPTR_BASETYPE (type) = basetype;
1326 }
1327 if (basetypep)
1328 *basetypep = basetype;
1329 return fieldno;
1330 }
1331 }
1332
1333 /* Not found. */
1334 return -1;
1335 }
1336 else
1337 {
1338 if (basetypep)
1339 *basetypep = TYPE_VPTR_BASETYPE (type);
1340 return TYPE_VPTR_FIELDNO (type);
1341 }
1342 }
1343
1344 static void
1345 stub_noname_complaint (void)
1346 {
1347 complaint (&symfile_complaints, _("stub type has NULL name"));
1348 }
1349
1350 /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1351
1352 If this is a stubbed struct (i.e. declared as struct foo *), see if
1353 we can find a full definition in some other file. If so, copy this
1354 definition, so we can use it in future. There used to be a comment
1355 (but not any code) that if we don't find a full definition, we'd
1356 set a flag so we don't spend time in the future checking the same
1357 type. That would be a mistake, though--we might load in more
1358 symbols which contain a full definition for the type.
1359
1360 This used to be coded as a macro, but I don't think it is called
1361 often enough to merit such treatment.
1362
1363 Find the real type of TYPE. This function returns the real type,
1364 after removing all layers of typedefs and completing opaque or stub
1365 types. Completion changes the TYPE argument, but stripping of
1366 typedefs does not.
1367
1368 If TYPE is a TYPE_CODE_TYPEDEF, its length is (also) set to the length of
1369 the target type instead of zero. However, in the case of TYPE_CODE_TYPEDEF
1370 check_typedef can still return different type than the original TYPE
1371 pointer. */
1372
1373 struct type *
1374 check_typedef (struct type *type)
1375 {
1376 struct type *orig_type = type;
1377 int is_const, is_volatile;
1378
1379 gdb_assert (type);
1380
1381 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1382 {
1383 if (!TYPE_TARGET_TYPE (type))
1384 {
1385 char *name;
1386 struct symbol *sym;
1387
1388 /* It is dangerous to call lookup_symbol if we are currently
1389 reading a symtab. Infinite recursion is one danger. */
1390 if (currently_reading_symtab)
1391 return type;
1392
1393 name = type_name_no_tag (type);
1394 /* FIXME: shouldn't we separately check the TYPE_NAME and
1395 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1396 VAR_DOMAIN as appropriate? (this code was written before
1397 TYPE_NAME and TYPE_TAG_NAME were separate). */
1398 if (name == NULL)
1399 {
1400 stub_noname_complaint ();
1401 return type;
1402 }
1403 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1404 if (sym)
1405 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1406 else /* TYPE_CODE_UNDEF */
1407 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1408 }
1409 type = TYPE_TARGET_TYPE (type);
1410 }
1411
1412 is_const = TYPE_CONST (type);
1413 is_volatile = TYPE_VOLATILE (type);
1414
1415 /* If this is a struct/class/union with no fields, then check
1416 whether a full definition exists somewhere else. This is for
1417 systems where a type definition with no fields is issued for such
1418 types, instead of identifying them as stub types in the first
1419 place. */
1420
1421 if (TYPE_IS_OPAQUE (type)
1422 && opaque_type_resolution
1423 && !currently_reading_symtab)
1424 {
1425 char *name = type_name_no_tag (type);
1426 struct type *newtype;
1427
1428 if (name == NULL)
1429 {
1430 stub_noname_complaint ();
1431 return type;
1432 }
1433 newtype = lookup_transparent_type (name);
1434
1435 if (newtype)
1436 {
1437 /* If the resolved type and the stub are in the same
1438 objfile, then replace the stub type with the real deal.
1439 But if they're in separate objfiles, leave the stub
1440 alone; we'll just look up the transparent type every time
1441 we call check_typedef. We can't create pointers between
1442 types allocated to different objfiles, since they may
1443 have different lifetimes. Trying to copy NEWTYPE over to
1444 TYPE's objfile is pointless, too, since you'll have to
1445 move over any other types NEWTYPE refers to, which could
1446 be an unbounded amount of stuff. */
1447 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1448 make_cv_type (is_const, is_volatile, newtype, &type);
1449 else
1450 type = newtype;
1451 }
1452 }
1453 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1454 types. */
1455 else if (TYPE_STUB (type) && !currently_reading_symtab)
1456 {
1457 char *name = type_name_no_tag (type);
1458 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1459 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1460 as appropriate? (this code was written before TYPE_NAME and
1461 TYPE_TAG_NAME were separate). */
1462 struct symbol *sym;
1463
1464 if (name == NULL)
1465 {
1466 stub_noname_complaint ();
1467 return type;
1468 }
1469 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1470 if (sym)
1471 {
1472 /* Same as above for opaque types, we can replace the stub
1473 with the complete type only if they are int the same
1474 objfile. */
1475 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1476 make_cv_type (is_const, is_volatile,
1477 SYMBOL_TYPE (sym), &type);
1478 else
1479 type = SYMBOL_TYPE (sym);
1480 }
1481 }
1482
1483 if (TYPE_TARGET_STUB (type))
1484 {
1485 struct type *range_type;
1486 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1487
1488 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1489 {
1490 /* Empty. */
1491 }
1492 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1493 && TYPE_NFIELDS (type) == 1
1494 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1495 == TYPE_CODE_RANGE))
1496 {
1497 /* Now recompute the length of the array type, based on its
1498 number of elements and the target type's length.
1499 Watch out for Ada null Ada arrays where the high bound
1500 is smaller than the low bound. */
1501 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1502 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1503 ULONGEST len;
1504
1505 if (high_bound < low_bound)
1506 len = 0;
1507 else
1508 {
1509 /* For now, we conservatively take the array length to be 0
1510 if its length exceeds UINT_MAX. The code below assumes
1511 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1512 which is technically not guaranteed by C, but is usually true
1513 (because it would be true if x were unsigned with its
1514 high-order bit on). It uses the fact that
1515 high_bound-low_bound is always representable in
1516 ULONGEST and that if high_bound-low_bound+1 overflows,
1517 it overflows to 0. We must change these tests if we
1518 decide to increase the representation of TYPE_LENGTH
1519 from unsigned int to ULONGEST. */
1520 ULONGEST ulow = low_bound, uhigh = high_bound;
1521 ULONGEST tlen = TYPE_LENGTH (target_type);
1522
1523 len = tlen * (uhigh - ulow + 1);
1524 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1525 || len > UINT_MAX)
1526 len = 0;
1527 }
1528 TYPE_LENGTH (type) = len;
1529 TYPE_TARGET_STUB (type) = 0;
1530 }
1531 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1532 {
1533 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1534 TYPE_TARGET_STUB (type) = 0;
1535 }
1536 }
1537 /* Cache TYPE_LENGTH for future use. */
1538 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1539 return type;
1540 }
1541
1542 /* Parse a type expression in the string [P..P+LENGTH). If an error
1543 occurs, silently return a void type. */
1544
1545 static struct type *
1546 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1547 {
1548 struct ui_file *saved_gdb_stderr;
1549 struct type *type;
1550
1551 /* Suppress error messages. */
1552 saved_gdb_stderr = gdb_stderr;
1553 gdb_stderr = ui_file_new ();
1554
1555 /* Call parse_and_eval_type() without fear of longjmp()s. */
1556 if (!gdb_parse_and_eval_type (p, length, &type))
1557 type = builtin_type (gdbarch)->builtin_void;
1558
1559 /* Stop suppressing error messages. */
1560 ui_file_delete (gdb_stderr);
1561 gdb_stderr = saved_gdb_stderr;
1562
1563 return type;
1564 }
1565
1566 /* Ugly hack to convert method stubs into method types.
1567
1568 He ain't kiddin'. This demangles the name of the method into a
1569 string including argument types, parses out each argument type,
1570 generates a string casting a zero to that type, evaluates the
1571 string, and stuffs the resulting type into an argtype vector!!!
1572 Then it knows the type of the whole function (including argument
1573 types for overloading), which info used to be in the stab's but was
1574 removed to hack back the space required for them. */
1575
1576 static void
1577 check_stub_method (struct type *type, int method_id, int signature_id)
1578 {
1579 struct gdbarch *gdbarch = get_type_arch (type);
1580 struct fn_field *f;
1581 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1582 char *demangled_name = cplus_demangle (mangled_name,
1583 DMGL_PARAMS | DMGL_ANSI);
1584 char *argtypetext, *p;
1585 int depth = 0, argcount = 1;
1586 struct field *argtypes;
1587 struct type *mtype;
1588
1589 /* Make sure we got back a function string that we can use. */
1590 if (demangled_name)
1591 p = strchr (demangled_name, '(');
1592 else
1593 p = NULL;
1594
1595 if (demangled_name == NULL || p == NULL)
1596 error (_("Internal: Cannot demangle mangled name `%s'."),
1597 mangled_name);
1598
1599 /* Now, read in the parameters that define this type. */
1600 p += 1;
1601 argtypetext = p;
1602 while (*p)
1603 {
1604 if (*p == '(' || *p == '<')
1605 {
1606 depth += 1;
1607 }
1608 else if (*p == ')' || *p == '>')
1609 {
1610 depth -= 1;
1611 }
1612 else if (*p == ',' && depth == 0)
1613 {
1614 argcount += 1;
1615 }
1616
1617 p += 1;
1618 }
1619
1620 /* If we read one argument and it was ``void'', don't count it. */
1621 if (strncmp (argtypetext, "(void)", 6) == 0)
1622 argcount -= 1;
1623
1624 /* We need one extra slot, for the THIS pointer. */
1625
1626 argtypes = (struct field *)
1627 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1628 p = argtypetext;
1629
1630 /* Add THIS pointer for non-static methods. */
1631 f = TYPE_FN_FIELDLIST1 (type, method_id);
1632 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1633 argcount = 0;
1634 else
1635 {
1636 argtypes[0].type = lookup_pointer_type (type);
1637 argcount = 1;
1638 }
1639
1640 if (*p != ')') /* () means no args, skip while */
1641 {
1642 depth = 0;
1643 while (*p)
1644 {
1645 if (depth <= 0 && (*p == ',' || *p == ')'))
1646 {
1647 /* Avoid parsing of ellipsis, they will be handled below.
1648 Also avoid ``void'' as above. */
1649 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1650 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1651 {
1652 argtypes[argcount].type =
1653 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1654 argcount += 1;
1655 }
1656 argtypetext = p + 1;
1657 }
1658
1659 if (*p == '(' || *p == '<')
1660 {
1661 depth += 1;
1662 }
1663 else if (*p == ')' || *p == '>')
1664 {
1665 depth -= 1;
1666 }
1667
1668 p += 1;
1669 }
1670 }
1671
1672 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1673
1674 /* Now update the old "stub" type into a real type. */
1675 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1676 TYPE_DOMAIN_TYPE (mtype) = type;
1677 TYPE_FIELDS (mtype) = argtypes;
1678 TYPE_NFIELDS (mtype) = argcount;
1679 TYPE_STUB (mtype) = 0;
1680 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1681 if (p[-2] == '.')
1682 TYPE_VARARGS (mtype) = 1;
1683
1684 xfree (demangled_name);
1685 }
1686
1687 /* This is the external interface to check_stub_method, above. This
1688 function unstubs all of the signatures for TYPE's METHOD_ID method
1689 name. After calling this function TYPE_FN_FIELD_STUB will be
1690 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1691 correct.
1692
1693 This function unfortunately can not die until stabs do. */
1694
1695 void
1696 check_stub_method_group (struct type *type, int method_id)
1697 {
1698 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1699 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1700 int j, found_stub = 0;
1701
1702 for (j = 0; j < len; j++)
1703 if (TYPE_FN_FIELD_STUB (f, j))
1704 {
1705 found_stub = 1;
1706 check_stub_method (type, method_id, j);
1707 }
1708
1709 /* GNU v3 methods with incorrect names were corrected when we read
1710 in type information, because it was cheaper to do it then. The
1711 only GNU v2 methods with incorrect method names are operators and
1712 destructors; destructors were also corrected when we read in type
1713 information.
1714
1715 Therefore the only thing we need to handle here are v2 operator
1716 names. */
1717 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1718 {
1719 int ret;
1720 char dem_opname[256];
1721
1722 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1723 method_id),
1724 dem_opname, DMGL_ANSI);
1725 if (!ret)
1726 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1727 method_id),
1728 dem_opname, 0);
1729 if (ret)
1730 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1731 }
1732 }
1733
1734 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1735 const struct cplus_struct_type cplus_struct_default = { };
1736
1737 void
1738 allocate_cplus_struct_type (struct type *type)
1739 {
1740 if (HAVE_CPLUS_STRUCT (type))
1741 /* Structure was already allocated. Nothing more to do. */
1742 return;
1743
1744 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1745 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1746 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1747 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1748 }
1749
1750 const struct gnat_aux_type gnat_aux_default =
1751 { NULL };
1752
1753 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1754 and allocate the associated gnat-specific data. The gnat-specific
1755 data is also initialized to gnat_aux_default. */
1756 void
1757 allocate_gnat_aux_type (struct type *type)
1758 {
1759 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1760 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1761 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1762 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1763 }
1764
1765
1766 /* Helper function to initialize the standard scalar types.
1767
1768 If NAME is non-NULL, then we make a copy of the string pointed
1769 to by name in the objfile_obstack for that objfile, and initialize
1770 the type name to that copy. There are places (mipsread.c in particular),
1771 where init_type is called with a NULL value for NAME). */
1772
1773 struct type *
1774 init_type (enum type_code code, int length, int flags,
1775 char *name, struct objfile *objfile)
1776 {
1777 struct type *type;
1778
1779 type = alloc_type (objfile);
1780 TYPE_CODE (type) = code;
1781 TYPE_LENGTH (type) = length;
1782
1783 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1784 if (flags & TYPE_FLAG_UNSIGNED)
1785 TYPE_UNSIGNED (type) = 1;
1786 if (flags & TYPE_FLAG_NOSIGN)
1787 TYPE_NOSIGN (type) = 1;
1788 if (flags & TYPE_FLAG_STUB)
1789 TYPE_STUB (type) = 1;
1790 if (flags & TYPE_FLAG_TARGET_STUB)
1791 TYPE_TARGET_STUB (type) = 1;
1792 if (flags & TYPE_FLAG_STATIC)
1793 TYPE_STATIC (type) = 1;
1794 if (flags & TYPE_FLAG_PROTOTYPED)
1795 TYPE_PROTOTYPED (type) = 1;
1796 if (flags & TYPE_FLAG_INCOMPLETE)
1797 TYPE_INCOMPLETE (type) = 1;
1798 if (flags & TYPE_FLAG_VARARGS)
1799 TYPE_VARARGS (type) = 1;
1800 if (flags & TYPE_FLAG_VECTOR)
1801 TYPE_VECTOR (type) = 1;
1802 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1803 TYPE_STUB_SUPPORTED (type) = 1;
1804 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1805 TYPE_FIXED_INSTANCE (type) = 1;
1806
1807 if (name)
1808 TYPE_NAME (type) = obsavestring (name, strlen (name),
1809 &objfile->objfile_obstack);
1810
1811 /* C++ fancies. */
1812
1813 if (name && strcmp (name, "char") == 0)
1814 TYPE_NOSIGN (type) = 1;
1815
1816 switch (code)
1817 {
1818 case TYPE_CODE_STRUCT:
1819 case TYPE_CODE_UNION:
1820 case TYPE_CODE_NAMESPACE:
1821 INIT_CPLUS_SPECIFIC (type);
1822 break;
1823 case TYPE_CODE_FLT:
1824 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1825 break;
1826 case TYPE_CODE_FUNC:
1827 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CALLING_CONVENTION;
1828 break;
1829 }
1830 return type;
1831 }
1832
1833 int
1834 can_dereference (struct type *t)
1835 {
1836 /* FIXME: Should we return true for references as well as
1837 pointers? */
1838 CHECK_TYPEDEF (t);
1839 return
1840 (t != NULL
1841 && TYPE_CODE (t) == TYPE_CODE_PTR
1842 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1843 }
1844
1845 int
1846 is_integral_type (struct type *t)
1847 {
1848 CHECK_TYPEDEF (t);
1849 return
1850 ((t != NULL)
1851 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1852 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1853 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1854 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1855 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1856 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1857 }
1858
1859 /* A helper function which returns true if types A and B represent the
1860 "same" class type. This is true if the types have the same main
1861 type, or the same name. */
1862
1863 int
1864 class_types_same_p (const struct type *a, const struct type *b)
1865 {
1866 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
1867 || (TYPE_NAME (a) && TYPE_NAME (b)
1868 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
1869 }
1870
1871 /* Check whether BASE is an ancestor or base class of DCLASS
1872 Return 1 if so, and 0 if not. If PUBLIC is 1 then only public
1873 ancestors are considered, and the function returns 1 only if
1874 BASE is a public ancestor of DCLASS. */
1875
1876 static int
1877 do_is_ancestor (struct type *base, struct type *dclass, int public)
1878 {
1879 int i;
1880
1881 CHECK_TYPEDEF (base);
1882 CHECK_TYPEDEF (dclass);
1883
1884 if (class_types_same_p (base, dclass))
1885 return 1;
1886
1887 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1888 {
1889 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
1890 continue;
1891
1892 if (do_is_ancestor (base, TYPE_BASECLASS (dclass, i), public))
1893 return 1;
1894 }
1895
1896 return 0;
1897 }
1898
1899 /* Check whether BASE is an ancestor or base class or DCLASS
1900 Return 1 if so, and 0 if not.
1901 Note: If BASE and DCLASS are of the same type, this function
1902 will return 1. So for some class A, is_ancestor (A, A) will
1903 return 1. */
1904
1905 int
1906 is_ancestor (struct type *base, struct type *dclass)
1907 {
1908 return do_is_ancestor (base, dclass, 0);
1909 }
1910
1911 /* Like is_ancestor, but only returns true when BASE is a public
1912 ancestor of DCLASS. */
1913
1914 int
1915 is_public_ancestor (struct type *base, struct type *dclass)
1916 {
1917 return do_is_ancestor (base, dclass, 1);
1918 }
1919
1920 /* A helper function for is_unique_ancestor. */
1921
1922 static int
1923 is_unique_ancestor_worker (struct type *base, struct type *dclass,
1924 int *offset,
1925 const bfd_byte *contents, CORE_ADDR address)
1926 {
1927 int i, count = 0;
1928
1929 CHECK_TYPEDEF (base);
1930 CHECK_TYPEDEF (dclass);
1931
1932 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
1933 {
1934 struct type *iter = check_typedef (TYPE_BASECLASS (dclass, i));
1935 int this_offset = baseclass_offset (dclass, i, contents, address);
1936
1937 if (this_offset == -1)
1938 error (_("virtual baseclass botch"));
1939
1940 if (class_types_same_p (base, iter))
1941 {
1942 /* If this is the first subclass, set *OFFSET and set count
1943 to 1. Otherwise, if this is at the same offset as
1944 previous instances, do nothing. Otherwise, increment
1945 count. */
1946 if (*offset == -1)
1947 {
1948 *offset = this_offset;
1949 count = 1;
1950 }
1951 else if (this_offset == *offset)
1952 {
1953 /* Nothing. */
1954 }
1955 else
1956 ++count;
1957 }
1958 else
1959 count += is_unique_ancestor_worker (base, iter, offset,
1960 contents + this_offset,
1961 address + this_offset);
1962 }
1963
1964 return count;
1965 }
1966
1967 /* Like is_ancestor, but only returns true if BASE is a unique base
1968 class of the type of VAL. */
1969
1970 int
1971 is_unique_ancestor (struct type *base, struct value *val)
1972 {
1973 int offset = -1;
1974
1975 return is_unique_ancestor_worker (base, value_type (val), &offset,
1976 value_contents (val),
1977 value_address (val)) == 1;
1978 }
1979
1980 \f
1981
1982
1983 /* Functions for overload resolution begin here */
1984
1985 /* Compare two badness vectors A and B and return the result.
1986 0 => A and B are identical
1987 1 => A and B are incomparable
1988 2 => A is better than B
1989 3 => A is worse than B */
1990
1991 int
1992 compare_badness (struct badness_vector *a, struct badness_vector *b)
1993 {
1994 int i;
1995 int tmp;
1996 short found_pos = 0; /* any positives in c? */
1997 short found_neg = 0; /* any negatives in c? */
1998
1999 /* differing lengths => incomparable */
2000 if (a->length != b->length)
2001 return 1;
2002
2003 /* Subtract b from a */
2004 for (i = 0; i < a->length; i++)
2005 {
2006 tmp = a->rank[i] - b->rank[i];
2007 if (tmp > 0)
2008 found_pos = 1;
2009 else if (tmp < 0)
2010 found_neg = 1;
2011 }
2012
2013 if (found_pos)
2014 {
2015 if (found_neg)
2016 return 1; /* incomparable */
2017 else
2018 return 3; /* A > B */
2019 }
2020 else
2021 /* no positives */
2022 {
2023 if (found_neg)
2024 return 2; /* A < B */
2025 else
2026 return 0; /* A == B */
2027 }
2028 }
2029
2030 /* Rank a function by comparing its parameter types (PARMS, length
2031 NPARMS), to the types of an argument list (ARGS, length NARGS).
2032 Return a pointer to a badness vector. This has NARGS + 1
2033 entries. */
2034
2035 struct badness_vector *
2036 rank_function (struct type **parms, int nparms,
2037 struct type **args, int nargs)
2038 {
2039 int i;
2040 struct badness_vector *bv;
2041 int min_len = nparms < nargs ? nparms : nargs;
2042
2043 bv = xmalloc (sizeof (struct badness_vector));
2044 bv->length = nargs + 1; /* add 1 for the length-match rank */
2045 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2046
2047 /* First compare the lengths of the supplied lists.
2048 If there is a mismatch, set it to a high value. */
2049
2050 /* pai/1997-06-03 FIXME: when we have debug info about default
2051 arguments and ellipsis parameter lists, we should consider those
2052 and rank the length-match more finely. */
2053
2054 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
2055
2056 /* Now rank all the parameters of the candidate function */
2057 for (i = 1; i <= min_len; i++)
2058 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
2059
2060 /* If more arguments than parameters, add dummy entries */
2061 for (i = min_len + 1; i <= nargs; i++)
2062 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2063
2064 return bv;
2065 }
2066
2067 /* Compare the names of two integer types, assuming that any sign
2068 qualifiers have been checked already. We do it this way because
2069 there may be an "int" in the name of one of the types. */
2070
2071 static int
2072 integer_types_same_name_p (const char *first, const char *second)
2073 {
2074 int first_p, second_p;
2075
2076 /* If both are shorts, return 1; if neither is a short, keep
2077 checking. */
2078 first_p = (strstr (first, "short") != NULL);
2079 second_p = (strstr (second, "short") != NULL);
2080 if (first_p && second_p)
2081 return 1;
2082 if (first_p || second_p)
2083 return 0;
2084
2085 /* Likewise for long. */
2086 first_p = (strstr (first, "long") != NULL);
2087 second_p = (strstr (second, "long") != NULL);
2088 if (first_p && second_p)
2089 return 1;
2090 if (first_p || second_p)
2091 return 0;
2092
2093 /* Likewise for char. */
2094 first_p = (strstr (first, "char") != NULL);
2095 second_p = (strstr (second, "char") != NULL);
2096 if (first_p && second_p)
2097 return 1;
2098 if (first_p || second_p)
2099 return 0;
2100
2101 /* They must both be ints. */
2102 return 1;
2103 }
2104
2105 /* Compares type A to type B returns 1 if the represent the same type
2106 0 otherwise. */
2107
2108 static int
2109 types_equal (struct type *a, struct type *b)
2110 {
2111 /* Identical type pointers. */
2112 /* However, this still doesn't catch all cases of same type for b
2113 and a. The reason is that builtin types are different from
2114 the same ones constructed from the object. */
2115 if (a == b)
2116 return 1;
2117
2118 /* Resolve typedefs */
2119 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2120 a = check_typedef (a);
2121 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2122 b = check_typedef (b);
2123
2124 /* If after resolving typedefs a and b are not of the same type
2125 code then they are not equal. */
2126 if (TYPE_CODE (a) != TYPE_CODE (b))
2127 return 0;
2128
2129 /* If a and b are both pointers types or both reference types then
2130 they are equal of the same type iff the objects they refer to are
2131 of the same type. */
2132 if (TYPE_CODE (a) == TYPE_CODE_PTR
2133 || TYPE_CODE (a) == TYPE_CODE_REF)
2134 return types_equal (TYPE_TARGET_TYPE (a),
2135 TYPE_TARGET_TYPE (b));
2136
2137 /*
2138 Well, damnit, if the names are exactly the same, I'll say they
2139 are exactly the same. This happens when we generate method
2140 stubs. The types won't point to the same address, but they
2141 really are the same.
2142 */
2143
2144 if (TYPE_NAME (a) && TYPE_NAME (b)
2145 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2146 return 1;
2147
2148 /* Check if identical after resolving typedefs. */
2149 if (a == b)
2150 return 1;
2151
2152 return 0;
2153 }
2154
2155 /* Compare one type (PARM) for compatibility with another (ARG).
2156 * PARM is intended to be the parameter type of a function; and
2157 * ARG is the supplied argument's type. This function tests if
2158 * the latter can be converted to the former.
2159 *
2160 * Return 0 if they are identical types;
2161 * Otherwise, return an integer which corresponds to how compatible
2162 * PARM is to ARG. The higher the return value, the worse the match.
2163 * Generally the "bad" conversions are all uniformly assigned a 100. */
2164
2165 int
2166 rank_one_type (struct type *parm, struct type *arg)
2167 {
2168
2169 if (types_equal (parm, arg))
2170 return 0;
2171
2172 /* Resolve typedefs */
2173 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2174 parm = check_typedef (parm);
2175 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2176 arg = check_typedef (arg);
2177
2178 /* See through references, since we can almost make non-references
2179 references. */
2180 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2181 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
2182 + REFERENCE_CONVERSION_BADNESS);
2183 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2184 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
2185 + REFERENCE_CONVERSION_BADNESS);
2186 if (overload_debug)
2187 /* Debugging only. */
2188 fprintf_filtered (gdb_stderr,
2189 "------ Arg is %s [%d], parm is %s [%d]\n",
2190 TYPE_NAME (arg), TYPE_CODE (arg),
2191 TYPE_NAME (parm), TYPE_CODE (parm));
2192
2193 /* x -> y means arg of type x being supplied for parameter of type y */
2194
2195 switch (TYPE_CODE (parm))
2196 {
2197 case TYPE_CODE_PTR:
2198 switch (TYPE_CODE (arg))
2199 {
2200 case TYPE_CODE_PTR:
2201
2202 /* Allowed pointer conversions are:
2203 (a) pointer to void-pointer conversion. */
2204 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2205 return VOID_PTR_CONVERSION_BADNESS;
2206
2207 /* (b) pointer to ancestor-pointer conversion. */
2208 if (is_ancestor (TYPE_TARGET_TYPE (parm),
2209 TYPE_TARGET_TYPE (arg)))
2210 return BASE_PTR_CONVERSION_BADNESS;
2211
2212 return INCOMPATIBLE_TYPE_BADNESS;
2213 case TYPE_CODE_ARRAY:
2214 if (types_equal (TYPE_TARGET_TYPE (parm),
2215 TYPE_TARGET_TYPE (arg)))
2216 return 0;
2217 return INCOMPATIBLE_TYPE_BADNESS;
2218 case TYPE_CODE_FUNC:
2219 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2220 case TYPE_CODE_INT:
2221 case TYPE_CODE_ENUM:
2222 case TYPE_CODE_FLAGS:
2223 case TYPE_CODE_CHAR:
2224 case TYPE_CODE_RANGE:
2225 case TYPE_CODE_BOOL:
2226 return POINTER_CONVERSION_BADNESS;
2227 default:
2228 return INCOMPATIBLE_TYPE_BADNESS;
2229 }
2230 case TYPE_CODE_ARRAY:
2231 switch (TYPE_CODE (arg))
2232 {
2233 case TYPE_CODE_PTR:
2234 case TYPE_CODE_ARRAY:
2235 return rank_one_type (TYPE_TARGET_TYPE (parm),
2236 TYPE_TARGET_TYPE (arg));
2237 default:
2238 return INCOMPATIBLE_TYPE_BADNESS;
2239 }
2240 case TYPE_CODE_FUNC:
2241 switch (TYPE_CODE (arg))
2242 {
2243 case TYPE_CODE_PTR: /* funcptr -> func */
2244 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2245 default:
2246 return INCOMPATIBLE_TYPE_BADNESS;
2247 }
2248 case TYPE_CODE_INT:
2249 switch (TYPE_CODE (arg))
2250 {
2251 case TYPE_CODE_INT:
2252 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2253 {
2254 /* Deal with signed, unsigned, and plain chars and
2255 signed and unsigned ints. */
2256 if (TYPE_NOSIGN (parm))
2257 {
2258 /* This case only for character types */
2259 if (TYPE_NOSIGN (arg))
2260 return 0; /* plain char -> plain char */
2261 else /* signed/unsigned char -> plain char */
2262 return INTEGER_CONVERSION_BADNESS;
2263 }
2264 else if (TYPE_UNSIGNED (parm))
2265 {
2266 if (TYPE_UNSIGNED (arg))
2267 {
2268 /* unsigned int -> unsigned int, or
2269 unsigned long -> unsigned long */
2270 if (integer_types_same_name_p (TYPE_NAME (parm),
2271 TYPE_NAME (arg)))
2272 return 0;
2273 else if (integer_types_same_name_p (TYPE_NAME (arg),
2274 "int")
2275 && integer_types_same_name_p (TYPE_NAME (parm),
2276 "long"))
2277 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2278 else
2279 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
2280 }
2281 else
2282 {
2283 if (integer_types_same_name_p (TYPE_NAME (arg),
2284 "long")
2285 && integer_types_same_name_p (TYPE_NAME (parm),
2286 "int"))
2287 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
2288 else
2289 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2290 }
2291 }
2292 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2293 {
2294 if (integer_types_same_name_p (TYPE_NAME (parm),
2295 TYPE_NAME (arg)))
2296 return 0;
2297 else if (integer_types_same_name_p (TYPE_NAME (arg),
2298 "int")
2299 && integer_types_same_name_p (TYPE_NAME (parm),
2300 "long"))
2301 return INTEGER_PROMOTION_BADNESS;
2302 else
2303 return INTEGER_CONVERSION_BADNESS;
2304 }
2305 else
2306 return INTEGER_CONVERSION_BADNESS;
2307 }
2308 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2309 return INTEGER_PROMOTION_BADNESS;
2310 else
2311 return INTEGER_CONVERSION_BADNESS;
2312 case TYPE_CODE_ENUM:
2313 case TYPE_CODE_FLAGS:
2314 case TYPE_CODE_CHAR:
2315 case TYPE_CODE_RANGE:
2316 case TYPE_CODE_BOOL:
2317 return INTEGER_PROMOTION_BADNESS;
2318 case TYPE_CODE_FLT:
2319 return INT_FLOAT_CONVERSION_BADNESS;
2320 case TYPE_CODE_PTR:
2321 return NS_POINTER_CONVERSION_BADNESS;
2322 default:
2323 return INCOMPATIBLE_TYPE_BADNESS;
2324 }
2325 break;
2326 case TYPE_CODE_ENUM:
2327 switch (TYPE_CODE (arg))
2328 {
2329 case TYPE_CODE_INT:
2330 case TYPE_CODE_CHAR:
2331 case TYPE_CODE_RANGE:
2332 case TYPE_CODE_BOOL:
2333 case TYPE_CODE_ENUM:
2334 return INTEGER_CONVERSION_BADNESS;
2335 case TYPE_CODE_FLT:
2336 return INT_FLOAT_CONVERSION_BADNESS;
2337 default:
2338 return INCOMPATIBLE_TYPE_BADNESS;
2339 }
2340 break;
2341 case TYPE_CODE_CHAR:
2342 switch (TYPE_CODE (arg))
2343 {
2344 case TYPE_CODE_RANGE:
2345 case TYPE_CODE_BOOL:
2346 case TYPE_CODE_ENUM:
2347 return INTEGER_CONVERSION_BADNESS;
2348 case TYPE_CODE_FLT:
2349 return INT_FLOAT_CONVERSION_BADNESS;
2350 case TYPE_CODE_INT:
2351 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2352 return INTEGER_CONVERSION_BADNESS;
2353 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2354 return INTEGER_PROMOTION_BADNESS;
2355 /* >>> !! else fall through !! <<< */
2356 case TYPE_CODE_CHAR:
2357 /* Deal with signed, unsigned, and plain chars for C++ and
2358 with int cases falling through from previous case. */
2359 if (TYPE_NOSIGN (parm))
2360 {
2361 if (TYPE_NOSIGN (arg))
2362 return 0;
2363 else
2364 return INTEGER_CONVERSION_BADNESS;
2365 }
2366 else if (TYPE_UNSIGNED (parm))
2367 {
2368 if (TYPE_UNSIGNED (arg))
2369 return 0;
2370 else
2371 return INTEGER_PROMOTION_BADNESS;
2372 }
2373 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2374 return 0;
2375 else
2376 return INTEGER_CONVERSION_BADNESS;
2377 default:
2378 return INCOMPATIBLE_TYPE_BADNESS;
2379 }
2380 break;
2381 case TYPE_CODE_RANGE:
2382 switch (TYPE_CODE (arg))
2383 {
2384 case TYPE_CODE_INT:
2385 case TYPE_CODE_CHAR:
2386 case TYPE_CODE_RANGE:
2387 case TYPE_CODE_BOOL:
2388 case TYPE_CODE_ENUM:
2389 return INTEGER_CONVERSION_BADNESS;
2390 case TYPE_CODE_FLT:
2391 return INT_FLOAT_CONVERSION_BADNESS;
2392 default:
2393 return INCOMPATIBLE_TYPE_BADNESS;
2394 }
2395 break;
2396 case TYPE_CODE_BOOL:
2397 switch (TYPE_CODE (arg))
2398 {
2399 case TYPE_CODE_INT:
2400 case TYPE_CODE_CHAR:
2401 case TYPE_CODE_RANGE:
2402 case TYPE_CODE_ENUM:
2403 case TYPE_CODE_FLT:
2404 case TYPE_CODE_PTR:
2405 return BOOLEAN_CONVERSION_BADNESS;
2406 case TYPE_CODE_BOOL:
2407 return 0;
2408 default:
2409 return INCOMPATIBLE_TYPE_BADNESS;
2410 }
2411 break;
2412 case TYPE_CODE_FLT:
2413 switch (TYPE_CODE (arg))
2414 {
2415 case TYPE_CODE_FLT:
2416 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2417 return FLOAT_PROMOTION_BADNESS;
2418 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2419 return 0;
2420 else
2421 return FLOAT_CONVERSION_BADNESS;
2422 case TYPE_CODE_INT:
2423 case TYPE_CODE_BOOL:
2424 case TYPE_CODE_ENUM:
2425 case TYPE_CODE_RANGE:
2426 case TYPE_CODE_CHAR:
2427 return INT_FLOAT_CONVERSION_BADNESS;
2428 default:
2429 return INCOMPATIBLE_TYPE_BADNESS;
2430 }
2431 break;
2432 case TYPE_CODE_COMPLEX:
2433 switch (TYPE_CODE (arg))
2434 { /* Strictly not needed for C++, but... */
2435 case TYPE_CODE_FLT:
2436 return FLOAT_PROMOTION_BADNESS;
2437 case TYPE_CODE_COMPLEX:
2438 return 0;
2439 default:
2440 return INCOMPATIBLE_TYPE_BADNESS;
2441 }
2442 break;
2443 case TYPE_CODE_STRUCT:
2444 /* currently same as TYPE_CODE_CLASS */
2445 switch (TYPE_CODE (arg))
2446 {
2447 case TYPE_CODE_STRUCT:
2448 /* Check for derivation */
2449 if (is_ancestor (parm, arg))
2450 return BASE_CONVERSION_BADNESS;
2451 /* else fall through */
2452 default:
2453 return INCOMPATIBLE_TYPE_BADNESS;
2454 }
2455 break;
2456 case TYPE_CODE_UNION:
2457 switch (TYPE_CODE (arg))
2458 {
2459 case TYPE_CODE_UNION:
2460 default:
2461 return INCOMPATIBLE_TYPE_BADNESS;
2462 }
2463 break;
2464 case TYPE_CODE_MEMBERPTR:
2465 switch (TYPE_CODE (arg))
2466 {
2467 default:
2468 return INCOMPATIBLE_TYPE_BADNESS;
2469 }
2470 break;
2471 case TYPE_CODE_METHOD:
2472 switch (TYPE_CODE (arg))
2473 {
2474
2475 default:
2476 return INCOMPATIBLE_TYPE_BADNESS;
2477 }
2478 break;
2479 case TYPE_CODE_REF:
2480 switch (TYPE_CODE (arg))
2481 {
2482
2483 default:
2484 return INCOMPATIBLE_TYPE_BADNESS;
2485 }
2486
2487 break;
2488 case TYPE_CODE_SET:
2489 switch (TYPE_CODE (arg))
2490 {
2491 /* Not in C++ */
2492 case TYPE_CODE_SET:
2493 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2494 TYPE_FIELD_TYPE (arg, 0));
2495 default:
2496 return INCOMPATIBLE_TYPE_BADNESS;
2497 }
2498 break;
2499 case TYPE_CODE_VOID:
2500 default:
2501 return INCOMPATIBLE_TYPE_BADNESS;
2502 } /* switch (TYPE_CODE (arg)) */
2503 }
2504
2505
2506 /* End of functions for overload resolution */
2507
2508 static void
2509 print_bit_vector (B_TYPE *bits, int nbits)
2510 {
2511 int bitno;
2512
2513 for (bitno = 0; bitno < nbits; bitno++)
2514 {
2515 if ((bitno % 8) == 0)
2516 {
2517 puts_filtered (" ");
2518 }
2519 if (B_TST (bits, bitno))
2520 printf_filtered (("1"));
2521 else
2522 printf_filtered (("0"));
2523 }
2524 }
2525
2526 /* Note the first arg should be the "this" pointer, we may not want to
2527 include it since we may get into a infinitely recursive
2528 situation. */
2529
2530 static void
2531 print_arg_types (struct field *args, int nargs, int spaces)
2532 {
2533 if (args != NULL)
2534 {
2535 int i;
2536
2537 for (i = 0; i < nargs; i++)
2538 recursive_dump_type (args[i].type, spaces + 2);
2539 }
2540 }
2541
2542 int
2543 field_is_static (struct field *f)
2544 {
2545 /* "static" fields are the fields whose location is not relative
2546 to the address of the enclosing struct. It would be nice to
2547 have a dedicated flag that would be set for static fields when
2548 the type is being created. But in practice, checking the field
2549 loc_kind should give us an accurate answer. */
2550 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2551 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2552 }
2553
2554 static void
2555 dump_fn_fieldlists (struct type *type, int spaces)
2556 {
2557 int method_idx;
2558 int overload_idx;
2559 struct fn_field *f;
2560
2561 printfi_filtered (spaces, "fn_fieldlists ");
2562 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2563 printf_filtered ("\n");
2564 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2565 {
2566 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2567 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2568 method_idx,
2569 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2570 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2571 gdb_stdout);
2572 printf_filtered (_(") length %d\n"),
2573 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2574 for (overload_idx = 0;
2575 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2576 overload_idx++)
2577 {
2578 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2579 overload_idx,
2580 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2581 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2582 gdb_stdout);
2583 printf_filtered (")\n");
2584 printfi_filtered (spaces + 8, "type ");
2585 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2586 gdb_stdout);
2587 printf_filtered ("\n");
2588
2589 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2590 spaces + 8 + 2);
2591
2592 printfi_filtered (spaces + 8, "args ");
2593 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2594 gdb_stdout);
2595 printf_filtered ("\n");
2596
2597 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2598 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2599 overload_idx)),
2600 spaces);
2601 printfi_filtered (spaces + 8, "fcontext ");
2602 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2603 gdb_stdout);
2604 printf_filtered ("\n");
2605
2606 printfi_filtered (spaces + 8, "is_const %d\n",
2607 TYPE_FN_FIELD_CONST (f, overload_idx));
2608 printfi_filtered (spaces + 8, "is_volatile %d\n",
2609 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2610 printfi_filtered (spaces + 8, "is_private %d\n",
2611 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2612 printfi_filtered (spaces + 8, "is_protected %d\n",
2613 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2614 printfi_filtered (spaces + 8, "is_stub %d\n",
2615 TYPE_FN_FIELD_STUB (f, overload_idx));
2616 printfi_filtered (spaces + 8, "voffset %u\n",
2617 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2618 }
2619 }
2620 }
2621
2622 static void
2623 print_cplus_stuff (struct type *type, int spaces)
2624 {
2625 printfi_filtered (spaces, "n_baseclasses %d\n",
2626 TYPE_N_BASECLASSES (type));
2627 printfi_filtered (spaces, "nfn_fields %d\n",
2628 TYPE_NFN_FIELDS (type));
2629 printfi_filtered (spaces, "nfn_fields_total %d\n",
2630 TYPE_NFN_FIELDS_TOTAL (type));
2631 if (TYPE_N_BASECLASSES (type) > 0)
2632 {
2633 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2634 TYPE_N_BASECLASSES (type));
2635 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2636 gdb_stdout);
2637 printf_filtered (")");
2638
2639 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2640 TYPE_N_BASECLASSES (type));
2641 puts_filtered ("\n");
2642 }
2643 if (TYPE_NFIELDS (type) > 0)
2644 {
2645 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2646 {
2647 printfi_filtered (spaces,
2648 "private_field_bits (%d bits at *",
2649 TYPE_NFIELDS (type));
2650 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2651 gdb_stdout);
2652 printf_filtered (")");
2653 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2654 TYPE_NFIELDS (type));
2655 puts_filtered ("\n");
2656 }
2657 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2658 {
2659 printfi_filtered (spaces,
2660 "protected_field_bits (%d bits at *",
2661 TYPE_NFIELDS (type));
2662 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2663 gdb_stdout);
2664 printf_filtered (")");
2665 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2666 TYPE_NFIELDS (type));
2667 puts_filtered ("\n");
2668 }
2669 }
2670 if (TYPE_NFN_FIELDS (type) > 0)
2671 {
2672 dump_fn_fieldlists (type, spaces);
2673 }
2674 }
2675
2676 /* Print the contents of the TYPE's type_specific union, assuming that
2677 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2678
2679 static void
2680 print_gnat_stuff (struct type *type, int spaces)
2681 {
2682 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2683
2684 recursive_dump_type (descriptive_type, spaces + 2);
2685 }
2686
2687 static struct obstack dont_print_type_obstack;
2688
2689 void
2690 recursive_dump_type (struct type *type, int spaces)
2691 {
2692 int idx;
2693
2694 if (spaces == 0)
2695 obstack_begin (&dont_print_type_obstack, 0);
2696
2697 if (TYPE_NFIELDS (type) > 0
2698 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
2699 {
2700 struct type **first_dont_print
2701 = (struct type **) obstack_base (&dont_print_type_obstack);
2702
2703 int i = (struct type **)
2704 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2705
2706 while (--i >= 0)
2707 {
2708 if (type == first_dont_print[i])
2709 {
2710 printfi_filtered (spaces, "type node ");
2711 gdb_print_host_address (type, gdb_stdout);
2712 printf_filtered (_(" <same as already seen type>\n"));
2713 return;
2714 }
2715 }
2716
2717 obstack_ptr_grow (&dont_print_type_obstack, type);
2718 }
2719
2720 printfi_filtered (spaces, "type node ");
2721 gdb_print_host_address (type, gdb_stdout);
2722 printf_filtered ("\n");
2723 printfi_filtered (spaces, "name '%s' (",
2724 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2725 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2726 printf_filtered (")\n");
2727 printfi_filtered (spaces, "tagname '%s' (",
2728 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2729 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2730 printf_filtered (")\n");
2731 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2732 switch (TYPE_CODE (type))
2733 {
2734 case TYPE_CODE_UNDEF:
2735 printf_filtered ("(TYPE_CODE_UNDEF)");
2736 break;
2737 case TYPE_CODE_PTR:
2738 printf_filtered ("(TYPE_CODE_PTR)");
2739 break;
2740 case TYPE_CODE_ARRAY:
2741 printf_filtered ("(TYPE_CODE_ARRAY)");
2742 break;
2743 case TYPE_CODE_STRUCT:
2744 printf_filtered ("(TYPE_CODE_STRUCT)");
2745 break;
2746 case TYPE_CODE_UNION:
2747 printf_filtered ("(TYPE_CODE_UNION)");
2748 break;
2749 case TYPE_CODE_ENUM:
2750 printf_filtered ("(TYPE_CODE_ENUM)");
2751 break;
2752 case TYPE_CODE_FLAGS:
2753 printf_filtered ("(TYPE_CODE_FLAGS)");
2754 break;
2755 case TYPE_CODE_FUNC:
2756 printf_filtered ("(TYPE_CODE_FUNC)");
2757 break;
2758 case TYPE_CODE_INT:
2759 printf_filtered ("(TYPE_CODE_INT)");
2760 break;
2761 case TYPE_CODE_FLT:
2762 printf_filtered ("(TYPE_CODE_FLT)");
2763 break;
2764 case TYPE_CODE_VOID:
2765 printf_filtered ("(TYPE_CODE_VOID)");
2766 break;
2767 case TYPE_CODE_SET:
2768 printf_filtered ("(TYPE_CODE_SET)");
2769 break;
2770 case TYPE_CODE_RANGE:
2771 printf_filtered ("(TYPE_CODE_RANGE)");
2772 break;
2773 case TYPE_CODE_STRING:
2774 printf_filtered ("(TYPE_CODE_STRING)");
2775 break;
2776 case TYPE_CODE_BITSTRING:
2777 printf_filtered ("(TYPE_CODE_BITSTRING)");
2778 break;
2779 case TYPE_CODE_ERROR:
2780 printf_filtered ("(TYPE_CODE_ERROR)");
2781 break;
2782 case TYPE_CODE_MEMBERPTR:
2783 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2784 break;
2785 case TYPE_CODE_METHODPTR:
2786 printf_filtered ("(TYPE_CODE_METHODPTR)");
2787 break;
2788 case TYPE_CODE_METHOD:
2789 printf_filtered ("(TYPE_CODE_METHOD)");
2790 break;
2791 case TYPE_CODE_REF:
2792 printf_filtered ("(TYPE_CODE_REF)");
2793 break;
2794 case TYPE_CODE_CHAR:
2795 printf_filtered ("(TYPE_CODE_CHAR)");
2796 break;
2797 case TYPE_CODE_BOOL:
2798 printf_filtered ("(TYPE_CODE_BOOL)");
2799 break;
2800 case TYPE_CODE_COMPLEX:
2801 printf_filtered ("(TYPE_CODE_COMPLEX)");
2802 break;
2803 case TYPE_CODE_TYPEDEF:
2804 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2805 break;
2806 case TYPE_CODE_NAMESPACE:
2807 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2808 break;
2809 default:
2810 printf_filtered ("(UNKNOWN TYPE CODE)");
2811 break;
2812 }
2813 puts_filtered ("\n");
2814 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
2815 if (TYPE_OBJFILE_OWNED (type))
2816 {
2817 printfi_filtered (spaces, "objfile ");
2818 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
2819 }
2820 else
2821 {
2822 printfi_filtered (spaces, "gdbarch ");
2823 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
2824 }
2825 printf_filtered ("\n");
2826 printfi_filtered (spaces, "target_type ");
2827 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
2828 printf_filtered ("\n");
2829 if (TYPE_TARGET_TYPE (type) != NULL)
2830 {
2831 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2832 }
2833 printfi_filtered (spaces, "pointer_type ");
2834 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
2835 printf_filtered ("\n");
2836 printfi_filtered (spaces, "reference_type ");
2837 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
2838 printf_filtered ("\n");
2839 printfi_filtered (spaces, "type_chain ");
2840 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
2841 printf_filtered ("\n");
2842 printfi_filtered (spaces, "instance_flags 0x%x",
2843 TYPE_INSTANCE_FLAGS (type));
2844 if (TYPE_CONST (type))
2845 {
2846 puts_filtered (" TYPE_FLAG_CONST");
2847 }
2848 if (TYPE_VOLATILE (type))
2849 {
2850 puts_filtered (" TYPE_FLAG_VOLATILE");
2851 }
2852 if (TYPE_CODE_SPACE (type))
2853 {
2854 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2855 }
2856 if (TYPE_DATA_SPACE (type))
2857 {
2858 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2859 }
2860 if (TYPE_ADDRESS_CLASS_1 (type))
2861 {
2862 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2863 }
2864 if (TYPE_ADDRESS_CLASS_2 (type))
2865 {
2866 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2867 }
2868 puts_filtered ("\n");
2869
2870 printfi_filtered (spaces, "flags");
2871 if (TYPE_UNSIGNED (type))
2872 {
2873 puts_filtered (" TYPE_FLAG_UNSIGNED");
2874 }
2875 if (TYPE_NOSIGN (type))
2876 {
2877 puts_filtered (" TYPE_FLAG_NOSIGN");
2878 }
2879 if (TYPE_STUB (type))
2880 {
2881 puts_filtered (" TYPE_FLAG_STUB");
2882 }
2883 if (TYPE_TARGET_STUB (type))
2884 {
2885 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2886 }
2887 if (TYPE_STATIC (type))
2888 {
2889 puts_filtered (" TYPE_FLAG_STATIC");
2890 }
2891 if (TYPE_PROTOTYPED (type))
2892 {
2893 puts_filtered (" TYPE_FLAG_PROTOTYPED");
2894 }
2895 if (TYPE_INCOMPLETE (type))
2896 {
2897 puts_filtered (" TYPE_FLAG_INCOMPLETE");
2898 }
2899 if (TYPE_VARARGS (type))
2900 {
2901 puts_filtered (" TYPE_FLAG_VARARGS");
2902 }
2903 /* This is used for things like AltiVec registers on ppc. Gcc emits
2904 an attribute for the array type, which tells whether or not we
2905 have a vector, instead of a regular array. */
2906 if (TYPE_VECTOR (type))
2907 {
2908 puts_filtered (" TYPE_FLAG_VECTOR");
2909 }
2910 if (TYPE_FIXED_INSTANCE (type))
2911 {
2912 puts_filtered (" TYPE_FIXED_INSTANCE");
2913 }
2914 if (TYPE_STUB_SUPPORTED (type))
2915 {
2916 puts_filtered (" TYPE_STUB_SUPPORTED");
2917 }
2918 if (TYPE_NOTTEXT (type))
2919 {
2920 puts_filtered (" TYPE_NOTTEXT");
2921 }
2922 puts_filtered ("\n");
2923 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
2924 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
2925 puts_filtered ("\n");
2926 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2927 {
2928 printfi_filtered (spaces + 2,
2929 "[%d] bitpos %d bitsize %d type ",
2930 idx, TYPE_FIELD_BITPOS (type, idx),
2931 TYPE_FIELD_BITSIZE (type, idx));
2932 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
2933 printf_filtered (" name '%s' (",
2934 TYPE_FIELD_NAME (type, idx) != NULL
2935 ? TYPE_FIELD_NAME (type, idx)
2936 : "<NULL>");
2937 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
2938 printf_filtered (")\n");
2939 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2940 {
2941 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2942 }
2943 }
2944 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2945 {
2946 printfi_filtered (spaces, "low %s%s high %s%s\n",
2947 plongest (TYPE_LOW_BOUND (type)),
2948 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
2949 plongest (TYPE_HIGH_BOUND (type)),
2950 TYPE_HIGH_BOUND_UNDEFINED (type) ? " (undefined)" : "");
2951 }
2952 printfi_filtered (spaces, "vptr_basetype ");
2953 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
2954 puts_filtered ("\n");
2955 if (TYPE_VPTR_BASETYPE (type) != NULL)
2956 {
2957 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2958 }
2959 printfi_filtered (spaces, "vptr_fieldno %d\n",
2960 TYPE_VPTR_FIELDNO (type));
2961
2962 switch (TYPE_SPECIFIC_FIELD (type))
2963 {
2964 case TYPE_SPECIFIC_CPLUS_STUFF:
2965 printfi_filtered (spaces, "cplus_stuff ");
2966 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
2967 gdb_stdout);
2968 puts_filtered ("\n");
2969 print_cplus_stuff (type, spaces);
2970 break;
2971
2972 case TYPE_SPECIFIC_GNAT_STUFF:
2973 printfi_filtered (spaces, "gnat_stuff ");
2974 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
2975 puts_filtered ("\n");
2976 print_gnat_stuff (type, spaces);
2977 break;
2978
2979 case TYPE_SPECIFIC_FLOATFORMAT:
2980 printfi_filtered (spaces, "floatformat ");
2981 if (TYPE_FLOATFORMAT (type) == NULL)
2982 puts_filtered ("(null)");
2983 else
2984 {
2985 puts_filtered ("{ ");
2986 if (TYPE_FLOATFORMAT (type)[0] == NULL
2987 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
2988 puts_filtered ("(null)");
2989 else
2990 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
2991
2992 puts_filtered (", ");
2993 if (TYPE_FLOATFORMAT (type)[1] == NULL
2994 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
2995 puts_filtered ("(null)");
2996 else
2997 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
2998
2999 puts_filtered (" }");
3000 }
3001 puts_filtered ("\n");
3002 break;
3003
3004 case TYPE_SPECIFIC_CALLING_CONVENTION:
3005 printfi_filtered (spaces, "calling_convention %d\n",
3006 TYPE_CALLING_CONVENTION (type));
3007 break;
3008 }
3009
3010 if (spaces == 0)
3011 obstack_free (&dont_print_type_obstack, NULL);
3012 }
3013
3014 /* Trivial helpers for the libiberty hash table, for mapping one
3015 type to another. */
3016
3017 struct type_pair
3018 {
3019 struct type *old, *new;
3020 };
3021
3022 static hashval_t
3023 type_pair_hash (const void *item)
3024 {
3025 const struct type_pair *pair = item;
3026
3027 return htab_hash_pointer (pair->old);
3028 }
3029
3030 static int
3031 type_pair_eq (const void *item_lhs, const void *item_rhs)
3032 {
3033 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3034
3035 return lhs->old == rhs->old;
3036 }
3037
3038 /* Allocate the hash table used by copy_type_recursive to walk
3039 types without duplicates. We use OBJFILE's obstack, because
3040 OBJFILE is about to be deleted. */
3041
3042 htab_t
3043 create_copied_types_hash (struct objfile *objfile)
3044 {
3045 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3046 NULL, &objfile->objfile_obstack,
3047 hashtab_obstack_allocate,
3048 dummy_obstack_deallocate);
3049 }
3050
3051 /* Recursively copy (deep copy) TYPE, if it is associated with
3052 OBJFILE. Return a new type allocated using malloc, a saved type if
3053 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3054 not associated with OBJFILE. */
3055
3056 struct type *
3057 copy_type_recursive (struct objfile *objfile,
3058 struct type *type,
3059 htab_t copied_types)
3060 {
3061 struct type_pair *stored, pair;
3062 void **slot;
3063 struct type *new_type;
3064
3065 if (! TYPE_OBJFILE_OWNED (type))
3066 return type;
3067
3068 /* This type shouldn't be pointing to any types in other objfiles;
3069 if it did, the type might disappear unexpectedly. */
3070 gdb_assert (TYPE_OBJFILE (type) == objfile);
3071
3072 pair.old = type;
3073 slot = htab_find_slot (copied_types, &pair, INSERT);
3074 if (*slot != NULL)
3075 return ((struct type_pair *) *slot)->new;
3076
3077 new_type = alloc_type_arch (get_type_arch (type));
3078
3079 /* We must add the new type to the hash table immediately, in case
3080 we encounter this type again during a recursive call below. */
3081 stored = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3082 stored->old = type;
3083 stored->new = new_type;
3084 *slot = stored;
3085
3086 /* Copy the common fields of types. For the main type, we simply
3087 copy the entire thing and then update specific fields as needed. */
3088 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3089 TYPE_OBJFILE_OWNED (new_type) = 0;
3090 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3091
3092 if (TYPE_NAME (type))
3093 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3094 if (TYPE_TAG_NAME (type))
3095 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3096
3097 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3098 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3099
3100 /* Copy the fields. */
3101 if (TYPE_NFIELDS (type))
3102 {
3103 int i, nfields;
3104
3105 nfields = TYPE_NFIELDS (type);
3106 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3107 for (i = 0; i < nfields; i++)
3108 {
3109 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3110 TYPE_FIELD_ARTIFICIAL (type, i);
3111 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3112 if (TYPE_FIELD_TYPE (type, i))
3113 TYPE_FIELD_TYPE (new_type, i)
3114 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3115 copied_types);
3116 if (TYPE_FIELD_NAME (type, i))
3117 TYPE_FIELD_NAME (new_type, i) =
3118 xstrdup (TYPE_FIELD_NAME (type, i));
3119 switch (TYPE_FIELD_LOC_KIND (type, i))
3120 {
3121 case FIELD_LOC_KIND_BITPOS:
3122 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3123 TYPE_FIELD_BITPOS (type, i));
3124 break;
3125 case FIELD_LOC_KIND_PHYSADDR:
3126 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3127 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3128 break;
3129 case FIELD_LOC_KIND_PHYSNAME:
3130 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3131 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3132 i)));
3133 break;
3134 default:
3135 internal_error (__FILE__, __LINE__,
3136 _("Unexpected type field location kind: %d"),
3137 TYPE_FIELD_LOC_KIND (type, i));
3138 }
3139 }
3140 }
3141
3142 /* For range types, copy the bounds information. */
3143 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3144 {
3145 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3146 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3147 }
3148
3149 /* Copy pointers to other types. */
3150 if (TYPE_TARGET_TYPE (type))
3151 TYPE_TARGET_TYPE (new_type) =
3152 copy_type_recursive (objfile,
3153 TYPE_TARGET_TYPE (type),
3154 copied_types);
3155 if (TYPE_VPTR_BASETYPE (type))
3156 TYPE_VPTR_BASETYPE (new_type) =
3157 copy_type_recursive (objfile,
3158 TYPE_VPTR_BASETYPE (type),
3159 copied_types);
3160 /* Maybe copy the type_specific bits.
3161
3162 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3163 base classes and methods. There's no fundamental reason why we
3164 can't, but at the moment it is not needed. */
3165
3166 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3167 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3168 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3169 || TYPE_CODE (type) == TYPE_CODE_UNION
3170 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3171 INIT_CPLUS_SPECIFIC (new_type);
3172
3173 return new_type;
3174 }
3175
3176 /* Make a copy of the given TYPE, except that the pointer & reference
3177 types are not preserved.
3178
3179 This function assumes that the given type has an associated objfile.
3180 This objfile is used to allocate the new type. */
3181
3182 struct type *
3183 copy_type (const struct type *type)
3184 {
3185 struct type *new_type;
3186
3187 gdb_assert (TYPE_OBJFILE_OWNED (type));
3188
3189 new_type = alloc_type_copy (type);
3190 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3191 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3192 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3193 sizeof (struct main_type));
3194
3195 return new_type;
3196 }
3197
3198
3199 /* Helper functions to initialize architecture-specific types. */
3200
3201 /* Allocate a type structure associated with GDBARCH and set its
3202 CODE, LENGTH, and NAME fields. */
3203 struct type *
3204 arch_type (struct gdbarch *gdbarch,
3205 enum type_code code, int length, char *name)
3206 {
3207 struct type *type;
3208
3209 type = alloc_type_arch (gdbarch);
3210 TYPE_CODE (type) = code;
3211 TYPE_LENGTH (type) = length;
3212
3213 if (name)
3214 TYPE_NAME (type) = xstrdup (name);
3215
3216 return type;
3217 }
3218
3219 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3220 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3221 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3222 struct type *
3223 arch_integer_type (struct gdbarch *gdbarch,
3224 int bit, int unsigned_p, char *name)
3225 {
3226 struct type *t;
3227
3228 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3229 if (unsigned_p)
3230 TYPE_UNSIGNED (t) = 1;
3231 if (name && strcmp (name, "char") == 0)
3232 TYPE_NOSIGN (t) = 1;
3233
3234 return t;
3235 }
3236
3237 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3238 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3239 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3240 struct type *
3241 arch_character_type (struct gdbarch *gdbarch,
3242 int bit, int unsigned_p, char *name)
3243 {
3244 struct type *t;
3245
3246 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3247 if (unsigned_p)
3248 TYPE_UNSIGNED (t) = 1;
3249
3250 return t;
3251 }
3252
3253 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3254 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3255 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3256 struct type *
3257 arch_boolean_type (struct gdbarch *gdbarch,
3258 int bit, int unsigned_p, char *name)
3259 {
3260 struct type *t;
3261
3262 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3263 if (unsigned_p)
3264 TYPE_UNSIGNED (t) = 1;
3265
3266 return t;
3267 }
3268
3269 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3270 BIT is the type size in bits; if BIT equals -1, the size is
3271 determined by the floatformat. NAME is the type name. Set the
3272 TYPE_FLOATFORMAT from FLOATFORMATS. */
3273 struct type *
3274 arch_float_type (struct gdbarch *gdbarch,
3275 int bit, char *name, const struct floatformat **floatformats)
3276 {
3277 struct type *t;
3278
3279 if (bit == -1)
3280 {
3281 gdb_assert (floatformats != NULL);
3282 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3283 bit = floatformats[0]->totalsize;
3284 }
3285 gdb_assert (bit >= 0);
3286
3287 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3288 TYPE_FLOATFORMAT (t) = floatformats;
3289 return t;
3290 }
3291
3292 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3293 NAME is the type name. TARGET_TYPE is the component float type. */
3294 struct type *
3295 arch_complex_type (struct gdbarch *gdbarch,
3296 char *name, struct type *target_type)
3297 {
3298 struct type *t;
3299
3300 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3301 2 * TYPE_LENGTH (target_type), name);
3302 TYPE_TARGET_TYPE (t) = target_type;
3303 return t;
3304 }
3305
3306 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3307 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3308 struct type *
3309 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3310 {
3311 int nfields = length * TARGET_CHAR_BIT;
3312 struct type *type;
3313
3314 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3315 TYPE_UNSIGNED (type) = 1;
3316 TYPE_NFIELDS (type) = nfields;
3317 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3318
3319 return type;
3320 }
3321
3322 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3323 position BITPOS is called NAME. */
3324 void
3325 append_flags_type_flag (struct type *type, int bitpos, char *name)
3326 {
3327 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3328 gdb_assert (bitpos < TYPE_NFIELDS (type));
3329 gdb_assert (bitpos >= 0);
3330
3331 if (name)
3332 {
3333 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3334 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3335 }
3336 else
3337 {
3338 /* Don't show this field to the user. */
3339 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3340 }
3341 }
3342
3343 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3344 specified by CODE) associated with GDBARCH. NAME is the type name. */
3345 struct type *
3346 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3347 {
3348 struct type *t;
3349
3350 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3351 t = arch_type (gdbarch, code, 0, NULL);
3352 TYPE_TAG_NAME (t) = name;
3353 INIT_CPLUS_SPECIFIC (t);
3354 return t;
3355 }
3356
3357 /* Add new field with name NAME and type FIELD to composite type T.
3358 Do not set the field's position or adjust the type's length;
3359 the caller should do so. Return the new field. */
3360 struct field *
3361 append_composite_type_field_raw (struct type *t, char *name,
3362 struct type *field)
3363 {
3364 struct field *f;
3365
3366 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3367 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3368 sizeof (struct field) * TYPE_NFIELDS (t));
3369 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3370 memset (f, 0, sizeof f[0]);
3371 FIELD_TYPE (f[0]) = field;
3372 FIELD_NAME (f[0]) = name;
3373 return f;
3374 }
3375
3376 /* Add new field with name NAME and type FIELD to composite type T.
3377 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3378 void
3379 append_composite_type_field_aligned (struct type *t, char *name,
3380 struct type *field, int alignment)
3381 {
3382 struct field *f = append_composite_type_field_raw (t, name, field);
3383
3384 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3385 {
3386 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3387 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3388 }
3389 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3390 {
3391 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3392 if (TYPE_NFIELDS (t) > 1)
3393 {
3394 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3395 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3396 * TARGET_CHAR_BIT));
3397
3398 if (alignment)
3399 {
3400 int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
3401
3402 if (left)
3403 {
3404 FIELD_BITPOS (f[0]) += left;
3405 TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
3406 }
3407 }
3408 }
3409 }
3410 }
3411
3412 /* Add new field with name NAME and type FIELD to composite type T. */
3413 void
3414 append_composite_type_field (struct type *t, char *name,
3415 struct type *field)
3416 {
3417 append_composite_type_field_aligned (t, name, field, 0);
3418 }
3419
3420
3421 static struct gdbarch_data *gdbtypes_data;
3422
3423 const struct builtin_type *
3424 builtin_type (struct gdbarch *gdbarch)
3425 {
3426 return gdbarch_data (gdbarch, gdbtypes_data);
3427 }
3428
3429 static void *
3430 gdbtypes_post_init (struct gdbarch *gdbarch)
3431 {
3432 struct builtin_type *builtin_type
3433 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3434
3435 /* Basic types. */
3436 builtin_type->builtin_void
3437 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3438 builtin_type->builtin_char
3439 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3440 !gdbarch_char_signed (gdbarch), "char");
3441 builtin_type->builtin_signed_char
3442 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3443 0, "signed char");
3444 builtin_type->builtin_unsigned_char
3445 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3446 1, "unsigned char");
3447 builtin_type->builtin_short
3448 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3449 0, "short");
3450 builtin_type->builtin_unsigned_short
3451 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3452 1, "unsigned short");
3453 builtin_type->builtin_int
3454 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3455 0, "int");
3456 builtin_type->builtin_unsigned_int
3457 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3458 1, "unsigned int");
3459 builtin_type->builtin_long
3460 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3461 0, "long");
3462 builtin_type->builtin_unsigned_long
3463 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3464 1, "unsigned long");
3465 builtin_type->builtin_long_long
3466 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3467 0, "long long");
3468 builtin_type->builtin_unsigned_long_long
3469 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3470 1, "unsigned long long");
3471 builtin_type->builtin_float
3472 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3473 "float", gdbarch_float_format (gdbarch));
3474 builtin_type->builtin_double
3475 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3476 "double", gdbarch_double_format (gdbarch));
3477 builtin_type->builtin_long_double
3478 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3479 "long double", gdbarch_long_double_format (gdbarch));
3480 builtin_type->builtin_complex
3481 = arch_complex_type (gdbarch, "complex",
3482 builtin_type->builtin_float);
3483 builtin_type->builtin_double_complex
3484 = arch_complex_type (gdbarch, "double complex",
3485 builtin_type->builtin_double);
3486 builtin_type->builtin_string
3487 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3488 builtin_type->builtin_bool
3489 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3490
3491 /* The following three are about decimal floating point types, which
3492 are 32-bits, 64-bits and 128-bits respectively. */
3493 builtin_type->builtin_decfloat
3494 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3495 builtin_type->builtin_decdouble
3496 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3497 builtin_type->builtin_declong
3498 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3499
3500 /* "True" character types. */
3501 builtin_type->builtin_true_char
3502 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3503 builtin_type->builtin_true_unsigned_char
3504 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3505
3506 /* Fixed-size integer types. */
3507 builtin_type->builtin_int0
3508 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3509 builtin_type->builtin_int8
3510 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3511 builtin_type->builtin_uint8
3512 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3513 builtin_type->builtin_int16
3514 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3515 builtin_type->builtin_uint16
3516 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3517 builtin_type->builtin_int32
3518 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3519 builtin_type->builtin_uint32
3520 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3521 builtin_type->builtin_int64
3522 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3523 builtin_type->builtin_uint64
3524 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3525 builtin_type->builtin_int128
3526 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3527 builtin_type->builtin_uint128
3528 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3529 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3530 TYPE_INSTANCE_FLAG_NOTTEXT;
3531 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3532 TYPE_INSTANCE_FLAG_NOTTEXT;
3533
3534 /* Wide character types. */
3535 builtin_type->builtin_char16
3536 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3537 builtin_type->builtin_char32
3538 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3539
3540
3541 /* Default data/code pointer types. */
3542 builtin_type->builtin_data_ptr
3543 = lookup_pointer_type (builtin_type->builtin_void);
3544 builtin_type->builtin_func_ptr
3545 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3546
3547 /* This type represents a GDB internal function. */
3548 builtin_type->internal_fn
3549 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3550 "<internal function>");
3551
3552 return builtin_type;
3553 }
3554
3555
3556 /* This set of objfile-based types is intended to be used by symbol
3557 readers as basic types. */
3558
3559 static const struct objfile_data *objfile_type_data;
3560
3561 const struct objfile_type *
3562 objfile_type (struct objfile *objfile)
3563 {
3564 struct gdbarch *gdbarch;
3565 struct objfile_type *objfile_type
3566 = objfile_data (objfile, objfile_type_data);
3567
3568 if (objfile_type)
3569 return objfile_type;
3570
3571 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3572 1, struct objfile_type);
3573
3574 /* Use the objfile architecture to determine basic type properties. */
3575 gdbarch = get_objfile_arch (objfile);
3576
3577 /* Basic types. */
3578 objfile_type->builtin_void
3579 = init_type (TYPE_CODE_VOID, 1,
3580 0,
3581 "void", objfile);
3582
3583 objfile_type->builtin_char
3584 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3585 (TYPE_FLAG_NOSIGN
3586 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3587 "char", objfile);
3588 objfile_type->builtin_signed_char
3589 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3590 0,
3591 "signed char", objfile);
3592 objfile_type->builtin_unsigned_char
3593 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3594 TYPE_FLAG_UNSIGNED,
3595 "unsigned char", objfile);
3596 objfile_type->builtin_short
3597 = init_type (TYPE_CODE_INT,
3598 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3599 0, "short", objfile);
3600 objfile_type->builtin_unsigned_short
3601 = init_type (TYPE_CODE_INT,
3602 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3603 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3604 objfile_type->builtin_int
3605 = init_type (TYPE_CODE_INT,
3606 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3607 0, "int", objfile);
3608 objfile_type->builtin_unsigned_int
3609 = init_type (TYPE_CODE_INT,
3610 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3611 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3612 objfile_type->builtin_long
3613 = init_type (TYPE_CODE_INT,
3614 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3615 0, "long", objfile);
3616 objfile_type->builtin_unsigned_long
3617 = init_type (TYPE_CODE_INT,
3618 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3619 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3620 objfile_type->builtin_long_long
3621 = init_type (TYPE_CODE_INT,
3622 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3623 0, "long long", objfile);
3624 objfile_type->builtin_unsigned_long_long
3625 = init_type (TYPE_CODE_INT,
3626 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3627 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3628
3629 objfile_type->builtin_float
3630 = init_type (TYPE_CODE_FLT,
3631 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3632 0, "float", objfile);
3633 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3634 = gdbarch_float_format (gdbarch);
3635 objfile_type->builtin_double
3636 = init_type (TYPE_CODE_FLT,
3637 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3638 0, "double", objfile);
3639 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3640 = gdbarch_double_format (gdbarch);
3641 objfile_type->builtin_long_double
3642 = init_type (TYPE_CODE_FLT,
3643 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3644 0, "long double", objfile);
3645 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3646 = gdbarch_long_double_format (gdbarch);
3647
3648 /* This type represents a type that was unrecognized in symbol read-in. */
3649 objfile_type->builtin_error
3650 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3651
3652 /* The following set of types is used for symbols with no
3653 debug information. */
3654 objfile_type->nodebug_text_symbol
3655 = init_type (TYPE_CODE_FUNC, 1, 0,
3656 "<text variable, no debug info>", objfile);
3657 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3658 = objfile_type->builtin_int;
3659 objfile_type->nodebug_data_symbol
3660 = init_type (TYPE_CODE_INT,
3661 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3662 "<data variable, no debug info>", objfile);
3663 objfile_type->nodebug_unknown_symbol
3664 = init_type (TYPE_CODE_INT, 1, 0,
3665 "<variable (not text or data), no debug info>", objfile);
3666 objfile_type->nodebug_tls_symbol
3667 = init_type (TYPE_CODE_INT,
3668 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3669 "<thread local variable, no debug info>", objfile);
3670
3671 /* NOTE: on some targets, addresses and pointers are not necessarily
3672 the same --- for example, on the D10V, pointers are 16 bits long,
3673 but addresses are 32 bits long. See doc/gdbint.texinfo,
3674 ``Pointers Are Not Always Addresses''.
3675
3676 The upshot is:
3677 - gdb's `struct type' always describes the target's
3678 representation.
3679 - gdb's `struct value' objects should always hold values in
3680 target form.
3681 - gdb's CORE_ADDR values are addresses in the unified virtual
3682 address space that the assembler and linker work with. Thus,
3683 since target_read_memory takes a CORE_ADDR as an argument, it
3684 can access any memory on the target, even if the processor has
3685 separate code and data address spaces.
3686
3687 So, for example:
3688 - If v is a value holding a D10V code pointer, its contents are
3689 in target form: a big-endian address left-shifted two bits.
3690 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3691 sizeof (void *) == 2 on the target.
3692
3693 In this context, objfile_type->builtin_core_addr is a bit odd:
3694 it's a target type for a value the target will never see. It's
3695 only used to hold the values of (typeless) linker symbols, which
3696 are indeed in the unified virtual address space. */
3697
3698 objfile_type->builtin_core_addr
3699 = init_type (TYPE_CODE_INT,
3700 gdbarch_addr_bit (gdbarch) / 8,
3701 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
3702
3703 set_objfile_data (objfile, objfile_type_data, objfile_type);
3704 return objfile_type;
3705 }
3706
3707
3708 extern void _initialize_gdbtypes (void);
3709 void
3710 _initialize_gdbtypes (void)
3711 {
3712 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3713 objfile_type_data = register_objfile_data ();
3714
3715 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3716 Set debugging of C++ overloading."), _("\
3717 Show debugging of C++ overloading."), _("\
3718 When enabled, ranking of the functions is displayed."),
3719 NULL,
3720 show_overload_debug,
3721 &setdebuglist, &showdebuglist);
3722
3723 /* Add user knob for controlling resolution of opaque types. */
3724 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3725 &opaque_type_resolution, _("\
3726 Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3727 Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3728 NULL,
3729 show_opaque_type_resolution,
3730 &setlist, &showlist);
3731 }