Add scalar_storage_order support for floating point
[binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static bool opaque_type_resolution = true;
120
121 /* See gdbtypes.h. */
122
123 unsigned int overload_debug = 0;
124
125 /* A flag to enable strict type checking. */
126
127 static bool strict_type_checking = true;
128
129 /* A function to show whether opaque types are resolved. */
130
131 static void
132 show_opaque_type_resolution (struct ui_file *file, int from_tty,
133 struct cmd_list_element *c,
134 const char *value)
135 {
136 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
137 "(if set before loading symbols) is %s.\n"),
138 value);
139 }
140
141 /* A function to show whether C++ overload debugging is enabled. */
142
143 static void
144 show_overload_debug (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
148 value);
149 }
150
151 /* A function to show the status of strict type checking. */
152
153 static void
154 show_strict_type_checking (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
158 }
159
160 \f
161 /* Allocate a new OBJFILE-associated type structure and fill it
162 with some defaults. Space for the type structure is allocated
163 on the objfile's objfile_obstack. */
164
165 struct type *
166 alloc_type (struct objfile *objfile)
167 {
168 struct type *type;
169
170 gdb_assert (objfile != NULL);
171
172 /* Alloc the structure and start off with all fields zeroed. */
173 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
174 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
175 struct main_type);
176 OBJSTAT (objfile, n_types++);
177
178 TYPE_OBJFILE_OWNED (type) = 1;
179 TYPE_OWNER (type).objfile = objfile;
180
181 /* Initialize the fields that might not be zero. */
182
183 TYPE_CODE (type) = TYPE_CODE_UNDEF;
184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
185
186 return type;
187 }
188
189 /* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
191 on the obstack associated with GDBARCH. */
192
193 struct type *
194 alloc_type_arch (struct gdbarch *gdbarch)
195 {
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
202 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
203 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_CHAIN (type) = type; /* Chain back to itself. */
212
213 return type;
214 }
215
216 /* If TYPE is objfile-associated, allocate a new type structure
217 associated with the same objfile. If TYPE is gdbarch-associated,
218 allocate a new type structure associated with the same gdbarch. */
219
220 struct type *
221 alloc_type_copy (const struct type *type)
222 {
223 if (TYPE_OBJFILE_OWNED (type))
224 return alloc_type (TYPE_OWNER (type).objfile);
225 else
226 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
227 }
228
229 /* If TYPE is gdbarch-associated, return that architecture.
230 If TYPE is objfile-associated, return that objfile's architecture. */
231
232 struct gdbarch *
233 get_type_arch (const struct type *type)
234 {
235 struct gdbarch *arch;
236
237 if (TYPE_OBJFILE_OWNED (type))
238 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
239 else
240 arch = TYPE_OWNER (type).gdbarch;
241
242 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
243 a gdbarch, however, this is very rare, and even then, in most cases
244 that get_type_arch is called, we assume that a non-NULL value is
245 returned. */
246 gdb_assert (arch != NULL);
247 return arch;
248 }
249
250 /* See gdbtypes.h. */
251
252 struct type *
253 get_target_type (struct type *type)
254 {
255 if (type != NULL)
256 {
257 type = TYPE_TARGET_TYPE (type);
258 if (type != NULL)
259 type = check_typedef (type);
260 }
261
262 return type;
263 }
264
265 /* See gdbtypes.h. */
266
267 unsigned int
268 type_length_units (struct type *type)
269 {
270 struct gdbarch *arch = get_type_arch (type);
271 int unit_size = gdbarch_addressable_memory_unit_size (arch);
272
273 return TYPE_LENGTH (type) / unit_size;
274 }
275
276 /* Alloc a new type instance structure, fill it with some defaults,
277 and point it at OLDTYPE. Allocate the new type instance from the
278 same place as OLDTYPE. */
279
280 static struct type *
281 alloc_type_instance (struct type *oldtype)
282 {
283 struct type *type;
284
285 /* Allocate the structure. */
286
287 if (! TYPE_OBJFILE_OWNED (oldtype))
288 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
289 else
290 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
291 struct type);
292
293 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
294
295 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
296
297 return type;
298 }
299
300 /* Clear all remnants of the previous type at TYPE, in preparation for
301 replacing it with something else. Preserve owner information. */
302
303 static void
304 smash_type (struct type *type)
305 {
306 int objfile_owned = TYPE_OBJFILE_OWNED (type);
307 union type_owner owner = TYPE_OWNER (type);
308
309 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
310
311 /* Restore owner information. */
312 TYPE_OBJFILE_OWNED (type) = objfile_owned;
313 TYPE_OWNER (type) = owner;
314
315 /* For now, delete the rings. */
316 TYPE_CHAIN (type) = type;
317
318 /* For now, leave the pointer/reference types alone. */
319 }
320
321 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
322 to a pointer to memory where the pointer type should be stored.
323 If *TYPEPTR is zero, update it to point to the pointer type we return.
324 We allocate new memory if needed. */
325
326 struct type *
327 make_pointer_type (struct type *type, struct type **typeptr)
328 {
329 struct type *ntype; /* New type */
330 struct type *chain;
331
332 ntype = TYPE_POINTER_TYPE (type);
333
334 if (ntype)
335 {
336 if (typeptr == 0)
337 return ntype; /* Don't care about alloc,
338 and have new type. */
339 else if (*typeptr == 0)
340 {
341 *typeptr = ntype; /* Tracking alloc, and have new type. */
342 return ntype;
343 }
344 }
345
346 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
347 {
348 ntype = alloc_type_copy (type);
349 if (typeptr)
350 *typeptr = ntype;
351 }
352 else /* We have storage, but need to reset it. */
353 {
354 ntype = *typeptr;
355 chain = TYPE_CHAIN (ntype);
356 smash_type (ntype);
357 TYPE_CHAIN (ntype) = chain;
358 }
359
360 TYPE_TARGET_TYPE (ntype) = type;
361 TYPE_POINTER_TYPE (type) = ntype;
362
363 /* FIXME! Assumes the machine has only one representation for pointers! */
364
365 TYPE_LENGTH (ntype)
366 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
367 TYPE_CODE (ntype) = TYPE_CODE_PTR;
368
369 /* Mark pointers as unsigned. The target converts between pointers
370 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
371 gdbarch_address_to_pointer. */
372 TYPE_UNSIGNED (ntype) = 1;
373
374 /* Update the length of all the other variants of this type. */
375 chain = TYPE_CHAIN (ntype);
376 while (chain != ntype)
377 {
378 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
379 chain = TYPE_CHAIN (chain);
380 }
381
382 return ntype;
383 }
384
385 /* Given a type TYPE, return a type of pointers to that type.
386 May need to construct such a type if this is the first use. */
387
388 struct type *
389 lookup_pointer_type (struct type *type)
390 {
391 return make_pointer_type (type, (struct type **) 0);
392 }
393
394 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
395 points to a pointer to memory where the reference type should be
396 stored. If *TYPEPTR is zero, update it to point to the reference
397 type we return. We allocate new memory if needed. REFCODE denotes
398 the kind of reference type to lookup (lvalue or rvalue reference). */
399
400 struct type *
401 make_reference_type (struct type *type, struct type **typeptr,
402 enum type_code refcode)
403 {
404 struct type *ntype; /* New type */
405 struct type **reftype;
406 struct type *chain;
407
408 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
409
410 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
411 : TYPE_RVALUE_REFERENCE_TYPE (type));
412
413 if (ntype)
414 {
415 if (typeptr == 0)
416 return ntype; /* Don't care about alloc,
417 and have new type. */
418 else if (*typeptr == 0)
419 {
420 *typeptr = ntype; /* Tracking alloc, and have new type. */
421 return ntype;
422 }
423 }
424
425 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
426 {
427 ntype = alloc_type_copy (type);
428 if (typeptr)
429 *typeptr = ntype;
430 }
431 else /* We have storage, but need to reset it. */
432 {
433 ntype = *typeptr;
434 chain = TYPE_CHAIN (ntype);
435 smash_type (ntype);
436 TYPE_CHAIN (ntype) = chain;
437 }
438
439 TYPE_TARGET_TYPE (ntype) = type;
440 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
441 : &TYPE_RVALUE_REFERENCE_TYPE (type));
442
443 *reftype = ntype;
444
445 /* FIXME! Assume the machine has only one representation for
446 references, and that it matches the (only) representation for
447 pointers! */
448
449 TYPE_LENGTH (ntype) =
450 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
451 TYPE_CODE (ntype) = refcode;
452
453 *reftype = ntype;
454
455 /* Update the length of all the other variants of this type. */
456 chain = TYPE_CHAIN (ntype);
457 while (chain != ntype)
458 {
459 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
460 chain = TYPE_CHAIN (chain);
461 }
462
463 return ntype;
464 }
465
466 /* Same as above, but caller doesn't care about memory allocation
467 details. */
468
469 struct type *
470 lookup_reference_type (struct type *type, enum type_code refcode)
471 {
472 return make_reference_type (type, (struct type **) 0, refcode);
473 }
474
475 /* Lookup the lvalue reference type for the type TYPE. */
476
477 struct type *
478 lookup_lvalue_reference_type (struct type *type)
479 {
480 return lookup_reference_type (type, TYPE_CODE_REF);
481 }
482
483 /* Lookup the rvalue reference type for the type TYPE. */
484
485 struct type *
486 lookup_rvalue_reference_type (struct type *type)
487 {
488 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
489 }
490
491 /* Lookup a function type that returns type TYPE. TYPEPTR, if
492 nonzero, points to a pointer to memory where the function type
493 should be stored. If *TYPEPTR is zero, update it to point to the
494 function type we return. We allocate new memory if needed. */
495
496 struct type *
497 make_function_type (struct type *type, struct type **typeptr)
498 {
499 struct type *ntype; /* New type */
500
501 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
502 {
503 ntype = alloc_type_copy (type);
504 if (typeptr)
505 *typeptr = ntype;
506 }
507 else /* We have storage, but need to reset it. */
508 {
509 ntype = *typeptr;
510 smash_type (ntype);
511 }
512
513 TYPE_TARGET_TYPE (ntype) = type;
514
515 TYPE_LENGTH (ntype) = 1;
516 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
517
518 INIT_FUNC_SPECIFIC (ntype);
519
520 return ntype;
521 }
522
523 /* Given a type TYPE, return a type of functions that return that type.
524 May need to construct such a type if this is the first use. */
525
526 struct type *
527 lookup_function_type (struct type *type)
528 {
529 return make_function_type (type, (struct type **) 0);
530 }
531
532 /* Given a type TYPE and argument types, return the appropriate
533 function type. If the final type in PARAM_TYPES is NULL, make a
534 varargs function. */
535
536 struct type *
537 lookup_function_type_with_arguments (struct type *type,
538 int nparams,
539 struct type **param_types)
540 {
541 struct type *fn = make_function_type (type, (struct type **) 0);
542 int i;
543
544 if (nparams > 0)
545 {
546 if (param_types[nparams - 1] == NULL)
547 {
548 --nparams;
549 TYPE_VARARGS (fn) = 1;
550 }
551 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
552 == TYPE_CODE_VOID)
553 {
554 --nparams;
555 /* Caller should have ensured this. */
556 gdb_assert (nparams == 0);
557 TYPE_PROTOTYPED (fn) = 1;
558 }
559 else
560 TYPE_PROTOTYPED (fn) = 1;
561 }
562
563 TYPE_NFIELDS (fn) = nparams;
564 TYPE_FIELDS (fn)
565 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
566 for (i = 0; i < nparams; ++i)
567 TYPE_FIELD_TYPE (fn, i) = param_types[i];
568
569 return fn;
570 }
571
572 /* Identify address space identifier by name --
573 return the integer flag defined in gdbtypes.h. */
574
575 int
576 address_space_name_to_int (struct gdbarch *gdbarch,
577 const char *space_identifier)
578 {
579 int type_flags;
580
581 /* Check for known address space delimiters. */
582 if (!strcmp (space_identifier, "code"))
583 return TYPE_INSTANCE_FLAG_CODE_SPACE;
584 else if (!strcmp (space_identifier, "data"))
585 return TYPE_INSTANCE_FLAG_DATA_SPACE;
586 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
587 && gdbarch_address_class_name_to_type_flags (gdbarch,
588 space_identifier,
589 &type_flags))
590 return type_flags;
591 else
592 error (_("Unknown address space specifier: \"%s\""), space_identifier);
593 }
594
595 /* Identify address space identifier by integer flag as defined in
596 gdbtypes.h -- return the string version of the adress space name. */
597
598 const char *
599 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
600 {
601 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
602 return "code";
603 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
604 return "data";
605 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
606 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
607 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
608 else
609 return NULL;
610 }
611
612 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
613
614 If STORAGE is non-NULL, create the new type instance there.
615 STORAGE must be in the same obstack as TYPE. */
616
617 static struct type *
618 make_qualified_type (struct type *type, int new_flags,
619 struct type *storage)
620 {
621 struct type *ntype;
622
623 ntype = type;
624 do
625 {
626 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
627 return ntype;
628 ntype = TYPE_CHAIN (ntype);
629 }
630 while (ntype != type);
631
632 /* Create a new type instance. */
633 if (storage == NULL)
634 ntype = alloc_type_instance (type);
635 else
636 {
637 /* If STORAGE was provided, it had better be in the same objfile
638 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
639 if one objfile is freed and the other kept, we'd have
640 dangling pointers. */
641 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
642
643 ntype = storage;
644 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
645 TYPE_CHAIN (ntype) = ntype;
646 }
647
648 /* Pointers or references to the original type are not relevant to
649 the new type. */
650 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
651 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
652
653 /* Chain the new qualified type to the old type. */
654 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
655 TYPE_CHAIN (type) = ntype;
656
657 /* Now set the instance flags and return the new type. */
658 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
659
660 /* Set length of new type to that of the original type. */
661 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
662
663 return ntype;
664 }
665
666 /* Make an address-space-delimited variant of a type -- a type that
667 is identical to the one supplied except that it has an address
668 space attribute attached to it (such as "code" or "data").
669
670 The space attributes "code" and "data" are for Harvard
671 architectures. The address space attributes are for architectures
672 which have alternately sized pointers or pointers with alternate
673 representations. */
674
675 struct type *
676 make_type_with_address_space (struct type *type, int space_flag)
677 {
678 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
679 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
680 | TYPE_INSTANCE_FLAG_DATA_SPACE
681 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
682 | space_flag);
683
684 return make_qualified_type (type, new_flags, NULL);
685 }
686
687 /* Make a "c-v" variant of a type -- a type that is identical to the
688 one supplied except that it may have const or volatile attributes
689 CNST is a flag for setting the const attribute
690 VOLTL is a flag for setting the volatile attribute
691 TYPE is the base type whose variant we are creating.
692
693 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
694 storage to hold the new qualified type; *TYPEPTR and TYPE must be
695 in the same objfile. Otherwise, allocate fresh memory for the new
696 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
697 new type we construct. */
698
699 struct type *
700 make_cv_type (int cnst, int voltl,
701 struct type *type,
702 struct type **typeptr)
703 {
704 struct type *ntype; /* New type */
705
706 int new_flags = (TYPE_INSTANCE_FLAGS (type)
707 & ~(TYPE_INSTANCE_FLAG_CONST
708 | TYPE_INSTANCE_FLAG_VOLATILE));
709
710 if (cnst)
711 new_flags |= TYPE_INSTANCE_FLAG_CONST;
712
713 if (voltl)
714 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
715
716 if (typeptr && *typeptr != NULL)
717 {
718 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
719 a C-V variant chain that threads across objfiles: if one
720 objfile gets freed, then the other has a broken C-V chain.
721
722 This code used to try to copy over the main type from TYPE to
723 *TYPEPTR if they were in different objfiles, but that's
724 wrong, too: TYPE may have a field list or member function
725 lists, which refer to types of their own, etc. etc. The
726 whole shebang would need to be copied over recursively; you
727 can't have inter-objfile pointers. The only thing to do is
728 to leave stub types as stub types, and look them up afresh by
729 name each time you encounter them. */
730 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
731 }
732
733 ntype = make_qualified_type (type, new_flags,
734 typeptr ? *typeptr : NULL);
735
736 if (typeptr != NULL)
737 *typeptr = ntype;
738
739 return ntype;
740 }
741
742 /* Make a 'restrict'-qualified version of TYPE. */
743
744 struct type *
745 make_restrict_type (struct type *type)
746 {
747 return make_qualified_type (type,
748 (TYPE_INSTANCE_FLAGS (type)
749 | TYPE_INSTANCE_FLAG_RESTRICT),
750 NULL);
751 }
752
753 /* Make a type without const, volatile, or restrict. */
754
755 struct type *
756 make_unqualified_type (struct type *type)
757 {
758 return make_qualified_type (type,
759 (TYPE_INSTANCE_FLAGS (type)
760 & ~(TYPE_INSTANCE_FLAG_CONST
761 | TYPE_INSTANCE_FLAG_VOLATILE
762 | TYPE_INSTANCE_FLAG_RESTRICT)),
763 NULL);
764 }
765
766 /* Make a '_Atomic'-qualified version of TYPE. */
767
768 struct type *
769 make_atomic_type (struct type *type)
770 {
771 return make_qualified_type (type,
772 (TYPE_INSTANCE_FLAGS (type)
773 | TYPE_INSTANCE_FLAG_ATOMIC),
774 NULL);
775 }
776
777 /* Replace the contents of ntype with the type *type. This changes the
778 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
779 the changes are propogated to all types in the TYPE_CHAIN.
780
781 In order to build recursive types, it's inevitable that we'll need
782 to update types in place --- but this sort of indiscriminate
783 smashing is ugly, and needs to be replaced with something more
784 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
785 clear if more steps are needed. */
786
787 void
788 replace_type (struct type *ntype, struct type *type)
789 {
790 struct type *chain;
791
792 /* These two types had better be in the same objfile. Otherwise,
793 the assignment of one type's main type structure to the other
794 will produce a type with references to objects (names; field
795 lists; etc.) allocated on an objfile other than its own. */
796 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
797
798 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
799
800 /* The type length is not a part of the main type. Update it for
801 each type on the variant chain. */
802 chain = ntype;
803 do
804 {
805 /* Assert that this element of the chain has no address-class bits
806 set in its flags. Such type variants might have type lengths
807 which are supposed to be different from the non-address-class
808 variants. This assertion shouldn't ever be triggered because
809 symbol readers which do construct address-class variants don't
810 call replace_type(). */
811 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
812
813 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
814 chain = TYPE_CHAIN (chain);
815 }
816 while (ntype != chain);
817
818 /* Assert that the two types have equivalent instance qualifiers.
819 This should be true for at least all of our debug readers. */
820 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
821 }
822
823 /* Implement direct support for MEMBER_TYPE in GNU C++.
824 May need to construct such a type if this is the first use.
825 The TYPE is the type of the member. The DOMAIN is the type
826 of the aggregate that the member belongs to. */
827
828 struct type *
829 lookup_memberptr_type (struct type *type, struct type *domain)
830 {
831 struct type *mtype;
832
833 mtype = alloc_type_copy (type);
834 smash_to_memberptr_type (mtype, domain, type);
835 return mtype;
836 }
837
838 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
839
840 struct type *
841 lookup_methodptr_type (struct type *to_type)
842 {
843 struct type *mtype;
844
845 mtype = alloc_type_copy (to_type);
846 smash_to_methodptr_type (mtype, to_type);
847 return mtype;
848 }
849
850 /* Allocate a stub method whose return type is TYPE. This apparently
851 happens for speed of symbol reading, since parsing out the
852 arguments to the method is cpu-intensive, the way we are doing it.
853 So, we will fill in arguments later. This always returns a fresh
854 type. */
855
856 struct type *
857 allocate_stub_method (struct type *type)
858 {
859 struct type *mtype;
860
861 mtype = alloc_type_copy (type);
862 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
863 TYPE_LENGTH (mtype) = 1;
864 TYPE_STUB (mtype) = 1;
865 TYPE_TARGET_TYPE (mtype) = type;
866 /* TYPE_SELF_TYPE (mtype) = unknown yet */
867 return mtype;
868 }
869
870 /* See gdbtypes.h. */
871
872 bool
873 operator== (const dynamic_prop &l, const dynamic_prop &r)
874 {
875 if (l.kind != r.kind)
876 return false;
877
878 switch (l.kind)
879 {
880 case PROP_UNDEFINED:
881 return true;
882 case PROP_CONST:
883 return l.data.const_val == r.data.const_val;
884 case PROP_ADDR_OFFSET:
885 case PROP_LOCEXPR:
886 case PROP_LOCLIST:
887 return l.data.baton == r.data.baton;
888 }
889
890 gdb_assert_not_reached ("unhandled dynamic_prop kind");
891 }
892
893 /* See gdbtypes.h. */
894
895 bool
896 operator== (const range_bounds &l, const range_bounds &r)
897 {
898 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
899
900 return (FIELD_EQ (low)
901 && FIELD_EQ (high)
902 && FIELD_EQ (flag_upper_bound_is_count)
903 && FIELD_EQ (flag_bound_evaluated)
904 && FIELD_EQ (bias));
905
906 #undef FIELD_EQ
907 }
908
909 /* Create a range type with a dynamic range from LOW_BOUND to
910 HIGH_BOUND, inclusive. See create_range_type for further details. */
911
912 struct type *
913 create_range_type (struct type *result_type, struct type *index_type,
914 const struct dynamic_prop *low_bound,
915 const struct dynamic_prop *high_bound,
916 LONGEST bias)
917 {
918 /* The INDEX_TYPE should be a type capable of holding the upper and lower
919 bounds, as such a zero sized, or void type makes no sense. */
920 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
921 gdb_assert (TYPE_LENGTH (index_type) > 0);
922
923 if (result_type == NULL)
924 result_type = alloc_type_copy (index_type);
925 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
926 TYPE_TARGET_TYPE (result_type) = index_type;
927 if (TYPE_STUB (index_type))
928 TYPE_TARGET_STUB (result_type) = 1;
929 else
930 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
931
932 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
933 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
934 TYPE_RANGE_DATA (result_type)->low = *low_bound;
935 TYPE_RANGE_DATA (result_type)->high = *high_bound;
936 TYPE_RANGE_DATA (result_type)->bias = bias;
937
938 /* Initialize the stride to be a constant, the value will already be zero
939 thanks to the use of TYPE_ZALLOC above. */
940 TYPE_RANGE_DATA (result_type)->stride.kind = PROP_CONST;
941
942 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
943 TYPE_UNSIGNED (result_type) = 1;
944
945 /* Ada allows the declaration of range types whose upper bound is
946 less than the lower bound, so checking the lower bound is not
947 enough. Make sure we do not mark a range type whose upper bound
948 is negative as unsigned. */
949 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
950 TYPE_UNSIGNED (result_type) = 0;
951
952 return result_type;
953 }
954
955 /* See gdbtypes.h. */
956
957 struct type *
958 create_range_type_with_stride (struct type *result_type,
959 struct type *index_type,
960 const struct dynamic_prop *low_bound,
961 const struct dynamic_prop *high_bound,
962 LONGEST bias,
963 const struct dynamic_prop *stride,
964 bool byte_stride_p)
965 {
966 result_type = create_range_type (result_type, index_type, low_bound,
967 high_bound, bias);
968
969 gdb_assert (stride != nullptr);
970 TYPE_RANGE_DATA (result_type)->stride = *stride;
971 TYPE_RANGE_DATA (result_type)->flag_is_byte_stride = byte_stride_p;
972
973 return result_type;
974 }
975
976
977
978 /* Create a range type using either a blank type supplied in
979 RESULT_TYPE, or creating a new type, inheriting the objfile from
980 INDEX_TYPE.
981
982 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
983 to HIGH_BOUND, inclusive.
984
985 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
986 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
987
988 struct type *
989 create_static_range_type (struct type *result_type, struct type *index_type,
990 LONGEST low_bound, LONGEST high_bound)
991 {
992 struct dynamic_prop low, high;
993
994 low.kind = PROP_CONST;
995 low.data.const_val = low_bound;
996
997 high.kind = PROP_CONST;
998 high.data.const_val = high_bound;
999
1000 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1001
1002 return result_type;
1003 }
1004
1005 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1006 are static, otherwise returns 0. */
1007
1008 static bool
1009 has_static_range (const struct range_bounds *bounds)
1010 {
1011 /* If the range doesn't have a defined stride then its stride field will
1012 be initialized to the constant 0. */
1013 return (bounds->low.kind == PROP_CONST
1014 && bounds->high.kind == PROP_CONST
1015 && bounds->stride.kind == PROP_CONST);
1016 }
1017
1018
1019 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1020 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
1021 bounds will fit in LONGEST), or -1 otherwise. */
1022
1023 int
1024 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1025 {
1026 type = check_typedef (type);
1027 switch (TYPE_CODE (type))
1028 {
1029 case TYPE_CODE_RANGE:
1030 *lowp = TYPE_LOW_BOUND (type);
1031 *highp = TYPE_HIGH_BOUND (type);
1032 return 1;
1033 case TYPE_CODE_ENUM:
1034 if (TYPE_NFIELDS (type) > 0)
1035 {
1036 /* The enums may not be sorted by value, so search all
1037 entries. */
1038 int i;
1039
1040 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1041 for (i = 0; i < TYPE_NFIELDS (type); i++)
1042 {
1043 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1044 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1045 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1046 *highp = TYPE_FIELD_ENUMVAL (type, i);
1047 }
1048
1049 /* Set unsigned indicator if warranted. */
1050 if (*lowp >= 0)
1051 {
1052 TYPE_UNSIGNED (type) = 1;
1053 }
1054 }
1055 else
1056 {
1057 *lowp = 0;
1058 *highp = -1;
1059 }
1060 return 0;
1061 case TYPE_CODE_BOOL:
1062 *lowp = 0;
1063 *highp = 1;
1064 return 0;
1065 case TYPE_CODE_INT:
1066 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1067 return -1;
1068 if (!TYPE_UNSIGNED (type))
1069 {
1070 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1071 *highp = -*lowp - 1;
1072 return 0;
1073 }
1074 /* fall through */
1075 case TYPE_CODE_CHAR:
1076 *lowp = 0;
1077 /* This round-about calculation is to avoid shifting by
1078 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1079 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1080 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1081 *highp = (*highp - 1) | *highp;
1082 return 0;
1083 default:
1084 return -1;
1085 }
1086 }
1087
1088 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1089 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1090 Save the high bound into HIGH_BOUND if not NULL.
1091
1092 Return 1 if the operation was successful. Return zero otherwise,
1093 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1094
1095 We now simply use get_discrete_bounds call to get the values
1096 of the low and high bounds.
1097 get_discrete_bounds can return three values:
1098 1, meaning that index is a range,
1099 0, meaning that index is a discrete type,
1100 or -1 for failure. */
1101
1102 int
1103 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1104 {
1105 struct type *index = TYPE_INDEX_TYPE (type);
1106 LONGEST low = 0;
1107 LONGEST high = 0;
1108 int res;
1109
1110 if (index == NULL)
1111 return 0;
1112
1113 res = get_discrete_bounds (index, &low, &high);
1114 if (res == -1)
1115 return 0;
1116
1117 /* Check if the array bounds are undefined. */
1118 if (res == 1
1119 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1120 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1121 return 0;
1122
1123 if (low_bound)
1124 *low_bound = low;
1125
1126 if (high_bound)
1127 *high_bound = high;
1128
1129 return 1;
1130 }
1131
1132 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1133 representation of a value of this type, save the corresponding
1134 position number in POS.
1135
1136 Its differs from VAL only in the case of enumeration types. In
1137 this case, the position number of the value of the first listed
1138 enumeration literal is zero; the position number of the value of
1139 each subsequent enumeration literal is one more than that of its
1140 predecessor in the list.
1141
1142 Return 1 if the operation was successful. Return zero otherwise,
1143 in which case the value of POS is unmodified.
1144 */
1145
1146 int
1147 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1148 {
1149 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1150 {
1151 int i;
1152
1153 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1154 {
1155 if (val == TYPE_FIELD_ENUMVAL (type, i))
1156 {
1157 *pos = i;
1158 return 1;
1159 }
1160 }
1161 /* Invalid enumeration value. */
1162 return 0;
1163 }
1164 else
1165 {
1166 *pos = val;
1167 return 1;
1168 }
1169 }
1170
1171 /* Create an array type using either a blank type supplied in
1172 RESULT_TYPE, or creating a new type, inheriting the objfile from
1173 RANGE_TYPE.
1174
1175 Elements will be of type ELEMENT_TYPE, the indices will be of type
1176 RANGE_TYPE.
1177
1178 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1179 This byte stride property is added to the resulting array type
1180 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1181 argument can only be used to create types that are objfile-owned
1182 (see add_dyn_prop), meaning that either this function must be called
1183 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1184
1185 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1186 If BIT_STRIDE is not zero, build a packed array type whose element
1187 size is BIT_STRIDE. Otherwise, ignore this parameter.
1188
1189 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1190 sure it is TYPE_CODE_UNDEF before we bash it into an array
1191 type? */
1192
1193 struct type *
1194 create_array_type_with_stride (struct type *result_type,
1195 struct type *element_type,
1196 struct type *range_type,
1197 struct dynamic_prop *byte_stride_prop,
1198 unsigned int bit_stride)
1199 {
1200 if (byte_stride_prop != NULL
1201 && byte_stride_prop->kind == PROP_CONST)
1202 {
1203 /* The byte stride is actually not dynamic. Pretend we were
1204 called with bit_stride set instead of byte_stride_prop.
1205 This will give us the same result type, while avoiding
1206 the need to handle this as a special case. */
1207 bit_stride = byte_stride_prop->data.const_val * 8;
1208 byte_stride_prop = NULL;
1209 }
1210
1211 if (result_type == NULL)
1212 result_type = alloc_type_copy (range_type);
1213
1214 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1215 TYPE_TARGET_TYPE (result_type) = element_type;
1216 if (byte_stride_prop == NULL
1217 && has_static_range (TYPE_RANGE_DATA (range_type))
1218 && (!type_not_associated (result_type)
1219 && !type_not_allocated (result_type)))
1220 {
1221 LONGEST low_bound, high_bound;
1222 unsigned int stride;
1223
1224 /* If the array itself doesn't provide a stride value then take
1225 whatever stride the range provides. Don't update BIT_STRIDE as
1226 we don't want to place the stride value from the range into this
1227 arrays bit size field. */
1228 stride = bit_stride;
1229 if (stride == 0)
1230 stride = TYPE_BIT_STRIDE (range_type);
1231
1232 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1233 low_bound = high_bound = 0;
1234 element_type = check_typedef (element_type);
1235 /* Be careful when setting the array length. Ada arrays can be
1236 empty arrays with the high_bound being smaller than the low_bound.
1237 In such cases, the array length should be zero. */
1238 if (high_bound < low_bound)
1239 TYPE_LENGTH (result_type) = 0;
1240 else if (stride > 0)
1241 TYPE_LENGTH (result_type) =
1242 (stride * (high_bound - low_bound + 1) + 7) / 8;
1243 else
1244 TYPE_LENGTH (result_type) =
1245 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1246 }
1247 else
1248 {
1249 /* This type is dynamic and its length needs to be computed
1250 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1251 undefined by setting it to zero. Although we are not expected
1252 to trust TYPE_LENGTH in this case, setting the size to zero
1253 allows us to avoid allocating objects of random sizes in case
1254 we accidently do. */
1255 TYPE_LENGTH (result_type) = 0;
1256 }
1257
1258 TYPE_NFIELDS (result_type) = 1;
1259 TYPE_FIELDS (result_type) =
1260 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1261 TYPE_INDEX_TYPE (result_type) = range_type;
1262 if (byte_stride_prop != NULL)
1263 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1264 else if (bit_stride > 0)
1265 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1266
1267 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1268 if (TYPE_LENGTH (result_type) == 0)
1269 TYPE_TARGET_STUB (result_type) = 1;
1270
1271 return result_type;
1272 }
1273
1274 /* Same as create_array_type_with_stride but with no bit_stride
1275 (BIT_STRIDE = 0), thus building an unpacked array. */
1276
1277 struct type *
1278 create_array_type (struct type *result_type,
1279 struct type *element_type,
1280 struct type *range_type)
1281 {
1282 return create_array_type_with_stride (result_type, element_type,
1283 range_type, NULL, 0);
1284 }
1285
1286 struct type *
1287 lookup_array_range_type (struct type *element_type,
1288 LONGEST low_bound, LONGEST high_bound)
1289 {
1290 struct type *index_type;
1291 struct type *range_type;
1292
1293 if (TYPE_OBJFILE_OWNED (element_type))
1294 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1295 else
1296 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1297 range_type = create_static_range_type (NULL, index_type,
1298 low_bound, high_bound);
1299
1300 return create_array_type (NULL, element_type, range_type);
1301 }
1302
1303 /* Create a string type using either a blank type supplied in
1304 RESULT_TYPE, or creating a new type. String types are similar
1305 enough to array of char types that we can use create_array_type to
1306 build the basic type and then bash it into a string type.
1307
1308 For fixed length strings, the range type contains 0 as the lower
1309 bound and the length of the string minus one as the upper bound.
1310
1311 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1312 sure it is TYPE_CODE_UNDEF before we bash it into a string
1313 type? */
1314
1315 struct type *
1316 create_string_type (struct type *result_type,
1317 struct type *string_char_type,
1318 struct type *range_type)
1319 {
1320 result_type = create_array_type (result_type,
1321 string_char_type,
1322 range_type);
1323 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1324 return result_type;
1325 }
1326
1327 struct type *
1328 lookup_string_range_type (struct type *string_char_type,
1329 LONGEST low_bound, LONGEST high_bound)
1330 {
1331 struct type *result_type;
1332
1333 result_type = lookup_array_range_type (string_char_type,
1334 low_bound, high_bound);
1335 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1336 return result_type;
1337 }
1338
1339 struct type *
1340 create_set_type (struct type *result_type, struct type *domain_type)
1341 {
1342 if (result_type == NULL)
1343 result_type = alloc_type_copy (domain_type);
1344
1345 TYPE_CODE (result_type) = TYPE_CODE_SET;
1346 TYPE_NFIELDS (result_type) = 1;
1347 TYPE_FIELDS (result_type)
1348 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1349
1350 if (!TYPE_STUB (domain_type))
1351 {
1352 LONGEST low_bound, high_bound, bit_length;
1353
1354 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1355 low_bound = high_bound = 0;
1356 bit_length = high_bound - low_bound + 1;
1357 TYPE_LENGTH (result_type)
1358 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1359 if (low_bound >= 0)
1360 TYPE_UNSIGNED (result_type) = 1;
1361 }
1362 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1363
1364 return result_type;
1365 }
1366
1367 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1368 and any array types nested inside it. */
1369
1370 void
1371 make_vector_type (struct type *array_type)
1372 {
1373 struct type *inner_array, *elt_type;
1374 int flags;
1375
1376 /* Find the innermost array type, in case the array is
1377 multi-dimensional. */
1378 inner_array = array_type;
1379 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1380 inner_array = TYPE_TARGET_TYPE (inner_array);
1381
1382 elt_type = TYPE_TARGET_TYPE (inner_array);
1383 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1384 {
1385 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1386 elt_type = make_qualified_type (elt_type, flags, NULL);
1387 TYPE_TARGET_TYPE (inner_array) = elt_type;
1388 }
1389
1390 TYPE_VECTOR (array_type) = 1;
1391 }
1392
1393 struct type *
1394 init_vector_type (struct type *elt_type, int n)
1395 {
1396 struct type *array_type;
1397
1398 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1399 make_vector_type (array_type);
1400 return array_type;
1401 }
1402
1403 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1404 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1405 confusing. "self" is a common enough replacement for "this".
1406 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1407 TYPE_CODE_METHOD. */
1408
1409 struct type *
1410 internal_type_self_type (struct type *type)
1411 {
1412 switch (TYPE_CODE (type))
1413 {
1414 case TYPE_CODE_METHODPTR:
1415 case TYPE_CODE_MEMBERPTR:
1416 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1417 return NULL;
1418 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1419 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1420 case TYPE_CODE_METHOD:
1421 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1422 return NULL;
1423 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1424 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1425 default:
1426 gdb_assert_not_reached ("bad type");
1427 }
1428 }
1429
1430 /* Set the type of the class that TYPE belongs to.
1431 In c++ this is the class of "this".
1432 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1433 TYPE_CODE_METHOD. */
1434
1435 void
1436 set_type_self_type (struct type *type, struct type *self_type)
1437 {
1438 switch (TYPE_CODE (type))
1439 {
1440 case TYPE_CODE_METHODPTR:
1441 case TYPE_CODE_MEMBERPTR:
1442 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1443 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1444 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1445 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1446 break;
1447 case TYPE_CODE_METHOD:
1448 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1449 INIT_FUNC_SPECIFIC (type);
1450 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1451 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1452 break;
1453 default:
1454 gdb_assert_not_reached ("bad type");
1455 }
1456 }
1457
1458 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1459 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1460 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1461 TYPE doesn't include the offset (that's the value of the MEMBER
1462 itself), but does include the structure type into which it points
1463 (for some reason).
1464
1465 When "smashing" the type, we preserve the objfile that the old type
1466 pointed to, since we aren't changing where the type is actually
1467 allocated. */
1468
1469 void
1470 smash_to_memberptr_type (struct type *type, struct type *self_type,
1471 struct type *to_type)
1472 {
1473 smash_type (type);
1474 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1475 TYPE_TARGET_TYPE (type) = to_type;
1476 set_type_self_type (type, self_type);
1477 /* Assume that a data member pointer is the same size as a normal
1478 pointer. */
1479 TYPE_LENGTH (type)
1480 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1481 }
1482
1483 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1484
1485 When "smashing" the type, we preserve the objfile that the old type
1486 pointed to, since we aren't changing where the type is actually
1487 allocated. */
1488
1489 void
1490 smash_to_methodptr_type (struct type *type, struct type *to_type)
1491 {
1492 smash_type (type);
1493 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1494 TYPE_TARGET_TYPE (type) = to_type;
1495 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1496 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1497 }
1498
1499 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1500 METHOD just means `function that gets an extra "this" argument'.
1501
1502 When "smashing" the type, we preserve the objfile that the old type
1503 pointed to, since we aren't changing where the type is actually
1504 allocated. */
1505
1506 void
1507 smash_to_method_type (struct type *type, struct type *self_type,
1508 struct type *to_type, struct field *args,
1509 int nargs, int varargs)
1510 {
1511 smash_type (type);
1512 TYPE_CODE (type) = TYPE_CODE_METHOD;
1513 TYPE_TARGET_TYPE (type) = to_type;
1514 set_type_self_type (type, self_type);
1515 TYPE_FIELDS (type) = args;
1516 TYPE_NFIELDS (type) = nargs;
1517 if (varargs)
1518 TYPE_VARARGS (type) = 1;
1519 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1520 }
1521
1522 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1523 Since GCC PR debug/47510 DWARF provides associated information to detect the
1524 anonymous class linkage name from its typedef.
1525
1526 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1527 apply it itself. */
1528
1529 const char *
1530 type_name_or_error (struct type *type)
1531 {
1532 struct type *saved_type = type;
1533 const char *name;
1534 struct objfile *objfile;
1535
1536 type = check_typedef (type);
1537
1538 name = TYPE_NAME (type);
1539 if (name != NULL)
1540 return name;
1541
1542 name = TYPE_NAME (saved_type);
1543 objfile = TYPE_OBJFILE (saved_type);
1544 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1545 name ? name : "<anonymous>",
1546 objfile ? objfile_name (objfile) : "<arch>");
1547 }
1548
1549 /* Lookup a typedef or primitive type named NAME, visible in lexical
1550 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1551 suitably defined. */
1552
1553 struct type *
1554 lookup_typename (const struct language_defn *language,
1555 struct gdbarch *gdbarch, const char *name,
1556 const struct block *block, int noerr)
1557 {
1558 struct symbol *sym;
1559
1560 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1561 language->la_language, NULL).symbol;
1562 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1563 return SYMBOL_TYPE (sym);
1564
1565 if (noerr)
1566 return NULL;
1567 error (_("No type named %s."), name);
1568 }
1569
1570 struct type *
1571 lookup_unsigned_typename (const struct language_defn *language,
1572 struct gdbarch *gdbarch, const char *name)
1573 {
1574 char *uns = (char *) alloca (strlen (name) + 10);
1575
1576 strcpy (uns, "unsigned ");
1577 strcpy (uns + 9, name);
1578 return lookup_typename (language, gdbarch, uns, NULL, 0);
1579 }
1580
1581 struct type *
1582 lookup_signed_typename (const struct language_defn *language,
1583 struct gdbarch *gdbarch, const char *name)
1584 {
1585 struct type *t;
1586 char *uns = (char *) alloca (strlen (name) + 8);
1587
1588 strcpy (uns, "signed ");
1589 strcpy (uns + 7, name);
1590 t = lookup_typename (language, gdbarch, uns, NULL, 1);
1591 /* If we don't find "signed FOO" just try again with plain "FOO". */
1592 if (t != NULL)
1593 return t;
1594 return lookup_typename (language, gdbarch, name, NULL, 0);
1595 }
1596
1597 /* Lookup a structure type named "struct NAME",
1598 visible in lexical block BLOCK. */
1599
1600 struct type *
1601 lookup_struct (const char *name, const struct block *block)
1602 {
1603 struct symbol *sym;
1604
1605 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1606
1607 if (sym == NULL)
1608 {
1609 error (_("No struct type named %s."), name);
1610 }
1611 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1612 {
1613 error (_("This context has class, union or enum %s, not a struct."),
1614 name);
1615 }
1616 return (SYMBOL_TYPE (sym));
1617 }
1618
1619 /* Lookup a union type named "union NAME",
1620 visible in lexical block BLOCK. */
1621
1622 struct type *
1623 lookup_union (const char *name, const struct block *block)
1624 {
1625 struct symbol *sym;
1626 struct type *t;
1627
1628 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1629
1630 if (sym == NULL)
1631 error (_("No union type named %s."), name);
1632
1633 t = SYMBOL_TYPE (sym);
1634
1635 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1636 return t;
1637
1638 /* If we get here, it's not a union. */
1639 error (_("This context has class, struct or enum %s, not a union."),
1640 name);
1641 }
1642
1643 /* Lookup an enum type named "enum NAME",
1644 visible in lexical block BLOCK. */
1645
1646 struct type *
1647 lookup_enum (const char *name, const struct block *block)
1648 {
1649 struct symbol *sym;
1650
1651 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1652 if (sym == NULL)
1653 {
1654 error (_("No enum type named %s."), name);
1655 }
1656 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1657 {
1658 error (_("This context has class, struct or union %s, not an enum."),
1659 name);
1660 }
1661 return (SYMBOL_TYPE (sym));
1662 }
1663
1664 /* Lookup a template type named "template NAME<TYPE>",
1665 visible in lexical block BLOCK. */
1666
1667 struct type *
1668 lookup_template_type (const char *name, struct type *type,
1669 const struct block *block)
1670 {
1671 struct symbol *sym;
1672 char *nam = (char *)
1673 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1674
1675 strcpy (nam, name);
1676 strcat (nam, "<");
1677 strcat (nam, TYPE_NAME (type));
1678 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1679
1680 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1681
1682 if (sym == NULL)
1683 {
1684 error (_("No template type named %s."), name);
1685 }
1686 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1687 {
1688 error (_("This context has class, union or enum %s, not a struct."),
1689 name);
1690 }
1691 return (SYMBOL_TYPE (sym));
1692 }
1693
1694 /* See gdbtypes.h. */
1695
1696 struct_elt
1697 lookup_struct_elt (struct type *type, const char *name, int noerr)
1698 {
1699 int i;
1700
1701 for (;;)
1702 {
1703 type = check_typedef (type);
1704 if (TYPE_CODE (type) != TYPE_CODE_PTR
1705 && TYPE_CODE (type) != TYPE_CODE_REF)
1706 break;
1707 type = TYPE_TARGET_TYPE (type);
1708 }
1709
1710 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1711 && TYPE_CODE (type) != TYPE_CODE_UNION)
1712 {
1713 std::string type_name = type_to_string (type);
1714 error (_("Type %s is not a structure or union type."),
1715 type_name.c_str ());
1716 }
1717
1718 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1719 {
1720 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1721
1722 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1723 {
1724 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
1725 }
1726 else if (!t_field_name || *t_field_name == '\0')
1727 {
1728 struct_elt elt
1729 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1730 if (elt.field != NULL)
1731 {
1732 elt.offset += TYPE_FIELD_BITPOS (type, i);
1733 return elt;
1734 }
1735 }
1736 }
1737
1738 /* OK, it's not in this class. Recursively check the baseclasses. */
1739 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1740 {
1741 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1742 if (elt.field != NULL)
1743 return elt;
1744 }
1745
1746 if (noerr)
1747 return {nullptr, 0};
1748
1749 std::string type_name = type_to_string (type);
1750 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1751 }
1752
1753 /* See gdbtypes.h. */
1754
1755 struct type *
1756 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1757 {
1758 struct_elt elt = lookup_struct_elt (type, name, noerr);
1759 if (elt.field != NULL)
1760 return FIELD_TYPE (*elt.field);
1761 else
1762 return NULL;
1763 }
1764
1765 /* Store in *MAX the largest number representable by unsigned integer type
1766 TYPE. */
1767
1768 void
1769 get_unsigned_type_max (struct type *type, ULONGEST *max)
1770 {
1771 unsigned int n;
1772
1773 type = check_typedef (type);
1774 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1775 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1776
1777 /* Written this way to avoid overflow. */
1778 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1779 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1780 }
1781
1782 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1783 signed integer type TYPE. */
1784
1785 void
1786 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1787 {
1788 unsigned int n;
1789
1790 type = check_typedef (type);
1791 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1792 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1793
1794 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1795 *min = -((ULONGEST) 1 << (n - 1));
1796 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1797 }
1798
1799 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1800 cplus_stuff.vptr_fieldno.
1801
1802 cplus_stuff is initialized to cplus_struct_default which does not
1803 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1804 designated initializers). We cope with that here. */
1805
1806 int
1807 internal_type_vptr_fieldno (struct type *type)
1808 {
1809 type = check_typedef (type);
1810 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1811 || TYPE_CODE (type) == TYPE_CODE_UNION);
1812 if (!HAVE_CPLUS_STRUCT (type))
1813 return -1;
1814 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1815 }
1816
1817 /* Set the value of cplus_stuff.vptr_fieldno. */
1818
1819 void
1820 set_type_vptr_fieldno (struct type *type, int fieldno)
1821 {
1822 type = check_typedef (type);
1823 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1824 || TYPE_CODE (type) == TYPE_CODE_UNION);
1825 if (!HAVE_CPLUS_STRUCT (type))
1826 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1827 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1828 }
1829
1830 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1831 cplus_stuff.vptr_basetype. */
1832
1833 struct type *
1834 internal_type_vptr_basetype (struct type *type)
1835 {
1836 type = check_typedef (type);
1837 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1838 || TYPE_CODE (type) == TYPE_CODE_UNION);
1839 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1840 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1841 }
1842
1843 /* Set the value of cplus_stuff.vptr_basetype. */
1844
1845 void
1846 set_type_vptr_basetype (struct type *type, struct type *basetype)
1847 {
1848 type = check_typedef (type);
1849 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1850 || TYPE_CODE (type) == TYPE_CODE_UNION);
1851 if (!HAVE_CPLUS_STRUCT (type))
1852 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1853 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1854 }
1855
1856 /* Lookup the vptr basetype/fieldno values for TYPE.
1857 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1858 vptr_fieldno. Also, if found and basetype is from the same objfile,
1859 cache the results.
1860 If not found, return -1 and ignore BASETYPEP.
1861 Callers should be aware that in some cases (for example,
1862 the type or one of its baseclasses is a stub type and we are
1863 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1864 this function will not be able to find the
1865 virtual function table pointer, and vptr_fieldno will remain -1 and
1866 vptr_basetype will remain NULL or incomplete. */
1867
1868 int
1869 get_vptr_fieldno (struct type *type, struct type **basetypep)
1870 {
1871 type = check_typedef (type);
1872
1873 if (TYPE_VPTR_FIELDNO (type) < 0)
1874 {
1875 int i;
1876
1877 /* We must start at zero in case the first (and only) baseclass
1878 is virtual (and hence we cannot share the table pointer). */
1879 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1880 {
1881 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1882 int fieldno;
1883 struct type *basetype;
1884
1885 fieldno = get_vptr_fieldno (baseclass, &basetype);
1886 if (fieldno >= 0)
1887 {
1888 /* If the type comes from a different objfile we can't cache
1889 it, it may have a different lifetime. PR 2384 */
1890 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1891 {
1892 set_type_vptr_fieldno (type, fieldno);
1893 set_type_vptr_basetype (type, basetype);
1894 }
1895 if (basetypep)
1896 *basetypep = basetype;
1897 return fieldno;
1898 }
1899 }
1900
1901 /* Not found. */
1902 return -1;
1903 }
1904 else
1905 {
1906 if (basetypep)
1907 *basetypep = TYPE_VPTR_BASETYPE (type);
1908 return TYPE_VPTR_FIELDNO (type);
1909 }
1910 }
1911
1912 static void
1913 stub_noname_complaint (void)
1914 {
1915 complaint (_("stub type has NULL name"));
1916 }
1917
1918 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1919 attached to it, and that property has a non-constant value. */
1920
1921 static int
1922 array_type_has_dynamic_stride (struct type *type)
1923 {
1924 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1925
1926 return (prop != NULL && prop->kind != PROP_CONST);
1927 }
1928
1929 /* Worker for is_dynamic_type. */
1930
1931 static int
1932 is_dynamic_type_internal (struct type *type, int top_level)
1933 {
1934 type = check_typedef (type);
1935
1936 /* We only want to recognize references at the outermost level. */
1937 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1938 type = check_typedef (TYPE_TARGET_TYPE (type));
1939
1940 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1941 dynamic, even if the type itself is statically defined.
1942 From a user's point of view, this may appear counter-intuitive;
1943 but it makes sense in this context, because the point is to determine
1944 whether any part of the type needs to be resolved before it can
1945 be exploited. */
1946 if (TYPE_DATA_LOCATION (type) != NULL
1947 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1948 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1949 return 1;
1950
1951 if (TYPE_ASSOCIATED_PROP (type))
1952 return 1;
1953
1954 if (TYPE_ALLOCATED_PROP (type))
1955 return 1;
1956
1957 switch (TYPE_CODE (type))
1958 {
1959 case TYPE_CODE_RANGE:
1960 {
1961 /* A range type is obviously dynamic if it has at least one
1962 dynamic bound. But also consider the range type to be
1963 dynamic when its subtype is dynamic, even if the bounds
1964 of the range type are static. It allows us to assume that
1965 the subtype of a static range type is also static. */
1966 return (!has_static_range (TYPE_RANGE_DATA (type))
1967 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1968 }
1969
1970 case TYPE_CODE_STRING:
1971 /* Strings are very much like an array of characters, and can be
1972 treated as one here. */
1973 case TYPE_CODE_ARRAY:
1974 {
1975 gdb_assert (TYPE_NFIELDS (type) == 1);
1976
1977 /* The array is dynamic if either the bounds are dynamic... */
1978 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1979 return 1;
1980 /* ... or the elements it contains have a dynamic contents... */
1981 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1982 return 1;
1983 /* ... or if it has a dynamic stride... */
1984 if (array_type_has_dynamic_stride (type))
1985 return 1;
1986 return 0;
1987 }
1988
1989 case TYPE_CODE_STRUCT:
1990 case TYPE_CODE_UNION:
1991 {
1992 int i;
1993
1994 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1995 if (!field_is_static (&TYPE_FIELD (type, i))
1996 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1997 return 1;
1998 }
1999 break;
2000 }
2001
2002 return 0;
2003 }
2004
2005 /* See gdbtypes.h. */
2006
2007 int
2008 is_dynamic_type (struct type *type)
2009 {
2010 return is_dynamic_type_internal (type, 1);
2011 }
2012
2013 static struct type *resolve_dynamic_type_internal
2014 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2015
2016 /* Given a dynamic range type (dyn_range_type) and a stack of
2017 struct property_addr_info elements, return a static version
2018 of that type. */
2019
2020 static struct type *
2021 resolve_dynamic_range (struct type *dyn_range_type,
2022 struct property_addr_info *addr_stack)
2023 {
2024 CORE_ADDR value;
2025 struct type *static_range_type, *static_target_type;
2026 const struct dynamic_prop *prop;
2027 struct dynamic_prop low_bound, high_bound, stride;
2028
2029 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
2030
2031 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
2032 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2033 {
2034 low_bound.kind = PROP_CONST;
2035 low_bound.data.const_val = value;
2036 }
2037 else
2038 {
2039 low_bound.kind = PROP_UNDEFINED;
2040 low_bound.data.const_val = 0;
2041 }
2042
2043 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2044 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2045 {
2046 high_bound.kind = PROP_CONST;
2047 high_bound.data.const_val = value;
2048
2049 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2050 high_bound.data.const_val
2051 = low_bound.data.const_val + high_bound.data.const_val - 1;
2052 }
2053 else
2054 {
2055 high_bound.kind = PROP_UNDEFINED;
2056 high_bound.data.const_val = 0;
2057 }
2058
2059 bool byte_stride_p = TYPE_RANGE_DATA (dyn_range_type)->flag_is_byte_stride;
2060 prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
2061 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2062 {
2063 stride.kind = PROP_CONST;
2064 stride.data.const_val = value;
2065
2066 /* If we have a bit stride that is not an exact number of bytes then
2067 I really don't think this is going to work with current GDB, the
2068 array indexing code in GDB seems to be pretty heavily tied to byte
2069 offsets right now. Assuming 8 bits in a byte. */
2070 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2071 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2072 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2073 error (_("bit strides that are not a multiple of the byte size "
2074 "are currently not supported"));
2075 }
2076 else
2077 {
2078 stride.kind = PROP_UNDEFINED;
2079 stride.data.const_val = 0;
2080 byte_stride_p = true;
2081 }
2082
2083 static_target_type
2084 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2085 addr_stack, 0);
2086 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
2087 static_range_type = create_range_type_with_stride
2088 (copy_type (dyn_range_type), static_target_type,
2089 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2090 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2091 return static_range_type;
2092 }
2093
2094 /* Resolves dynamic bound values of an array or string type TYPE to static
2095 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2096 needed during the dynamic resolution. */
2097
2098 static struct type *
2099 resolve_dynamic_array_or_string (struct type *type,
2100 struct property_addr_info *addr_stack)
2101 {
2102 CORE_ADDR value;
2103 struct type *elt_type;
2104 struct type *range_type;
2105 struct type *ary_dim;
2106 struct dynamic_prop *prop;
2107 unsigned int bit_stride = 0;
2108
2109 /* For dynamic type resolution strings can be treated like arrays of
2110 characters. */
2111 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY
2112 || TYPE_CODE (type) == TYPE_CODE_STRING);
2113
2114 type = copy_type (type);
2115
2116 elt_type = type;
2117 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2118 range_type = resolve_dynamic_range (range_type, addr_stack);
2119
2120 /* Resolve allocated/associated here before creating a new array type, which
2121 will update the length of the array accordingly. */
2122 prop = TYPE_ALLOCATED_PROP (type);
2123 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2124 {
2125 TYPE_DYN_PROP_ADDR (prop) = value;
2126 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2127 }
2128 prop = TYPE_ASSOCIATED_PROP (type);
2129 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2130 {
2131 TYPE_DYN_PROP_ADDR (prop) = value;
2132 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2133 }
2134
2135 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2136
2137 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2138 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2139 else
2140 elt_type = TYPE_TARGET_TYPE (type);
2141
2142 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2143 if (prop != NULL)
2144 {
2145 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2146 {
2147 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2148 bit_stride = (unsigned int) (value * 8);
2149 }
2150 else
2151 {
2152 /* Could be a bug in our code, but it could also happen
2153 if the DWARF info is not correct. Issue a warning,
2154 and assume no byte/bit stride (leave bit_stride = 0). */
2155 warning (_("cannot determine array stride for type %s"),
2156 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2157 }
2158 }
2159 else
2160 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2161
2162 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2163 bit_stride);
2164 }
2165
2166 /* Resolve dynamic bounds of members of the union TYPE to static
2167 bounds. ADDR_STACK is a stack of struct property_addr_info
2168 to be used if needed during the dynamic resolution. */
2169
2170 static struct type *
2171 resolve_dynamic_union (struct type *type,
2172 struct property_addr_info *addr_stack)
2173 {
2174 struct type *resolved_type;
2175 int i;
2176 unsigned int max_len = 0;
2177
2178 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2179
2180 resolved_type = copy_type (type);
2181 TYPE_FIELDS (resolved_type)
2182 = (struct field *) TYPE_ALLOC (resolved_type,
2183 TYPE_NFIELDS (resolved_type)
2184 * sizeof (struct field));
2185 memcpy (TYPE_FIELDS (resolved_type),
2186 TYPE_FIELDS (type),
2187 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2188 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2189 {
2190 struct type *t;
2191
2192 if (field_is_static (&TYPE_FIELD (type, i)))
2193 continue;
2194
2195 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2196 addr_stack, 0);
2197 TYPE_FIELD_TYPE (resolved_type, i) = t;
2198 if (TYPE_LENGTH (t) > max_len)
2199 max_len = TYPE_LENGTH (t);
2200 }
2201
2202 TYPE_LENGTH (resolved_type) = max_len;
2203 return resolved_type;
2204 }
2205
2206 /* Resolve dynamic bounds of members of the struct TYPE to static
2207 bounds. ADDR_STACK is a stack of struct property_addr_info to
2208 be used if needed during the dynamic resolution. */
2209
2210 static struct type *
2211 resolve_dynamic_struct (struct type *type,
2212 struct property_addr_info *addr_stack)
2213 {
2214 struct type *resolved_type;
2215 int i;
2216 unsigned resolved_type_bit_length = 0;
2217
2218 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2219 gdb_assert (TYPE_NFIELDS (type) > 0);
2220
2221 resolved_type = copy_type (type);
2222 TYPE_FIELDS (resolved_type)
2223 = (struct field *) TYPE_ALLOC (resolved_type,
2224 TYPE_NFIELDS (resolved_type)
2225 * sizeof (struct field));
2226 memcpy (TYPE_FIELDS (resolved_type),
2227 TYPE_FIELDS (type),
2228 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2229 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2230 {
2231 unsigned new_bit_length;
2232 struct property_addr_info pinfo;
2233
2234 if (field_is_static (&TYPE_FIELD (type, i)))
2235 continue;
2236
2237 /* As we know this field is not a static field, the field's
2238 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2239 this is the case, but only trigger a simple error rather
2240 than an internal error if that fails. While failing
2241 that verification indicates a bug in our code, the error
2242 is not severe enough to suggest to the user he stops
2243 his debugging session because of it. */
2244 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2245 error (_("Cannot determine struct field location"
2246 " (invalid location kind)"));
2247
2248 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2249 pinfo.valaddr = addr_stack->valaddr;
2250 pinfo.addr
2251 = (addr_stack->addr
2252 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2253 pinfo.next = addr_stack;
2254
2255 TYPE_FIELD_TYPE (resolved_type, i)
2256 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2257 &pinfo, 0);
2258 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2259 == FIELD_LOC_KIND_BITPOS);
2260
2261 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2262 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2263 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2264 else
2265 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2266 * TARGET_CHAR_BIT);
2267
2268 /* Normally, we would use the position and size of the last field
2269 to determine the size of the enclosing structure. But GCC seems
2270 to be encoding the position of some fields incorrectly when
2271 the struct contains a dynamic field that is not placed last.
2272 So we compute the struct size based on the field that has
2273 the highest position + size - probably the best we can do. */
2274 if (new_bit_length > resolved_type_bit_length)
2275 resolved_type_bit_length = new_bit_length;
2276 }
2277
2278 /* The length of a type won't change for fortran, but it does for C and Ada.
2279 For fortran the size of dynamic fields might change over time but not the
2280 type length of the structure. If we adapt it, we run into problems
2281 when calculating the element offset for arrays of structs. */
2282 if (current_language->la_language != language_fortran)
2283 TYPE_LENGTH (resolved_type)
2284 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2285
2286 /* The Ada language uses this field as a cache for static fixed types: reset
2287 it as RESOLVED_TYPE must have its own static fixed type. */
2288 TYPE_TARGET_TYPE (resolved_type) = NULL;
2289
2290 return resolved_type;
2291 }
2292
2293 /* Worker for resolved_dynamic_type. */
2294
2295 static struct type *
2296 resolve_dynamic_type_internal (struct type *type,
2297 struct property_addr_info *addr_stack,
2298 int top_level)
2299 {
2300 struct type *real_type = check_typedef (type);
2301 struct type *resolved_type = type;
2302 struct dynamic_prop *prop;
2303 CORE_ADDR value;
2304
2305 if (!is_dynamic_type_internal (real_type, top_level))
2306 return type;
2307
2308 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2309 {
2310 resolved_type = copy_type (type);
2311 TYPE_TARGET_TYPE (resolved_type)
2312 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2313 top_level);
2314 }
2315 else
2316 {
2317 /* Before trying to resolve TYPE, make sure it is not a stub. */
2318 type = real_type;
2319
2320 switch (TYPE_CODE (type))
2321 {
2322 case TYPE_CODE_REF:
2323 {
2324 struct property_addr_info pinfo;
2325
2326 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2327 pinfo.valaddr = NULL;
2328 if (addr_stack->valaddr != NULL)
2329 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2330 else
2331 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2332 pinfo.next = addr_stack;
2333
2334 resolved_type = copy_type (type);
2335 TYPE_TARGET_TYPE (resolved_type)
2336 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2337 &pinfo, top_level);
2338 break;
2339 }
2340
2341 case TYPE_CODE_STRING:
2342 /* Strings are very much like an array of characters, and can be
2343 treated as one here. */
2344 case TYPE_CODE_ARRAY:
2345 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2346 break;
2347
2348 case TYPE_CODE_RANGE:
2349 resolved_type = resolve_dynamic_range (type, addr_stack);
2350 break;
2351
2352 case TYPE_CODE_UNION:
2353 resolved_type = resolve_dynamic_union (type, addr_stack);
2354 break;
2355
2356 case TYPE_CODE_STRUCT:
2357 resolved_type = resolve_dynamic_struct (type, addr_stack);
2358 break;
2359 }
2360 }
2361
2362 /* Resolve data_location attribute. */
2363 prop = TYPE_DATA_LOCATION (resolved_type);
2364 if (prop != NULL
2365 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2366 {
2367 TYPE_DYN_PROP_ADDR (prop) = value;
2368 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2369 }
2370
2371 return resolved_type;
2372 }
2373
2374 /* See gdbtypes.h */
2375
2376 struct type *
2377 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2378 CORE_ADDR addr)
2379 {
2380 struct property_addr_info pinfo
2381 = {check_typedef (type), valaddr, addr, NULL};
2382
2383 return resolve_dynamic_type_internal (type, &pinfo, 1);
2384 }
2385
2386 /* See gdbtypes.h */
2387
2388 struct dynamic_prop *
2389 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2390 {
2391 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2392
2393 while (node != NULL)
2394 {
2395 if (node->prop_kind == prop_kind)
2396 return &node->prop;
2397 node = node->next;
2398 }
2399 return NULL;
2400 }
2401
2402 /* See gdbtypes.h */
2403
2404 void
2405 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2406 struct type *type)
2407 {
2408 struct dynamic_prop_list *temp;
2409
2410 gdb_assert (TYPE_OBJFILE_OWNED (type));
2411
2412 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2413 struct dynamic_prop_list);
2414 temp->prop_kind = prop_kind;
2415 temp->prop = prop;
2416 temp->next = TYPE_DYN_PROP_LIST (type);
2417
2418 TYPE_DYN_PROP_LIST (type) = temp;
2419 }
2420
2421 /* Remove dynamic property from TYPE in case it exists. */
2422
2423 void
2424 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2425 struct type *type)
2426 {
2427 struct dynamic_prop_list *prev_node, *curr_node;
2428
2429 curr_node = TYPE_DYN_PROP_LIST (type);
2430 prev_node = NULL;
2431
2432 while (NULL != curr_node)
2433 {
2434 if (curr_node->prop_kind == prop_kind)
2435 {
2436 /* Update the linked list but don't free anything.
2437 The property was allocated on objstack and it is not known
2438 if we are on top of it. Nevertheless, everything is released
2439 when the complete objstack is freed. */
2440 if (NULL == prev_node)
2441 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2442 else
2443 prev_node->next = curr_node->next;
2444
2445 return;
2446 }
2447
2448 prev_node = curr_node;
2449 curr_node = curr_node->next;
2450 }
2451 }
2452
2453 /* Find the real type of TYPE. This function returns the real type,
2454 after removing all layers of typedefs, and completing opaque or stub
2455 types. Completion changes the TYPE argument, but stripping of
2456 typedefs does not.
2457
2458 Instance flags (e.g. const/volatile) are preserved as typedefs are
2459 stripped. If necessary a new qualified form of the underlying type
2460 is created.
2461
2462 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2463 not been computed and we're either in the middle of reading symbols, or
2464 there was no name for the typedef in the debug info.
2465
2466 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2467 QUITs in the symbol reading code can also throw.
2468 Thus this function can throw an exception.
2469
2470 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2471 the target type.
2472
2473 If this is a stubbed struct (i.e. declared as struct foo *), see if
2474 we can find a full definition in some other file. If so, copy this
2475 definition, so we can use it in future. There used to be a comment
2476 (but not any code) that if we don't find a full definition, we'd
2477 set a flag so we don't spend time in the future checking the same
2478 type. That would be a mistake, though--we might load in more
2479 symbols which contain a full definition for the type. */
2480
2481 struct type *
2482 check_typedef (struct type *type)
2483 {
2484 struct type *orig_type = type;
2485 /* While we're removing typedefs, we don't want to lose qualifiers.
2486 E.g., const/volatile. */
2487 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2488
2489 gdb_assert (type);
2490
2491 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2492 {
2493 if (!TYPE_TARGET_TYPE (type))
2494 {
2495 const char *name;
2496 struct symbol *sym;
2497
2498 /* It is dangerous to call lookup_symbol if we are currently
2499 reading a symtab. Infinite recursion is one danger. */
2500 if (currently_reading_symtab)
2501 return make_qualified_type (type, instance_flags, NULL);
2502
2503 name = TYPE_NAME (type);
2504 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2505 VAR_DOMAIN as appropriate? */
2506 if (name == NULL)
2507 {
2508 stub_noname_complaint ();
2509 return make_qualified_type (type, instance_flags, NULL);
2510 }
2511 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2512 if (sym)
2513 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2514 else /* TYPE_CODE_UNDEF */
2515 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2516 }
2517 type = TYPE_TARGET_TYPE (type);
2518
2519 /* Preserve the instance flags as we traverse down the typedef chain.
2520
2521 Handling address spaces/classes is nasty, what do we do if there's a
2522 conflict?
2523 E.g., what if an outer typedef marks the type as class_1 and an inner
2524 typedef marks the type as class_2?
2525 This is the wrong place to do such error checking. We leave it to
2526 the code that created the typedef in the first place to flag the
2527 error. We just pick the outer address space (akin to letting the
2528 outer cast in a chain of casting win), instead of assuming
2529 "it can't happen". */
2530 {
2531 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2532 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2533 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2534 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2535
2536 /* Treat code vs data spaces and address classes separately. */
2537 if ((instance_flags & ALL_SPACES) != 0)
2538 new_instance_flags &= ~ALL_SPACES;
2539 if ((instance_flags & ALL_CLASSES) != 0)
2540 new_instance_flags &= ~ALL_CLASSES;
2541
2542 instance_flags |= new_instance_flags;
2543 }
2544 }
2545
2546 /* If this is a struct/class/union with no fields, then check
2547 whether a full definition exists somewhere else. This is for
2548 systems where a type definition with no fields is issued for such
2549 types, instead of identifying them as stub types in the first
2550 place. */
2551
2552 if (TYPE_IS_OPAQUE (type)
2553 && opaque_type_resolution
2554 && !currently_reading_symtab)
2555 {
2556 const char *name = TYPE_NAME (type);
2557 struct type *newtype;
2558
2559 if (name == NULL)
2560 {
2561 stub_noname_complaint ();
2562 return make_qualified_type (type, instance_flags, NULL);
2563 }
2564 newtype = lookup_transparent_type (name);
2565
2566 if (newtype)
2567 {
2568 /* If the resolved type and the stub are in the same
2569 objfile, then replace the stub type with the real deal.
2570 But if they're in separate objfiles, leave the stub
2571 alone; we'll just look up the transparent type every time
2572 we call check_typedef. We can't create pointers between
2573 types allocated to different objfiles, since they may
2574 have different lifetimes. Trying to copy NEWTYPE over to
2575 TYPE's objfile is pointless, too, since you'll have to
2576 move over any other types NEWTYPE refers to, which could
2577 be an unbounded amount of stuff. */
2578 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2579 type = make_qualified_type (newtype,
2580 TYPE_INSTANCE_FLAGS (type),
2581 type);
2582 else
2583 type = newtype;
2584 }
2585 }
2586 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2587 types. */
2588 else if (TYPE_STUB (type) && !currently_reading_symtab)
2589 {
2590 const char *name = TYPE_NAME (type);
2591 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2592 as appropriate? */
2593 struct symbol *sym;
2594
2595 if (name == NULL)
2596 {
2597 stub_noname_complaint ();
2598 return make_qualified_type (type, instance_flags, NULL);
2599 }
2600 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2601 if (sym)
2602 {
2603 /* Same as above for opaque types, we can replace the stub
2604 with the complete type only if they are in the same
2605 objfile. */
2606 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2607 type = make_qualified_type (SYMBOL_TYPE (sym),
2608 TYPE_INSTANCE_FLAGS (type),
2609 type);
2610 else
2611 type = SYMBOL_TYPE (sym);
2612 }
2613 }
2614
2615 if (TYPE_TARGET_STUB (type))
2616 {
2617 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2618
2619 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2620 {
2621 /* Nothing we can do. */
2622 }
2623 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2624 {
2625 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2626 TYPE_TARGET_STUB (type) = 0;
2627 }
2628 }
2629
2630 type = make_qualified_type (type, instance_flags, NULL);
2631
2632 /* Cache TYPE_LENGTH for future use. */
2633 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2634
2635 return type;
2636 }
2637
2638 /* Parse a type expression in the string [P..P+LENGTH). If an error
2639 occurs, silently return a void type. */
2640
2641 static struct type *
2642 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2643 {
2644 struct ui_file *saved_gdb_stderr;
2645 struct type *type = NULL; /* Initialize to keep gcc happy. */
2646
2647 /* Suppress error messages. */
2648 saved_gdb_stderr = gdb_stderr;
2649 gdb_stderr = &null_stream;
2650
2651 /* Call parse_and_eval_type() without fear of longjmp()s. */
2652 try
2653 {
2654 type = parse_and_eval_type (p, length);
2655 }
2656 catch (const gdb_exception_error &except)
2657 {
2658 type = builtin_type (gdbarch)->builtin_void;
2659 }
2660
2661 /* Stop suppressing error messages. */
2662 gdb_stderr = saved_gdb_stderr;
2663
2664 return type;
2665 }
2666
2667 /* Ugly hack to convert method stubs into method types.
2668
2669 He ain't kiddin'. This demangles the name of the method into a
2670 string including argument types, parses out each argument type,
2671 generates a string casting a zero to that type, evaluates the
2672 string, and stuffs the resulting type into an argtype vector!!!
2673 Then it knows the type of the whole function (including argument
2674 types for overloading), which info used to be in the stab's but was
2675 removed to hack back the space required for them. */
2676
2677 static void
2678 check_stub_method (struct type *type, int method_id, int signature_id)
2679 {
2680 struct gdbarch *gdbarch = get_type_arch (type);
2681 struct fn_field *f;
2682 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2683 char *demangled_name = gdb_demangle (mangled_name,
2684 DMGL_PARAMS | DMGL_ANSI);
2685 char *argtypetext, *p;
2686 int depth = 0, argcount = 1;
2687 struct field *argtypes;
2688 struct type *mtype;
2689
2690 /* Make sure we got back a function string that we can use. */
2691 if (demangled_name)
2692 p = strchr (demangled_name, '(');
2693 else
2694 p = NULL;
2695
2696 if (demangled_name == NULL || p == NULL)
2697 error (_("Internal: Cannot demangle mangled name `%s'."),
2698 mangled_name);
2699
2700 /* Now, read in the parameters that define this type. */
2701 p += 1;
2702 argtypetext = p;
2703 while (*p)
2704 {
2705 if (*p == '(' || *p == '<')
2706 {
2707 depth += 1;
2708 }
2709 else if (*p == ')' || *p == '>')
2710 {
2711 depth -= 1;
2712 }
2713 else if (*p == ',' && depth == 0)
2714 {
2715 argcount += 1;
2716 }
2717
2718 p += 1;
2719 }
2720
2721 /* If we read one argument and it was ``void'', don't count it. */
2722 if (startswith (argtypetext, "(void)"))
2723 argcount -= 1;
2724
2725 /* We need one extra slot, for the THIS pointer. */
2726
2727 argtypes = (struct field *)
2728 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2729 p = argtypetext;
2730
2731 /* Add THIS pointer for non-static methods. */
2732 f = TYPE_FN_FIELDLIST1 (type, method_id);
2733 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2734 argcount = 0;
2735 else
2736 {
2737 argtypes[0].type = lookup_pointer_type (type);
2738 argcount = 1;
2739 }
2740
2741 if (*p != ')') /* () means no args, skip while. */
2742 {
2743 depth = 0;
2744 while (*p)
2745 {
2746 if (depth <= 0 && (*p == ',' || *p == ')'))
2747 {
2748 /* Avoid parsing of ellipsis, they will be handled below.
2749 Also avoid ``void'' as above. */
2750 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2751 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2752 {
2753 argtypes[argcount].type =
2754 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2755 argcount += 1;
2756 }
2757 argtypetext = p + 1;
2758 }
2759
2760 if (*p == '(' || *p == '<')
2761 {
2762 depth += 1;
2763 }
2764 else if (*p == ')' || *p == '>')
2765 {
2766 depth -= 1;
2767 }
2768
2769 p += 1;
2770 }
2771 }
2772
2773 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2774
2775 /* Now update the old "stub" type into a real type. */
2776 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2777 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2778 We want a method (TYPE_CODE_METHOD). */
2779 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2780 argtypes, argcount, p[-2] == '.');
2781 TYPE_STUB (mtype) = 0;
2782 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2783
2784 xfree (demangled_name);
2785 }
2786
2787 /* This is the external interface to check_stub_method, above. This
2788 function unstubs all of the signatures for TYPE's METHOD_ID method
2789 name. After calling this function TYPE_FN_FIELD_STUB will be
2790 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2791 correct.
2792
2793 This function unfortunately can not die until stabs do. */
2794
2795 void
2796 check_stub_method_group (struct type *type, int method_id)
2797 {
2798 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2799 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2800
2801 for (int j = 0; j < len; j++)
2802 {
2803 if (TYPE_FN_FIELD_STUB (f, j))
2804 check_stub_method (type, method_id, j);
2805 }
2806 }
2807
2808 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
2809 const struct cplus_struct_type cplus_struct_default = { };
2810
2811 void
2812 allocate_cplus_struct_type (struct type *type)
2813 {
2814 if (HAVE_CPLUS_STRUCT (type))
2815 /* Structure was already allocated. Nothing more to do. */
2816 return;
2817
2818 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2819 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2820 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2821 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2822 set_type_vptr_fieldno (type, -1);
2823 }
2824
2825 const struct gnat_aux_type gnat_aux_default =
2826 { NULL };
2827
2828 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2829 and allocate the associated gnat-specific data. The gnat-specific
2830 data is also initialized to gnat_aux_default. */
2831
2832 void
2833 allocate_gnat_aux_type (struct type *type)
2834 {
2835 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2836 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2837 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2838 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2839 }
2840
2841 /* Helper function to initialize a newly allocated type. Set type code
2842 to CODE and initialize the type-specific fields accordingly. */
2843
2844 static void
2845 set_type_code (struct type *type, enum type_code code)
2846 {
2847 TYPE_CODE (type) = code;
2848
2849 switch (code)
2850 {
2851 case TYPE_CODE_STRUCT:
2852 case TYPE_CODE_UNION:
2853 case TYPE_CODE_NAMESPACE:
2854 INIT_CPLUS_SPECIFIC (type);
2855 break;
2856 case TYPE_CODE_FLT:
2857 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2858 break;
2859 case TYPE_CODE_FUNC:
2860 INIT_FUNC_SPECIFIC (type);
2861 break;
2862 }
2863 }
2864
2865 /* Helper function to verify floating-point format and size.
2866 BIT is the type size in bits; if BIT equals -1, the size is
2867 determined by the floatformat. Returns size to be used. */
2868
2869 static int
2870 verify_floatformat (int bit, const struct floatformat *floatformat)
2871 {
2872 gdb_assert (floatformat != NULL);
2873
2874 if (bit == -1)
2875 bit = floatformat->totalsize;
2876
2877 gdb_assert (bit >= 0);
2878 gdb_assert (bit >= floatformat->totalsize);
2879
2880 return bit;
2881 }
2882
2883 /* Return the floating-point format for a floating-point variable of
2884 type TYPE. */
2885
2886 const struct floatformat *
2887 floatformat_from_type (const struct type *type)
2888 {
2889 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2890 gdb_assert (TYPE_FLOATFORMAT (type));
2891 return TYPE_FLOATFORMAT (type);
2892 }
2893
2894 /* Helper function to initialize the standard scalar types.
2895
2896 If NAME is non-NULL, then it is used to initialize the type name.
2897 Note that NAME is not copied; it is required to have a lifetime at
2898 least as long as OBJFILE. */
2899
2900 struct type *
2901 init_type (struct objfile *objfile, enum type_code code, int bit,
2902 const char *name)
2903 {
2904 struct type *type;
2905
2906 type = alloc_type (objfile);
2907 set_type_code (type, code);
2908 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2909 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2910 TYPE_NAME (type) = name;
2911
2912 return type;
2913 }
2914
2915 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2916 to use with variables that have no debug info. NAME is the type
2917 name. */
2918
2919 static struct type *
2920 init_nodebug_var_type (struct objfile *objfile, const char *name)
2921 {
2922 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2923 }
2924
2925 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2926 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2927 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2928
2929 struct type *
2930 init_integer_type (struct objfile *objfile,
2931 int bit, int unsigned_p, const char *name)
2932 {
2933 struct type *t;
2934
2935 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2936 if (unsigned_p)
2937 TYPE_UNSIGNED (t) = 1;
2938
2939 return t;
2940 }
2941
2942 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2943 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2944 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2945
2946 struct type *
2947 init_character_type (struct objfile *objfile,
2948 int bit, int unsigned_p, const char *name)
2949 {
2950 struct type *t;
2951
2952 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2953 if (unsigned_p)
2954 TYPE_UNSIGNED (t) = 1;
2955
2956 return t;
2957 }
2958
2959 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2960 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2961 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2962
2963 struct type *
2964 init_boolean_type (struct objfile *objfile,
2965 int bit, int unsigned_p, const char *name)
2966 {
2967 struct type *t;
2968
2969 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2970 if (unsigned_p)
2971 TYPE_UNSIGNED (t) = 1;
2972
2973 return t;
2974 }
2975
2976 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2977 BIT is the type size in bits; if BIT equals -1, the size is
2978 determined by the floatformat. NAME is the type name. Set the
2979 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
2980 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
2981 order of the objfile's architecture is used. */
2982
2983 struct type *
2984 init_float_type (struct objfile *objfile,
2985 int bit, const char *name,
2986 const struct floatformat **floatformats,
2987 enum bfd_endian byte_order)
2988 {
2989 if (byte_order == BFD_ENDIAN_UNKNOWN)
2990 {
2991 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2992 byte_order = gdbarch_byte_order (gdbarch);
2993 }
2994 const struct floatformat *fmt = floatformats[byte_order];
2995 struct type *t;
2996
2997 bit = verify_floatformat (bit, fmt);
2998 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
2999 TYPE_FLOATFORMAT (t) = fmt;
3000
3001 return t;
3002 }
3003
3004 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3005 BIT is the type size in bits. NAME is the type name. */
3006
3007 struct type *
3008 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3009 {
3010 struct type *t;
3011
3012 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3013 return t;
3014 }
3015
3016 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
3017 NAME is the type name. TARGET_TYPE is the component float type. */
3018
3019 struct type *
3020 init_complex_type (struct objfile *objfile,
3021 const char *name, struct type *target_type)
3022 {
3023 struct type *t;
3024
3025 t = init_type (objfile, TYPE_CODE_COMPLEX,
3026 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
3027 TYPE_TARGET_TYPE (t) = target_type;
3028 return t;
3029 }
3030
3031 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3032 BIT is the pointer type size in bits. NAME is the type name.
3033 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3034 TYPE_UNSIGNED flag. */
3035
3036 struct type *
3037 init_pointer_type (struct objfile *objfile,
3038 int bit, const char *name, struct type *target_type)
3039 {
3040 struct type *t;
3041
3042 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3043 TYPE_TARGET_TYPE (t) = target_type;
3044 TYPE_UNSIGNED (t) = 1;
3045 return t;
3046 }
3047
3048 /* See gdbtypes.h. */
3049
3050 unsigned
3051 type_raw_align (struct type *type)
3052 {
3053 if (type->align_log2 != 0)
3054 return 1 << (type->align_log2 - 1);
3055 return 0;
3056 }
3057
3058 /* See gdbtypes.h. */
3059
3060 unsigned
3061 type_align (struct type *type)
3062 {
3063 /* Check alignment provided in the debug information. */
3064 unsigned raw_align = type_raw_align (type);
3065 if (raw_align != 0)
3066 return raw_align;
3067
3068 /* Allow the architecture to provide an alignment. */
3069 struct gdbarch *arch = get_type_arch (type);
3070 ULONGEST align = gdbarch_type_align (arch, type);
3071 if (align != 0)
3072 return align;
3073
3074 switch (TYPE_CODE (type))
3075 {
3076 case TYPE_CODE_PTR:
3077 case TYPE_CODE_FUNC:
3078 case TYPE_CODE_FLAGS:
3079 case TYPE_CODE_INT:
3080 case TYPE_CODE_RANGE:
3081 case TYPE_CODE_FLT:
3082 case TYPE_CODE_ENUM:
3083 case TYPE_CODE_REF:
3084 case TYPE_CODE_RVALUE_REF:
3085 case TYPE_CODE_CHAR:
3086 case TYPE_CODE_BOOL:
3087 case TYPE_CODE_DECFLOAT:
3088 case TYPE_CODE_METHODPTR:
3089 case TYPE_CODE_MEMBERPTR:
3090 align = type_length_units (check_typedef (type));
3091 break;
3092
3093 case TYPE_CODE_ARRAY:
3094 case TYPE_CODE_COMPLEX:
3095 case TYPE_CODE_TYPEDEF:
3096 align = type_align (TYPE_TARGET_TYPE (type));
3097 break;
3098
3099 case TYPE_CODE_STRUCT:
3100 case TYPE_CODE_UNION:
3101 {
3102 int number_of_non_static_fields = 0;
3103 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3104 {
3105 if (!field_is_static (&TYPE_FIELD (type, i)))
3106 {
3107 number_of_non_static_fields++;
3108 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3109 if (f_align == 0)
3110 {
3111 /* Don't pretend we know something we don't. */
3112 align = 0;
3113 break;
3114 }
3115 if (f_align > align)
3116 align = f_align;
3117 }
3118 }
3119 /* A struct with no fields, or with only static fields has an
3120 alignment of 1. */
3121 if (number_of_non_static_fields == 0)
3122 align = 1;
3123 }
3124 break;
3125
3126 case TYPE_CODE_SET:
3127 case TYPE_CODE_STRING:
3128 /* Not sure what to do here, and these can't appear in C or C++
3129 anyway. */
3130 break;
3131
3132 case TYPE_CODE_VOID:
3133 align = 1;
3134 break;
3135
3136 case TYPE_CODE_ERROR:
3137 case TYPE_CODE_METHOD:
3138 default:
3139 break;
3140 }
3141
3142 if ((align & (align - 1)) != 0)
3143 {
3144 /* Not a power of 2, so pass. */
3145 align = 0;
3146 }
3147
3148 return align;
3149 }
3150
3151 /* See gdbtypes.h. */
3152
3153 bool
3154 set_type_align (struct type *type, ULONGEST align)
3155 {
3156 /* Must be a power of 2. Zero is ok. */
3157 gdb_assert ((align & (align - 1)) == 0);
3158
3159 unsigned result = 0;
3160 while (align != 0)
3161 {
3162 ++result;
3163 align >>= 1;
3164 }
3165
3166 if (result >= (1 << TYPE_ALIGN_BITS))
3167 return false;
3168
3169 type->align_log2 = result;
3170 return true;
3171 }
3172
3173 \f
3174 /* Queries on types. */
3175
3176 int
3177 can_dereference (struct type *t)
3178 {
3179 /* FIXME: Should we return true for references as well as
3180 pointers? */
3181 t = check_typedef (t);
3182 return
3183 (t != NULL
3184 && TYPE_CODE (t) == TYPE_CODE_PTR
3185 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3186 }
3187
3188 int
3189 is_integral_type (struct type *t)
3190 {
3191 t = check_typedef (t);
3192 return
3193 ((t != NULL)
3194 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3195 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3196 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3197 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3198 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3199 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3200 }
3201
3202 int
3203 is_floating_type (struct type *t)
3204 {
3205 t = check_typedef (t);
3206 return
3207 ((t != NULL)
3208 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3209 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3210 }
3211
3212 /* Return true if TYPE is scalar. */
3213
3214 int
3215 is_scalar_type (struct type *type)
3216 {
3217 type = check_typedef (type);
3218
3219 switch (TYPE_CODE (type))
3220 {
3221 case TYPE_CODE_ARRAY:
3222 case TYPE_CODE_STRUCT:
3223 case TYPE_CODE_UNION:
3224 case TYPE_CODE_SET:
3225 case TYPE_CODE_STRING:
3226 return 0;
3227 default:
3228 return 1;
3229 }
3230 }
3231
3232 /* Return true if T is scalar, or a composite type which in practice has
3233 the memory layout of a scalar type. E.g., an array or struct with only
3234 one scalar element inside it, or a union with only scalar elements. */
3235
3236 int
3237 is_scalar_type_recursive (struct type *t)
3238 {
3239 t = check_typedef (t);
3240
3241 if (is_scalar_type (t))
3242 return 1;
3243 /* Are we dealing with an array or string of known dimensions? */
3244 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3245 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3246 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3247 {
3248 LONGEST low_bound, high_bound;
3249 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3250
3251 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3252
3253 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3254 }
3255 /* Are we dealing with a struct with one element? */
3256 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3257 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3258 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3259 {
3260 int i, n = TYPE_NFIELDS (t);
3261
3262 /* If all elements of the union are scalar, then the union is scalar. */
3263 for (i = 0; i < n; i++)
3264 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3265 return 0;
3266
3267 return 1;
3268 }
3269
3270 return 0;
3271 }
3272
3273 /* Return true is T is a class or a union. False otherwise. */
3274
3275 int
3276 class_or_union_p (const struct type *t)
3277 {
3278 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3279 || TYPE_CODE (t) == TYPE_CODE_UNION);
3280 }
3281
3282 /* A helper function which returns true if types A and B represent the
3283 "same" class type. This is true if the types have the same main
3284 type, or the same name. */
3285
3286 int
3287 class_types_same_p (const struct type *a, const struct type *b)
3288 {
3289 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3290 || (TYPE_NAME (a) && TYPE_NAME (b)
3291 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3292 }
3293
3294 /* If BASE is an ancestor of DCLASS return the distance between them.
3295 otherwise return -1;
3296 eg:
3297
3298 class A {};
3299 class B: public A {};
3300 class C: public B {};
3301 class D: C {};
3302
3303 distance_to_ancestor (A, A, 0) = 0
3304 distance_to_ancestor (A, B, 0) = 1
3305 distance_to_ancestor (A, C, 0) = 2
3306 distance_to_ancestor (A, D, 0) = 3
3307
3308 If PUBLIC is 1 then only public ancestors are considered,
3309 and the function returns the distance only if BASE is a public ancestor
3310 of DCLASS.
3311 Eg:
3312
3313 distance_to_ancestor (A, D, 1) = -1. */
3314
3315 static int
3316 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3317 {
3318 int i;
3319 int d;
3320
3321 base = check_typedef (base);
3322 dclass = check_typedef (dclass);
3323
3324 if (class_types_same_p (base, dclass))
3325 return 0;
3326
3327 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3328 {
3329 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3330 continue;
3331
3332 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3333 if (d >= 0)
3334 return 1 + d;
3335 }
3336
3337 return -1;
3338 }
3339
3340 /* Check whether BASE is an ancestor or base class or DCLASS
3341 Return 1 if so, and 0 if not.
3342 Note: If BASE and DCLASS are of the same type, this function
3343 will return 1. So for some class A, is_ancestor (A, A) will
3344 return 1. */
3345
3346 int
3347 is_ancestor (struct type *base, struct type *dclass)
3348 {
3349 return distance_to_ancestor (base, dclass, 0) >= 0;
3350 }
3351
3352 /* Like is_ancestor, but only returns true when BASE is a public
3353 ancestor of DCLASS. */
3354
3355 int
3356 is_public_ancestor (struct type *base, struct type *dclass)
3357 {
3358 return distance_to_ancestor (base, dclass, 1) >= 0;
3359 }
3360
3361 /* A helper function for is_unique_ancestor. */
3362
3363 static int
3364 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3365 int *offset,
3366 const gdb_byte *valaddr, int embedded_offset,
3367 CORE_ADDR address, struct value *val)
3368 {
3369 int i, count = 0;
3370
3371 base = check_typedef (base);
3372 dclass = check_typedef (dclass);
3373
3374 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3375 {
3376 struct type *iter;
3377 int this_offset;
3378
3379 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3380
3381 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3382 address, val);
3383
3384 if (class_types_same_p (base, iter))
3385 {
3386 /* If this is the first subclass, set *OFFSET and set count
3387 to 1. Otherwise, if this is at the same offset as
3388 previous instances, do nothing. Otherwise, increment
3389 count. */
3390 if (*offset == -1)
3391 {
3392 *offset = this_offset;
3393 count = 1;
3394 }
3395 else if (this_offset == *offset)
3396 {
3397 /* Nothing. */
3398 }
3399 else
3400 ++count;
3401 }
3402 else
3403 count += is_unique_ancestor_worker (base, iter, offset,
3404 valaddr,
3405 embedded_offset + this_offset,
3406 address, val);
3407 }
3408
3409 return count;
3410 }
3411
3412 /* Like is_ancestor, but only returns true if BASE is a unique base
3413 class of the type of VAL. */
3414
3415 int
3416 is_unique_ancestor (struct type *base, struct value *val)
3417 {
3418 int offset = -1;
3419
3420 return is_unique_ancestor_worker (base, value_type (val), &offset,
3421 value_contents_for_printing (val),
3422 value_embedded_offset (val),
3423 value_address (val), val) == 1;
3424 }
3425
3426 \f
3427 /* Overload resolution. */
3428
3429 /* Return the sum of the rank of A with the rank of B. */
3430
3431 struct rank
3432 sum_ranks (struct rank a, struct rank b)
3433 {
3434 struct rank c;
3435 c.rank = a.rank + b.rank;
3436 c.subrank = a.subrank + b.subrank;
3437 return c;
3438 }
3439
3440 /* Compare rank A and B and return:
3441 0 if a = b
3442 1 if a is better than b
3443 -1 if b is better than a. */
3444
3445 int
3446 compare_ranks (struct rank a, struct rank b)
3447 {
3448 if (a.rank == b.rank)
3449 {
3450 if (a.subrank == b.subrank)
3451 return 0;
3452 if (a.subrank < b.subrank)
3453 return 1;
3454 if (a.subrank > b.subrank)
3455 return -1;
3456 }
3457
3458 if (a.rank < b.rank)
3459 return 1;
3460
3461 /* a.rank > b.rank */
3462 return -1;
3463 }
3464
3465 /* Functions for overload resolution begin here. */
3466
3467 /* Compare two badness vectors A and B and return the result.
3468 0 => A and B are identical
3469 1 => A and B are incomparable
3470 2 => A is better than B
3471 3 => A is worse than B */
3472
3473 int
3474 compare_badness (const badness_vector &a, const badness_vector &b)
3475 {
3476 int i;
3477 int tmp;
3478 short found_pos = 0; /* any positives in c? */
3479 short found_neg = 0; /* any negatives in c? */
3480
3481 /* differing sizes => incomparable */
3482 if (a.size () != b.size ())
3483 return 1;
3484
3485 /* Subtract b from a */
3486 for (i = 0; i < a.size (); i++)
3487 {
3488 tmp = compare_ranks (b[i], a[i]);
3489 if (tmp > 0)
3490 found_pos = 1;
3491 else if (tmp < 0)
3492 found_neg = 1;
3493 }
3494
3495 if (found_pos)
3496 {
3497 if (found_neg)
3498 return 1; /* incomparable */
3499 else
3500 return 3; /* A > B */
3501 }
3502 else
3503 /* no positives */
3504 {
3505 if (found_neg)
3506 return 2; /* A < B */
3507 else
3508 return 0; /* A == B */
3509 }
3510 }
3511
3512 /* Rank a function by comparing its parameter types (PARMS), to the
3513 types of an argument list (ARGS). Return the badness vector. This
3514 has ARGS.size() + 1 entries. */
3515
3516 badness_vector
3517 rank_function (gdb::array_view<type *> parms,
3518 gdb::array_view<value *> args)
3519 {
3520 /* add 1 for the length-match rank. */
3521 badness_vector bv;
3522 bv.reserve (1 + args.size ());
3523
3524 /* First compare the lengths of the supplied lists.
3525 If there is a mismatch, set it to a high value. */
3526
3527 /* pai/1997-06-03 FIXME: when we have debug info about default
3528 arguments and ellipsis parameter lists, we should consider those
3529 and rank the length-match more finely. */
3530
3531 bv.push_back ((args.size () != parms.size ())
3532 ? LENGTH_MISMATCH_BADNESS
3533 : EXACT_MATCH_BADNESS);
3534
3535 /* Now rank all the parameters of the candidate function. */
3536 size_t min_len = std::min (parms.size (), args.size ());
3537
3538 for (size_t i = 0; i < min_len; i++)
3539 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3540 args[i]));
3541
3542 /* If more arguments than parameters, add dummy entries. */
3543 for (size_t i = min_len; i < args.size (); i++)
3544 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3545
3546 return bv;
3547 }
3548
3549 /* Compare the names of two integer types, assuming that any sign
3550 qualifiers have been checked already. We do it this way because
3551 there may be an "int" in the name of one of the types. */
3552
3553 static int
3554 integer_types_same_name_p (const char *first, const char *second)
3555 {
3556 int first_p, second_p;
3557
3558 /* If both are shorts, return 1; if neither is a short, keep
3559 checking. */
3560 first_p = (strstr (first, "short") != NULL);
3561 second_p = (strstr (second, "short") != NULL);
3562 if (first_p && second_p)
3563 return 1;
3564 if (first_p || second_p)
3565 return 0;
3566
3567 /* Likewise for long. */
3568 first_p = (strstr (first, "long") != NULL);
3569 second_p = (strstr (second, "long") != NULL);
3570 if (first_p && second_p)
3571 return 1;
3572 if (first_p || second_p)
3573 return 0;
3574
3575 /* Likewise for char. */
3576 first_p = (strstr (first, "char") != NULL);
3577 second_p = (strstr (second, "char") != NULL);
3578 if (first_p && second_p)
3579 return 1;
3580 if (first_p || second_p)
3581 return 0;
3582
3583 /* They must both be ints. */
3584 return 1;
3585 }
3586
3587 /* Compares type A to type B. Returns true if they represent the same
3588 type, false otherwise. */
3589
3590 bool
3591 types_equal (struct type *a, struct type *b)
3592 {
3593 /* Identical type pointers. */
3594 /* However, this still doesn't catch all cases of same type for b
3595 and a. The reason is that builtin types are different from
3596 the same ones constructed from the object. */
3597 if (a == b)
3598 return true;
3599
3600 /* Resolve typedefs */
3601 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3602 a = check_typedef (a);
3603 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3604 b = check_typedef (b);
3605
3606 /* If after resolving typedefs a and b are not of the same type
3607 code then they are not equal. */
3608 if (TYPE_CODE (a) != TYPE_CODE (b))
3609 return false;
3610
3611 /* If a and b are both pointers types or both reference types then
3612 they are equal of the same type iff the objects they refer to are
3613 of the same type. */
3614 if (TYPE_CODE (a) == TYPE_CODE_PTR
3615 || TYPE_CODE (a) == TYPE_CODE_REF)
3616 return types_equal (TYPE_TARGET_TYPE (a),
3617 TYPE_TARGET_TYPE (b));
3618
3619 /* Well, damnit, if the names are exactly the same, I'll say they
3620 are exactly the same. This happens when we generate method
3621 stubs. The types won't point to the same address, but they
3622 really are the same. */
3623
3624 if (TYPE_NAME (a) && TYPE_NAME (b)
3625 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3626 return true;
3627
3628 /* Check if identical after resolving typedefs. */
3629 if (a == b)
3630 return true;
3631
3632 /* Two function types are equal if their argument and return types
3633 are equal. */
3634 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3635 {
3636 int i;
3637
3638 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3639 return false;
3640
3641 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3642 return false;
3643
3644 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3645 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3646 return false;
3647
3648 return true;
3649 }
3650
3651 return false;
3652 }
3653 \f
3654 /* Deep comparison of types. */
3655
3656 /* An entry in the type-equality bcache. */
3657
3658 struct type_equality_entry
3659 {
3660 type_equality_entry (struct type *t1, struct type *t2)
3661 : type1 (t1),
3662 type2 (t2)
3663 {
3664 }
3665
3666 struct type *type1, *type2;
3667 };
3668
3669 /* A helper function to compare two strings. Returns true if they are
3670 the same, false otherwise. Handles NULLs properly. */
3671
3672 static bool
3673 compare_maybe_null_strings (const char *s, const char *t)
3674 {
3675 if (s == NULL || t == NULL)
3676 return s == t;
3677 return strcmp (s, t) == 0;
3678 }
3679
3680 /* A helper function for check_types_worklist that checks two types for
3681 "deep" equality. Returns true if the types are considered the
3682 same, false otherwise. */
3683
3684 static bool
3685 check_types_equal (struct type *type1, struct type *type2,
3686 std::vector<type_equality_entry> *worklist)
3687 {
3688 type1 = check_typedef (type1);
3689 type2 = check_typedef (type2);
3690
3691 if (type1 == type2)
3692 return true;
3693
3694 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3695 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3696 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3697 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3698 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
3699 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3700 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3701 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3702 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3703 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3704 return false;
3705
3706 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3707 return false;
3708 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3709 return false;
3710
3711 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3712 {
3713 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3714 return false;
3715 }
3716 else
3717 {
3718 int i;
3719
3720 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3721 {
3722 const struct field *field1 = &TYPE_FIELD (type1, i);
3723 const struct field *field2 = &TYPE_FIELD (type2, i);
3724
3725 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3726 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3727 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3728 return false;
3729 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3730 FIELD_NAME (*field2)))
3731 return false;
3732 switch (FIELD_LOC_KIND (*field1))
3733 {
3734 case FIELD_LOC_KIND_BITPOS:
3735 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3736 return false;
3737 break;
3738 case FIELD_LOC_KIND_ENUMVAL:
3739 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3740 return false;
3741 break;
3742 case FIELD_LOC_KIND_PHYSADDR:
3743 if (FIELD_STATIC_PHYSADDR (*field1)
3744 != FIELD_STATIC_PHYSADDR (*field2))
3745 return false;
3746 break;
3747 case FIELD_LOC_KIND_PHYSNAME:
3748 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3749 FIELD_STATIC_PHYSNAME (*field2)))
3750 return false;
3751 break;
3752 case FIELD_LOC_KIND_DWARF_BLOCK:
3753 {
3754 struct dwarf2_locexpr_baton *block1, *block2;
3755
3756 block1 = FIELD_DWARF_BLOCK (*field1);
3757 block2 = FIELD_DWARF_BLOCK (*field2);
3758 if (block1->per_cu != block2->per_cu
3759 || block1->size != block2->size
3760 || memcmp (block1->data, block2->data, block1->size) != 0)
3761 return false;
3762 }
3763 break;
3764 default:
3765 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3766 "%d by check_types_equal"),
3767 FIELD_LOC_KIND (*field1));
3768 }
3769
3770 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
3771 }
3772 }
3773
3774 if (TYPE_TARGET_TYPE (type1) != NULL)
3775 {
3776 if (TYPE_TARGET_TYPE (type2) == NULL)
3777 return false;
3778
3779 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3780 TYPE_TARGET_TYPE (type2));
3781 }
3782 else if (TYPE_TARGET_TYPE (type2) != NULL)
3783 return false;
3784
3785 return true;
3786 }
3787
3788 /* Check types on a worklist for equality. Returns false if any pair
3789 is not equal, true if they are all considered equal. */
3790
3791 static bool
3792 check_types_worklist (std::vector<type_equality_entry> *worklist,
3793 struct bcache *cache)
3794 {
3795 while (!worklist->empty ())
3796 {
3797 int added;
3798
3799 struct type_equality_entry entry = std::move (worklist->back ());
3800 worklist->pop_back ();
3801
3802 /* If the type pair has already been visited, we know it is
3803 ok. */
3804 cache->insert (&entry, sizeof (entry), &added);
3805 if (!added)
3806 continue;
3807
3808 if (!check_types_equal (entry.type1, entry.type2, worklist))
3809 return false;
3810 }
3811
3812 return true;
3813 }
3814
3815 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3816 "deep comparison". Otherwise return false. */
3817
3818 bool
3819 types_deeply_equal (struct type *type1, struct type *type2)
3820 {
3821 std::vector<type_equality_entry> worklist;
3822
3823 gdb_assert (type1 != NULL && type2 != NULL);
3824
3825 /* Early exit for the simple case. */
3826 if (type1 == type2)
3827 return true;
3828
3829 struct bcache cache (nullptr, nullptr);
3830 worklist.emplace_back (type1, type2);
3831 return check_types_worklist (&worklist, &cache);
3832 }
3833
3834 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3835 Otherwise return one. */
3836
3837 int
3838 type_not_allocated (const struct type *type)
3839 {
3840 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3841
3842 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3843 && !TYPE_DYN_PROP_ADDR (prop));
3844 }
3845
3846 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3847 Otherwise return one. */
3848
3849 int
3850 type_not_associated (const struct type *type)
3851 {
3852 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3853
3854 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3855 && !TYPE_DYN_PROP_ADDR (prop));
3856 }
3857
3858 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3859
3860 static struct rank
3861 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3862 {
3863 struct rank rank = {0,0};
3864
3865 switch (TYPE_CODE (arg))
3866 {
3867 case TYPE_CODE_PTR:
3868
3869 /* Allowed pointer conversions are:
3870 (a) pointer to void-pointer conversion. */
3871 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3872 return VOID_PTR_CONVERSION_BADNESS;
3873
3874 /* (b) pointer to ancestor-pointer conversion. */
3875 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3876 TYPE_TARGET_TYPE (arg),
3877 0);
3878 if (rank.subrank >= 0)
3879 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3880
3881 return INCOMPATIBLE_TYPE_BADNESS;
3882 case TYPE_CODE_ARRAY:
3883 {
3884 struct type *t1 = TYPE_TARGET_TYPE (parm);
3885 struct type *t2 = TYPE_TARGET_TYPE (arg);
3886
3887 if (types_equal (t1, t2))
3888 {
3889 /* Make sure they are CV equal. */
3890 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3891 rank.subrank |= CV_CONVERSION_CONST;
3892 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3893 rank.subrank |= CV_CONVERSION_VOLATILE;
3894 if (rank.subrank != 0)
3895 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3896 return EXACT_MATCH_BADNESS;
3897 }
3898 return INCOMPATIBLE_TYPE_BADNESS;
3899 }
3900 case TYPE_CODE_FUNC:
3901 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3902 case TYPE_CODE_INT:
3903 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3904 {
3905 if (value_as_long (value) == 0)
3906 {
3907 /* Null pointer conversion: allow it to be cast to a pointer.
3908 [4.10.1 of C++ standard draft n3290] */
3909 return NULL_POINTER_CONVERSION_BADNESS;
3910 }
3911 else
3912 {
3913 /* If type checking is disabled, allow the conversion. */
3914 if (!strict_type_checking)
3915 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3916 }
3917 }
3918 /* fall through */
3919 case TYPE_CODE_ENUM:
3920 case TYPE_CODE_FLAGS:
3921 case TYPE_CODE_CHAR:
3922 case TYPE_CODE_RANGE:
3923 case TYPE_CODE_BOOL:
3924 default:
3925 return INCOMPATIBLE_TYPE_BADNESS;
3926 }
3927 }
3928
3929 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3930
3931 static struct rank
3932 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3933 {
3934 switch (TYPE_CODE (arg))
3935 {
3936 case TYPE_CODE_PTR:
3937 case TYPE_CODE_ARRAY:
3938 return rank_one_type (TYPE_TARGET_TYPE (parm),
3939 TYPE_TARGET_TYPE (arg), NULL);
3940 default:
3941 return INCOMPATIBLE_TYPE_BADNESS;
3942 }
3943 }
3944
3945 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3946
3947 static struct rank
3948 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3949 {
3950 switch (TYPE_CODE (arg))
3951 {
3952 case TYPE_CODE_PTR: /* funcptr -> func */
3953 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3954 default:
3955 return INCOMPATIBLE_TYPE_BADNESS;
3956 }
3957 }
3958
3959 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3960
3961 static struct rank
3962 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3963 {
3964 switch (TYPE_CODE (arg))
3965 {
3966 case TYPE_CODE_INT:
3967 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3968 {
3969 /* Deal with signed, unsigned, and plain chars and
3970 signed and unsigned ints. */
3971 if (TYPE_NOSIGN (parm))
3972 {
3973 /* This case only for character types. */
3974 if (TYPE_NOSIGN (arg))
3975 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3976 else /* signed/unsigned char -> plain char */
3977 return INTEGER_CONVERSION_BADNESS;
3978 }
3979 else if (TYPE_UNSIGNED (parm))
3980 {
3981 if (TYPE_UNSIGNED (arg))
3982 {
3983 /* unsigned int -> unsigned int, or
3984 unsigned long -> unsigned long */
3985 if (integer_types_same_name_p (TYPE_NAME (parm),
3986 TYPE_NAME (arg)))
3987 return EXACT_MATCH_BADNESS;
3988 else if (integer_types_same_name_p (TYPE_NAME (arg),
3989 "int")
3990 && integer_types_same_name_p (TYPE_NAME (parm),
3991 "long"))
3992 /* unsigned int -> unsigned long */
3993 return INTEGER_PROMOTION_BADNESS;
3994 else
3995 /* unsigned long -> unsigned int */
3996 return INTEGER_CONVERSION_BADNESS;
3997 }
3998 else
3999 {
4000 if (integer_types_same_name_p (TYPE_NAME (arg),
4001 "long")
4002 && integer_types_same_name_p (TYPE_NAME (parm),
4003 "int"))
4004 /* signed long -> unsigned int */
4005 return INTEGER_CONVERSION_BADNESS;
4006 else
4007 /* signed int/long -> unsigned int/long */
4008 return INTEGER_CONVERSION_BADNESS;
4009 }
4010 }
4011 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4012 {
4013 if (integer_types_same_name_p (TYPE_NAME (parm),
4014 TYPE_NAME (arg)))
4015 return EXACT_MATCH_BADNESS;
4016 else if (integer_types_same_name_p (TYPE_NAME (arg),
4017 "int")
4018 && integer_types_same_name_p (TYPE_NAME (parm),
4019 "long"))
4020 return INTEGER_PROMOTION_BADNESS;
4021 else
4022 return INTEGER_CONVERSION_BADNESS;
4023 }
4024 else
4025 return INTEGER_CONVERSION_BADNESS;
4026 }
4027 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4028 return INTEGER_PROMOTION_BADNESS;
4029 else
4030 return INTEGER_CONVERSION_BADNESS;
4031 case TYPE_CODE_ENUM:
4032 case TYPE_CODE_FLAGS:
4033 case TYPE_CODE_CHAR:
4034 case TYPE_CODE_RANGE:
4035 case TYPE_CODE_BOOL:
4036 if (TYPE_DECLARED_CLASS (arg))
4037 return INCOMPATIBLE_TYPE_BADNESS;
4038 return INTEGER_PROMOTION_BADNESS;
4039 case TYPE_CODE_FLT:
4040 return INT_FLOAT_CONVERSION_BADNESS;
4041 case TYPE_CODE_PTR:
4042 return NS_POINTER_CONVERSION_BADNESS;
4043 default:
4044 return INCOMPATIBLE_TYPE_BADNESS;
4045 }
4046 }
4047
4048 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4049
4050 static struct rank
4051 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4052 {
4053 switch (TYPE_CODE (arg))
4054 {
4055 case TYPE_CODE_INT:
4056 case TYPE_CODE_CHAR:
4057 case TYPE_CODE_RANGE:
4058 case TYPE_CODE_BOOL:
4059 case TYPE_CODE_ENUM:
4060 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4061 return INCOMPATIBLE_TYPE_BADNESS;
4062 return INTEGER_CONVERSION_BADNESS;
4063 case TYPE_CODE_FLT:
4064 return INT_FLOAT_CONVERSION_BADNESS;
4065 default:
4066 return INCOMPATIBLE_TYPE_BADNESS;
4067 }
4068 }
4069
4070 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4071
4072 static struct rank
4073 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4074 {
4075 switch (TYPE_CODE (arg))
4076 {
4077 case TYPE_CODE_RANGE:
4078 case TYPE_CODE_BOOL:
4079 case TYPE_CODE_ENUM:
4080 if (TYPE_DECLARED_CLASS (arg))
4081 return INCOMPATIBLE_TYPE_BADNESS;
4082 return INTEGER_CONVERSION_BADNESS;
4083 case TYPE_CODE_FLT:
4084 return INT_FLOAT_CONVERSION_BADNESS;
4085 case TYPE_CODE_INT:
4086 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4087 return INTEGER_CONVERSION_BADNESS;
4088 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4089 return INTEGER_PROMOTION_BADNESS;
4090 /* fall through */
4091 case TYPE_CODE_CHAR:
4092 /* Deal with signed, unsigned, and plain chars for C++ and
4093 with int cases falling through from previous case. */
4094 if (TYPE_NOSIGN (parm))
4095 {
4096 if (TYPE_NOSIGN (arg))
4097 return EXACT_MATCH_BADNESS;
4098 else
4099 return INTEGER_CONVERSION_BADNESS;
4100 }
4101 else if (TYPE_UNSIGNED (parm))
4102 {
4103 if (TYPE_UNSIGNED (arg))
4104 return EXACT_MATCH_BADNESS;
4105 else
4106 return INTEGER_PROMOTION_BADNESS;
4107 }
4108 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4109 return EXACT_MATCH_BADNESS;
4110 else
4111 return INTEGER_CONVERSION_BADNESS;
4112 default:
4113 return INCOMPATIBLE_TYPE_BADNESS;
4114 }
4115 }
4116
4117 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4118
4119 static struct rank
4120 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4121 {
4122 switch (TYPE_CODE (arg))
4123 {
4124 case TYPE_CODE_INT:
4125 case TYPE_CODE_CHAR:
4126 case TYPE_CODE_RANGE:
4127 case TYPE_CODE_BOOL:
4128 case TYPE_CODE_ENUM:
4129 return INTEGER_CONVERSION_BADNESS;
4130 case TYPE_CODE_FLT:
4131 return INT_FLOAT_CONVERSION_BADNESS;
4132 default:
4133 return INCOMPATIBLE_TYPE_BADNESS;
4134 }
4135 }
4136
4137 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4138
4139 static struct rank
4140 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4141 {
4142 switch (TYPE_CODE (arg))
4143 {
4144 /* n3290 draft, section 4.12.1 (conv.bool):
4145
4146 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4147 pointer to member type can be converted to a prvalue of type
4148 bool. A zero value, null pointer value, or null member pointer
4149 value is converted to false; any other value is converted to
4150 true. A prvalue of type std::nullptr_t can be converted to a
4151 prvalue of type bool; the resulting value is false." */
4152 case TYPE_CODE_INT:
4153 case TYPE_CODE_CHAR:
4154 case TYPE_CODE_ENUM:
4155 case TYPE_CODE_FLT:
4156 case TYPE_CODE_MEMBERPTR:
4157 case TYPE_CODE_PTR:
4158 return BOOL_CONVERSION_BADNESS;
4159 case TYPE_CODE_RANGE:
4160 return INCOMPATIBLE_TYPE_BADNESS;
4161 case TYPE_CODE_BOOL:
4162 return EXACT_MATCH_BADNESS;
4163 default:
4164 return INCOMPATIBLE_TYPE_BADNESS;
4165 }
4166 }
4167
4168 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4169
4170 static struct rank
4171 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4172 {
4173 switch (TYPE_CODE (arg))
4174 {
4175 case TYPE_CODE_FLT:
4176 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4177 return FLOAT_PROMOTION_BADNESS;
4178 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4179 return EXACT_MATCH_BADNESS;
4180 else
4181 return FLOAT_CONVERSION_BADNESS;
4182 case TYPE_CODE_INT:
4183 case TYPE_CODE_BOOL:
4184 case TYPE_CODE_ENUM:
4185 case TYPE_CODE_RANGE:
4186 case TYPE_CODE_CHAR:
4187 return INT_FLOAT_CONVERSION_BADNESS;
4188 default:
4189 return INCOMPATIBLE_TYPE_BADNESS;
4190 }
4191 }
4192
4193 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4194
4195 static struct rank
4196 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4197 {
4198 switch (TYPE_CODE (arg))
4199 { /* Strictly not needed for C++, but... */
4200 case TYPE_CODE_FLT:
4201 return FLOAT_PROMOTION_BADNESS;
4202 case TYPE_CODE_COMPLEX:
4203 return EXACT_MATCH_BADNESS;
4204 default:
4205 return INCOMPATIBLE_TYPE_BADNESS;
4206 }
4207 }
4208
4209 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4210
4211 static struct rank
4212 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4213 {
4214 struct rank rank = {0, 0};
4215
4216 switch (TYPE_CODE (arg))
4217 {
4218 case TYPE_CODE_STRUCT:
4219 /* Check for derivation */
4220 rank.subrank = distance_to_ancestor (parm, arg, 0);
4221 if (rank.subrank >= 0)
4222 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4223 /* fall through */
4224 default:
4225 return INCOMPATIBLE_TYPE_BADNESS;
4226 }
4227 }
4228
4229 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4230
4231 static struct rank
4232 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4233 {
4234 switch (TYPE_CODE (arg))
4235 {
4236 /* Not in C++ */
4237 case TYPE_CODE_SET:
4238 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4239 TYPE_FIELD_TYPE (arg, 0), NULL);
4240 default:
4241 return INCOMPATIBLE_TYPE_BADNESS;
4242 }
4243 }
4244
4245 /* Compare one type (PARM) for compatibility with another (ARG).
4246 * PARM is intended to be the parameter type of a function; and
4247 * ARG is the supplied argument's type. This function tests if
4248 * the latter can be converted to the former.
4249 * VALUE is the argument's value or NULL if none (or called recursively)
4250 *
4251 * Return 0 if they are identical types;
4252 * Otherwise, return an integer which corresponds to how compatible
4253 * PARM is to ARG. The higher the return value, the worse the match.
4254 * Generally the "bad" conversions are all uniformly assigned a 100. */
4255
4256 struct rank
4257 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4258 {
4259 struct rank rank = {0,0};
4260
4261 /* Resolve typedefs */
4262 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4263 parm = check_typedef (parm);
4264 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4265 arg = check_typedef (arg);
4266
4267 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4268 {
4269 if (VALUE_LVAL (value) == not_lval)
4270 {
4271 /* Rvalues should preferably bind to rvalue references or const
4272 lvalue references. */
4273 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4274 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4275 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4276 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4277 else
4278 return INCOMPATIBLE_TYPE_BADNESS;
4279 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4280 }
4281 else
4282 {
4283 /* Lvalues should prefer lvalue overloads. */
4284 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4285 {
4286 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4287 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4288 }
4289 }
4290 }
4291
4292 if (types_equal (parm, arg))
4293 {
4294 struct type *t1 = parm;
4295 struct type *t2 = arg;
4296
4297 /* For pointers and references, compare target type. */
4298 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4299 {
4300 t1 = TYPE_TARGET_TYPE (parm);
4301 t2 = TYPE_TARGET_TYPE (arg);
4302 }
4303
4304 /* Make sure they are CV equal, too. */
4305 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4306 rank.subrank |= CV_CONVERSION_CONST;
4307 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4308 rank.subrank |= CV_CONVERSION_VOLATILE;
4309 if (rank.subrank != 0)
4310 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4311 return EXACT_MATCH_BADNESS;
4312 }
4313
4314 /* See through references, since we can almost make non-references
4315 references. */
4316
4317 if (TYPE_IS_REFERENCE (arg))
4318 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4319 REFERENCE_CONVERSION_BADNESS));
4320 if (TYPE_IS_REFERENCE (parm))
4321 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4322 REFERENCE_CONVERSION_BADNESS));
4323 if (overload_debug)
4324 /* Debugging only. */
4325 fprintf_filtered (gdb_stderr,
4326 "------ Arg is %s [%d], parm is %s [%d]\n",
4327 TYPE_NAME (arg), TYPE_CODE (arg),
4328 TYPE_NAME (parm), TYPE_CODE (parm));
4329
4330 /* x -> y means arg of type x being supplied for parameter of type y. */
4331
4332 switch (TYPE_CODE (parm))
4333 {
4334 case TYPE_CODE_PTR:
4335 return rank_one_type_parm_ptr (parm, arg, value);
4336 case TYPE_CODE_ARRAY:
4337 return rank_one_type_parm_array (parm, arg, value);
4338 case TYPE_CODE_FUNC:
4339 return rank_one_type_parm_func (parm, arg, value);
4340 case TYPE_CODE_INT:
4341 return rank_one_type_parm_int (parm, arg, value);
4342 case TYPE_CODE_ENUM:
4343 return rank_one_type_parm_enum (parm, arg, value);
4344 case TYPE_CODE_CHAR:
4345 return rank_one_type_parm_char (parm, arg, value);
4346 case TYPE_CODE_RANGE:
4347 return rank_one_type_parm_range (parm, arg, value);
4348 case TYPE_CODE_BOOL:
4349 return rank_one_type_parm_bool (parm, arg, value);
4350 case TYPE_CODE_FLT:
4351 return rank_one_type_parm_float (parm, arg, value);
4352 case TYPE_CODE_COMPLEX:
4353 return rank_one_type_parm_complex (parm, arg, value);
4354 case TYPE_CODE_STRUCT:
4355 return rank_one_type_parm_struct (parm, arg, value);
4356 case TYPE_CODE_SET:
4357 return rank_one_type_parm_set (parm, arg, value);
4358 default:
4359 return INCOMPATIBLE_TYPE_BADNESS;
4360 } /* switch (TYPE_CODE (arg)) */
4361 }
4362
4363 /* End of functions for overload resolution. */
4364 \f
4365 /* Routines to pretty-print types. */
4366
4367 static void
4368 print_bit_vector (B_TYPE *bits, int nbits)
4369 {
4370 int bitno;
4371
4372 for (bitno = 0; bitno < nbits; bitno++)
4373 {
4374 if ((bitno % 8) == 0)
4375 {
4376 puts_filtered (" ");
4377 }
4378 if (B_TST (bits, bitno))
4379 printf_filtered (("1"));
4380 else
4381 printf_filtered (("0"));
4382 }
4383 }
4384
4385 /* Note the first arg should be the "this" pointer, we may not want to
4386 include it since we may get into a infinitely recursive
4387 situation. */
4388
4389 static void
4390 print_args (struct field *args, int nargs, int spaces)
4391 {
4392 if (args != NULL)
4393 {
4394 int i;
4395
4396 for (i = 0; i < nargs; i++)
4397 {
4398 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4399 args[i].name != NULL ? args[i].name : "<NULL>");
4400 recursive_dump_type (args[i].type, spaces + 2);
4401 }
4402 }
4403 }
4404
4405 int
4406 field_is_static (struct field *f)
4407 {
4408 /* "static" fields are the fields whose location is not relative
4409 to the address of the enclosing struct. It would be nice to
4410 have a dedicated flag that would be set for static fields when
4411 the type is being created. But in practice, checking the field
4412 loc_kind should give us an accurate answer. */
4413 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4414 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4415 }
4416
4417 static void
4418 dump_fn_fieldlists (struct type *type, int spaces)
4419 {
4420 int method_idx;
4421 int overload_idx;
4422 struct fn_field *f;
4423
4424 printfi_filtered (spaces, "fn_fieldlists ");
4425 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4426 printf_filtered ("\n");
4427 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4428 {
4429 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4430 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4431 method_idx,
4432 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4433 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4434 gdb_stdout);
4435 printf_filtered (_(") length %d\n"),
4436 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4437 for (overload_idx = 0;
4438 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4439 overload_idx++)
4440 {
4441 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4442 overload_idx,
4443 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4444 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4445 gdb_stdout);
4446 printf_filtered (")\n");
4447 printfi_filtered (spaces + 8, "type ");
4448 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4449 gdb_stdout);
4450 printf_filtered ("\n");
4451
4452 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4453 spaces + 8 + 2);
4454
4455 printfi_filtered (spaces + 8, "args ");
4456 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4457 gdb_stdout);
4458 printf_filtered ("\n");
4459 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4460 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4461 spaces + 8 + 2);
4462 printfi_filtered (spaces + 8, "fcontext ");
4463 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4464 gdb_stdout);
4465 printf_filtered ("\n");
4466
4467 printfi_filtered (spaces + 8, "is_const %d\n",
4468 TYPE_FN_FIELD_CONST (f, overload_idx));
4469 printfi_filtered (spaces + 8, "is_volatile %d\n",
4470 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4471 printfi_filtered (spaces + 8, "is_private %d\n",
4472 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4473 printfi_filtered (spaces + 8, "is_protected %d\n",
4474 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4475 printfi_filtered (spaces + 8, "is_stub %d\n",
4476 TYPE_FN_FIELD_STUB (f, overload_idx));
4477 printfi_filtered (spaces + 8, "voffset %u\n",
4478 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4479 }
4480 }
4481 }
4482
4483 static void
4484 print_cplus_stuff (struct type *type, int spaces)
4485 {
4486 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4487 printfi_filtered (spaces, "vptr_basetype ");
4488 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4489 puts_filtered ("\n");
4490 if (TYPE_VPTR_BASETYPE (type) != NULL)
4491 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4492
4493 printfi_filtered (spaces, "n_baseclasses %d\n",
4494 TYPE_N_BASECLASSES (type));
4495 printfi_filtered (spaces, "nfn_fields %d\n",
4496 TYPE_NFN_FIELDS (type));
4497 if (TYPE_N_BASECLASSES (type) > 0)
4498 {
4499 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4500 TYPE_N_BASECLASSES (type));
4501 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4502 gdb_stdout);
4503 printf_filtered (")");
4504
4505 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4506 TYPE_N_BASECLASSES (type));
4507 puts_filtered ("\n");
4508 }
4509 if (TYPE_NFIELDS (type) > 0)
4510 {
4511 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4512 {
4513 printfi_filtered (spaces,
4514 "private_field_bits (%d bits at *",
4515 TYPE_NFIELDS (type));
4516 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4517 gdb_stdout);
4518 printf_filtered (")");
4519 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4520 TYPE_NFIELDS (type));
4521 puts_filtered ("\n");
4522 }
4523 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4524 {
4525 printfi_filtered (spaces,
4526 "protected_field_bits (%d bits at *",
4527 TYPE_NFIELDS (type));
4528 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4529 gdb_stdout);
4530 printf_filtered (")");
4531 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4532 TYPE_NFIELDS (type));
4533 puts_filtered ("\n");
4534 }
4535 }
4536 if (TYPE_NFN_FIELDS (type) > 0)
4537 {
4538 dump_fn_fieldlists (type, spaces);
4539 }
4540 }
4541
4542 /* Print the contents of the TYPE's type_specific union, assuming that
4543 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4544
4545 static void
4546 print_gnat_stuff (struct type *type, int spaces)
4547 {
4548 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4549
4550 if (descriptive_type == NULL)
4551 printfi_filtered (spaces + 2, "no descriptive type\n");
4552 else
4553 {
4554 printfi_filtered (spaces + 2, "descriptive type\n");
4555 recursive_dump_type (descriptive_type, spaces + 4);
4556 }
4557 }
4558
4559 static struct obstack dont_print_type_obstack;
4560
4561 void
4562 recursive_dump_type (struct type *type, int spaces)
4563 {
4564 int idx;
4565
4566 if (spaces == 0)
4567 obstack_begin (&dont_print_type_obstack, 0);
4568
4569 if (TYPE_NFIELDS (type) > 0
4570 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4571 {
4572 struct type **first_dont_print
4573 = (struct type **) obstack_base (&dont_print_type_obstack);
4574
4575 int i = (struct type **)
4576 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4577
4578 while (--i >= 0)
4579 {
4580 if (type == first_dont_print[i])
4581 {
4582 printfi_filtered (spaces, "type node ");
4583 gdb_print_host_address (type, gdb_stdout);
4584 printf_filtered (_(" <same as already seen type>\n"));
4585 return;
4586 }
4587 }
4588
4589 obstack_ptr_grow (&dont_print_type_obstack, type);
4590 }
4591
4592 printfi_filtered (spaces, "type node ");
4593 gdb_print_host_address (type, gdb_stdout);
4594 printf_filtered ("\n");
4595 printfi_filtered (spaces, "name '%s' (",
4596 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4597 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4598 printf_filtered (")\n");
4599 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4600 switch (TYPE_CODE (type))
4601 {
4602 case TYPE_CODE_UNDEF:
4603 printf_filtered ("(TYPE_CODE_UNDEF)");
4604 break;
4605 case TYPE_CODE_PTR:
4606 printf_filtered ("(TYPE_CODE_PTR)");
4607 break;
4608 case TYPE_CODE_ARRAY:
4609 printf_filtered ("(TYPE_CODE_ARRAY)");
4610 break;
4611 case TYPE_CODE_STRUCT:
4612 printf_filtered ("(TYPE_CODE_STRUCT)");
4613 break;
4614 case TYPE_CODE_UNION:
4615 printf_filtered ("(TYPE_CODE_UNION)");
4616 break;
4617 case TYPE_CODE_ENUM:
4618 printf_filtered ("(TYPE_CODE_ENUM)");
4619 break;
4620 case TYPE_CODE_FLAGS:
4621 printf_filtered ("(TYPE_CODE_FLAGS)");
4622 break;
4623 case TYPE_CODE_FUNC:
4624 printf_filtered ("(TYPE_CODE_FUNC)");
4625 break;
4626 case TYPE_CODE_INT:
4627 printf_filtered ("(TYPE_CODE_INT)");
4628 break;
4629 case TYPE_CODE_FLT:
4630 printf_filtered ("(TYPE_CODE_FLT)");
4631 break;
4632 case TYPE_CODE_VOID:
4633 printf_filtered ("(TYPE_CODE_VOID)");
4634 break;
4635 case TYPE_CODE_SET:
4636 printf_filtered ("(TYPE_CODE_SET)");
4637 break;
4638 case TYPE_CODE_RANGE:
4639 printf_filtered ("(TYPE_CODE_RANGE)");
4640 break;
4641 case TYPE_CODE_STRING:
4642 printf_filtered ("(TYPE_CODE_STRING)");
4643 break;
4644 case TYPE_CODE_ERROR:
4645 printf_filtered ("(TYPE_CODE_ERROR)");
4646 break;
4647 case TYPE_CODE_MEMBERPTR:
4648 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4649 break;
4650 case TYPE_CODE_METHODPTR:
4651 printf_filtered ("(TYPE_CODE_METHODPTR)");
4652 break;
4653 case TYPE_CODE_METHOD:
4654 printf_filtered ("(TYPE_CODE_METHOD)");
4655 break;
4656 case TYPE_CODE_REF:
4657 printf_filtered ("(TYPE_CODE_REF)");
4658 break;
4659 case TYPE_CODE_CHAR:
4660 printf_filtered ("(TYPE_CODE_CHAR)");
4661 break;
4662 case TYPE_CODE_BOOL:
4663 printf_filtered ("(TYPE_CODE_BOOL)");
4664 break;
4665 case TYPE_CODE_COMPLEX:
4666 printf_filtered ("(TYPE_CODE_COMPLEX)");
4667 break;
4668 case TYPE_CODE_TYPEDEF:
4669 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4670 break;
4671 case TYPE_CODE_NAMESPACE:
4672 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4673 break;
4674 default:
4675 printf_filtered ("(UNKNOWN TYPE CODE)");
4676 break;
4677 }
4678 puts_filtered ("\n");
4679 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
4680 if (TYPE_OBJFILE_OWNED (type))
4681 {
4682 printfi_filtered (spaces, "objfile ");
4683 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4684 }
4685 else
4686 {
4687 printfi_filtered (spaces, "gdbarch ");
4688 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4689 }
4690 printf_filtered ("\n");
4691 printfi_filtered (spaces, "target_type ");
4692 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4693 printf_filtered ("\n");
4694 if (TYPE_TARGET_TYPE (type) != NULL)
4695 {
4696 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4697 }
4698 printfi_filtered (spaces, "pointer_type ");
4699 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4700 printf_filtered ("\n");
4701 printfi_filtered (spaces, "reference_type ");
4702 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4703 printf_filtered ("\n");
4704 printfi_filtered (spaces, "type_chain ");
4705 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4706 printf_filtered ("\n");
4707 printfi_filtered (spaces, "instance_flags 0x%x",
4708 TYPE_INSTANCE_FLAGS (type));
4709 if (TYPE_CONST (type))
4710 {
4711 puts_filtered (" TYPE_CONST");
4712 }
4713 if (TYPE_VOLATILE (type))
4714 {
4715 puts_filtered (" TYPE_VOLATILE");
4716 }
4717 if (TYPE_CODE_SPACE (type))
4718 {
4719 puts_filtered (" TYPE_CODE_SPACE");
4720 }
4721 if (TYPE_DATA_SPACE (type))
4722 {
4723 puts_filtered (" TYPE_DATA_SPACE");
4724 }
4725 if (TYPE_ADDRESS_CLASS_1 (type))
4726 {
4727 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4728 }
4729 if (TYPE_ADDRESS_CLASS_2 (type))
4730 {
4731 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4732 }
4733 if (TYPE_RESTRICT (type))
4734 {
4735 puts_filtered (" TYPE_RESTRICT");
4736 }
4737 if (TYPE_ATOMIC (type))
4738 {
4739 puts_filtered (" TYPE_ATOMIC");
4740 }
4741 puts_filtered ("\n");
4742
4743 printfi_filtered (spaces, "flags");
4744 if (TYPE_UNSIGNED (type))
4745 {
4746 puts_filtered (" TYPE_UNSIGNED");
4747 }
4748 if (TYPE_NOSIGN (type))
4749 {
4750 puts_filtered (" TYPE_NOSIGN");
4751 }
4752 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
4753 {
4754 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
4755 }
4756 if (TYPE_STUB (type))
4757 {
4758 puts_filtered (" TYPE_STUB");
4759 }
4760 if (TYPE_TARGET_STUB (type))
4761 {
4762 puts_filtered (" TYPE_TARGET_STUB");
4763 }
4764 if (TYPE_PROTOTYPED (type))
4765 {
4766 puts_filtered (" TYPE_PROTOTYPED");
4767 }
4768 if (TYPE_INCOMPLETE (type))
4769 {
4770 puts_filtered (" TYPE_INCOMPLETE");
4771 }
4772 if (TYPE_VARARGS (type))
4773 {
4774 puts_filtered (" TYPE_VARARGS");
4775 }
4776 /* This is used for things like AltiVec registers on ppc. Gcc emits
4777 an attribute for the array type, which tells whether or not we
4778 have a vector, instead of a regular array. */
4779 if (TYPE_VECTOR (type))
4780 {
4781 puts_filtered (" TYPE_VECTOR");
4782 }
4783 if (TYPE_FIXED_INSTANCE (type))
4784 {
4785 puts_filtered (" TYPE_FIXED_INSTANCE");
4786 }
4787 if (TYPE_STUB_SUPPORTED (type))
4788 {
4789 puts_filtered (" TYPE_STUB_SUPPORTED");
4790 }
4791 if (TYPE_NOTTEXT (type))
4792 {
4793 puts_filtered (" TYPE_NOTTEXT");
4794 }
4795 puts_filtered ("\n");
4796 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4797 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4798 puts_filtered ("\n");
4799 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4800 {
4801 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4802 printfi_filtered (spaces + 2,
4803 "[%d] enumval %s type ",
4804 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4805 else
4806 printfi_filtered (spaces + 2,
4807 "[%d] bitpos %s bitsize %d type ",
4808 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4809 TYPE_FIELD_BITSIZE (type, idx));
4810 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4811 printf_filtered (" name '%s' (",
4812 TYPE_FIELD_NAME (type, idx) != NULL
4813 ? TYPE_FIELD_NAME (type, idx)
4814 : "<NULL>");
4815 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4816 printf_filtered (")\n");
4817 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4818 {
4819 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4820 }
4821 }
4822 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4823 {
4824 printfi_filtered (spaces, "low %s%s high %s%s\n",
4825 plongest (TYPE_LOW_BOUND (type)),
4826 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4827 plongest (TYPE_HIGH_BOUND (type)),
4828 TYPE_HIGH_BOUND_UNDEFINED (type)
4829 ? " (undefined)" : "");
4830 }
4831
4832 switch (TYPE_SPECIFIC_FIELD (type))
4833 {
4834 case TYPE_SPECIFIC_CPLUS_STUFF:
4835 printfi_filtered (spaces, "cplus_stuff ");
4836 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4837 gdb_stdout);
4838 puts_filtered ("\n");
4839 print_cplus_stuff (type, spaces);
4840 break;
4841
4842 case TYPE_SPECIFIC_GNAT_STUFF:
4843 printfi_filtered (spaces, "gnat_stuff ");
4844 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4845 puts_filtered ("\n");
4846 print_gnat_stuff (type, spaces);
4847 break;
4848
4849 case TYPE_SPECIFIC_FLOATFORMAT:
4850 printfi_filtered (spaces, "floatformat ");
4851 if (TYPE_FLOATFORMAT (type) == NULL
4852 || TYPE_FLOATFORMAT (type)->name == NULL)
4853 puts_filtered ("(null)");
4854 else
4855 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4856 puts_filtered ("\n");
4857 break;
4858
4859 case TYPE_SPECIFIC_FUNC:
4860 printfi_filtered (spaces, "calling_convention %d\n",
4861 TYPE_CALLING_CONVENTION (type));
4862 /* tail_call_list is not printed. */
4863 break;
4864
4865 case TYPE_SPECIFIC_SELF_TYPE:
4866 printfi_filtered (spaces, "self_type ");
4867 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4868 puts_filtered ("\n");
4869 break;
4870 }
4871
4872 if (spaces == 0)
4873 obstack_free (&dont_print_type_obstack, NULL);
4874 }
4875 \f
4876 /* Trivial helpers for the libiberty hash table, for mapping one
4877 type to another. */
4878
4879 struct type_pair : public allocate_on_obstack
4880 {
4881 type_pair (struct type *old_, struct type *newobj_)
4882 : old (old_), newobj (newobj_)
4883 {}
4884
4885 struct type * const old, * const newobj;
4886 };
4887
4888 static hashval_t
4889 type_pair_hash (const void *item)
4890 {
4891 const struct type_pair *pair = (const struct type_pair *) item;
4892
4893 return htab_hash_pointer (pair->old);
4894 }
4895
4896 static int
4897 type_pair_eq (const void *item_lhs, const void *item_rhs)
4898 {
4899 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4900 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4901
4902 return lhs->old == rhs->old;
4903 }
4904
4905 /* Allocate the hash table used by copy_type_recursive to walk
4906 types without duplicates. We use OBJFILE's obstack, because
4907 OBJFILE is about to be deleted. */
4908
4909 htab_t
4910 create_copied_types_hash (struct objfile *objfile)
4911 {
4912 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4913 NULL, &objfile->objfile_obstack,
4914 hashtab_obstack_allocate,
4915 dummy_obstack_deallocate);
4916 }
4917
4918 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4919
4920 static struct dynamic_prop_list *
4921 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4922 struct dynamic_prop_list *list)
4923 {
4924 struct dynamic_prop_list *copy = list;
4925 struct dynamic_prop_list **node_ptr = &copy;
4926
4927 while (*node_ptr != NULL)
4928 {
4929 struct dynamic_prop_list *node_copy;
4930
4931 node_copy = ((struct dynamic_prop_list *)
4932 obstack_copy (objfile_obstack, *node_ptr,
4933 sizeof (struct dynamic_prop_list)));
4934 node_copy->prop = (*node_ptr)->prop;
4935 *node_ptr = node_copy;
4936
4937 node_ptr = &node_copy->next;
4938 }
4939
4940 return copy;
4941 }
4942
4943 /* Recursively copy (deep copy) TYPE, if it is associated with
4944 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4945 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4946 it is not associated with OBJFILE. */
4947
4948 struct type *
4949 copy_type_recursive (struct objfile *objfile,
4950 struct type *type,
4951 htab_t copied_types)
4952 {
4953 void **slot;
4954 struct type *new_type;
4955
4956 if (! TYPE_OBJFILE_OWNED (type))
4957 return type;
4958
4959 /* This type shouldn't be pointing to any types in other objfiles;
4960 if it did, the type might disappear unexpectedly. */
4961 gdb_assert (TYPE_OBJFILE (type) == objfile);
4962
4963 struct type_pair pair (type, nullptr);
4964
4965 slot = htab_find_slot (copied_types, &pair, INSERT);
4966 if (*slot != NULL)
4967 return ((struct type_pair *) *slot)->newobj;
4968
4969 new_type = alloc_type_arch (get_type_arch (type));
4970
4971 /* We must add the new type to the hash table immediately, in case
4972 we encounter this type again during a recursive call below. */
4973 struct type_pair *stored
4974 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4975
4976 *slot = stored;
4977
4978 /* Copy the common fields of types. For the main type, we simply
4979 copy the entire thing and then update specific fields as needed. */
4980 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4981 TYPE_OBJFILE_OWNED (new_type) = 0;
4982 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4983
4984 if (TYPE_NAME (type))
4985 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4986
4987 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4988 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4989
4990 /* Copy the fields. */
4991 if (TYPE_NFIELDS (type))
4992 {
4993 int i, nfields;
4994
4995 nfields = TYPE_NFIELDS (type);
4996 TYPE_FIELDS (new_type) = (struct field *)
4997 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
4998 for (i = 0; i < nfields; i++)
4999 {
5000 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5001 TYPE_FIELD_ARTIFICIAL (type, i);
5002 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5003 if (TYPE_FIELD_TYPE (type, i))
5004 TYPE_FIELD_TYPE (new_type, i)
5005 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
5006 copied_types);
5007 if (TYPE_FIELD_NAME (type, i))
5008 TYPE_FIELD_NAME (new_type, i) =
5009 xstrdup (TYPE_FIELD_NAME (type, i));
5010 switch (TYPE_FIELD_LOC_KIND (type, i))
5011 {
5012 case FIELD_LOC_KIND_BITPOS:
5013 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
5014 TYPE_FIELD_BITPOS (type, i));
5015 break;
5016 case FIELD_LOC_KIND_ENUMVAL:
5017 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
5018 TYPE_FIELD_ENUMVAL (type, i));
5019 break;
5020 case FIELD_LOC_KIND_PHYSADDR:
5021 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
5022 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5023 break;
5024 case FIELD_LOC_KIND_PHYSNAME:
5025 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
5026 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5027 i)));
5028 break;
5029 default:
5030 internal_error (__FILE__, __LINE__,
5031 _("Unexpected type field location kind: %d"),
5032 TYPE_FIELD_LOC_KIND (type, i));
5033 }
5034 }
5035 }
5036
5037 /* For range types, copy the bounds information. */
5038 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5039 {
5040 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
5041 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
5042 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
5043 }
5044
5045 if (TYPE_DYN_PROP_LIST (type) != NULL)
5046 TYPE_DYN_PROP_LIST (new_type)
5047 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5048 TYPE_DYN_PROP_LIST (type));
5049
5050
5051 /* Copy pointers to other types. */
5052 if (TYPE_TARGET_TYPE (type))
5053 TYPE_TARGET_TYPE (new_type) =
5054 copy_type_recursive (objfile,
5055 TYPE_TARGET_TYPE (type),
5056 copied_types);
5057
5058 /* Maybe copy the type_specific bits.
5059
5060 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5061 base classes and methods. There's no fundamental reason why we
5062 can't, but at the moment it is not needed. */
5063
5064 switch (TYPE_SPECIFIC_FIELD (type))
5065 {
5066 case TYPE_SPECIFIC_NONE:
5067 break;
5068 case TYPE_SPECIFIC_FUNC:
5069 INIT_FUNC_SPECIFIC (new_type);
5070 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5071 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5072 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5073 break;
5074 case TYPE_SPECIFIC_FLOATFORMAT:
5075 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5076 break;
5077 case TYPE_SPECIFIC_CPLUS_STUFF:
5078 INIT_CPLUS_SPECIFIC (new_type);
5079 break;
5080 case TYPE_SPECIFIC_GNAT_STUFF:
5081 INIT_GNAT_SPECIFIC (new_type);
5082 break;
5083 case TYPE_SPECIFIC_SELF_TYPE:
5084 set_type_self_type (new_type,
5085 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5086 copied_types));
5087 break;
5088 default:
5089 gdb_assert_not_reached ("bad type_specific_kind");
5090 }
5091
5092 return new_type;
5093 }
5094
5095 /* Make a copy of the given TYPE, except that the pointer & reference
5096 types are not preserved.
5097
5098 This function assumes that the given type has an associated objfile.
5099 This objfile is used to allocate the new type. */
5100
5101 struct type *
5102 copy_type (const struct type *type)
5103 {
5104 struct type *new_type;
5105
5106 gdb_assert (TYPE_OBJFILE_OWNED (type));
5107
5108 new_type = alloc_type_copy (type);
5109 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5110 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5111 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5112 sizeof (struct main_type));
5113 if (TYPE_DYN_PROP_LIST (type) != NULL)
5114 TYPE_DYN_PROP_LIST (new_type)
5115 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5116 TYPE_DYN_PROP_LIST (type));
5117
5118 return new_type;
5119 }
5120 \f
5121 /* Helper functions to initialize architecture-specific types. */
5122
5123 /* Allocate a type structure associated with GDBARCH and set its
5124 CODE, LENGTH, and NAME fields. */
5125
5126 struct type *
5127 arch_type (struct gdbarch *gdbarch,
5128 enum type_code code, int bit, const char *name)
5129 {
5130 struct type *type;
5131
5132 type = alloc_type_arch (gdbarch);
5133 set_type_code (type, code);
5134 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5135 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5136
5137 if (name)
5138 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5139
5140 return type;
5141 }
5142
5143 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5144 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5145 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5146
5147 struct type *
5148 arch_integer_type (struct gdbarch *gdbarch,
5149 int bit, int unsigned_p, const char *name)
5150 {
5151 struct type *t;
5152
5153 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5154 if (unsigned_p)
5155 TYPE_UNSIGNED (t) = 1;
5156
5157 return t;
5158 }
5159
5160 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5161 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5162 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5163
5164 struct type *
5165 arch_character_type (struct gdbarch *gdbarch,
5166 int bit, int unsigned_p, const char *name)
5167 {
5168 struct type *t;
5169
5170 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5171 if (unsigned_p)
5172 TYPE_UNSIGNED (t) = 1;
5173
5174 return t;
5175 }
5176
5177 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5178 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5179 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5180
5181 struct type *
5182 arch_boolean_type (struct gdbarch *gdbarch,
5183 int bit, int unsigned_p, const char *name)
5184 {
5185 struct type *t;
5186
5187 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5188 if (unsigned_p)
5189 TYPE_UNSIGNED (t) = 1;
5190
5191 return t;
5192 }
5193
5194 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5195 BIT is the type size in bits; if BIT equals -1, the size is
5196 determined by the floatformat. NAME is the type name. Set the
5197 TYPE_FLOATFORMAT from FLOATFORMATS. */
5198
5199 struct type *
5200 arch_float_type (struct gdbarch *gdbarch,
5201 int bit, const char *name,
5202 const struct floatformat **floatformats)
5203 {
5204 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5205 struct type *t;
5206
5207 bit = verify_floatformat (bit, fmt);
5208 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5209 TYPE_FLOATFORMAT (t) = fmt;
5210
5211 return t;
5212 }
5213
5214 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5215 BIT is the type size in bits. NAME is the type name. */
5216
5217 struct type *
5218 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5219 {
5220 struct type *t;
5221
5222 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5223 return t;
5224 }
5225
5226 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5227 NAME is the type name. TARGET_TYPE is the component float type. */
5228
5229 struct type *
5230 arch_complex_type (struct gdbarch *gdbarch,
5231 const char *name, struct type *target_type)
5232 {
5233 struct type *t;
5234
5235 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5236 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5237 TYPE_TARGET_TYPE (t) = target_type;
5238 return t;
5239 }
5240
5241 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5242 BIT is the pointer type size in bits. NAME is the type name.
5243 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5244 TYPE_UNSIGNED flag. */
5245
5246 struct type *
5247 arch_pointer_type (struct gdbarch *gdbarch,
5248 int bit, const char *name, struct type *target_type)
5249 {
5250 struct type *t;
5251
5252 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5253 TYPE_TARGET_TYPE (t) = target_type;
5254 TYPE_UNSIGNED (t) = 1;
5255 return t;
5256 }
5257
5258 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5259 NAME is the type name. BIT is the size of the flag word in bits. */
5260
5261 struct type *
5262 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5263 {
5264 struct type *type;
5265
5266 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5267 TYPE_UNSIGNED (type) = 1;
5268 TYPE_NFIELDS (type) = 0;
5269 /* Pre-allocate enough space assuming every field is one bit. */
5270 TYPE_FIELDS (type)
5271 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5272
5273 return type;
5274 }
5275
5276 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5277 position BITPOS is called NAME. Pass NAME as "" for fields that
5278 should not be printed. */
5279
5280 void
5281 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5282 struct type *field_type, const char *name)
5283 {
5284 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5285 int field_nr = TYPE_NFIELDS (type);
5286
5287 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5288 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5289 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5290 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5291 gdb_assert (name != NULL);
5292
5293 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5294 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5295 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5296 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5297 ++TYPE_NFIELDS (type);
5298 }
5299
5300 /* Special version of append_flags_type_field to add a flag field.
5301 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5302 position BITPOS is called NAME. */
5303
5304 void
5305 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5306 {
5307 struct gdbarch *gdbarch = get_type_arch (type);
5308
5309 append_flags_type_field (type, bitpos, 1,
5310 builtin_type (gdbarch)->builtin_bool,
5311 name);
5312 }
5313
5314 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5315 specified by CODE) associated with GDBARCH. NAME is the type name. */
5316
5317 struct type *
5318 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5319 enum type_code code)
5320 {
5321 struct type *t;
5322
5323 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5324 t = arch_type (gdbarch, code, 0, NULL);
5325 TYPE_NAME (t) = name;
5326 INIT_CPLUS_SPECIFIC (t);
5327 return t;
5328 }
5329
5330 /* Add new field with name NAME and type FIELD to composite type T.
5331 Do not set the field's position or adjust the type's length;
5332 the caller should do so. Return the new field. */
5333
5334 struct field *
5335 append_composite_type_field_raw (struct type *t, const char *name,
5336 struct type *field)
5337 {
5338 struct field *f;
5339
5340 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5341 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5342 TYPE_NFIELDS (t));
5343 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5344 memset (f, 0, sizeof f[0]);
5345 FIELD_TYPE (f[0]) = field;
5346 FIELD_NAME (f[0]) = name;
5347 return f;
5348 }
5349
5350 /* Add new field with name NAME and type FIELD to composite type T.
5351 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5352
5353 void
5354 append_composite_type_field_aligned (struct type *t, const char *name,
5355 struct type *field, int alignment)
5356 {
5357 struct field *f = append_composite_type_field_raw (t, name, field);
5358
5359 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5360 {
5361 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5362 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5363 }
5364 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5365 {
5366 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5367 if (TYPE_NFIELDS (t) > 1)
5368 {
5369 SET_FIELD_BITPOS (f[0],
5370 (FIELD_BITPOS (f[-1])
5371 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5372 * TARGET_CHAR_BIT)));
5373
5374 if (alignment)
5375 {
5376 int left;
5377
5378 alignment *= TARGET_CHAR_BIT;
5379 left = FIELD_BITPOS (f[0]) % alignment;
5380
5381 if (left)
5382 {
5383 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5384 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5385 }
5386 }
5387 }
5388 }
5389 }
5390
5391 /* Add new field with name NAME and type FIELD to composite type T. */
5392
5393 void
5394 append_composite_type_field (struct type *t, const char *name,
5395 struct type *field)
5396 {
5397 append_composite_type_field_aligned (t, name, field, 0);
5398 }
5399
5400 static struct gdbarch_data *gdbtypes_data;
5401
5402 const struct builtin_type *
5403 builtin_type (struct gdbarch *gdbarch)
5404 {
5405 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5406 }
5407
5408 static void *
5409 gdbtypes_post_init (struct gdbarch *gdbarch)
5410 {
5411 struct builtin_type *builtin_type
5412 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5413
5414 /* Basic types. */
5415 builtin_type->builtin_void
5416 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5417 builtin_type->builtin_char
5418 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5419 !gdbarch_char_signed (gdbarch), "char");
5420 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5421 builtin_type->builtin_signed_char
5422 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5423 0, "signed char");
5424 builtin_type->builtin_unsigned_char
5425 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5426 1, "unsigned char");
5427 builtin_type->builtin_short
5428 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5429 0, "short");
5430 builtin_type->builtin_unsigned_short
5431 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5432 1, "unsigned short");
5433 builtin_type->builtin_int
5434 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5435 0, "int");
5436 builtin_type->builtin_unsigned_int
5437 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5438 1, "unsigned int");
5439 builtin_type->builtin_long
5440 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5441 0, "long");
5442 builtin_type->builtin_unsigned_long
5443 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5444 1, "unsigned long");
5445 builtin_type->builtin_long_long
5446 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5447 0, "long long");
5448 builtin_type->builtin_unsigned_long_long
5449 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5450 1, "unsigned long long");
5451 builtin_type->builtin_half
5452 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5453 "half", gdbarch_half_format (gdbarch));
5454 builtin_type->builtin_float
5455 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5456 "float", gdbarch_float_format (gdbarch));
5457 builtin_type->builtin_double
5458 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5459 "double", gdbarch_double_format (gdbarch));
5460 builtin_type->builtin_long_double
5461 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5462 "long double", gdbarch_long_double_format (gdbarch));
5463 builtin_type->builtin_complex
5464 = arch_complex_type (gdbarch, "complex",
5465 builtin_type->builtin_float);
5466 builtin_type->builtin_double_complex
5467 = arch_complex_type (gdbarch, "double complex",
5468 builtin_type->builtin_double);
5469 builtin_type->builtin_string
5470 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5471 builtin_type->builtin_bool
5472 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5473
5474 /* The following three are about decimal floating point types, which
5475 are 32-bits, 64-bits and 128-bits respectively. */
5476 builtin_type->builtin_decfloat
5477 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5478 builtin_type->builtin_decdouble
5479 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5480 builtin_type->builtin_declong
5481 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5482
5483 /* "True" character types. */
5484 builtin_type->builtin_true_char
5485 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5486 builtin_type->builtin_true_unsigned_char
5487 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5488
5489 /* Fixed-size integer types. */
5490 builtin_type->builtin_int0
5491 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5492 builtin_type->builtin_int8
5493 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5494 builtin_type->builtin_uint8
5495 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5496 builtin_type->builtin_int16
5497 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5498 builtin_type->builtin_uint16
5499 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5500 builtin_type->builtin_int24
5501 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5502 builtin_type->builtin_uint24
5503 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5504 builtin_type->builtin_int32
5505 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5506 builtin_type->builtin_uint32
5507 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5508 builtin_type->builtin_int64
5509 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5510 builtin_type->builtin_uint64
5511 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5512 builtin_type->builtin_int128
5513 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5514 builtin_type->builtin_uint128
5515 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5516 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5517 TYPE_INSTANCE_FLAG_NOTTEXT;
5518 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5519 TYPE_INSTANCE_FLAG_NOTTEXT;
5520
5521 /* Wide character types. */
5522 builtin_type->builtin_char16
5523 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5524 builtin_type->builtin_char32
5525 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5526 builtin_type->builtin_wchar
5527 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5528 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5529
5530 /* Default data/code pointer types. */
5531 builtin_type->builtin_data_ptr
5532 = lookup_pointer_type (builtin_type->builtin_void);
5533 builtin_type->builtin_func_ptr
5534 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5535 builtin_type->builtin_func_func
5536 = lookup_function_type (builtin_type->builtin_func_ptr);
5537
5538 /* This type represents a GDB internal function. */
5539 builtin_type->internal_fn
5540 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5541 "<internal function>");
5542
5543 /* This type represents an xmethod. */
5544 builtin_type->xmethod
5545 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5546
5547 return builtin_type;
5548 }
5549
5550 /* This set of objfile-based types is intended to be used by symbol
5551 readers as basic types. */
5552
5553 static const struct objfile_key<struct objfile_type,
5554 gdb::noop_deleter<struct objfile_type>>
5555 objfile_type_data;
5556
5557 const struct objfile_type *
5558 objfile_type (struct objfile *objfile)
5559 {
5560 struct gdbarch *gdbarch;
5561 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5562
5563 if (objfile_type)
5564 return objfile_type;
5565
5566 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5567 1, struct objfile_type);
5568
5569 /* Use the objfile architecture to determine basic type properties. */
5570 gdbarch = get_objfile_arch (objfile);
5571
5572 /* Basic types. */
5573 objfile_type->builtin_void
5574 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5575 objfile_type->builtin_char
5576 = init_integer_type (objfile, TARGET_CHAR_BIT,
5577 !gdbarch_char_signed (gdbarch), "char");
5578 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5579 objfile_type->builtin_signed_char
5580 = init_integer_type (objfile, TARGET_CHAR_BIT,
5581 0, "signed char");
5582 objfile_type->builtin_unsigned_char
5583 = init_integer_type (objfile, TARGET_CHAR_BIT,
5584 1, "unsigned char");
5585 objfile_type->builtin_short
5586 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5587 0, "short");
5588 objfile_type->builtin_unsigned_short
5589 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5590 1, "unsigned short");
5591 objfile_type->builtin_int
5592 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5593 0, "int");
5594 objfile_type->builtin_unsigned_int
5595 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5596 1, "unsigned int");
5597 objfile_type->builtin_long
5598 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5599 0, "long");
5600 objfile_type->builtin_unsigned_long
5601 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5602 1, "unsigned long");
5603 objfile_type->builtin_long_long
5604 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5605 0, "long long");
5606 objfile_type->builtin_unsigned_long_long
5607 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5608 1, "unsigned long long");
5609 objfile_type->builtin_float
5610 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5611 "float", gdbarch_float_format (gdbarch));
5612 objfile_type->builtin_double
5613 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5614 "double", gdbarch_double_format (gdbarch));
5615 objfile_type->builtin_long_double
5616 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5617 "long double", gdbarch_long_double_format (gdbarch));
5618
5619 /* This type represents a type that was unrecognized in symbol read-in. */
5620 objfile_type->builtin_error
5621 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5622
5623 /* The following set of types is used for symbols with no
5624 debug information. */
5625 objfile_type->nodebug_text_symbol
5626 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5627 "<text variable, no debug info>");
5628 objfile_type->nodebug_text_gnu_ifunc_symbol
5629 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5630 "<text gnu-indirect-function variable, no debug info>");
5631 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5632 objfile_type->nodebug_got_plt_symbol
5633 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5634 "<text from jump slot in .got.plt, no debug info>",
5635 objfile_type->nodebug_text_symbol);
5636 objfile_type->nodebug_data_symbol
5637 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5638 objfile_type->nodebug_unknown_symbol
5639 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5640 objfile_type->nodebug_tls_symbol
5641 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5642
5643 /* NOTE: on some targets, addresses and pointers are not necessarily
5644 the same.
5645
5646 The upshot is:
5647 - gdb's `struct type' always describes the target's
5648 representation.
5649 - gdb's `struct value' objects should always hold values in
5650 target form.
5651 - gdb's CORE_ADDR values are addresses in the unified virtual
5652 address space that the assembler and linker work with. Thus,
5653 since target_read_memory takes a CORE_ADDR as an argument, it
5654 can access any memory on the target, even if the processor has
5655 separate code and data address spaces.
5656
5657 In this context, objfile_type->builtin_core_addr is a bit odd:
5658 it's a target type for a value the target will never see. It's
5659 only used to hold the values of (typeless) linker symbols, which
5660 are indeed in the unified virtual address space. */
5661
5662 objfile_type->builtin_core_addr
5663 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5664 "__CORE_ADDR");
5665
5666 objfile_type_data.set (objfile, objfile_type);
5667 return objfile_type;
5668 }
5669
5670 void
5671 _initialize_gdbtypes (void)
5672 {
5673 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5674
5675 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5676 _("Set debugging of C++ overloading."),
5677 _("Show debugging of C++ overloading."),
5678 _("When enabled, ranking of the "
5679 "functions is displayed."),
5680 NULL,
5681 show_overload_debug,
5682 &setdebuglist, &showdebuglist);
5683
5684 /* Add user knob for controlling resolution of opaque types. */
5685 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5686 &opaque_type_resolution,
5687 _("Set resolution of opaque struct/class/union"
5688 " types (if set before loading symbols)."),
5689 _("Show resolution of opaque struct/class/union"
5690 " types (if set before loading symbols)."),
5691 NULL, NULL,
5692 show_opaque_type_resolution,
5693 &setlist, &showlist);
5694
5695 /* Add an option to permit non-strict type checking. */
5696 add_setshow_boolean_cmd ("type", class_support,
5697 &strict_type_checking,
5698 _("Set strict type checking."),
5699 _("Show strict type checking."),
5700 NULL, NULL,
5701 show_strict_type_checking,
5702 &setchecklist, &showchecklist);
5703 }
5704
5705 /* See gdbtypes.h. */
5706 enum bfd_endian
5707 type_byte_order (const struct type *type)
5708 {
5709 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
5710 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
5711 {
5712 if (byteorder == BFD_ENDIAN_BIG)
5713 return BFD_ENDIAN_LITTLE;
5714 else if (byteorder == BFD_ENDIAN_LITTLE)
5715 return BFD_ENDIAN_BIG;
5716 else
5717 return BFD_ENDIAN_UNKNOWN;
5718 }
5719
5720 return byteorder;
5721 }