Remove code disabled since at least 1999 from lookup_struct_elt_type.
[binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static int opaque_type_resolution = 1;
120
121 /* A flag to enable printing of debugging information of C++
122 overloading. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static int strict_type_checking = 1;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
186
187 return type;
188 }
189
190 /* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
192 on the obstack associated with GDBARCH. */
193
194 struct type *
195 alloc_type_arch (struct gdbarch *gdbarch)
196 {
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 struct gdbarch *arch;
237
238 if (TYPE_OBJFILE_OWNED (type))
239 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
240 else
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
249 }
250
251 /* See gdbtypes.h. */
252
253 struct type *
254 get_target_type (struct type *type)
255 {
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264 }
265
266 /* See gdbtypes.h. */
267
268 unsigned int
269 type_length_units (struct type *type)
270 {
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275 }
276
277 /* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281 static struct type *
282 alloc_type_instance (struct type *oldtype)
283 {
284 struct type *type;
285
286 /* Allocate the structure. */
287
288 if (! TYPE_OBJFILE_OWNED (oldtype))
289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
290 else
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
298 return type;
299 }
300
301 /* Clear all remnants of the previous type at TYPE, in preparation for
302 replacing it with something else. Preserve owner information. */
303
304 static void
305 smash_type (struct type *type)
306 {
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320 }
321
322 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327 struct type *
328 make_pointer_type (struct type *type, struct type **typeptr)
329 {
330 struct type *ntype; /* New type */
331 struct type *chain;
332
333 ntype = TYPE_POINTER_TYPE (type);
334
335 if (ntype)
336 {
337 if (typeptr == 0)
338 return ntype; /* Don't care about alloc,
339 and have new type. */
340 else if (*typeptr == 0)
341 {
342 *typeptr = ntype; /* Tracking alloc, and have new type. */
343 return ntype;
344 }
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
349 ntype = alloc_type_copy (type);
350 if (typeptr)
351 *typeptr = ntype;
352 }
353 else /* We have storage, but need to reset it. */
354 {
355 ntype = *typeptr;
356 chain = TYPE_CHAIN (ntype);
357 smash_type (ntype);
358 TYPE_CHAIN (ntype) = chain;
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
364 /* FIXME! Assumes the machine has only one representation for pointers! */
365
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
370 /* Mark pointers as unsigned. The target converts between pointers
371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
372 gdbarch_address_to_pointer. */
373 TYPE_UNSIGNED (ntype) = 1;
374
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
383 return ntype;
384 }
385
386 /* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389 struct type *
390 lookup_pointer_type (struct type *type)
391 {
392 return make_pointer_type (type, (struct type **) 0);
393 }
394
395 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
400
401 struct type *
402 make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
404 {
405 struct type *ntype; /* New type */
406 struct type **reftype;
407 struct type *chain;
408
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
413
414 if (ntype)
415 {
416 if (typeptr == 0)
417 return ntype; /* Don't care about alloc,
418 and have new type. */
419 else if (*typeptr == 0)
420 {
421 *typeptr = ntype; /* Tracking alloc, and have new type. */
422 return ntype;
423 }
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
428 ntype = alloc_type_copy (type);
429 if (typeptr)
430 *typeptr = ntype;
431 }
432 else /* We have storage, but need to reset it. */
433 {
434 ntype = *typeptr;
435 chain = TYPE_CHAIN (ntype);
436 smash_type (ntype);
437 TYPE_CHAIN (ntype) = chain;
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
445
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
449
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
452 TYPE_CODE (ntype) = refcode;
453
454 *reftype = ntype;
455
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
464 return ntype;
465 }
466
467 /* Same as above, but caller doesn't care about memory allocation
468 details. */
469
470 struct type *
471 lookup_reference_type (struct type *type, enum type_code refcode)
472 {
473 return make_reference_type (type, (struct type **) 0, refcode);
474 }
475
476 /* Lookup the lvalue reference type for the type TYPE. */
477
478 struct type *
479 lookup_lvalue_reference_type (struct type *type)
480 {
481 return lookup_reference_type (type, TYPE_CODE_REF);
482 }
483
484 /* Lookup the rvalue reference type for the type TYPE. */
485
486 struct type *
487 lookup_rvalue_reference_type (struct type *type)
488 {
489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
490 }
491
492 /* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
495 function type we return. We allocate new memory if needed. */
496
497 struct type *
498 make_function_type (struct type *type, struct type **typeptr)
499 {
500 struct type *ntype; /* New type */
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
504 ntype = alloc_type_copy (type);
505 if (typeptr)
506 *typeptr = ntype;
507 }
508 else /* We have storage, but need to reset it. */
509 {
510 ntype = *typeptr;
511 smash_type (ntype);
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
518
519 INIT_FUNC_SPECIFIC (ntype);
520
521 return ntype;
522 }
523
524 /* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527 struct type *
528 lookup_function_type (struct type *type)
529 {
530 return make_function_type (type, (struct type **) 0);
531 }
532
533 /* Given a type TYPE and argument types, return the appropriate
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
536
537 struct type *
538 lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541 {
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
545 if (nparams > 0)
546 {
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
560 else
561 TYPE_PROTOTYPED (fn) = 1;
562 }
563
564 TYPE_NFIELDS (fn) = nparams;
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571 }
572
573 /* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
575
576 int
577 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
578 {
579 int type_flags;
580
581 /* Check for known address space delimiters. */
582 if (!strcmp (space_identifier, "code"))
583 return TYPE_INSTANCE_FLAG_CODE_SPACE;
584 else if (!strcmp (space_identifier, "data"))
585 return TYPE_INSTANCE_FLAG_DATA_SPACE;
586 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
587 && gdbarch_address_class_name_to_type_flags (gdbarch,
588 space_identifier,
589 &type_flags))
590 return type_flags;
591 else
592 error (_("Unknown address space specifier: \"%s\""), space_identifier);
593 }
594
595 /* Identify address space identifier by integer flag as defined in
596 gdbtypes.h -- return the string version of the adress space name. */
597
598 const char *
599 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
600 {
601 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
602 return "code";
603 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
604 return "data";
605 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
606 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
607 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
608 else
609 return NULL;
610 }
611
612 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
613
614 If STORAGE is non-NULL, create the new type instance there.
615 STORAGE must be in the same obstack as TYPE. */
616
617 static struct type *
618 make_qualified_type (struct type *type, int new_flags,
619 struct type *storage)
620 {
621 struct type *ntype;
622
623 ntype = type;
624 do
625 {
626 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
627 return ntype;
628 ntype = TYPE_CHAIN (ntype);
629 }
630 while (ntype != type);
631
632 /* Create a new type instance. */
633 if (storage == NULL)
634 ntype = alloc_type_instance (type);
635 else
636 {
637 /* If STORAGE was provided, it had better be in the same objfile
638 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
639 if one objfile is freed and the other kept, we'd have
640 dangling pointers. */
641 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
642
643 ntype = storage;
644 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
645 TYPE_CHAIN (ntype) = ntype;
646 }
647
648 /* Pointers or references to the original type are not relevant to
649 the new type. */
650 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
651 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
652
653 /* Chain the new qualified type to the old type. */
654 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
655 TYPE_CHAIN (type) = ntype;
656
657 /* Now set the instance flags and return the new type. */
658 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
659
660 /* Set length of new type to that of the original type. */
661 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
662
663 return ntype;
664 }
665
666 /* Make an address-space-delimited variant of a type -- a type that
667 is identical to the one supplied except that it has an address
668 space attribute attached to it (such as "code" or "data").
669
670 The space attributes "code" and "data" are for Harvard
671 architectures. The address space attributes are for architectures
672 which have alternately sized pointers or pointers with alternate
673 representations. */
674
675 struct type *
676 make_type_with_address_space (struct type *type, int space_flag)
677 {
678 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
679 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
680 | TYPE_INSTANCE_FLAG_DATA_SPACE
681 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
682 | space_flag);
683
684 return make_qualified_type (type, new_flags, NULL);
685 }
686
687 /* Make a "c-v" variant of a type -- a type that is identical to the
688 one supplied except that it may have const or volatile attributes
689 CNST is a flag for setting the const attribute
690 VOLTL is a flag for setting the volatile attribute
691 TYPE is the base type whose variant we are creating.
692
693 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
694 storage to hold the new qualified type; *TYPEPTR and TYPE must be
695 in the same objfile. Otherwise, allocate fresh memory for the new
696 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
697 new type we construct. */
698
699 struct type *
700 make_cv_type (int cnst, int voltl,
701 struct type *type,
702 struct type **typeptr)
703 {
704 struct type *ntype; /* New type */
705
706 int new_flags = (TYPE_INSTANCE_FLAGS (type)
707 & ~(TYPE_INSTANCE_FLAG_CONST
708 | TYPE_INSTANCE_FLAG_VOLATILE));
709
710 if (cnst)
711 new_flags |= TYPE_INSTANCE_FLAG_CONST;
712
713 if (voltl)
714 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
715
716 if (typeptr && *typeptr != NULL)
717 {
718 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
719 a C-V variant chain that threads across objfiles: if one
720 objfile gets freed, then the other has a broken C-V chain.
721
722 This code used to try to copy over the main type from TYPE to
723 *TYPEPTR if they were in different objfiles, but that's
724 wrong, too: TYPE may have a field list or member function
725 lists, which refer to types of their own, etc. etc. The
726 whole shebang would need to be copied over recursively; you
727 can't have inter-objfile pointers. The only thing to do is
728 to leave stub types as stub types, and look them up afresh by
729 name each time you encounter them. */
730 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
731 }
732
733 ntype = make_qualified_type (type, new_flags,
734 typeptr ? *typeptr : NULL);
735
736 if (typeptr != NULL)
737 *typeptr = ntype;
738
739 return ntype;
740 }
741
742 /* Make a 'restrict'-qualified version of TYPE. */
743
744 struct type *
745 make_restrict_type (struct type *type)
746 {
747 return make_qualified_type (type,
748 (TYPE_INSTANCE_FLAGS (type)
749 | TYPE_INSTANCE_FLAG_RESTRICT),
750 NULL);
751 }
752
753 /* Make a type without const, volatile, or restrict. */
754
755 struct type *
756 make_unqualified_type (struct type *type)
757 {
758 return make_qualified_type (type,
759 (TYPE_INSTANCE_FLAGS (type)
760 & ~(TYPE_INSTANCE_FLAG_CONST
761 | TYPE_INSTANCE_FLAG_VOLATILE
762 | TYPE_INSTANCE_FLAG_RESTRICT)),
763 NULL);
764 }
765
766 /* Make a '_Atomic'-qualified version of TYPE. */
767
768 struct type *
769 make_atomic_type (struct type *type)
770 {
771 return make_qualified_type (type,
772 (TYPE_INSTANCE_FLAGS (type)
773 | TYPE_INSTANCE_FLAG_ATOMIC),
774 NULL);
775 }
776
777 /* Replace the contents of ntype with the type *type. This changes the
778 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
779 the changes are propogated to all types in the TYPE_CHAIN.
780
781 In order to build recursive types, it's inevitable that we'll need
782 to update types in place --- but this sort of indiscriminate
783 smashing is ugly, and needs to be replaced with something more
784 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
785 clear if more steps are needed. */
786
787 void
788 replace_type (struct type *ntype, struct type *type)
789 {
790 struct type *chain;
791
792 /* These two types had better be in the same objfile. Otherwise,
793 the assignment of one type's main type structure to the other
794 will produce a type with references to objects (names; field
795 lists; etc.) allocated on an objfile other than its own. */
796 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
797
798 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
799
800 /* The type length is not a part of the main type. Update it for
801 each type on the variant chain. */
802 chain = ntype;
803 do
804 {
805 /* Assert that this element of the chain has no address-class bits
806 set in its flags. Such type variants might have type lengths
807 which are supposed to be different from the non-address-class
808 variants. This assertion shouldn't ever be triggered because
809 symbol readers which do construct address-class variants don't
810 call replace_type(). */
811 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
812
813 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
814 chain = TYPE_CHAIN (chain);
815 }
816 while (ntype != chain);
817
818 /* Assert that the two types have equivalent instance qualifiers.
819 This should be true for at least all of our debug readers. */
820 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
821 }
822
823 /* Implement direct support for MEMBER_TYPE in GNU C++.
824 May need to construct such a type if this is the first use.
825 The TYPE is the type of the member. The DOMAIN is the type
826 of the aggregate that the member belongs to. */
827
828 struct type *
829 lookup_memberptr_type (struct type *type, struct type *domain)
830 {
831 struct type *mtype;
832
833 mtype = alloc_type_copy (type);
834 smash_to_memberptr_type (mtype, domain, type);
835 return mtype;
836 }
837
838 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
839
840 struct type *
841 lookup_methodptr_type (struct type *to_type)
842 {
843 struct type *mtype;
844
845 mtype = alloc_type_copy (to_type);
846 smash_to_methodptr_type (mtype, to_type);
847 return mtype;
848 }
849
850 /* Allocate a stub method whose return type is TYPE. This apparently
851 happens for speed of symbol reading, since parsing out the
852 arguments to the method is cpu-intensive, the way we are doing it.
853 So, we will fill in arguments later. This always returns a fresh
854 type. */
855
856 struct type *
857 allocate_stub_method (struct type *type)
858 {
859 struct type *mtype;
860
861 mtype = alloc_type_copy (type);
862 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
863 TYPE_LENGTH (mtype) = 1;
864 TYPE_STUB (mtype) = 1;
865 TYPE_TARGET_TYPE (mtype) = type;
866 /* TYPE_SELF_TYPE (mtype) = unknown yet */
867 return mtype;
868 }
869
870 /* See gdbtypes.h. */
871
872 bool
873 operator== (const dynamic_prop &l, const dynamic_prop &r)
874 {
875 if (l.kind != r.kind)
876 return false;
877
878 switch (l.kind)
879 {
880 case PROP_UNDEFINED:
881 return true;
882 case PROP_CONST:
883 return l.data.const_val == r.data.const_val;
884 case PROP_ADDR_OFFSET:
885 case PROP_LOCEXPR:
886 case PROP_LOCLIST:
887 return l.data.baton == r.data.baton;
888 }
889
890 gdb_assert_not_reached ("unhandled dynamic_prop kind");
891 }
892
893 /* See gdbtypes.h. */
894
895 bool
896 operator== (const range_bounds &l, const range_bounds &r)
897 {
898 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
899
900 return (FIELD_EQ (low)
901 && FIELD_EQ (high)
902 && FIELD_EQ (flag_upper_bound_is_count)
903 && FIELD_EQ (flag_bound_evaluated));
904
905 #undef FIELD_EQ
906 }
907
908 /* Create a range type with a dynamic range from LOW_BOUND to
909 HIGH_BOUND, inclusive. See create_range_type for further details. */
910
911 struct type *
912 create_range_type (struct type *result_type, struct type *index_type,
913 const struct dynamic_prop *low_bound,
914 const struct dynamic_prop *high_bound)
915 {
916 if (result_type == NULL)
917 result_type = alloc_type_copy (index_type);
918 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
919 TYPE_TARGET_TYPE (result_type) = index_type;
920 if (TYPE_STUB (index_type))
921 TYPE_TARGET_STUB (result_type) = 1;
922 else
923 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
924
925 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
926 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
927 TYPE_RANGE_DATA (result_type)->low = *low_bound;
928 TYPE_RANGE_DATA (result_type)->high = *high_bound;
929
930 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
931 TYPE_UNSIGNED (result_type) = 1;
932
933 /* Ada allows the declaration of range types whose upper bound is
934 less than the lower bound, so checking the lower bound is not
935 enough. Make sure we do not mark a range type whose upper bound
936 is negative as unsigned. */
937 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
938 TYPE_UNSIGNED (result_type) = 0;
939
940 return result_type;
941 }
942
943 /* Create a range type using either a blank type supplied in
944 RESULT_TYPE, or creating a new type, inheriting the objfile from
945 INDEX_TYPE.
946
947 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
948 to HIGH_BOUND, inclusive.
949
950 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
951 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
952
953 struct type *
954 create_static_range_type (struct type *result_type, struct type *index_type,
955 LONGEST low_bound, LONGEST high_bound)
956 {
957 struct dynamic_prop low, high;
958
959 low.kind = PROP_CONST;
960 low.data.const_val = low_bound;
961
962 high.kind = PROP_CONST;
963 high.data.const_val = high_bound;
964
965 result_type = create_range_type (result_type, index_type, &low, &high);
966
967 return result_type;
968 }
969
970 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
971 are static, otherwise returns 0. */
972
973 static int
974 has_static_range (const struct range_bounds *bounds)
975 {
976 return (bounds->low.kind == PROP_CONST
977 && bounds->high.kind == PROP_CONST);
978 }
979
980
981 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
982 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
983 bounds will fit in LONGEST), or -1 otherwise. */
984
985 int
986 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
987 {
988 type = check_typedef (type);
989 switch (TYPE_CODE (type))
990 {
991 case TYPE_CODE_RANGE:
992 *lowp = TYPE_LOW_BOUND (type);
993 *highp = TYPE_HIGH_BOUND (type);
994 return 1;
995 case TYPE_CODE_ENUM:
996 if (TYPE_NFIELDS (type) > 0)
997 {
998 /* The enums may not be sorted by value, so search all
999 entries. */
1000 int i;
1001
1002 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1003 for (i = 0; i < TYPE_NFIELDS (type); i++)
1004 {
1005 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1006 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1007 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1008 *highp = TYPE_FIELD_ENUMVAL (type, i);
1009 }
1010
1011 /* Set unsigned indicator if warranted. */
1012 if (*lowp >= 0)
1013 {
1014 TYPE_UNSIGNED (type) = 1;
1015 }
1016 }
1017 else
1018 {
1019 *lowp = 0;
1020 *highp = -1;
1021 }
1022 return 0;
1023 case TYPE_CODE_BOOL:
1024 *lowp = 0;
1025 *highp = 1;
1026 return 0;
1027 case TYPE_CODE_INT:
1028 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1029 return -1;
1030 if (!TYPE_UNSIGNED (type))
1031 {
1032 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1033 *highp = -*lowp - 1;
1034 return 0;
1035 }
1036 /* fall through */
1037 case TYPE_CODE_CHAR:
1038 *lowp = 0;
1039 /* This round-about calculation is to avoid shifting by
1040 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1041 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1042 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1043 *highp = (*highp - 1) | *highp;
1044 return 0;
1045 default:
1046 return -1;
1047 }
1048 }
1049
1050 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1051 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1052 Save the high bound into HIGH_BOUND if not NULL.
1053
1054 Return 1 if the operation was successful. Return zero otherwise,
1055 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1056
1057 We now simply use get_discrete_bounds call to get the values
1058 of the low and high bounds.
1059 get_discrete_bounds can return three values:
1060 1, meaning that index is a range,
1061 0, meaning that index is a discrete type,
1062 or -1 for failure. */
1063
1064 int
1065 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1066 {
1067 struct type *index = TYPE_INDEX_TYPE (type);
1068 LONGEST low = 0;
1069 LONGEST high = 0;
1070 int res;
1071
1072 if (index == NULL)
1073 return 0;
1074
1075 res = get_discrete_bounds (index, &low, &high);
1076 if (res == -1)
1077 return 0;
1078
1079 /* Check if the array bounds are undefined. */
1080 if (res == 1
1081 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1082 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1083 return 0;
1084
1085 if (low_bound)
1086 *low_bound = low;
1087
1088 if (high_bound)
1089 *high_bound = high;
1090
1091 return 1;
1092 }
1093
1094 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1095 representation of a value of this type, save the corresponding
1096 position number in POS.
1097
1098 Its differs from VAL only in the case of enumeration types. In
1099 this case, the position number of the value of the first listed
1100 enumeration literal is zero; the position number of the value of
1101 each subsequent enumeration literal is one more than that of its
1102 predecessor in the list.
1103
1104 Return 1 if the operation was successful. Return zero otherwise,
1105 in which case the value of POS is unmodified.
1106 */
1107
1108 int
1109 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1110 {
1111 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1112 {
1113 int i;
1114
1115 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1116 {
1117 if (val == TYPE_FIELD_ENUMVAL (type, i))
1118 {
1119 *pos = i;
1120 return 1;
1121 }
1122 }
1123 /* Invalid enumeration value. */
1124 return 0;
1125 }
1126 else
1127 {
1128 *pos = val;
1129 return 1;
1130 }
1131 }
1132
1133 /* Create an array type using either a blank type supplied in
1134 RESULT_TYPE, or creating a new type, inheriting the objfile from
1135 RANGE_TYPE.
1136
1137 Elements will be of type ELEMENT_TYPE, the indices will be of type
1138 RANGE_TYPE.
1139
1140 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1141 This byte stride property is added to the resulting array type
1142 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1143 argument can only be used to create types that are objfile-owned
1144 (see add_dyn_prop), meaning that either this function must be called
1145 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1146
1147 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1148 If BIT_STRIDE is not zero, build a packed array type whose element
1149 size is BIT_STRIDE. Otherwise, ignore this parameter.
1150
1151 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1152 sure it is TYPE_CODE_UNDEF before we bash it into an array
1153 type? */
1154
1155 struct type *
1156 create_array_type_with_stride (struct type *result_type,
1157 struct type *element_type,
1158 struct type *range_type,
1159 struct dynamic_prop *byte_stride_prop,
1160 unsigned int bit_stride)
1161 {
1162 if (byte_stride_prop != NULL
1163 && byte_stride_prop->kind == PROP_CONST)
1164 {
1165 /* The byte stride is actually not dynamic. Pretend we were
1166 called with bit_stride set instead of byte_stride_prop.
1167 This will give us the same result type, while avoiding
1168 the need to handle this as a special case. */
1169 bit_stride = byte_stride_prop->data.const_val * 8;
1170 byte_stride_prop = NULL;
1171 }
1172
1173 if (result_type == NULL)
1174 result_type = alloc_type_copy (range_type);
1175
1176 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1177 TYPE_TARGET_TYPE (result_type) = element_type;
1178 if (byte_stride_prop == NULL
1179 && has_static_range (TYPE_RANGE_DATA (range_type))
1180 && (!type_not_associated (result_type)
1181 && !type_not_allocated (result_type)))
1182 {
1183 LONGEST low_bound, high_bound;
1184
1185 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1186 low_bound = high_bound = 0;
1187 element_type = check_typedef (element_type);
1188 /* Be careful when setting the array length. Ada arrays can be
1189 empty arrays with the high_bound being smaller than the low_bound.
1190 In such cases, the array length should be zero. */
1191 if (high_bound < low_bound)
1192 TYPE_LENGTH (result_type) = 0;
1193 else if (bit_stride > 0)
1194 TYPE_LENGTH (result_type) =
1195 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1196 else
1197 TYPE_LENGTH (result_type) =
1198 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1199 }
1200 else
1201 {
1202 /* This type is dynamic and its length needs to be computed
1203 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1204 undefined by setting it to zero. Although we are not expected
1205 to trust TYPE_LENGTH in this case, setting the size to zero
1206 allows us to avoid allocating objects of random sizes in case
1207 we accidently do. */
1208 TYPE_LENGTH (result_type) = 0;
1209 }
1210
1211 TYPE_NFIELDS (result_type) = 1;
1212 TYPE_FIELDS (result_type) =
1213 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1214 TYPE_INDEX_TYPE (result_type) = range_type;
1215 if (byte_stride_prop != NULL)
1216 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1217 else if (bit_stride > 0)
1218 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1219
1220 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1221 if (TYPE_LENGTH (result_type) == 0)
1222 TYPE_TARGET_STUB (result_type) = 1;
1223
1224 return result_type;
1225 }
1226
1227 /* Same as create_array_type_with_stride but with no bit_stride
1228 (BIT_STRIDE = 0), thus building an unpacked array. */
1229
1230 struct type *
1231 create_array_type (struct type *result_type,
1232 struct type *element_type,
1233 struct type *range_type)
1234 {
1235 return create_array_type_with_stride (result_type, element_type,
1236 range_type, NULL, 0);
1237 }
1238
1239 struct type *
1240 lookup_array_range_type (struct type *element_type,
1241 LONGEST low_bound, LONGEST high_bound)
1242 {
1243 struct type *index_type;
1244 struct type *range_type;
1245
1246 if (TYPE_OBJFILE_OWNED (element_type))
1247 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1248 else
1249 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1250 range_type = create_static_range_type (NULL, index_type,
1251 low_bound, high_bound);
1252
1253 return create_array_type (NULL, element_type, range_type);
1254 }
1255
1256 /* Create a string type using either a blank type supplied in
1257 RESULT_TYPE, or creating a new type. String types are similar
1258 enough to array of char types that we can use create_array_type to
1259 build the basic type and then bash it into a string type.
1260
1261 For fixed length strings, the range type contains 0 as the lower
1262 bound and the length of the string minus one as the upper bound.
1263
1264 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1265 sure it is TYPE_CODE_UNDEF before we bash it into a string
1266 type? */
1267
1268 struct type *
1269 create_string_type (struct type *result_type,
1270 struct type *string_char_type,
1271 struct type *range_type)
1272 {
1273 result_type = create_array_type (result_type,
1274 string_char_type,
1275 range_type);
1276 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1277 return result_type;
1278 }
1279
1280 struct type *
1281 lookup_string_range_type (struct type *string_char_type,
1282 LONGEST low_bound, LONGEST high_bound)
1283 {
1284 struct type *result_type;
1285
1286 result_type = lookup_array_range_type (string_char_type,
1287 low_bound, high_bound);
1288 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1289 return result_type;
1290 }
1291
1292 struct type *
1293 create_set_type (struct type *result_type, struct type *domain_type)
1294 {
1295 if (result_type == NULL)
1296 result_type = alloc_type_copy (domain_type);
1297
1298 TYPE_CODE (result_type) = TYPE_CODE_SET;
1299 TYPE_NFIELDS (result_type) = 1;
1300 TYPE_FIELDS (result_type)
1301 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1302
1303 if (!TYPE_STUB (domain_type))
1304 {
1305 LONGEST low_bound, high_bound, bit_length;
1306
1307 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1308 low_bound = high_bound = 0;
1309 bit_length = high_bound - low_bound + 1;
1310 TYPE_LENGTH (result_type)
1311 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1312 if (low_bound >= 0)
1313 TYPE_UNSIGNED (result_type) = 1;
1314 }
1315 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1316
1317 return result_type;
1318 }
1319
1320 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1321 and any array types nested inside it. */
1322
1323 void
1324 make_vector_type (struct type *array_type)
1325 {
1326 struct type *inner_array, *elt_type;
1327 int flags;
1328
1329 /* Find the innermost array type, in case the array is
1330 multi-dimensional. */
1331 inner_array = array_type;
1332 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1333 inner_array = TYPE_TARGET_TYPE (inner_array);
1334
1335 elt_type = TYPE_TARGET_TYPE (inner_array);
1336 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1337 {
1338 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1339 elt_type = make_qualified_type (elt_type, flags, NULL);
1340 TYPE_TARGET_TYPE (inner_array) = elt_type;
1341 }
1342
1343 TYPE_VECTOR (array_type) = 1;
1344 }
1345
1346 struct type *
1347 init_vector_type (struct type *elt_type, int n)
1348 {
1349 struct type *array_type;
1350
1351 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1352 make_vector_type (array_type);
1353 return array_type;
1354 }
1355
1356 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1357 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1358 confusing. "self" is a common enough replacement for "this".
1359 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1360 TYPE_CODE_METHOD. */
1361
1362 struct type *
1363 internal_type_self_type (struct type *type)
1364 {
1365 switch (TYPE_CODE (type))
1366 {
1367 case TYPE_CODE_METHODPTR:
1368 case TYPE_CODE_MEMBERPTR:
1369 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1370 return NULL;
1371 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1372 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1373 case TYPE_CODE_METHOD:
1374 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1375 return NULL;
1376 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1377 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1378 default:
1379 gdb_assert_not_reached ("bad type");
1380 }
1381 }
1382
1383 /* Set the type of the class that TYPE belongs to.
1384 In c++ this is the class of "this".
1385 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1386 TYPE_CODE_METHOD. */
1387
1388 void
1389 set_type_self_type (struct type *type, struct type *self_type)
1390 {
1391 switch (TYPE_CODE (type))
1392 {
1393 case TYPE_CODE_METHODPTR:
1394 case TYPE_CODE_MEMBERPTR:
1395 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1396 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1397 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1398 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1399 break;
1400 case TYPE_CODE_METHOD:
1401 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1402 INIT_FUNC_SPECIFIC (type);
1403 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1404 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1405 break;
1406 default:
1407 gdb_assert_not_reached ("bad type");
1408 }
1409 }
1410
1411 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1412 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1413 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1414 TYPE doesn't include the offset (that's the value of the MEMBER
1415 itself), but does include the structure type into which it points
1416 (for some reason).
1417
1418 When "smashing" the type, we preserve the objfile that the old type
1419 pointed to, since we aren't changing where the type is actually
1420 allocated. */
1421
1422 void
1423 smash_to_memberptr_type (struct type *type, struct type *self_type,
1424 struct type *to_type)
1425 {
1426 smash_type (type);
1427 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1428 TYPE_TARGET_TYPE (type) = to_type;
1429 set_type_self_type (type, self_type);
1430 /* Assume that a data member pointer is the same size as a normal
1431 pointer. */
1432 TYPE_LENGTH (type)
1433 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1434 }
1435
1436 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1437
1438 When "smashing" the type, we preserve the objfile that the old type
1439 pointed to, since we aren't changing where the type is actually
1440 allocated. */
1441
1442 void
1443 smash_to_methodptr_type (struct type *type, struct type *to_type)
1444 {
1445 smash_type (type);
1446 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1447 TYPE_TARGET_TYPE (type) = to_type;
1448 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1449 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1450 }
1451
1452 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1453 METHOD just means `function that gets an extra "this" argument'.
1454
1455 When "smashing" the type, we preserve the objfile that the old type
1456 pointed to, since we aren't changing where the type is actually
1457 allocated. */
1458
1459 void
1460 smash_to_method_type (struct type *type, struct type *self_type,
1461 struct type *to_type, struct field *args,
1462 int nargs, int varargs)
1463 {
1464 smash_type (type);
1465 TYPE_CODE (type) = TYPE_CODE_METHOD;
1466 TYPE_TARGET_TYPE (type) = to_type;
1467 set_type_self_type (type, self_type);
1468 TYPE_FIELDS (type) = args;
1469 TYPE_NFIELDS (type) = nargs;
1470 if (varargs)
1471 TYPE_VARARGS (type) = 1;
1472 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1473 }
1474
1475 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1476 Since GCC PR debug/47510 DWARF provides associated information to detect the
1477 anonymous class linkage name from its typedef.
1478
1479 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1480 apply it itself. */
1481
1482 const char *
1483 type_name_or_error (struct type *type)
1484 {
1485 struct type *saved_type = type;
1486 const char *name;
1487 struct objfile *objfile;
1488
1489 type = check_typedef (type);
1490
1491 name = TYPE_NAME (type);
1492 if (name != NULL)
1493 return name;
1494
1495 name = TYPE_NAME (saved_type);
1496 objfile = TYPE_OBJFILE (saved_type);
1497 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1498 name ? name : "<anonymous>",
1499 objfile ? objfile_name (objfile) : "<arch>");
1500 }
1501
1502 /* Lookup a typedef or primitive type named NAME, visible in lexical
1503 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1504 suitably defined. */
1505
1506 struct type *
1507 lookup_typename (const struct language_defn *language,
1508 struct gdbarch *gdbarch, const char *name,
1509 const struct block *block, int noerr)
1510 {
1511 struct symbol *sym;
1512
1513 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1514 language->la_language, NULL).symbol;
1515 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1516 return SYMBOL_TYPE (sym);
1517
1518 if (noerr)
1519 return NULL;
1520 error (_("No type named %s."), name);
1521 }
1522
1523 struct type *
1524 lookup_unsigned_typename (const struct language_defn *language,
1525 struct gdbarch *gdbarch, const char *name)
1526 {
1527 char *uns = (char *) alloca (strlen (name) + 10);
1528
1529 strcpy (uns, "unsigned ");
1530 strcpy (uns + 9, name);
1531 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1532 }
1533
1534 struct type *
1535 lookup_signed_typename (const struct language_defn *language,
1536 struct gdbarch *gdbarch, const char *name)
1537 {
1538 struct type *t;
1539 char *uns = (char *) alloca (strlen (name) + 8);
1540
1541 strcpy (uns, "signed ");
1542 strcpy (uns + 7, name);
1543 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1544 /* If we don't find "signed FOO" just try again with plain "FOO". */
1545 if (t != NULL)
1546 return t;
1547 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1548 }
1549
1550 /* Lookup a structure type named "struct NAME",
1551 visible in lexical block BLOCK. */
1552
1553 struct type *
1554 lookup_struct (const char *name, const struct block *block)
1555 {
1556 struct symbol *sym;
1557
1558 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1559
1560 if (sym == NULL)
1561 {
1562 error (_("No struct type named %s."), name);
1563 }
1564 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1565 {
1566 error (_("This context has class, union or enum %s, not a struct."),
1567 name);
1568 }
1569 return (SYMBOL_TYPE (sym));
1570 }
1571
1572 /* Lookup a union type named "union NAME",
1573 visible in lexical block BLOCK. */
1574
1575 struct type *
1576 lookup_union (const char *name, const struct block *block)
1577 {
1578 struct symbol *sym;
1579 struct type *t;
1580
1581 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1582
1583 if (sym == NULL)
1584 error (_("No union type named %s."), name);
1585
1586 t = SYMBOL_TYPE (sym);
1587
1588 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1589 return t;
1590
1591 /* If we get here, it's not a union. */
1592 error (_("This context has class, struct or enum %s, not a union."),
1593 name);
1594 }
1595
1596 /* Lookup an enum type named "enum NAME",
1597 visible in lexical block BLOCK. */
1598
1599 struct type *
1600 lookup_enum (const char *name, const struct block *block)
1601 {
1602 struct symbol *sym;
1603
1604 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1605 if (sym == NULL)
1606 {
1607 error (_("No enum type named %s."), name);
1608 }
1609 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1610 {
1611 error (_("This context has class, struct or union %s, not an enum."),
1612 name);
1613 }
1614 return (SYMBOL_TYPE (sym));
1615 }
1616
1617 /* Lookup a template type named "template NAME<TYPE>",
1618 visible in lexical block BLOCK. */
1619
1620 struct type *
1621 lookup_template_type (char *name, struct type *type,
1622 const struct block *block)
1623 {
1624 struct symbol *sym;
1625 char *nam = (char *)
1626 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1627
1628 strcpy (nam, name);
1629 strcat (nam, "<");
1630 strcat (nam, TYPE_NAME (type));
1631 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1632
1633 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1634
1635 if (sym == NULL)
1636 {
1637 error (_("No template type named %s."), name);
1638 }
1639 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1640 {
1641 error (_("This context has class, union or enum %s, not a struct."),
1642 name);
1643 }
1644 return (SYMBOL_TYPE (sym));
1645 }
1646
1647 /* Given a type TYPE, lookup the type of the component named NAME.
1648
1649 TYPE can be either a struct or union, or a pointer or reference to
1650 a struct or union. If it is a pointer or reference, its target
1651 type is automatically used. Thus '.' and '->' are interchangable,
1652 as specified for the definitions of the expression element types
1653 STRUCTOP_STRUCT and STRUCTOP_PTR.
1654
1655 If NOERR is nonzero, return NULL if there is no component named
1656 NAME. */
1657
1658 struct type *
1659 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1660 {
1661 int i;
1662
1663 for (;;)
1664 {
1665 type = check_typedef (type);
1666 if (TYPE_CODE (type) != TYPE_CODE_PTR
1667 && TYPE_CODE (type) != TYPE_CODE_REF)
1668 break;
1669 type = TYPE_TARGET_TYPE (type);
1670 }
1671
1672 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1673 && TYPE_CODE (type) != TYPE_CODE_UNION)
1674 {
1675 std::string type_name = type_to_string (type);
1676 error (_("Type %s is not a structure or union type."),
1677 type_name.c_str ());
1678 }
1679
1680 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1681 {
1682 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1683
1684 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1685 {
1686 return TYPE_FIELD_TYPE (type, i);
1687 }
1688 else if (!t_field_name || *t_field_name == '\0')
1689 {
1690 struct type *subtype
1691 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1692
1693 if (subtype != NULL)
1694 return subtype;
1695 }
1696 }
1697
1698 /* OK, it's not in this class. Recursively check the baseclasses. */
1699 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1700 {
1701 struct type *t;
1702
1703 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1704 if (t != NULL)
1705 {
1706 return t;
1707 }
1708 }
1709
1710 if (noerr)
1711 {
1712 return NULL;
1713 }
1714
1715 std::string type_name = type_to_string (type);
1716 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1717 }
1718
1719 /* Store in *MAX the largest number representable by unsigned integer type
1720 TYPE. */
1721
1722 void
1723 get_unsigned_type_max (struct type *type, ULONGEST *max)
1724 {
1725 unsigned int n;
1726
1727 type = check_typedef (type);
1728 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1729 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1730
1731 /* Written this way to avoid overflow. */
1732 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1733 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1734 }
1735
1736 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1737 signed integer type TYPE. */
1738
1739 void
1740 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1741 {
1742 unsigned int n;
1743
1744 type = check_typedef (type);
1745 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1746 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1747
1748 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1749 *min = -((ULONGEST) 1 << (n - 1));
1750 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1751 }
1752
1753 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1754 cplus_stuff.vptr_fieldno.
1755
1756 cplus_stuff is initialized to cplus_struct_default which does not
1757 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1758 designated initializers). We cope with that here. */
1759
1760 int
1761 internal_type_vptr_fieldno (struct type *type)
1762 {
1763 type = check_typedef (type);
1764 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1765 || TYPE_CODE (type) == TYPE_CODE_UNION);
1766 if (!HAVE_CPLUS_STRUCT (type))
1767 return -1;
1768 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1769 }
1770
1771 /* Set the value of cplus_stuff.vptr_fieldno. */
1772
1773 void
1774 set_type_vptr_fieldno (struct type *type, int fieldno)
1775 {
1776 type = check_typedef (type);
1777 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1778 || TYPE_CODE (type) == TYPE_CODE_UNION);
1779 if (!HAVE_CPLUS_STRUCT (type))
1780 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1781 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1782 }
1783
1784 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1785 cplus_stuff.vptr_basetype. */
1786
1787 struct type *
1788 internal_type_vptr_basetype (struct type *type)
1789 {
1790 type = check_typedef (type);
1791 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1792 || TYPE_CODE (type) == TYPE_CODE_UNION);
1793 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1794 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1795 }
1796
1797 /* Set the value of cplus_stuff.vptr_basetype. */
1798
1799 void
1800 set_type_vptr_basetype (struct type *type, struct type *basetype)
1801 {
1802 type = check_typedef (type);
1803 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1804 || TYPE_CODE (type) == TYPE_CODE_UNION);
1805 if (!HAVE_CPLUS_STRUCT (type))
1806 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1807 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1808 }
1809
1810 /* Lookup the vptr basetype/fieldno values for TYPE.
1811 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1812 vptr_fieldno. Also, if found and basetype is from the same objfile,
1813 cache the results.
1814 If not found, return -1 and ignore BASETYPEP.
1815 Callers should be aware that in some cases (for example,
1816 the type or one of its baseclasses is a stub type and we are
1817 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1818 this function will not be able to find the
1819 virtual function table pointer, and vptr_fieldno will remain -1 and
1820 vptr_basetype will remain NULL or incomplete. */
1821
1822 int
1823 get_vptr_fieldno (struct type *type, struct type **basetypep)
1824 {
1825 type = check_typedef (type);
1826
1827 if (TYPE_VPTR_FIELDNO (type) < 0)
1828 {
1829 int i;
1830
1831 /* We must start at zero in case the first (and only) baseclass
1832 is virtual (and hence we cannot share the table pointer). */
1833 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1834 {
1835 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1836 int fieldno;
1837 struct type *basetype;
1838
1839 fieldno = get_vptr_fieldno (baseclass, &basetype);
1840 if (fieldno >= 0)
1841 {
1842 /* If the type comes from a different objfile we can't cache
1843 it, it may have a different lifetime. PR 2384 */
1844 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1845 {
1846 set_type_vptr_fieldno (type, fieldno);
1847 set_type_vptr_basetype (type, basetype);
1848 }
1849 if (basetypep)
1850 *basetypep = basetype;
1851 return fieldno;
1852 }
1853 }
1854
1855 /* Not found. */
1856 return -1;
1857 }
1858 else
1859 {
1860 if (basetypep)
1861 *basetypep = TYPE_VPTR_BASETYPE (type);
1862 return TYPE_VPTR_FIELDNO (type);
1863 }
1864 }
1865
1866 static void
1867 stub_noname_complaint (void)
1868 {
1869 complaint (_("stub type has NULL name"));
1870 }
1871
1872 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1873 attached to it, and that property has a non-constant value. */
1874
1875 static int
1876 array_type_has_dynamic_stride (struct type *type)
1877 {
1878 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1879
1880 return (prop != NULL && prop->kind != PROP_CONST);
1881 }
1882
1883 /* Worker for is_dynamic_type. */
1884
1885 static int
1886 is_dynamic_type_internal (struct type *type, int top_level)
1887 {
1888 type = check_typedef (type);
1889
1890 /* We only want to recognize references at the outermost level. */
1891 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1892 type = check_typedef (TYPE_TARGET_TYPE (type));
1893
1894 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1895 dynamic, even if the type itself is statically defined.
1896 From a user's point of view, this may appear counter-intuitive;
1897 but it makes sense in this context, because the point is to determine
1898 whether any part of the type needs to be resolved before it can
1899 be exploited. */
1900 if (TYPE_DATA_LOCATION (type) != NULL
1901 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1902 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1903 return 1;
1904
1905 if (TYPE_ASSOCIATED_PROP (type))
1906 return 1;
1907
1908 if (TYPE_ALLOCATED_PROP (type))
1909 return 1;
1910
1911 switch (TYPE_CODE (type))
1912 {
1913 case TYPE_CODE_RANGE:
1914 {
1915 /* A range type is obviously dynamic if it has at least one
1916 dynamic bound. But also consider the range type to be
1917 dynamic when its subtype is dynamic, even if the bounds
1918 of the range type are static. It allows us to assume that
1919 the subtype of a static range type is also static. */
1920 return (!has_static_range (TYPE_RANGE_DATA (type))
1921 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1922 }
1923
1924 case TYPE_CODE_ARRAY:
1925 {
1926 gdb_assert (TYPE_NFIELDS (type) == 1);
1927
1928 /* The array is dynamic if either the bounds are dynamic... */
1929 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1930 return 1;
1931 /* ... or the elements it contains have a dynamic contents... */
1932 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1933 return 1;
1934 /* ... or if it has a dynamic stride... */
1935 if (array_type_has_dynamic_stride (type))
1936 return 1;
1937 return 0;
1938 }
1939
1940 case TYPE_CODE_STRUCT:
1941 case TYPE_CODE_UNION:
1942 {
1943 int i;
1944
1945 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1946 if (!field_is_static (&TYPE_FIELD (type, i))
1947 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1948 return 1;
1949 }
1950 break;
1951 }
1952
1953 return 0;
1954 }
1955
1956 /* See gdbtypes.h. */
1957
1958 int
1959 is_dynamic_type (struct type *type)
1960 {
1961 return is_dynamic_type_internal (type, 1);
1962 }
1963
1964 static struct type *resolve_dynamic_type_internal
1965 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1966
1967 /* Given a dynamic range type (dyn_range_type) and a stack of
1968 struct property_addr_info elements, return a static version
1969 of that type. */
1970
1971 static struct type *
1972 resolve_dynamic_range (struct type *dyn_range_type,
1973 struct property_addr_info *addr_stack)
1974 {
1975 CORE_ADDR value;
1976 struct type *static_range_type, *static_target_type;
1977 const struct dynamic_prop *prop;
1978 struct dynamic_prop low_bound, high_bound;
1979
1980 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1981
1982 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1983 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1984 {
1985 low_bound.kind = PROP_CONST;
1986 low_bound.data.const_val = value;
1987 }
1988 else
1989 {
1990 low_bound.kind = PROP_UNDEFINED;
1991 low_bound.data.const_val = 0;
1992 }
1993
1994 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1995 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1996 {
1997 high_bound.kind = PROP_CONST;
1998 high_bound.data.const_val = value;
1999
2000 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2001 high_bound.data.const_val
2002 = low_bound.data.const_val + high_bound.data.const_val - 1;
2003 }
2004 else
2005 {
2006 high_bound.kind = PROP_UNDEFINED;
2007 high_bound.data.const_val = 0;
2008 }
2009
2010 static_target_type
2011 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2012 addr_stack, 0);
2013 static_range_type = create_range_type (copy_type (dyn_range_type),
2014 static_target_type,
2015 &low_bound, &high_bound);
2016 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2017 return static_range_type;
2018 }
2019
2020 /* Resolves dynamic bound values of an array type TYPE to static ones.
2021 ADDR_STACK is a stack of struct property_addr_info to be used
2022 if needed during the dynamic resolution. */
2023
2024 static struct type *
2025 resolve_dynamic_array (struct type *type,
2026 struct property_addr_info *addr_stack)
2027 {
2028 CORE_ADDR value;
2029 struct type *elt_type;
2030 struct type *range_type;
2031 struct type *ary_dim;
2032 struct dynamic_prop *prop;
2033 unsigned int bit_stride = 0;
2034
2035 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2036
2037 type = copy_type (type);
2038
2039 elt_type = type;
2040 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2041 range_type = resolve_dynamic_range (range_type, addr_stack);
2042
2043 /* Resolve allocated/associated here before creating a new array type, which
2044 will update the length of the array accordingly. */
2045 prop = TYPE_ALLOCATED_PROP (type);
2046 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2047 {
2048 TYPE_DYN_PROP_ADDR (prop) = value;
2049 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2050 }
2051 prop = TYPE_ASSOCIATED_PROP (type);
2052 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2053 {
2054 TYPE_DYN_PROP_ADDR (prop) = value;
2055 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2056 }
2057
2058 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2059
2060 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2061 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
2062 else
2063 elt_type = TYPE_TARGET_TYPE (type);
2064
2065 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2066 if (prop != NULL)
2067 {
2068 int prop_eval_ok
2069 = dwarf2_evaluate_property (prop, NULL, addr_stack, &value);
2070
2071 if (prop_eval_ok)
2072 {
2073 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2074 bit_stride = (unsigned int) (value * 8);
2075 }
2076 else
2077 {
2078 /* Could be a bug in our code, but it could also happen
2079 if the DWARF info is not correct. Issue a warning,
2080 and assume no byte/bit stride (leave bit_stride = 0). */
2081 warning (_("cannot determine array stride for type %s"),
2082 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2083 }
2084 }
2085 else
2086 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2087
2088 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2089 bit_stride);
2090 }
2091
2092 /* Resolve dynamic bounds of members of the union TYPE to static
2093 bounds. ADDR_STACK is a stack of struct property_addr_info
2094 to be used if needed during the dynamic resolution. */
2095
2096 static struct type *
2097 resolve_dynamic_union (struct type *type,
2098 struct property_addr_info *addr_stack)
2099 {
2100 struct type *resolved_type;
2101 int i;
2102 unsigned int max_len = 0;
2103
2104 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2105
2106 resolved_type = copy_type (type);
2107 TYPE_FIELDS (resolved_type)
2108 = (struct field *) TYPE_ALLOC (resolved_type,
2109 TYPE_NFIELDS (resolved_type)
2110 * sizeof (struct field));
2111 memcpy (TYPE_FIELDS (resolved_type),
2112 TYPE_FIELDS (type),
2113 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2114 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2115 {
2116 struct type *t;
2117
2118 if (field_is_static (&TYPE_FIELD (type, i)))
2119 continue;
2120
2121 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2122 addr_stack, 0);
2123 TYPE_FIELD_TYPE (resolved_type, i) = t;
2124 if (TYPE_LENGTH (t) > max_len)
2125 max_len = TYPE_LENGTH (t);
2126 }
2127
2128 TYPE_LENGTH (resolved_type) = max_len;
2129 return resolved_type;
2130 }
2131
2132 /* Resolve dynamic bounds of members of the struct TYPE to static
2133 bounds. ADDR_STACK is a stack of struct property_addr_info to
2134 be used if needed during the dynamic resolution. */
2135
2136 static struct type *
2137 resolve_dynamic_struct (struct type *type,
2138 struct property_addr_info *addr_stack)
2139 {
2140 struct type *resolved_type;
2141 int i;
2142 unsigned resolved_type_bit_length = 0;
2143
2144 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2145 gdb_assert (TYPE_NFIELDS (type) > 0);
2146
2147 resolved_type = copy_type (type);
2148 TYPE_FIELDS (resolved_type)
2149 = (struct field *) TYPE_ALLOC (resolved_type,
2150 TYPE_NFIELDS (resolved_type)
2151 * sizeof (struct field));
2152 memcpy (TYPE_FIELDS (resolved_type),
2153 TYPE_FIELDS (type),
2154 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2155 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2156 {
2157 unsigned new_bit_length;
2158 struct property_addr_info pinfo;
2159
2160 if (field_is_static (&TYPE_FIELD (type, i)))
2161 continue;
2162
2163 /* As we know this field is not a static field, the field's
2164 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2165 this is the case, but only trigger a simple error rather
2166 than an internal error if that fails. While failing
2167 that verification indicates a bug in our code, the error
2168 is not severe enough to suggest to the user he stops
2169 his debugging session because of it. */
2170 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2171 error (_("Cannot determine struct field location"
2172 " (invalid location kind)"));
2173
2174 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2175 pinfo.valaddr = addr_stack->valaddr;
2176 pinfo.addr
2177 = (addr_stack->addr
2178 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2179 pinfo.next = addr_stack;
2180
2181 TYPE_FIELD_TYPE (resolved_type, i)
2182 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2183 &pinfo, 0);
2184 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2185 == FIELD_LOC_KIND_BITPOS);
2186
2187 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2188 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2189 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2190 else
2191 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2192 * TARGET_CHAR_BIT);
2193
2194 /* Normally, we would use the position and size of the last field
2195 to determine the size of the enclosing structure. But GCC seems
2196 to be encoding the position of some fields incorrectly when
2197 the struct contains a dynamic field that is not placed last.
2198 So we compute the struct size based on the field that has
2199 the highest position + size - probably the best we can do. */
2200 if (new_bit_length > resolved_type_bit_length)
2201 resolved_type_bit_length = new_bit_length;
2202 }
2203
2204 /* The length of a type won't change for fortran, but it does for C and Ada.
2205 For fortran the size of dynamic fields might change over time but not the
2206 type length of the structure. If we adapt it, we run into problems
2207 when calculating the element offset for arrays of structs. */
2208 if (current_language->la_language != language_fortran)
2209 TYPE_LENGTH (resolved_type)
2210 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2211
2212 /* The Ada language uses this field as a cache for static fixed types: reset
2213 it as RESOLVED_TYPE must have its own static fixed type. */
2214 TYPE_TARGET_TYPE (resolved_type) = NULL;
2215
2216 return resolved_type;
2217 }
2218
2219 /* Worker for resolved_dynamic_type. */
2220
2221 static struct type *
2222 resolve_dynamic_type_internal (struct type *type,
2223 struct property_addr_info *addr_stack,
2224 int top_level)
2225 {
2226 struct type *real_type = check_typedef (type);
2227 struct type *resolved_type = type;
2228 struct dynamic_prop *prop;
2229 CORE_ADDR value;
2230
2231 if (!is_dynamic_type_internal (real_type, top_level))
2232 return type;
2233
2234 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2235 {
2236 resolved_type = copy_type (type);
2237 TYPE_TARGET_TYPE (resolved_type)
2238 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2239 top_level);
2240 }
2241 else
2242 {
2243 /* Before trying to resolve TYPE, make sure it is not a stub. */
2244 type = real_type;
2245
2246 switch (TYPE_CODE (type))
2247 {
2248 case TYPE_CODE_REF:
2249 {
2250 struct property_addr_info pinfo;
2251
2252 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2253 pinfo.valaddr = NULL;
2254 if (addr_stack->valaddr != NULL)
2255 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2256 else
2257 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2258 pinfo.next = addr_stack;
2259
2260 resolved_type = copy_type (type);
2261 TYPE_TARGET_TYPE (resolved_type)
2262 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2263 &pinfo, top_level);
2264 break;
2265 }
2266
2267 case TYPE_CODE_ARRAY:
2268 resolved_type = resolve_dynamic_array (type, addr_stack);
2269 break;
2270
2271 case TYPE_CODE_RANGE:
2272 resolved_type = resolve_dynamic_range (type, addr_stack);
2273 break;
2274
2275 case TYPE_CODE_UNION:
2276 resolved_type = resolve_dynamic_union (type, addr_stack);
2277 break;
2278
2279 case TYPE_CODE_STRUCT:
2280 resolved_type = resolve_dynamic_struct (type, addr_stack);
2281 break;
2282 }
2283 }
2284
2285 /* Resolve data_location attribute. */
2286 prop = TYPE_DATA_LOCATION (resolved_type);
2287 if (prop != NULL
2288 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2289 {
2290 TYPE_DYN_PROP_ADDR (prop) = value;
2291 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2292 }
2293
2294 return resolved_type;
2295 }
2296
2297 /* See gdbtypes.h */
2298
2299 struct type *
2300 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2301 CORE_ADDR addr)
2302 {
2303 struct property_addr_info pinfo
2304 = {check_typedef (type), valaddr, addr, NULL};
2305
2306 return resolve_dynamic_type_internal (type, &pinfo, 1);
2307 }
2308
2309 /* See gdbtypes.h */
2310
2311 struct dynamic_prop *
2312 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2313 {
2314 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2315
2316 while (node != NULL)
2317 {
2318 if (node->prop_kind == prop_kind)
2319 return &node->prop;
2320 node = node->next;
2321 }
2322 return NULL;
2323 }
2324
2325 /* See gdbtypes.h */
2326
2327 void
2328 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2329 struct type *type)
2330 {
2331 struct dynamic_prop_list *temp;
2332
2333 gdb_assert (TYPE_OBJFILE_OWNED (type));
2334
2335 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2336 struct dynamic_prop_list);
2337 temp->prop_kind = prop_kind;
2338 temp->prop = prop;
2339 temp->next = TYPE_DYN_PROP_LIST (type);
2340
2341 TYPE_DYN_PROP_LIST (type) = temp;
2342 }
2343
2344 /* Remove dynamic property from TYPE in case it exists. */
2345
2346 void
2347 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2348 struct type *type)
2349 {
2350 struct dynamic_prop_list *prev_node, *curr_node;
2351
2352 curr_node = TYPE_DYN_PROP_LIST (type);
2353 prev_node = NULL;
2354
2355 while (NULL != curr_node)
2356 {
2357 if (curr_node->prop_kind == prop_kind)
2358 {
2359 /* Update the linked list but don't free anything.
2360 The property was allocated on objstack and it is not known
2361 if we are on top of it. Nevertheless, everything is released
2362 when the complete objstack is freed. */
2363 if (NULL == prev_node)
2364 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2365 else
2366 prev_node->next = curr_node->next;
2367
2368 return;
2369 }
2370
2371 prev_node = curr_node;
2372 curr_node = curr_node->next;
2373 }
2374 }
2375
2376 /* Find the real type of TYPE. This function returns the real type,
2377 after removing all layers of typedefs, and completing opaque or stub
2378 types. Completion changes the TYPE argument, but stripping of
2379 typedefs does not.
2380
2381 Instance flags (e.g. const/volatile) are preserved as typedefs are
2382 stripped. If necessary a new qualified form of the underlying type
2383 is created.
2384
2385 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2386 not been computed and we're either in the middle of reading symbols, or
2387 there was no name for the typedef in the debug info.
2388
2389 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2390 QUITs in the symbol reading code can also throw.
2391 Thus this function can throw an exception.
2392
2393 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2394 the target type.
2395
2396 If this is a stubbed struct (i.e. declared as struct foo *), see if
2397 we can find a full definition in some other file. If so, copy this
2398 definition, so we can use it in future. There used to be a comment
2399 (but not any code) that if we don't find a full definition, we'd
2400 set a flag so we don't spend time in the future checking the same
2401 type. That would be a mistake, though--we might load in more
2402 symbols which contain a full definition for the type. */
2403
2404 struct type *
2405 check_typedef (struct type *type)
2406 {
2407 struct type *orig_type = type;
2408 /* While we're removing typedefs, we don't want to lose qualifiers.
2409 E.g., const/volatile. */
2410 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2411
2412 gdb_assert (type);
2413
2414 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2415 {
2416 if (!TYPE_TARGET_TYPE (type))
2417 {
2418 const char *name;
2419 struct symbol *sym;
2420
2421 /* It is dangerous to call lookup_symbol if we are currently
2422 reading a symtab. Infinite recursion is one danger. */
2423 if (currently_reading_symtab)
2424 return make_qualified_type (type, instance_flags, NULL);
2425
2426 name = TYPE_NAME (type);
2427 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2428 VAR_DOMAIN as appropriate? */
2429 if (name == NULL)
2430 {
2431 stub_noname_complaint ();
2432 return make_qualified_type (type, instance_flags, NULL);
2433 }
2434 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2435 if (sym)
2436 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2437 else /* TYPE_CODE_UNDEF */
2438 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2439 }
2440 type = TYPE_TARGET_TYPE (type);
2441
2442 /* Preserve the instance flags as we traverse down the typedef chain.
2443
2444 Handling address spaces/classes is nasty, what do we do if there's a
2445 conflict?
2446 E.g., what if an outer typedef marks the type as class_1 and an inner
2447 typedef marks the type as class_2?
2448 This is the wrong place to do such error checking. We leave it to
2449 the code that created the typedef in the first place to flag the
2450 error. We just pick the outer address space (akin to letting the
2451 outer cast in a chain of casting win), instead of assuming
2452 "it can't happen". */
2453 {
2454 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2455 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2456 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2457 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2458
2459 /* Treat code vs data spaces and address classes separately. */
2460 if ((instance_flags & ALL_SPACES) != 0)
2461 new_instance_flags &= ~ALL_SPACES;
2462 if ((instance_flags & ALL_CLASSES) != 0)
2463 new_instance_flags &= ~ALL_CLASSES;
2464
2465 instance_flags |= new_instance_flags;
2466 }
2467 }
2468
2469 /* If this is a struct/class/union with no fields, then check
2470 whether a full definition exists somewhere else. This is for
2471 systems where a type definition with no fields is issued for such
2472 types, instead of identifying them as stub types in the first
2473 place. */
2474
2475 if (TYPE_IS_OPAQUE (type)
2476 && opaque_type_resolution
2477 && !currently_reading_symtab)
2478 {
2479 const char *name = TYPE_NAME (type);
2480 struct type *newtype;
2481
2482 if (name == NULL)
2483 {
2484 stub_noname_complaint ();
2485 return make_qualified_type (type, instance_flags, NULL);
2486 }
2487 newtype = lookup_transparent_type (name);
2488
2489 if (newtype)
2490 {
2491 /* If the resolved type and the stub are in the same
2492 objfile, then replace the stub type with the real deal.
2493 But if they're in separate objfiles, leave the stub
2494 alone; we'll just look up the transparent type every time
2495 we call check_typedef. We can't create pointers between
2496 types allocated to different objfiles, since they may
2497 have different lifetimes. Trying to copy NEWTYPE over to
2498 TYPE's objfile is pointless, too, since you'll have to
2499 move over any other types NEWTYPE refers to, which could
2500 be an unbounded amount of stuff. */
2501 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2502 type = make_qualified_type (newtype,
2503 TYPE_INSTANCE_FLAGS (type),
2504 type);
2505 else
2506 type = newtype;
2507 }
2508 }
2509 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2510 types. */
2511 else if (TYPE_STUB (type) && !currently_reading_symtab)
2512 {
2513 const char *name = TYPE_NAME (type);
2514 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2515 as appropriate? */
2516 struct symbol *sym;
2517
2518 if (name == NULL)
2519 {
2520 stub_noname_complaint ();
2521 return make_qualified_type (type, instance_flags, NULL);
2522 }
2523 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2524 if (sym)
2525 {
2526 /* Same as above for opaque types, we can replace the stub
2527 with the complete type only if they are in the same
2528 objfile. */
2529 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2530 type = make_qualified_type (SYMBOL_TYPE (sym),
2531 TYPE_INSTANCE_FLAGS (type),
2532 type);
2533 else
2534 type = SYMBOL_TYPE (sym);
2535 }
2536 }
2537
2538 if (TYPE_TARGET_STUB (type))
2539 {
2540 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2541
2542 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2543 {
2544 /* Nothing we can do. */
2545 }
2546 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2547 {
2548 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2549 TYPE_TARGET_STUB (type) = 0;
2550 }
2551 }
2552
2553 type = make_qualified_type (type, instance_flags, NULL);
2554
2555 /* Cache TYPE_LENGTH for future use. */
2556 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2557
2558 return type;
2559 }
2560
2561 /* Parse a type expression in the string [P..P+LENGTH). If an error
2562 occurs, silently return a void type. */
2563
2564 static struct type *
2565 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2566 {
2567 struct ui_file *saved_gdb_stderr;
2568 struct type *type = NULL; /* Initialize to keep gcc happy. */
2569
2570 /* Suppress error messages. */
2571 saved_gdb_stderr = gdb_stderr;
2572 gdb_stderr = &null_stream;
2573
2574 /* Call parse_and_eval_type() without fear of longjmp()s. */
2575 TRY
2576 {
2577 type = parse_and_eval_type (p, length);
2578 }
2579 CATCH (except, RETURN_MASK_ERROR)
2580 {
2581 type = builtin_type (gdbarch)->builtin_void;
2582 }
2583 END_CATCH
2584
2585 /* Stop suppressing error messages. */
2586 gdb_stderr = saved_gdb_stderr;
2587
2588 return type;
2589 }
2590
2591 /* Ugly hack to convert method stubs into method types.
2592
2593 He ain't kiddin'. This demangles the name of the method into a
2594 string including argument types, parses out each argument type,
2595 generates a string casting a zero to that type, evaluates the
2596 string, and stuffs the resulting type into an argtype vector!!!
2597 Then it knows the type of the whole function (including argument
2598 types for overloading), which info used to be in the stab's but was
2599 removed to hack back the space required for them. */
2600
2601 static void
2602 check_stub_method (struct type *type, int method_id, int signature_id)
2603 {
2604 struct gdbarch *gdbarch = get_type_arch (type);
2605 struct fn_field *f;
2606 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2607 char *demangled_name = gdb_demangle (mangled_name,
2608 DMGL_PARAMS | DMGL_ANSI);
2609 char *argtypetext, *p;
2610 int depth = 0, argcount = 1;
2611 struct field *argtypes;
2612 struct type *mtype;
2613
2614 /* Make sure we got back a function string that we can use. */
2615 if (demangled_name)
2616 p = strchr (demangled_name, '(');
2617 else
2618 p = NULL;
2619
2620 if (demangled_name == NULL || p == NULL)
2621 error (_("Internal: Cannot demangle mangled name `%s'."),
2622 mangled_name);
2623
2624 /* Now, read in the parameters that define this type. */
2625 p += 1;
2626 argtypetext = p;
2627 while (*p)
2628 {
2629 if (*p == '(' || *p == '<')
2630 {
2631 depth += 1;
2632 }
2633 else if (*p == ')' || *p == '>')
2634 {
2635 depth -= 1;
2636 }
2637 else if (*p == ',' && depth == 0)
2638 {
2639 argcount += 1;
2640 }
2641
2642 p += 1;
2643 }
2644
2645 /* If we read one argument and it was ``void'', don't count it. */
2646 if (startswith (argtypetext, "(void)"))
2647 argcount -= 1;
2648
2649 /* We need one extra slot, for the THIS pointer. */
2650
2651 argtypes = (struct field *)
2652 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2653 p = argtypetext;
2654
2655 /* Add THIS pointer for non-static methods. */
2656 f = TYPE_FN_FIELDLIST1 (type, method_id);
2657 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2658 argcount = 0;
2659 else
2660 {
2661 argtypes[0].type = lookup_pointer_type (type);
2662 argcount = 1;
2663 }
2664
2665 if (*p != ')') /* () means no args, skip while. */
2666 {
2667 depth = 0;
2668 while (*p)
2669 {
2670 if (depth <= 0 && (*p == ',' || *p == ')'))
2671 {
2672 /* Avoid parsing of ellipsis, they will be handled below.
2673 Also avoid ``void'' as above. */
2674 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2675 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2676 {
2677 argtypes[argcount].type =
2678 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2679 argcount += 1;
2680 }
2681 argtypetext = p + 1;
2682 }
2683
2684 if (*p == '(' || *p == '<')
2685 {
2686 depth += 1;
2687 }
2688 else if (*p == ')' || *p == '>')
2689 {
2690 depth -= 1;
2691 }
2692
2693 p += 1;
2694 }
2695 }
2696
2697 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2698
2699 /* Now update the old "stub" type into a real type. */
2700 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2701 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2702 We want a method (TYPE_CODE_METHOD). */
2703 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2704 argtypes, argcount, p[-2] == '.');
2705 TYPE_STUB (mtype) = 0;
2706 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2707
2708 xfree (demangled_name);
2709 }
2710
2711 /* This is the external interface to check_stub_method, above. This
2712 function unstubs all of the signatures for TYPE's METHOD_ID method
2713 name. After calling this function TYPE_FN_FIELD_STUB will be
2714 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2715 correct.
2716
2717 This function unfortunately can not die until stabs do. */
2718
2719 void
2720 check_stub_method_group (struct type *type, int method_id)
2721 {
2722 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2723 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2724
2725 for (int j = 0; j < len; j++)
2726 {
2727 if (TYPE_FN_FIELD_STUB (f, j))
2728 check_stub_method (type, method_id, j);
2729 }
2730 }
2731
2732 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2733 const struct cplus_struct_type cplus_struct_default = { };
2734
2735 void
2736 allocate_cplus_struct_type (struct type *type)
2737 {
2738 if (HAVE_CPLUS_STRUCT (type))
2739 /* Structure was already allocated. Nothing more to do. */
2740 return;
2741
2742 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2743 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2744 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2745 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2746 set_type_vptr_fieldno (type, -1);
2747 }
2748
2749 const struct gnat_aux_type gnat_aux_default =
2750 { NULL };
2751
2752 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2753 and allocate the associated gnat-specific data. The gnat-specific
2754 data is also initialized to gnat_aux_default. */
2755
2756 void
2757 allocate_gnat_aux_type (struct type *type)
2758 {
2759 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2760 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2761 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2762 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2763 }
2764
2765 /* Helper function to initialize a newly allocated type. Set type code
2766 to CODE and initialize the type-specific fields accordingly. */
2767
2768 static void
2769 set_type_code (struct type *type, enum type_code code)
2770 {
2771 TYPE_CODE (type) = code;
2772
2773 switch (code)
2774 {
2775 case TYPE_CODE_STRUCT:
2776 case TYPE_CODE_UNION:
2777 case TYPE_CODE_NAMESPACE:
2778 INIT_CPLUS_SPECIFIC (type);
2779 break;
2780 case TYPE_CODE_FLT:
2781 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2782 break;
2783 case TYPE_CODE_FUNC:
2784 INIT_FUNC_SPECIFIC (type);
2785 break;
2786 }
2787 }
2788
2789 /* Helper function to verify floating-point format and size.
2790 BIT is the type size in bits; if BIT equals -1, the size is
2791 determined by the floatformat. Returns size to be used. */
2792
2793 static int
2794 verify_floatformat (int bit, const struct floatformat *floatformat)
2795 {
2796 gdb_assert (floatformat != NULL);
2797
2798 if (bit == -1)
2799 bit = floatformat->totalsize;
2800
2801 gdb_assert (bit >= 0);
2802 gdb_assert (bit >= floatformat->totalsize);
2803
2804 return bit;
2805 }
2806
2807 /* Return the floating-point format for a floating-point variable of
2808 type TYPE. */
2809
2810 const struct floatformat *
2811 floatformat_from_type (const struct type *type)
2812 {
2813 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2814 gdb_assert (TYPE_FLOATFORMAT (type));
2815 return TYPE_FLOATFORMAT (type);
2816 }
2817
2818 /* Helper function to initialize the standard scalar types.
2819
2820 If NAME is non-NULL, then it is used to initialize the type name.
2821 Note that NAME is not copied; it is required to have a lifetime at
2822 least as long as OBJFILE. */
2823
2824 struct type *
2825 init_type (struct objfile *objfile, enum type_code code, int bit,
2826 const char *name)
2827 {
2828 struct type *type;
2829
2830 type = alloc_type (objfile);
2831 set_type_code (type, code);
2832 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2833 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2834 TYPE_NAME (type) = name;
2835
2836 return type;
2837 }
2838
2839 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2840 to use with variables that have no debug info. NAME is the type
2841 name. */
2842
2843 static struct type *
2844 init_nodebug_var_type (struct objfile *objfile, const char *name)
2845 {
2846 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2847 }
2848
2849 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2850 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2851 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2852
2853 struct type *
2854 init_integer_type (struct objfile *objfile,
2855 int bit, int unsigned_p, const char *name)
2856 {
2857 struct type *t;
2858
2859 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2860 if (unsigned_p)
2861 TYPE_UNSIGNED (t) = 1;
2862
2863 return t;
2864 }
2865
2866 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2867 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2868 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2869
2870 struct type *
2871 init_character_type (struct objfile *objfile,
2872 int bit, int unsigned_p, const char *name)
2873 {
2874 struct type *t;
2875
2876 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2877 if (unsigned_p)
2878 TYPE_UNSIGNED (t) = 1;
2879
2880 return t;
2881 }
2882
2883 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2884 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2885 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2886
2887 struct type *
2888 init_boolean_type (struct objfile *objfile,
2889 int bit, int unsigned_p, const char *name)
2890 {
2891 struct type *t;
2892
2893 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2894 if (unsigned_p)
2895 TYPE_UNSIGNED (t) = 1;
2896
2897 return t;
2898 }
2899
2900 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2901 BIT is the type size in bits; if BIT equals -1, the size is
2902 determined by the floatformat. NAME is the type name. Set the
2903 TYPE_FLOATFORMAT from FLOATFORMATS. */
2904
2905 struct type *
2906 init_float_type (struct objfile *objfile,
2907 int bit, const char *name,
2908 const struct floatformat **floatformats)
2909 {
2910 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2911 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
2912 struct type *t;
2913
2914 bit = verify_floatformat (bit, fmt);
2915 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
2916 TYPE_FLOATFORMAT (t) = fmt;
2917
2918 return t;
2919 }
2920
2921 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2922 BIT is the type size in bits. NAME is the type name. */
2923
2924 struct type *
2925 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2926 {
2927 struct type *t;
2928
2929 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
2930 return t;
2931 }
2932
2933 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2934 NAME is the type name. TARGET_TYPE is the component float type. */
2935
2936 struct type *
2937 init_complex_type (struct objfile *objfile,
2938 const char *name, struct type *target_type)
2939 {
2940 struct type *t;
2941
2942 t = init_type (objfile, TYPE_CODE_COMPLEX,
2943 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
2944 TYPE_TARGET_TYPE (t) = target_type;
2945 return t;
2946 }
2947
2948 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2949 BIT is the pointer type size in bits. NAME is the type name.
2950 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2951 TYPE_UNSIGNED flag. */
2952
2953 struct type *
2954 init_pointer_type (struct objfile *objfile,
2955 int bit, const char *name, struct type *target_type)
2956 {
2957 struct type *t;
2958
2959 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
2960 TYPE_TARGET_TYPE (t) = target_type;
2961 TYPE_UNSIGNED (t) = 1;
2962 return t;
2963 }
2964
2965 /* See gdbtypes.h. */
2966
2967 unsigned
2968 type_raw_align (struct type *type)
2969 {
2970 if (type->align_log2 != 0)
2971 return 1 << (type->align_log2 - 1);
2972 return 0;
2973 }
2974
2975 /* See gdbtypes.h. */
2976
2977 unsigned
2978 type_align (struct type *type)
2979 {
2980 /* Check alignment provided in the debug information. */
2981 unsigned raw_align = type_raw_align (type);
2982 if (raw_align != 0)
2983 return raw_align;
2984
2985 /* Allow the architecture to provide an alignment. */
2986 struct gdbarch *arch = get_type_arch (type);
2987 ULONGEST align = gdbarch_type_align (arch, type);
2988 if (align != 0)
2989 return align;
2990
2991 switch (TYPE_CODE (type))
2992 {
2993 case TYPE_CODE_PTR:
2994 case TYPE_CODE_FUNC:
2995 case TYPE_CODE_FLAGS:
2996 case TYPE_CODE_INT:
2997 case TYPE_CODE_RANGE:
2998 case TYPE_CODE_FLT:
2999 case TYPE_CODE_ENUM:
3000 case TYPE_CODE_REF:
3001 case TYPE_CODE_RVALUE_REF:
3002 case TYPE_CODE_CHAR:
3003 case TYPE_CODE_BOOL:
3004 case TYPE_CODE_DECFLOAT:
3005 case TYPE_CODE_METHODPTR:
3006 case TYPE_CODE_MEMBERPTR:
3007 align = type_length_units (check_typedef (type));
3008 break;
3009
3010 case TYPE_CODE_ARRAY:
3011 case TYPE_CODE_COMPLEX:
3012 case TYPE_CODE_TYPEDEF:
3013 align = type_align (TYPE_TARGET_TYPE (type));
3014 break;
3015
3016 case TYPE_CODE_STRUCT:
3017 case TYPE_CODE_UNION:
3018 {
3019 if (TYPE_NFIELDS (type) == 0)
3020 {
3021 /* An empty struct has alignment 1. */
3022 align = 1;
3023 break;
3024 }
3025 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3026 {
3027 if (!field_is_static (&TYPE_FIELD (type, i)))
3028 {
3029 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3030 if (f_align == 0)
3031 {
3032 /* Don't pretend we know something we don't. */
3033 align = 0;
3034 break;
3035 }
3036 if (f_align > align)
3037 align = f_align;
3038 }
3039 }
3040 }
3041 break;
3042
3043 case TYPE_CODE_SET:
3044 case TYPE_CODE_STRING:
3045 /* Not sure what to do here, and these can't appear in C or C++
3046 anyway. */
3047 break;
3048
3049 case TYPE_CODE_VOID:
3050 align = 1;
3051 break;
3052
3053 case TYPE_CODE_ERROR:
3054 case TYPE_CODE_METHOD:
3055 default:
3056 break;
3057 }
3058
3059 if ((align & (align - 1)) != 0)
3060 {
3061 /* Not a power of 2, so pass. */
3062 align = 0;
3063 }
3064
3065 return align;
3066 }
3067
3068 /* See gdbtypes.h. */
3069
3070 bool
3071 set_type_align (struct type *type, ULONGEST align)
3072 {
3073 /* Must be a power of 2. Zero is ok. */
3074 gdb_assert ((align & (align - 1)) == 0);
3075
3076 unsigned result = 0;
3077 while (align != 0)
3078 {
3079 ++result;
3080 align >>= 1;
3081 }
3082
3083 if (result >= (1 << TYPE_ALIGN_BITS))
3084 return false;
3085
3086 type->align_log2 = result;
3087 return true;
3088 }
3089
3090 \f
3091 /* Queries on types. */
3092
3093 int
3094 can_dereference (struct type *t)
3095 {
3096 /* FIXME: Should we return true for references as well as
3097 pointers? */
3098 t = check_typedef (t);
3099 return
3100 (t != NULL
3101 && TYPE_CODE (t) == TYPE_CODE_PTR
3102 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3103 }
3104
3105 int
3106 is_integral_type (struct type *t)
3107 {
3108 t = check_typedef (t);
3109 return
3110 ((t != NULL)
3111 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3112 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3113 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3114 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3115 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3116 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3117 }
3118
3119 int
3120 is_floating_type (struct type *t)
3121 {
3122 t = check_typedef (t);
3123 return
3124 ((t != NULL)
3125 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3126 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3127 }
3128
3129 /* Return true if TYPE is scalar. */
3130
3131 int
3132 is_scalar_type (struct type *type)
3133 {
3134 type = check_typedef (type);
3135
3136 switch (TYPE_CODE (type))
3137 {
3138 case TYPE_CODE_ARRAY:
3139 case TYPE_CODE_STRUCT:
3140 case TYPE_CODE_UNION:
3141 case TYPE_CODE_SET:
3142 case TYPE_CODE_STRING:
3143 return 0;
3144 default:
3145 return 1;
3146 }
3147 }
3148
3149 /* Return true if T is scalar, or a composite type which in practice has
3150 the memory layout of a scalar type. E.g., an array or struct with only
3151 one scalar element inside it, or a union with only scalar elements. */
3152
3153 int
3154 is_scalar_type_recursive (struct type *t)
3155 {
3156 t = check_typedef (t);
3157
3158 if (is_scalar_type (t))
3159 return 1;
3160 /* Are we dealing with an array or string of known dimensions? */
3161 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3162 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3163 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3164 {
3165 LONGEST low_bound, high_bound;
3166 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3167
3168 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3169
3170 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3171 }
3172 /* Are we dealing with a struct with one element? */
3173 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3174 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3175 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3176 {
3177 int i, n = TYPE_NFIELDS (t);
3178
3179 /* If all elements of the union are scalar, then the union is scalar. */
3180 for (i = 0; i < n; i++)
3181 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3182 return 0;
3183
3184 return 1;
3185 }
3186
3187 return 0;
3188 }
3189
3190 /* Return true is T is a class or a union. False otherwise. */
3191
3192 int
3193 class_or_union_p (const struct type *t)
3194 {
3195 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3196 || TYPE_CODE (t) == TYPE_CODE_UNION);
3197 }
3198
3199 /* A helper function which returns true if types A and B represent the
3200 "same" class type. This is true if the types have the same main
3201 type, or the same name. */
3202
3203 int
3204 class_types_same_p (const struct type *a, const struct type *b)
3205 {
3206 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3207 || (TYPE_NAME (a) && TYPE_NAME (b)
3208 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3209 }
3210
3211 /* If BASE is an ancestor of DCLASS return the distance between them.
3212 otherwise return -1;
3213 eg:
3214
3215 class A {};
3216 class B: public A {};
3217 class C: public B {};
3218 class D: C {};
3219
3220 distance_to_ancestor (A, A, 0) = 0
3221 distance_to_ancestor (A, B, 0) = 1
3222 distance_to_ancestor (A, C, 0) = 2
3223 distance_to_ancestor (A, D, 0) = 3
3224
3225 If PUBLIC is 1 then only public ancestors are considered,
3226 and the function returns the distance only if BASE is a public ancestor
3227 of DCLASS.
3228 Eg:
3229
3230 distance_to_ancestor (A, D, 1) = -1. */
3231
3232 static int
3233 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3234 {
3235 int i;
3236 int d;
3237
3238 base = check_typedef (base);
3239 dclass = check_typedef (dclass);
3240
3241 if (class_types_same_p (base, dclass))
3242 return 0;
3243
3244 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3245 {
3246 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3247 continue;
3248
3249 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3250 if (d >= 0)
3251 return 1 + d;
3252 }
3253
3254 return -1;
3255 }
3256
3257 /* Check whether BASE is an ancestor or base class or DCLASS
3258 Return 1 if so, and 0 if not.
3259 Note: If BASE and DCLASS are of the same type, this function
3260 will return 1. So for some class A, is_ancestor (A, A) will
3261 return 1. */
3262
3263 int
3264 is_ancestor (struct type *base, struct type *dclass)
3265 {
3266 return distance_to_ancestor (base, dclass, 0) >= 0;
3267 }
3268
3269 /* Like is_ancestor, but only returns true when BASE is a public
3270 ancestor of DCLASS. */
3271
3272 int
3273 is_public_ancestor (struct type *base, struct type *dclass)
3274 {
3275 return distance_to_ancestor (base, dclass, 1) >= 0;
3276 }
3277
3278 /* A helper function for is_unique_ancestor. */
3279
3280 static int
3281 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3282 int *offset,
3283 const gdb_byte *valaddr, int embedded_offset,
3284 CORE_ADDR address, struct value *val)
3285 {
3286 int i, count = 0;
3287
3288 base = check_typedef (base);
3289 dclass = check_typedef (dclass);
3290
3291 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3292 {
3293 struct type *iter;
3294 int this_offset;
3295
3296 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3297
3298 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3299 address, val);
3300
3301 if (class_types_same_p (base, iter))
3302 {
3303 /* If this is the first subclass, set *OFFSET and set count
3304 to 1. Otherwise, if this is at the same offset as
3305 previous instances, do nothing. Otherwise, increment
3306 count. */
3307 if (*offset == -1)
3308 {
3309 *offset = this_offset;
3310 count = 1;
3311 }
3312 else if (this_offset == *offset)
3313 {
3314 /* Nothing. */
3315 }
3316 else
3317 ++count;
3318 }
3319 else
3320 count += is_unique_ancestor_worker (base, iter, offset,
3321 valaddr,
3322 embedded_offset + this_offset,
3323 address, val);
3324 }
3325
3326 return count;
3327 }
3328
3329 /* Like is_ancestor, but only returns true if BASE is a unique base
3330 class of the type of VAL. */
3331
3332 int
3333 is_unique_ancestor (struct type *base, struct value *val)
3334 {
3335 int offset = -1;
3336
3337 return is_unique_ancestor_worker (base, value_type (val), &offset,
3338 value_contents_for_printing (val),
3339 value_embedded_offset (val),
3340 value_address (val), val) == 1;
3341 }
3342
3343 \f
3344 /* Overload resolution. */
3345
3346 /* Return the sum of the rank of A with the rank of B. */
3347
3348 struct rank
3349 sum_ranks (struct rank a, struct rank b)
3350 {
3351 struct rank c;
3352 c.rank = a.rank + b.rank;
3353 c.subrank = a.subrank + b.subrank;
3354 return c;
3355 }
3356
3357 /* Compare rank A and B and return:
3358 0 if a = b
3359 1 if a is better than b
3360 -1 if b is better than a. */
3361
3362 int
3363 compare_ranks (struct rank a, struct rank b)
3364 {
3365 if (a.rank == b.rank)
3366 {
3367 if (a.subrank == b.subrank)
3368 return 0;
3369 if (a.subrank < b.subrank)
3370 return 1;
3371 if (a.subrank > b.subrank)
3372 return -1;
3373 }
3374
3375 if (a.rank < b.rank)
3376 return 1;
3377
3378 /* a.rank > b.rank */
3379 return -1;
3380 }
3381
3382 /* Functions for overload resolution begin here. */
3383
3384 /* Compare two badness vectors A and B and return the result.
3385 0 => A and B are identical
3386 1 => A and B are incomparable
3387 2 => A is better than B
3388 3 => A is worse than B */
3389
3390 int
3391 compare_badness (const badness_vector &a, const badness_vector &b)
3392 {
3393 int i;
3394 int tmp;
3395 short found_pos = 0; /* any positives in c? */
3396 short found_neg = 0; /* any negatives in c? */
3397
3398 /* differing sizes => incomparable */
3399 if (a.size () != b.size ())
3400 return 1;
3401
3402 /* Subtract b from a */
3403 for (i = 0; i < a.size (); i++)
3404 {
3405 tmp = compare_ranks (b[i], a[i]);
3406 if (tmp > 0)
3407 found_pos = 1;
3408 else if (tmp < 0)
3409 found_neg = 1;
3410 }
3411
3412 if (found_pos)
3413 {
3414 if (found_neg)
3415 return 1; /* incomparable */
3416 else
3417 return 3; /* A > B */
3418 }
3419 else
3420 /* no positives */
3421 {
3422 if (found_neg)
3423 return 2; /* A < B */
3424 else
3425 return 0; /* A == B */
3426 }
3427 }
3428
3429 /* Rank a function by comparing its parameter types (PARMS), to the
3430 types of an argument list (ARGS). Return the badness vector. This
3431 has ARGS.size() + 1 entries. */
3432
3433 badness_vector
3434 rank_function (gdb::array_view<type *> parms,
3435 gdb::array_view<value *> args)
3436 {
3437 /* add 1 for the length-match rank. */
3438 badness_vector bv;
3439 bv.reserve (1 + args.size ());
3440
3441 /* First compare the lengths of the supplied lists.
3442 If there is a mismatch, set it to a high value. */
3443
3444 /* pai/1997-06-03 FIXME: when we have debug info about default
3445 arguments and ellipsis parameter lists, we should consider those
3446 and rank the length-match more finely. */
3447
3448 bv.push_back ((args.size () != parms.size ())
3449 ? LENGTH_MISMATCH_BADNESS
3450 : EXACT_MATCH_BADNESS);
3451
3452 /* Now rank all the parameters of the candidate function. */
3453 size_t min_len = std::min (parms.size (), args.size ());
3454
3455 for (size_t i = 0; i < min_len; i++)
3456 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3457 args[i]));
3458
3459 /* If more arguments than parameters, add dummy entries. */
3460 for (size_t i = min_len; i < args.size (); i++)
3461 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3462
3463 return bv;
3464 }
3465
3466 /* Compare the names of two integer types, assuming that any sign
3467 qualifiers have been checked already. We do it this way because
3468 there may be an "int" in the name of one of the types. */
3469
3470 static int
3471 integer_types_same_name_p (const char *first, const char *second)
3472 {
3473 int first_p, second_p;
3474
3475 /* If both are shorts, return 1; if neither is a short, keep
3476 checking. */
3477 first_p = (strstr (first, "short") != NULL);
3478 second_p = (strstr (second, "short") != NULL);
3479 if (first_p && second_p)
3480 return 1;
3481 if (first_p || second_p)
3482 return 0;
3483
3484 /* Likewise for long. */
3485 first_p = (strstr (first, "long") != NULL);
3486 second_p = (strstr (second, "long") != NULL);
3487 if (first_p && second_p)
3488 return 1;
3489 if (first_p || second_p)
3490 return 0;
3491
3492 /* Likewise for char. */
3493 first_p = (strstr (first, "char") != NULL);
3494 second_p = (strstr (second, "char") != NULL);
3495 if (first_p && second_p)
3496 return 1;
3497 if (first_p || second_p)
3498 return 0;
3499
3500 /* They must both be ints. */
3501 return 1;
3502 }
3503
3504 /* Compares type A to type B. Returns true if they represent the same
3505 type, false otherwise. */
3506
3507 bool
3508 types_equal (struct type *a, struct type *b)
3509 {
3510 /* Identical type pointers. */
3511 /* However, this still doesn't catch all cases of same type for b
3512 and a. The reason is that builtin types are different from
3513 the same ones constructed from the object. */
3514 if (a == b)
3515 return true;
3516
3517 /* Resolve typedefs */
3518 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3519 a = check_typedef (a);
3520 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3521 b = check_typedef (b);
3522
3523 /* If after resolving typedefs a and b are not of the same type
3524 code then they are not equal. */
3525 if (TYPE_CODE (a) != TYPE_CODE (b))
3526 return false;
3527
3528 /* If a and b are both pointers types or both reference types then
3529 they are equal of the same type iff the objects they refer to are
3530 of the same type. */
3531 if (TYPE_CODE (a) == TYPE_CODE_PTR
3532 || TYPE_CODE (a) == TYPE_CODE_REF)
3533 return types_equal (TYPE_TARGET_TYPE (a),
3534 TYPE_TARGET_TYPE (b));
3535
3536 /* Well, damnit, if the names are exactly the same, I'll say they
3537 are exactly the same. This happens when we generate method
3538 stubs. The types won't point to the same address, but they
3539 really are the same. */
3540
3541 if (TYPE_NAME (a) && TYPE_NAME (b)
3542 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3543 return true;
3544
3545 /* Check if identical after resolving typedefs. */
3546 if (a == b)
3547 return true;
3548
3549 /* Two function types are equal if their argument and return types
3550 are equal. */
3551 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3552 {
3553 int i;
3554
3555 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3556 return false;
3557
3558 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3559 return false;
3560
3561 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3562 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3563 return false;
3564
3565 return true;
3566 }
3567
3568 return false;
3569 }
3570 \f
3571 /* Deep comparison of types. */
3572
3573 /* An entry in the type-equality bcache. */
3574
3575 struct type_equality_entry
3576 {
3577 type_equality_entry (struct type *t1, struct type *t2)
3578 : type1 (t1),
3579 type2 (t2)
3580 {
3581 }
3582
3583 struct type *type1, *type2;
3584 };
3585
3586 /* A helper function to compare two strings. Returns true if they are
3587 the same, false otherwise. Handles NULLs properly. */
3588
3589 static bool
3590 compare_maybe_null_strings (const char *s, const char *t)
3591 {
3592 if (s == NULL || t == NULL)
3593 return s == t;
3594 return strcmp (s, t) == 0;
3595 }
3596
3597 /* A helper function for check_types_worklist that checks two types for
3598 "deep" equality. Returns true if the types are considered the
3599 same, false otherwise. */
3600
3601 static bool
3602 check_types_equal (struct type *type1, struct type *type2,
3603 std::vector<type_equality_entry> *worklist)
3604 {
3605 type1 = check_typedef (type1);
3606 type2 = check_typedef (type2);
3607
3608 if (type1 == type2)
3609 return true;
3610
3611 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3612 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3613 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3614 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3615 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3616 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3617 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3618 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3619 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3620 return false;
3621
3622 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3623 return false;
3624 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3625 return false;
3626
3627 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3628 {
3629 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3630 return false;
3631 }
3632 else
3633 {
3634 int i;
3635
3636 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3637 {
3638 const struct field *field1 = &TYPE_FIELD (type1, i);
3639 const struct field *field2 = &TYPE_FIELD (type2, i);
3640
3641 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3642 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3643 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3644 return false;
3645 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3646 FIELD_NAME (*field2)))
3647 return false;
3648 switch (FIELD_LOC_KIND (*field1))
3649 {
3650 case FIELD_LOC_KIND_BITPOS:
3651 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3652 return false;
3653 break;
3654 case FIELD_LOC_KIND_ENUMVAL:
3655 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3656 return false;
3657 break;
3658 case FIELD_LOC_KIND_PHYSADDR:
3659 if (FIELD_STATIC_PHYSADDR (*field1)
3660 != FIELD_STATIC_PHYSADDR (*field2))
3661 return false;
3662 break;
3663 case FIELD_LOC_KIND_PHYSNAME:
3664 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3665 FIELD_STATIC_PHYSNAME (*field2)))
3666 return false;
3667 break;
3668 case FIELD_LOC_KIND_DWARF_BLOCK:
3669 {
3670 struct dwarf2_locexpr_baton *block1, *block2;
3671
3672 block1 = FIELD_DWARF_BLOCK (*field1);
3673 block2 = FIELD_DWARF_BLOCK (*field2);
3674 if (block1->per_cu != block2->per_cu
3675 || block1->size != block2->size
3676 || memcmp (block1->data, block2->data, block1->size) != 0)
3677 return false;
3678 }
3679 break;
3680 default:
3681 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3682 "%d by check_types_equal"),
3683 FIELD_LOC_KIND (*field1));
3684 }
3685
3686 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
3687 }
3688 }
3689
3690 if (TYPE_TARGET_TYPE (type1) != NULL)
3691 {
3692 if (TYPE_TARGET_TYPE (type2) == NULL)
3693 return false;
3694
3695 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3696 TYPE_TARGET_TYPE (type2));
3697 }
3698 else if (TYPE_TARGET_TYPE (type2) != NULL)
3699 return false;
3700
3701 return true;
3702 }
3703
3704 /* Check types on a worklist for equality. Returns false if any pair
3705 is not equal, true if they are all considered equal. */
3706
3707 static bool
3708 check_types_worklist (std::vector<type_equality_entry> *worklist,
3709 struct bcache *cache)
3710 {
3711 while (!worklist->empty ())
3712 {
3713 int added;
3714
3715 struct type_equality_entry entry = std::move (worklist->back ());
3716 worklist->pop_back ();
3717
3718 /* If the type pair has already been visited, we know it is
3719 ok. */
3720 cache->insert (&entry, sizeof (entry), &added);
3721 if (!added)
3722 continue;
3723
3724 if (!check_types_equal (entry.type1, entry.type2, worklist))
3725 return false;
3726 }
3727
3728 return true;
3729 }
3730
3731 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3732 "deep comparison". Otherwise return false. */
3733
3734 bool
3735 types_deeply_equal (struct type *type1, struct type *type2)
3736 {
3737 std::vector<type_equality_entry> worklist;
3738
3739 gdb_assert (type1 != NULL && type2 != NULL);
3740
3741 /* Early exit for the simple case. */
3742 if (type1 == type2)
3743 return true;
3744
3745 struct bcache cache (nullptr, nullptr);
3746 worklist.emplace_back (type1, type2);
3747 return check_types_worklist (&worklist, &cache);
3748 }
3749
3750 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3751 Otherwise return one. */
3752
3753 int
3754 type_not_allocated (const struct type *type)
3755 {
3756 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3757
3758 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3759 && !TYPE_DYN_PROP_ADDR (prop));
3760 }
3761
3762 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3763 Otherwise return one. */
3764
3765 int
3766 type_not_associated (const struct type *type)
3767 {
3768 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3769
3770 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3771 && !TYPE_DYN_PROP_ADDR (prop));
3772 }
3773
3774 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3775
3776 static struct rank
3777 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3778 {
3779 struct rank rank = {0,0};
3780
3781 switch (TYPE_CODE (arg))
3782 {
3783 case TYPE_CODE_PTR:
3784
3785 /* Allowed pointer conversions are:
3786 (a) pointer to void-pointer conversion. */
3787 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3788 return VOID_PTR_CONVERSION_BADNESS;
3789
3790 /* (b) pointer to ancestor-pointer conversion. */
3791 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3792 TYPE_TARGET_TYPE (arg),
3793 0);
3794 if (rank.subrank >= 0)
3795 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3796
3797 return INCOMPATIBLE_TYPE_BADNESS;
3798 case TYPE_CODE_ARRAY:
3799 {
3800 struct type *t1 = TYPE_TARGET_TYPE (parm);
3801 struct type *t2 = TYPE_TARGET_TYPE (arg);
3802
3803 if (types_equal (t1, t2))
3804 {
3805 /* Make sure they are CV equal. */
3806 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3807 rank.subrank |= CV_CONVERSION_CONST;
3808 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3809 rank.subrank |= CV_CONVERSION_VOLATILE;
3810 if (rank.subrank != 0)
3811 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3812 return EXACT_MATCH_BADNESS;
3813 }
3814 return INCOMPATIBLE_TYPE_BADNESS;
3815 }
3816 case TYPE_CODE_FUNC:
3817 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3818 case TYPE_CODE_INT:
3819 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3820 {
3821 if (value_as_long (value) == 0)
3822 {
3823 /* Null pointer conversion: allow it to be cast to a pointer.
3824 [4.10.1 of C++ standard draft n3290] */
3825 return NULL_POINTER_CONVERSION_BADNESS;
3826 }
3827 else
3828 {
3829 /* If type checking is disabled, allow the conversion. */
3830 if (!strict_type_checking)
3831 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3832 }
3833 }
3834 /* fall through */
3835 case TYPE_CODE_ENUM:
3836 case TYPE_CODE_FLAGS:
3837 case TYPE_CODE_CHAR:
3838 case TYPE_CODE_RANGE:
3839 case TYPE_CODE_BOOL:
3840 default:
3841 return INCOMPATIBLE_TYPE_BADNESS;
3842 }
3843 }
3844
3845 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3846
3847 static struct rank
3848 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3849 {
3850 switch (TYPE_CODE (arg))
3851 {
3852 case TYPE_CODE_PTR:
3853 case TYPE_CODE_ARRAY:
3854 return rank_one_type (TYPE_TARGET_TYPE (parm),
3855 TYPE_TARGET_TYPE (arg), NULL);
3856 default:
3857 return INCOMPATIBLE_TYPE_BADNESS;
3858 }
3859 }
3860
3861 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3862
3863 static struct rank
3864 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3865 {
3866 switch (TYPE_CODE (arg))
3867 {
3868 case TYPE_CODE_PTR: /* funcptr -> func */
3869 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3870 default:
3871 return INCOMPATIBLE_TYPE_BADNESS;
3872 }
3873 }
3874
3875 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3876
3877 static struct rank
3878 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3879 {
3880 switch (TYPE_CODE (arg))
3881 {
3882 case TYPE_CODE_INT:
3883 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3884 {
3885 /* Deal with signed, unsigned, and plain chars and
3886 signed and unsigned ints. */
3887 if (TYPE_NOSIGN (parm))
3888 {
3889 /* This case only for character types. */
3890 if (TYPE_NOSIGN (arg))
3891 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3892 else /* signed/unsigned char -> plain char */
3893 return INTEGER_CONVERSION_BADNESS;
3894 }
3895 else if (TYPE_UNSIGNED (parm))
3896 {
3897 if (TYPE_UNSIGNED (arg))
3898 {
3899 /* unsigned int -> unsigned int, or
3900 unsigned long -> unsigned long */
3901 if (integer_types_same_name_p (TYPE_NAME (parm),
3902 TYPE_NAME (arg)))
3903 return EXACT_MATCH_BADNESS;
3904 else if (integer_types_same_name_p (TYPE_NAME (arg),
3905 "int")
3906 && integer_types_same_name_p (TYPE_NAME (parm),
3907 "long"))
3908 /* unsigned int -> unsigned long */
3909 return INTEGER_PROMOTION_BADNESS;
3910 else
3911 /* unsigned long -> unsigned int */
3912 return INTEGER_CONVERSION_BADNESS;
3913 }
3914 else
3915 {
3916 if (integer_types_same_name_p (TYPE_NAME (arg),
3917 "long")
3918 && integer_types_same_name_p (TYPE_NAME (parm),
3919 "int"))
3920 /* signed long -> unsigned int */
3921 return INTEGER_CONVERSION_BADNESS;
3922 else
3923 /* signed int/long -> unsigned int/long */
3924 return INTEGER_CONVERSION_BADNESS;
3925 }
3926 }
3927 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3928 {
3929 if (integer_types_same_name_p (TYPE_NAME (parm),
3930 TYPE_NAME (arg)))
3931 return EXACT_MATCH_BADNESS;
3932 else if (integer_types_same_name_p (TYPE_NAME (arg),
3933 "int")
3934 && integer_types_same_name_p (TYPE_NAME (parm),
3935 "long"))
3936 return INTEGER_PROMOTION_BADNESS;
3937 else
3938 return INTEGER_CONVERSION_BADNESS;
3939 }
3940 else
3941 return INTEGER_CONVERSION_BADNESS;
3942 }
3943 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3944 return INTEGER_PROMOTION_BADNESS;
3945 else
3946 return INTEGER_CONVERSION_BADNESS;
3947 case TYPE_CODE_ENUM:
3948 case TYPE_CODE_FLAGS:
3949 case TYPE_CODE_CHAR:
3950 case TYPE_CODE_RANGE:
3951 case TYPE_CODE_BOOL:
3952 if (TYPE_DECLARED_CLASS (arg))
3953 return INCOMPATIBLE_TYPE_BADNESS;
3954 return INTEGER_PROMOTION_BADNESS;
3955 case TYPE_CODE_FLT:
3956 return INT_FLOAT_CONVERSION_BADNESS;
3957 case TYPE_CODE_PTR:
3958 return NS_POINTER_CONVERSION_BADNESS;
3959 default:
3960 return INCOMPATIBLE_TYPE_BADNESS;
3961 }
3962 }
3963
3964 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
3965
3966 static struct rank
3967 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
3968 {
3969 switch (TYPE_CODE (arg))
3970 {
3971 case TYPE_CODE_INT:
3972 case TYPE_CODE_CHAR:
3973 case TYPE_CODE_RANGE:
3974 case TYPE_CODE_BOOL:
3975 case TYPE_CODE_ENUM:
3976 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3977 return INCOMPATIBLE_TYPE_BADNESS;
3978 return INTEGER_CONVERSION_BADNESS;
3979 case TYPE_CODE_FLT:
3980 return INT_FLOAT_CONVERSION_BADNESS;
3981 default:
3982 return INCOMPATIBLE_TYPE_BADNESS;
3983 }
3984 }
3985
3986 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
3987
3988 static struct rank
3989 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
3990 {
3991 switch (TYPE_CODE (arg))
3992 {
3993 case TYPE_CODE_RANGE:
3994 case TYPE_CODE_BOOL:
3995 case TYPE_CODE_ENUM:
3996 if (TYPE_DECLARED_CLASS (arg))
3997 return INCOMPATIBLE_TYPE_BADNESS;
3998 return INTEGER_CONVERSION_BADNESS;
3999 case TYPE_CODE_FLT:
4000 return INT_FLOAT_CONVERSION_BADNESS;
4001 case TYPE_CODE_INT:
4002 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4003 return INTEGER_CONVERSION_BADNESS;
4004 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4005 return INTEGER_PROMOTION_BADNESS;
4006 /* fall through */
4007 case TYPE_CODE_CHAR:
4008 /* Deal with signed, unsigned, and plain chars for C++ and
4009 with int cases falling through from previous case. */
4010 if (TYPE_NOSIGN (parm))
4011 {
4012 if (TYPE_NOSIGN (arg))
4013 return EXACT_MATCH_BADNESS;
4014 else
4015 return INTEGER_CONVERSION_BADNESS;
4016 }
4017 else if (TYPE_UNSIGNED (parm))
4018 {
4019 if (TYPE_UNSIGNED (arg))
4020 return EXACT_MATCH_BADNESS;
4021 else
4022 return INTEGER_PROMOTION_BADNESS;
4023 }
4024 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4025 return EXACT_MATCH_BADNESS;
4026 else
4027 return INTEGER_CONVERSION_BADNESS;
4028 default:
4029 return INCOMPATIBLE_TYPE_BADNESS;
4030 }
4031 }
4032
4033 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4034
4035 static struct rank
4036 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4037 {
4038 switch (TYPE_CODE (arg))
4039 {
4040 case TYPE_CODE_INT:
4041 case TYPE_CODE_CHAR:
4042 case TYPE_CODE_RANGE:
4043 case TYPE_CODE_BOOL:
4044 case TYPE_CODE_ENUM:
4045 return INTEGER_CONVERSION_BADNESS;
4046 case TYPE_CODE_FLT:
4047 return INT_FLOAT_CONVERSION_BADNESS;
4048 default:
4049 return INCOMPATIBLE_TYPE_BADNESS;
4050 }
4051 }
4052
4053 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4054
4055 static struct rank
4056 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4057 {
4058 switch (TYPE_CODE (arg))
4059 {
4060 /* n3290 draft, section 4.12.1 (conv.bool):
4061
4062 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4063 pointer to member type can be converted to a prvalue of type
4064 bool. A zero value, null pointer value, or null member pointer
4065 value is converted to false; any other value is converted to
4066 true. A prvalue of type std::nullptr_t can be converted to a
4067 prvalue of type bool; the resulting value is false." */
4068 case TYPE_CODE_INT:
4069 case TYPE_CODE_CHAR:
4070 case TYPE_CODE_ENUM:
4071 case TYPE_CODE_FLT:
4072 case TYPE_CODE_MEMBERPTR:
4073 case TYPE_CODE_PTR:
4074 return BOOL_CONVERSION_BADNESS;
4075 case TYPE_CODE_RANGE:
4076 return INCOMPATIBLE_TYPE_BADNESS;
4077 case TYPE_CODE_BOOL:
4078 return EXACT_MATCH_BADNESS;
4079 default:
4080 return INCOMPATIBLE_TYPE_BADNESS;
4081 }
4082 }
4083
4084 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4085
4086 static struct rank
4087 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4088 {
4089 switch (TYPE_CODE (arg))
4090 {
4091 case TYPE_CODE_FLT:
4092 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4093 return FLOAT_PROMOTION_BADNESS;
4094 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4095 return EXACT_MATCH_BADNESS;
4096 else
4097 return FLOAT_CONVERSION_BADNESS;
4098 case TYPE_CODE_INT:
4099 case TYPE_CODE_BOOL:
4100 case TYPE_CODE_ENUM:
4101 case TYPE_CODE_RANGE:
4102 case TYPE_CODE_CHAR:
4103 return INT_FLOAT_CONVERSION_BADNESS;
4104 default:
4105 return INCOMPATIBLE_TYPE_BADNESS;
4106 }
4107 }
4108
4109 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4110
4111 static struct rank
4112 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4113 {
4114 switch (TYPE_CODE (arg))
4115 { /* Strictly not needed for C++, but... */
4116 case TYPE_CODE_FLT:
4117 return FLOAT_PROMOTION_BADNESS;
4118 case TYPE_CODE_COMPLEX:
4119 return EXACT_MATCH_BADNESS;
4120 default:
4121 return INCOMPATIBLE_TYPE_BADNESS;
4122 }
4123 }
4124
4125 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4126
4127 static struct rank
4128 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4129 {
4130 struct rank rank = {0, 0};
4131
4132 switch (TYPE_CODE (arg))
4133 {
4134 case TYPE_CODE_STRUCT:
4135 /* Check for derivation */
4136 rank.subrank = distance_to_ancestor (parm, arg, 0);
4137 if (rank.subrank >= 0)
4138 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4139 /* fall through */
4140 default:
4141 return INCOMPATIBLE_TYPE_BADNESS;
4142 }
4143 }
4144
4145 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4146
4147 static struct rank
4148 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4149 {
4150 switch (TYPE_CODE (arg))
4151 {
4152 /* Not in C++ */
4153 case TYPE_CODE_SET:
4154 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4155 TYPE_FIELD_TYPE (arg, 0), NULL);
4156 default:
4157 return INCOMPATIBLE_TYPE_BADNESS;
4158 }
4159 }
4160
4161 /* Compare one type (PARM) for compatibility with another (ARG).
4162 * PARM is intended to be the parameter type of a function; and
4163 * ARG is the supplied argument's type. This function tests if
4164 * the latter can be converted to the former.
4165 * VALUE is the argument's value or NULL if none (or called recursively)
4166 *
4167 * Return 0 if they are identical types;
4168 * Otherwise, return an integer which corresponds to how compatible
4169 * PARM is to ARG. The higher the return value, the worse the match.
4170 * Generally the "bad" conversions are all uniformly assigned a 100. */
4171
4172 struct rank
4173 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4174 {
4175 struct rank rank = {0,0};
4176
4177 /* Resolve typedefs */
4178 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4179 parm = check_typedef (parm);
4180 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4181 arg = check_typedef (arg);
4182
4183 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4184 {
4185 if (VALUE_LVAL (value) == not_lval)
4186 {
4187 /* Rvalues should preferably bind to rvalue references or const
4188 lvalue references. */
4189 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4190 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4191 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4192 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4193 else
4194 return INCOMPATIBLE_TYPE_BADNESS;
4195 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4196 }
4197 else
4198 {
4199 /* Lvalues should prefer lvalue overloads. */
4200 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4201 {
4202 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4203 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4204 }
4205 }
4206 }
4207
4208 if (types_equal (parm, arg))
4209 {
4210 struct type *t1 = parm;
4211 struct type *t2 = arg;
4212
4213 /* For pointers and references, compare target type. */
4214 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4215 {
4216 t1 = TYPE_TARGET_TYPE (parm);
4217 t2 = TYPE_TARGET_TYPE (arg);
4218 }
4219
4220 /* Make sure they are CV equal, too. */
4221 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4222 rank.subrank |= CV_CONVERSION_CONST;
4223 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4224 rank.subrank |= CV_CONVERSION_VOLATILE;
4225 if (rank.subrank != 0)
4226 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4227 return EXACT_MATCH_BADNESS;
4228 }
4229
4230 /* See through references, since we can almost make non-references
4231 references. */
4232
4233 if (TYPE_IS_REFERENCE (arg))
4234 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4235 REFERENCE_CONVERSION_BADNESS));
4236 if (TYPE_IS_REFERENCE (parm))
4237 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4238 REFERENCE_CONVERSION_BADNESS));
4239 if (overload_debug)
4240 /* Debugging only. */
4241 fprintf_filtered (gdb_stderr,
4242 "------ Arg is %s [%d], parm is %s [%d]\n",
4243 TYPE_NAME (arg), TYPE_CODE (arg),
4244 TYPE_NAME (parm), TYPE_CODE (parm));
4245
4246 /* x -> y means arg of type x being supplied for parameter of type y. */
4247
4248 switch (TYPE_CODE (parm))
4249 {
4250 case TYPE_CODE_PTR:
4251 return rank_one_type_parm_ptr (parm, arg, value);
4252 case TYPE_CODE_ARRAY:
4253 return rank_one_type_parm_array (parm, arg, value);
4254 case TYPE_CODE_FUNC:
4255 return rank_one_type_parm_func (parm, arg, value);
4256 case TYPE_CODE_INT:
4257 return rank_one_type_parm_int (parm, arg, value);
4258 case TYPE_CODE_ENUM:
4259 return rank_one_type_parm_enum (parm, arg, value);
4260 case TYPE_CODE_CHAR:
4261 return rank_one_type_parm_char (parm, arg, value);
4262 case TYPE_CODE_RANGE:
4263 return rank_one_type_parm_range (parm, arg, value);
4264 case TYPE_CODE_BOOL:
4265 return rank_one_type_parm_bool (parm, arg, value);
4266 case TYPE_CODE_FLT:
4267 return rank_one_type_parm_float (parm, arg, value);
4268 case TYPE_CODE_COMPLEX:
4269 return rank_one_type_parm_complex (parm, arg, value);
4270 case TYPE_CODE_STRUCT:
4271 return rank_one_type_parm_struct (parm, arg, value);
4272 case TYPE_CODE_SET:
4273 return rank_one_type_parm_set (parm, arg, value);
4274 default:
4275 return INCOMPATIBLE_TYPE_BADNESS;
4276 } /* switch (TYPE_CODE (arg)) */
4277 }
4278
4279 /* End of functions for overload resolution. */
4280 \f
4281 /* Routines to pretty-print types. */
4282
4283 static void
4284 print_bit_vector (B_TYPE *bits, int nbits)
4285 {
4286 int bitno;
4287
4288 for (bitno = 0; bitno < nbits; bitno++)
4289 {
4290 if ((bitno % 8) == 0)
4291 {
4292 puts_filtered (" ");
4293 }
4294 if (B_TST (bits, bitno))
4295 printf_filtered (("1"));
4296 else
4297 printf_filtered (("0"));
4298 }
4299 }
4300
4301 /* Note the first arg should be the "this" pointer, we may not want to
4302 include it since we may get into a infinitely recursive
4303 situation. */
4304
4305 static void
4306 print_args (struct field *args, int nargs, int spaces)
4307 {
4308 if (args != NULL)
4309 {
4310 int i;
4311
4312 for (i = 0; i < nargs; i++)
4313 {
4314 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4315 args[i].name != NULL ? args[i].name : "<NULL>");
4316 recursive_dump_type (args[i].type, spaces + 2);
4317 }
4318 }
4319 }
4320
4321 int
4322 field_is_static (struct field *f)
4323 {
4324 /* "static" fields are the fields whose location is not relative
4325 to the address of the enclosing struct. It would be nice to
4326 have a dedicated flag that would be set for static fields when
4327 the type is being created. But in practice, checking the field
4328 loc_kind should give us an accurate answer. */
4329 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4330 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4331 }
4332
4333 static void
4334 dump_fn_fieldlists (struct type *type, int spaces)
4335 {
4336 int method_idx;
4337 int overload_idx;
4338 struct fn_field *f;
4339
4340 printfi_filtered (spaces, "fn_fieldlists ");
4341 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4342 printf_filtered ("\n");
4343 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4344 {
4345 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4346 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4347 method_idx,
4348 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4349 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4350 gdb_stdout);
4351 printf_filtered (_(") length %d\n"),
4352 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4353 for (overload_idx = 0;
4354 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4355 overload_idx++)
4356 {
4357 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4358 overload_idx,
4359 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4360 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4361 gdb_stdout);
4362 printf_filtered (")\n");
4363 printfi_filtered (spaces + 8, "type ");
4364 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4365 gdb_stdout);
4366 printf_filtered ("\n");
4367
4368 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4369 spaces + 8 + 2);
4370
4371 printfi_filtered (spaces + 8, "args ");
4372 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4373 gdb_stdout);
4374 printf_filtered ("\n");
4375 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4376 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4377 spaces + 8 + 2);
4378 printfi_filtered (spaces + 8, "fcontext ");
4379 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4380 gdb_stdout);
4381 printf_filtered ("\n");
4382
4383 printfi_filtered (spaces + 8, "is_const %d\n",
4384 TYPE_FN_FIELD_CONST (f, overload_idx));
4385 printfi_filtered (spaces + 8, "is_volatile %d\n",
4386 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4387 printfi_filtered (spaces + 8, "is_private %d\n",
4388 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4389 printfi_filtered (spaces + 8, "is_protected %d\n",
4390 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4391 printfi_filtered (spaces + 8, "is_stub %d\n",
4392 TYPE_FN_FIELD_STUB (f, overload_idx));
4393 printfi_filtered (spaces + 8, "voffset %u\n",
4394 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4395 }
4396 }
4397 }
4398
4399 static void
4400 print_cplus_stuff (struct type *type, int spaces)
4401 {
4402 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4403 printfi_filtered (spaces, "vptr_basetype ");
4404 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4405 puts_filtered ("\n");
4406 if (TYPE_VPTR_BASETYPE (type) != NULL)
4407 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4408
4409 printfi_filtered (spaces, "n_baseclasses %d\n",
4410 TYPE_N_BASECLASSES (type));
4411 printfi_filtered (spaces, "nfn_fields %d\n",
4412 TYPE_NFN_FIELDS (type));
4413 if (TYPE_N_BASECLASSES (type) > 0)
4414 {
4415 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4416 TYPE_N_BASECLASSES (type));
4417 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4418 gdb_stdout);
4419 printf_filtered (")");
4420
4421 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4422 TYPE_N_BASECLASSES (type));
4423 puts_filtered ("\n");
4424 }
4425 if (TYPE_NFIELDS (type) > 0)
4426 {
4427 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4428 {
4429 printfi_filtered (spaces,
4430 "private_field_bits (%d bits at *",
4431 TYPE_NFIELDS (type));
4432 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4433 gdb_stdout);
4434 printf_filtered (")");
4435 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4436 TYPE_NFIELDS (type));
4437 puts_filtered ("\n");
4438 }
4439 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4440 {
4441 printfi_filtered (spaces,
4442 "protected_field_bits (%d bits at *",
4443 TYPE_NFIELDS (type));
4444 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4445 gdb_stdout);
4446 printf_filtered (")");
4447 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4448 TYPE_NFIELDS (type));
4449 puts_filtered ("\n");
4450 }
4451 }
4452 if (TYPE_NFN_FIELDS (type) > 0)
4453 {
4454 dump_fn_fieldlists (type, spaces);
4455 }
4456 }
4457
4458 /* Print the contents of the TYPE's type_specific union, assuming that
4459 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4460
4461 static void
4462 print_gnat_stuff (struct type *type, int spaces)
4463 {
4464 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4465
4466 if (descriptive_type == NULL)
4467 printfi_filtered (spaces + 2, "no descriptive type\n");
4468 else
4469 {
4470 printfi_filtered (spaces + 2, "descriptive type\n");
4471 recursive_dump_type (descriptive_type, spaces + 4);
4472 }
4473 }
4474
4475 static struct obstack dont_print_type_obstack;
4476
4477 void
4478 recursive_dump_type (struct type *type, int spaces)
4479 {
4480 int idx;
4481
4482 if (spaces == 0)
4483 obstack_begin (&dont_print_type_obstack, 0);
4484
4485 if (TYPE_NFIELDS (type) > 0
4486 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4487 {
4488 struct type **first_dont_print
4489 = (struct type **) obstack_base (&dont_print_type_obstack);
4490
4491 int i = (struct type **)
4492 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4493
4494 while (--i >= 0)
4495 {
4496 if (type == first_dont_print[i])
4497 {
4498 printfi_filtered (spaces, "type node ");
4499 gdb_print_host_address (type, gdb_stdout);
4500 printf_filtered (_(" <same as already seen type>\n"));
4501 return;
4502 }
4503 }
4504
4505 obstack_ptr_grow (&dont_print_type_obstack, type);
4506 }
4507
4508 printfi_filtered (spaces, "type node ");
4509 gdb_print_host_address (type, gdb_stdout);
4510 printf_filtered ("\n");
4511 printfi_filtered (spaces, "name '%s' (",
4512 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4513 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4514 printf_filtered (")\n");
4515 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4516 switch (TYPE_CODE (type))
4517 {
4518 case TYPE_CODE_UNDEF:
4519 printf_filtered ("(TYPE_CODE_UNDEF)");
4520 break;
4521 case TYPE_CODE_PTR:
4522 printf_filtered ("(TYPE_CODE_PTR)");
4523 break;
4524 case TYPE_CODE_ARRAY:
4525 printf_filtered ("(TYPE_CODE_ARRAY)");
4526 break;
4527 case TYPE_CODE_STRUCT:
4528 printf_filtered ("(TYPE_CODE_STRUCT)");
4529 break;
4530 case TYPE_CODE_UNION:
4531 printf_filtered ("(TYPE_CODE_UNION)");
4532 break;
4533 case TYPE_CODE_ENUM:
4534 printf_filtered ("(TYPE_CODE_ENUM)");
4535 break;
4536 case TYPE_CODE_FLAGS:
4537 printf_filtered ("(TYPE_CODE_FLAGS)");
4538 break;
4539 case TYPE_CODE_FUNC:
4540 printf_filtered ("(TYPE_CODE_FUNC)");
4541 break;
4542 case TYPE_CODE_INT:
4543 printf_filtered ("(TYPE_CODE_INT)");
4544 break;
4545 case TYPE_CODE_FLT:
4546 printf_filtered ("(TYPE_CODE_FLT)");
4547 break;
4548 case TYPE_CODE_VOID:
4549 printf_filtered ("(TYPE_CODE_VOID)");
4550 break;
4551 case TYPE_CODE_SET:
4552 printf_filtered ("(TYPE_CODE_SET)");
4553 break;
4554 case TYPE_CODE_RANGE:
4555 printf_filtered ("(TYPE_CODE_RANGE)");
4556 break;
4557 case TYPE_CODE_STRING:
4558 printf_filtered ("(TYPE_CODE_STRING)");
4559 break;
4560 case TYPE_CODE_ERROR:
4561 printf_filtered ("(TYPE_CODE_ERROR)");
4562 break;
4563 case TYPE_CODE_MEMBERPTR:
4564 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4565 break;
4566 case TYPE_CODE_METHODPTR:
4567 printf_filtered ("(TYPE_CODE_METHODPTR)");
4568 break;
4569 case TYPE_CODE_METHOD:
4570 printf_filtered ("(TYPE_CODE_METHOD)");
4571 break;
4572 case TYPE_CODE_REF:
4573 printf_filtered ("(TYPE_CODE_REF)");
4574 break;
4575 case TYPE_CODE_CHAR:
4576 printf_filtered ("(TYPE_CODE_CHAR)");
4577 break;
4578 case TYPE_CODE_BOOL:
4579 printf_filtered ("(TYPE_CODE_BOOL)");
4580 break;
4581 case TYPE_CODE_COMPLEX:
4582 printf_filtered ("(TYPE_CODE_COMPLEX)");
4583 break;
4584 case TYPE_CODE_TYPEDEF:
4585 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4586 break;
4587 case TYPE_CODE_NAMESPACE:
4588 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4589 break;
4590 default:
4591 printf_filtered ("(UNKNOWN TYPE CODE)");
4592 break;
4593 }
4594 puts_filtered ("\n");
4595 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4596 if (TYPE_OBJFILE_OWNED (type))
4597 {
4598 printfi_filtered (spaces, "objfile ");
4599 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4600 }
4601 else
4602 {
4603 printfi_filtered (spaces, "gdbarch ");
4604 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4605 }
4606 printf_filtered ("\n");
4607 printfi_filtered (spaces, "target_type ");
4608 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4609 printf_filtered ("\n");
4610 if (TYPE_TARGET_TYPE (type) != NULL)
4611 {
4612 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4613 }
4614 printfi_filtered (spaces, "pointer_type ");
4615 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4616 printf_filtered ("\n");
4617 printfi_filtered (spaces, "reference_type ");
4618 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4619 printf_filtered ("\n");
4620 printfi_filtered (spaces, "type_chain ");
4621 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4622 printf_filtered ("\n");
4623 printfi_filtered (spaces, "instance_flags 0x%x",
4624 TYPE_INSTANCE_FLAGS (type));
4625 if (TYPE_CONST (type))
4626 {
4627 puts_filtered (" TYPE_CONST");
4628 }
4629 if (TYPE_VOLATILE (type))
4630 {
4631 puts_filtered (" TYPE_VOLATILE");
4632 }
4633 if (TYPE_CODE_SPACE (type))
4634 {
4635 puts_filtered (" TYPE_CODE_SPACE");
4636 }
4637 if (TYPE_DATA_SPACE (type))
4638 {
4639 puts_filtered (" TYPE_DATA_SPACE");
4640 }
4641 if (TYPE_ADDRESS_CLASS_1 (type))
4642 {
4643 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4644 }
4645 if (TYPE_ADDRESS_CLASS_2 (type))
4646 {
4647 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4648 }
4649 if (TYPE_RESTRICT (type))
4650 {
4651 puts_filtered (" TYPE_RESTRICT");
4652 }
4653 if (TYPE_ATOMIC (type))
4654 {
4655 puts_filtered (" TYPE_ATOMIC");
4656 }
4657 puts_filtered ("\n");
4658
4659 printfi_filtered (spaces, "flags");
4660 if (TYPE_UNSIGNED (type))
4661 {
4662 puts_filtered (" TYPE_UNSIGNED");
4663 }
4664 if (TYPE_NOSIGN (type))
4665 {
4666 puts_filtered (" TYPE_NOSIGN");
4667 }
4668 if (TYPE_STUB (type))
4669 {
4670 puts_filtered (" TYPE_STUB");
4671 }
4672 if (TYPE_TARGET_STUB (type))
4673 {
4674 puts_filtered (" TYPE_TARGET_STUB");
4675 }
4676 if (TYPE_PROTOTYPED (type))
4677 {
4678 puts_filtered (" TYPE_PROTOTYPED");
4679 }
4680 if (TYPE_INCOMPLETE (type))
4681 {
4682 puts_filtered (" TYPE_INCOMPLETE");
4683 }
4684 if (TYPE_VARARGS (type))
4685 {
4686 puts_filtered (" TYPE_VARARGS");
4687 }
4688 /* This is used for things like AltiVec registers on ppc. Gcc emits
4689 an attribute for the array type, which tells whether or not we
4690 have a vector, instead of a regular array. */
4691 if (TYPE_VECTOR (type))
4692 {
4693 puts_filtered (" TYPE_VECTOR");
4694 }
4695 if (TYPE_FIXED_INSTANCE (type))
4696 {
4697 puts_filtered (" TYPE_FIXED_INSTANCE");
4698 }
4699 if (TYPE_STUB_SUPPORTED (type))
4700 {
4701 puts_filtered (" TYPE_STUB_SUPPORTED");
4702 }
4703 if (TYPE_NOTTEXT (type))
4704 {
4705 puts_filtered (" TYPE_NOTTEXT");
4706 }
4707 puts_filtered ("\n");
4708 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4709 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4710 puts_filtered ("\n");
4711 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4712 {
4713 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4714 printfi_filtered (spaces + 2,
4715 "[%d] enumval %s type ",
4716 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4717 else
4718 printfi_filtered (spaces + 2,
4719 "[%d] bitpos %s bitsize %d type ",
4720 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4721 TYPE_FIELD_BITSIZE (type, idx));
4722 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4723 printf_filtered (" name '%s' (",
4724 TYPE_FIELD_NAME (type, idx) != NULL
4725 ? TYPE_FIELD_NAME (type, idx)
4726 : "<NULL>");
4727 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4728 printf_filtered (")\n");
4729 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4730 {
4731 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4732 }
4733 }
4734 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4735 {
4736 printfi_filtered (spaces, "low %s%s high %s%s\n",
4737 plongest (TYPE_LOW_BOUND (type)),
4738 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4739 plongest (TYPE_HIGH_BOUND (type)),
4740 TYPE_HIGH_BOUND_UNDEFINED (type)
4741 ? " (undefined)" : "");
4742 }
4743
4744 switch (TYPE_SPECIFIC_FIELD (type))
4745 {
4746 case TYPE_SPECIFIC_CPLUS_STUFF:
4747 printfi_filtered (spaces, "cplus_stuff ");
4748 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4749 gdb_stdout);
4750 puts_filtered ("\n");
4751 print_cplus_stuff (type, spaces);
4752 break;
4753
4754 case TYPE_SPECIFIC_GNAT_STUFF:
4755 printfi_filtered (spaces, "gnat_stuff ");
4756 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4757 puts_filtered ("\n");
4758 print_gnat_stuff (type, spaces);
4759 break;
4760
4761 case TYPE_SPECIFIC_FLOATFORMAT:
4762 printfi_filtered (spaces, "floatformat ");
4763 if (TYPE_FLOATFORMAT (type) == NULL
4764 || TYPE_FLOATFORMAT (type)->name == NULL)
4765 puts_filtered ("(null)");
4766 else
4767 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4768 puts_filtered ("\n");
4769 break;
4770
4771 case TYPE_SPECIFIC_FUNC:
4772 printfi_filtered (spaces, "calling_convention %d\n",
4773 TYPE_CALLING_CONVENTION (type));
4774 /* tail_call_list is not printed. */
4775 break;
4776
4777 case TYPE_SPECIFIC_SELF_TYPE:
4778 printfi_filtered (spaces, "self_type ");
4779 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4780 puts_filtered ("\n");
4781 break;
4782 }
4783
4784 if (spaces == 0)
4785 obstack_free (&dont_print_type_obstack, NULL);
4786 }
4787 \f
4788 /* Trivial helpers for the libiberty hash table, for mapping one
4789 type to another. */
4790
4791 struct type_pair : public allocate_on_obstack
4792 {
4793 type_pair (struct type *old_, struct type *newobj_)
4794 : old (old_), newobj (newobj_)
4795 {}
4796
4797 struct type * const old, * const newobj;
4798 };
4799
4800 static hashval_t
4801 type_pair_hash (const void *item)
4802 {
4803 const struct type_pair *pair = (const struct type_pair *) item;
4804
4805 return htab_hash_pointer (pair->old);
4806 }
4807
4808 static int
4809 type_pair_eq (const void *item_lhs, const void *item_rhs)
4810 {
4811 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4812 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4813
4814 return lhs->old == rhs->old;
4815 }
4816
4817 /* Allocate the hash table used by copy_type_recursive to walk
4818 types without duplicates. We use OBJFILE's obstack, because
4819 OBJFILE is about to be deleted. */
4820
4821 htab_t
4822 create_copied_types_hash (struct objfile *objfile)
4823 {
4824 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4825 NULL, &objfile->objfile_obstack,
4826 hashtab_obstack_allocate,
4827 dummy_obstack_deallocate);
4828 }
4829
4830 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4831
4832 static struct dynamic_prop_list *
4833 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4834 struct dynamic_prop_list *list)
4835 {
4836 struct dynamic_prop_list *copy = list;
4837 struct dynamic_prop_list **node_ptr = &copy;
4838
4839 while (*node_ptr != NULL)
4840 {
4841 struct dynamic_prop_list *node_copy;
4842
4843 node_copy = ((struct dynamic_prop_list *)
4844 obstack_copy (objfile_obstack, *node_ptr,
4845 sizeof (struct dynamic_prop_list)));
4846 node_copy->prop = (*node_ptr)->prop;
4847 *node_ptr = node_copy;
4848
4849 node_ptr = &node_copy->next;
4850 }
4851
4852 return copy;
4853 }
4854
4855 /* Recursively copy (deep copy) TYPE, if it is associated with
4856 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4857 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4858 it is not associated with OBJFILE. */
4859
4860 struct type *
4861 copy_type_recursive (struct objfile *objfile,
4862 struct type *type,
4863 htab_t copied_types)
4864 {
4865 void **slot;
4866 struct type *new_type;
4867
4868 if (! TYPE_OBJFILE_OWNED (type))
4869 return type;
4870
4871 /* This type shouldn't be pointing to any types in other objfiles;
4872 if it did, the type might disappear unexpectedly. */
4873 gdb_assert (TYPE_OBJFILE (type) == objfile);
4874
4875 struct type_pair pair (type, nullptr);
4876
4877 slot = htab_find_slot (copied_types, &pair, INSERT);
4878 if (*slot != NULL)
4879 return ((struct type_pair *) *slot)->newobj;
4880
4881 new_type = alloc_type_arch (get_type_arch (type));
4882
4883 /* We must add the new type to the hash table immediately, in case
4884 we encounter this type again during a recursive call below. */
4885 struct type_pair *stored
4886 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4887
4888 *slot = stored;
4889
4890 /* Copy the common fields of types. For the main type, we simply
4891 copy the entire thing and then update specific fields as needed. */
4892 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4893 TYPE_OBJFILE_OWNED (new_type) = 0;
4894 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4895
4896 if (TYPE_NAME (type))
4897 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4898
4899 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4900 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4901
4902 /* Copy the fields. */
4903 if (TYPE_NFIELDS (type))
4904 {
4905 int i, nfields;
4906
4907 nfields = TYPE_NFIELDS (type);
4908 TYPE_FIELDS (new_type) = (struct field *)
4909 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
4910 for (i = 0; i < nfields; i++)
4911 {
4912 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4913 TYPE_FIELD_ARTIFICIAL (type, i);
4914 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4915 if (TYPE_FIELD_TYPE (type, i))
4916 TYPE_FIELD_TYPE (new_type, i)
4917 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4918 copied_types);
4919 if (TYPE_FIELD_NAME (type, i))
4920 TYPE_FIELD_NAME (new_type, i) =
4921 xstrdup (TYPE_FIELD_NAME (type, i));
4922 switch (TYPE_FIELD_LOC_KIND (type, i))
4923 {
4924 case FIELD_LOC_KIND_BITPOS:
4925 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4926 TYPE_FIELD_BITPOS (type, i));
4927 break;
4928 case FIELD_LOC_KIND_ENUMVAL:
4929 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4930 TYPE_FIELD_ENUMVAL (type, i));
4931 break;
4932 case FIELD_LOC_KIND_PHYSADDR:
4933 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4934 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4935 break;
4936 case FIELD_LOC_KIND_PHYSNAME:
4937 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4938 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4939 i)));
4940 break;
4941 default:
4942 internal_error (__FILE__, __LINE__,
4943 _("Unexpected type field location kind: %d"),
4944 TYPE_FIELD_LOC_KIND (type, i));
4945 }
4946 }
4947 }
4948
4949 /* For range types, copy the bounds information. */
4950 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4951 {
4952 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
4953 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
4954 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4955 }
4956
4957 if (TYPE_DYN_PROP_LIST (type) != NULL)
4958 TYPE_DYN_PROP_LIST (new_type)
4959 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4960 TYPE_DYN_PROP_LIST (type));
4961
4962
4963 /* Copy pointers to other types. */
4964 if (TYPE_TARGET_TYPE (type))
4965 TYPE_TARGET_TYPE (new_type) =
4966 copy_type_recursive (objfile,
4967 TYPE_TARGET_TYPE (type),
4968 copied_types);
4969
4970 /* Maybe copy the type_specific bits.
4971
4972 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4973 base classes and methods. There's no fundamental reason why we
4974 can't, but at the moment it is not needed. */
4975
4976 switch (TYPE_SPECIFIC_FIELD (type))
4977 {
4978 case TYPE_SPECIFIC_NONE:
4979 break;
4980 case TYPE_SPECIFIC_FUNC:
4981 INIT_FUNC_SPECIFIC (new_type);
4982 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4983 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4984 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4985 break;
4986 case TYPE_SPECIFIC_FLOATFORMAT:
4987 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4988 break;
4989 case TYPE_SPECIFIC_CPLUS_STUFF:
4990 INIT_CPLUS_SPECIFIC (new_type);
4991 break;
4992 case TYPE_SPECIFIC_GNAT_STUFF:
4993 INIT_GNAT_SPECIFIC (new_type);
4994 break;
4995 case TYPE_SPECIFIC_SELF_TYPE:
4996 set_type_self_type (new_type,
4997 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4998 copied_types));
4999 break;
5000 default:
5001 gdb_assert_not_reached ("bad type_specific_kind");
5002 }
5003
5004 return new_type;
5005 }
5006
5007 /* Make a copy of the given TYPE, except that the pointer & reference
5008 types are not preserved.
5009
5010 This function assumes that the given type has an associated objfile.
5011 This objfile is used to allocate the new type. */
5012
5013 struct type *
5014 copy_type (const struct type *type)
5015 {
5016 struct type *new_type;
5017
5018 gdb_assert (TYPE_OBJFILE_OWNED (type));
5019
5020 new_type = alloc_type_copy (type);
5021 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5022 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5023 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5024 sizeof (struct main_type));
5025 if (TYPE_DYN_PROP_LIST (type) != NULL)
5026 TYPE_DYN_PROP_LIST (new_type)
5027 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5028 TYPE_DYN_PROP_LIST (type));
5029
5030 return new_type;
5031 }
5032 \f
5033 /* Helper functions to initialize architecture-specific types. */
5034
5035 /* Allocate a type structure associated with GDBARCH and set its
5036 CODE, LENGTH, and NAME fields. */
5037
5038 struct type *
5039 arch_type (struct gdbarch *gdbarch,
5040 enum type_code code, int bit, const char *name)
5041 {
5042 struct type *type;
5043
5044 type = alloc_type_arch (gdbarch);
5045 set_type_code (type, code);
5046 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5047 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5048
5049 if (name)
5050 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5051
5052 return type;
5053 }
5054
5055 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5056 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5057 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5058
5059 struct type *
5060 arch_integer_type (struct gdbarch *gdbarch,
5061 int bit, int unsigned_p, const char *name)
5062 {
5063 struct type *t;
5064
5065 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5066 if (unsigned_p)
5067 TYPE_UNSIGNED (t) = 1;
5068
5069 return t;
5070 }
5071
5072 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5073 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5074 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5075
5076 struct type *
5077 arch_character_type (struct gdbarch *gdbarch,
5078 int bit, int unsigned_p, const char *name)
5079 {
5080 struct type *t;
5081
5082 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5083 if (unsigned_p)
5084 TYPE_UNSIGNED (t) = 1;
5085
5086 return t;
5087 }
5088
5089 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5090 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5091 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5092
5093 struct type *
5094 arch_boolean_type (struct gdbarch *gdbarch,
5095 int bit, int unsigned_p, const char *name)
5096 {
5097 struct type *t;
5098
5099 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5100 if (unsigned_p)
5101 TYPE_UNSIGNED (t) = 1;
5102
5103 return t;
5104 }
5105
5106 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5107 BIT is the type size in bits; if BIT equals -1, the size is
5108 determined by the floatformat. NAME is the type name. Set the
5109 TYPE_FLOATFORMAT from FLOATFORMATS. */
5110
5111 struct type *
5112 arch_float_type (struct gdbarch *gdbarch,
5113 int bit, const char *name,
5114 const struct floatformat **floatformats)
5115 {
5116 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5117 struct type *t;
5118
5119 bit = verify_floatformat (bit, fmt);
5120 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5121 TYPE_FLOATFORMAT (t) = fmt;
5122
5123 return t;
5124 }
5125
5126 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5127 BIT is the type size in bits. NAME is the type name. */
5128
5129 struct type *
5130 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5131 {
5132 struct type *t;
5133
5134 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5135 return t;
5136 }
5137
5138 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5139 NAME is the type name. TARGET_TYPE is the component float type. */
5140
5141 struct type *
5142 arch_complex_type (struct gdbarch *gdbarch,
5143 const char *name, struct type *target_type)
5144 {
5145 struct type *t;
5146
5147 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5148 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5149 TYPE_TARGET_TYPE (t) = target_type;
5150 return t;
5151 }
5152
5153 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5154 BIT is the pointer type size in bits. NAME is the type name.
5155 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5156 TYPE_UNSIGNED flag. */
5157
5158 struct type *
5159 arch_pointer_type (struct gdbarch *gdbarch,
5160 int bit, const char *name, struct type *target_type)
5161 {
5162 struct type *t;
5163
5164 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5165 TYPE_TARGET_TYPE (t) = target_type;
5166 TYPE_UNSIGNED (t) = 1;
5167 return t;
5168 }
5169
5170 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5171 NAME is the type name. BIT is the size of the flag word in bits. */
5172
5173 struct type *
5174 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5175 {
5176 struct type *type;
5177
5178 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5179 TYPE_UNSIGNED (type) = 1;
5180 TYPE_NFIELDS (type) = 0;
5181 /* Pre-allocate enough space assuming every field is one bit. */
5182 TYPE_FIELDS (type)
5183 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5184
5185 return type;
5186 }
5187
5188 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5189 position BITPOS is called NAME. Pass NAME as "" for fields that
5190 should not be printed. */
5191
5192 void
5193 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5194 struct type *field_type, const char *name)
5195 {
5196 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5197 int field_nr = TYPE_NFIELDS (type);
5198
5199 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5200 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5201 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5202 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5203 gdb_assert (name != NULL);
5204
5205 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5206 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5207 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5208 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5209 ++TYPE_NFIELDS (type);
5210 }
5211
5212 /* Special version of append_flags_type_field to add a flag field.
5213 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5214 position BITPOS is called NAME. */
5215
5216 void
5217 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5218 {
5219 struct gdbarch *gdbarch = get_type_arch (type);
5220
5221 append_flags_type_field (type, bitpos, 1,
5222 builtin_type (gdbarch)->builtin_bool,
5223 name);
5224 }
5225
5226 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5227 specified by CODE) associated with GDBARCH. NAME is the type name. */
5228
5229 struct type *
5230 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5231 enum type_code code)
5232 {
5233 struct type *t;
5234
5235 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5236 t = arch_type (gdbarch, code, 0, NULL);
5237 TYPE_NAME (t) = name;
5238 INIT_CPLUS_SPECIFIC (t);
5239 return t;
5240 }
5241
5242 /* Add new field with name NAME and type FIELD to composite type T.
5243 Do not set the field's position or adjust the type's length;
5244 the caller should do so. Return the new field. */
5245
5246 struct field *
5247 append_composite_type_field_raw (struct type *t, const char *name,
5248 struct type *field)
5249 {
5250 struct field *f;
5251
5252 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5253 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5254 TYPE_NFIELDS (t));
5255 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5256 memset (f, 0, sizeof f[0]);
5257 FIELD_TYPE (f[0]) = field;
5258 FIELD_NAME (f[0]) = name;
5259 return f;
5260 }
5261
5262 /* Add new field with name NAME and type FIELD to composite type T.
5263 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5264
5265 void
5266 append_composite_type_field_aligned (struct type *t, const char *name,
5267 struct type *field, int alignment)
5268 {
5269 struct field *f = append_composite_type_field_raw (t, name, field);
5270
5271 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5272 {
5273 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5274 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5275 }
5276 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5277 {
5278 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5279 if (TYPE_NFIELDS (t) > 1)
5280 {
5281 SET_FIELD_BITPOS (f[0],
5282 (FIELD_BITPOS (f[-1])
5283 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5284 * TARGET_CHAR_BIT)));
5285
5286 if (alignment)
5287 {
5288 int left;
5289
5290 alignment *= TARGET_CHAR_BIT;
5291 left = FIELD_BITPOS (f[0]) % alignment;
5292
5293 if (left)
5294 {
5295 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5296 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5297 }
5298 }
5299 }
5300 }
5301 }
5302
5303 /* Add new field with name NAME and type FIELD to composite type T. */
5304
5305 void
5306 append_composite_type_field (struct type *t, const char *name,
5307 struct type *field)
5308 {
5309 append_composite_type_field_aligned (t, name, field, 0);
5310 }
5311
5312 static struct gdbarch_data *gdbtypes_data;
5313
5314 const struct builtin_type *
5315 builtin_type (struct gdbarch *gdbarch)
5316 {
5317 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5318 }
5319
5320 static void *
5321 gdbtypes_post_init (struct gdbarch *gdbarch)
5322 {
5323 struct builtin_type *builtin_type
5324 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5325
5326 /* Basic types. */
5327 builtin_type->builtin_void
5328 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5329 builtin_type->builtin_char
5330 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5331 !gdbarch_char_signed (gdbarch), "char");
5332 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5333 builtin_type->builtin_signed_char
5334 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5335 0, "signed char");
5336 builtin_type->builtin_unsigned_char
5337 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5338 1, "unsigned char");
5339 builtin_type->builtin_short
5340 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5341 0, "short");
5342 builtin_type->builtin_unsigned_short
5343 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5344 1, "unsigned short");
5345 builtin_type->builtin_int
5346 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5347 0, "int");
5348 builtin_type->builtin_unsigned_int
5349 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5350 1, "unsigned int");
5351 builtin_type->builtin_long
5352 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5353 0, "long");
5354 builtin_type->builtin_unsigned_long
5355 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5356 1, "unsigned long");
5357 builtin_type->builtin_long_long
5358 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5359 0, "long long");
5360 builtin_type->builtin_unsigned_long_long
5361 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5362 1, "unsigned long long");
5363 builtin_type->builtin_float
5364 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5365 "float", gdbarch_float_format (gdbarch));
5366 builtin_type->builtin_double
5367 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5368 "double", gdbarch_double_format (gdbarch));
5369 builtin_type->builtin_long_double
5370 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5371 "long double", gdbarch_long_double_format (gdbarch));
5372 builtin_type->builtin_complex
5373 = arch_complex_type (gdbarch, "complex",
5374 builtin_type->builtin_float);
5375 builtin_type->builtin_double_complex
5376 = arch_complex_type (gdbarch, "double complex",
5377 builtin_type->builtin_double);
5378 builtin_type->builtin_string
5379 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5380 builtin_type->builtin_bool
5381 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5382
5383 /* The following three are about decimal floating point types, which
5384 are 32-bits, 64-bits and 128-bits respectively. */
5385 builtin_type->builtin_decfloat
5386 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5387 builtin_type->builtin_decdouble
5388 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5389 builtin_type->builtin_declong
5390 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5391
5392 /* "True" character types. */
5393 builtin_type->builtin_true_char
5394 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5395 builtin_type->builtin_true_unsigned_char
5396 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5397
5398 /* Fixed-size integer types. */
5399 builtin_type->builtin_int0
5400 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5401 builtin_type->builtin_int8
5402 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5403 builtin_type->builtin_uint8
5404 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5405 builtin_type->builtin_int16
5406 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5407 builtin_type->builtin_uint16
5408 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5409 builtin_type->builtin_int24
5410 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5411 builtin_type->builtin_uint24
5412 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5413 builtin_type->builtin_int32
5414 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5415 builtin_type->builtin_uint32
5416 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5417 builtin_type->builtin_int64
5418 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5419 builtin_type->builtin_uint64
5420 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5421 builtin_type->builtin_int128
5422 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5423 builtin_type->builtin_uint128
5424 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5425 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5426 TYPE_INSTANCE_FLAG_NOTTEXT;
5427 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5428 TYPE_INSTANCE_FLAG_NOTTEXT;
5429
5430 /* Wide character types. */
5431 builtin_type->builtin_char16
5432 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5433 builtin_type->builtin_char32
5434 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5435 builtin_type->builtin_wchar
5436 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5437 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5438
5439 /* Default data/code pointer types. */
5440 builtin_type->builtin_data_ptr
5441 = lookup_pointer_type (builtin_type->builtin_void);
5442 builtin_type->builtin_func_ptr
5443 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5444 builtin_type->builtin_func_func
5445 = lookup_function_type (builtin_type->builtin_func_ptr);
5446
5447 /* This type represents a GDB internal function. */
5448 builtin_type->internal_fn
5449 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5450 "<internal function>");
5451
5452 /* This type represents an xmethod. */
5453 builtin_type->xmethod
5454 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5455
5456 return builtin_type;
5457 }
5458
5459 /* This set of objfile-based types is intended to be used by symbol
5460 readers as basic types. */
5461
5462 static const struct objfile_data *objfile_type_data;
5463
5464 const struct objfile_type *
5465 objfile_type (struct objfile *objfile)
5466 {
5467 struct gdbarch *gdbarch;
5468 struct objfile_type *objfile_type
5469 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5470
5471 if (objfile_type)
5472 return objfile_type;
5473
5474 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5475 1, struct objfile_type);
5476
5477 /* Use the objfile architecture to determine basic type properties. */
5478 gdbarch = get_objfile_arch (objfile);
5479
5480 /* Basic types. */
5481 objfile_type->builtin_void
5482 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5483 objfile_type->builtin_char
5484 = init_integer_type (objfile, TARGET_CHAR_BIT,
5485 !gdbarch_char_signed (gdbarch), "char");
5486 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5487 objfile_type->builtin_signed_char
5488 = init_integer_type (objfile, TARGET_CHAR_BIT,
5489 0, "signed char");
5490 objfile_type->builtin_unsigned_char
5491 = init_integer_type (objfile, TARGET_CHAR_BIT,
5492 1, "unsigned char");
5493 objfile_type->builtin_short
5494 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5495 0, "short");
5496 objfile_type->builtin_unsigned_short
5497 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5498 1, "unsigned short");
5499 objfile_type->builtin_int
5500 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5501 0, "int");
5502 objfile_type->builtin_unsigned_int
5503 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5504 1, "unsigned int");
5505 objfile_type->builtin_long
5506 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5507 0, "long");
5508 objfile_type->builtin_unsigned_long
5509 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5510 1, "unsigned long");
5511 objfile_type->builtin_long_long
5512 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5513 0, "long long");
5514 objfile_type->builtin_unsigned_long_long
5515 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5516 1, "unsigned long long");
5517 objfile_type->builtin_float
5518 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5519 "float", gdbarch_float_format (gdbarch));
5520 objfile_type->builtin_double
5521 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5522 "double", gdbarch_double_format (gdbarch));
5523 objfile_type->builtin_long_double
5524 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5525 "long double", gdbarch_long_double_format (gdbarch));
5526
5527 /* This type represents a type that was unrecognized in symbol read-in. */
5528 objfile_type->builtin_error
5529 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5530
5531 /* The following set of types is used for symbols with no
5532 debug information. */
5533 objfile_type->nodebug_text_symbol
5534 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5535 "<text variable, no debug info>");
5536 objfile_type->nodebug_text_gnu_ifunc_symbol
5537 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5538 "<text gnu-indirect-function variable, no debug info>");
5539 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5540 objfile_type->nodebug_got_plt_symbol
5541 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5542 "<text from jump slot in .got.plt, no debug info>",
5543 objfile_type->nodebug_text_symbol);
5544 objfile_type->nodebug_data_symbol
5545 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5546 objfile_type->nodebug_unknown_symbol
5547 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5548 objfile_type->nodebug_tls_symbol
5549 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5550
5551 /* NOTE: on some targets, addresses and pointers are not necessarily
5552 the same.
5553
5554 The upshot is:
5555 - gdb's `struct type' always describes the target's
5556 representation.
5557 - gdb's `struct value' objects should always hold values in
5558 target form.
5559 - gdb's CORE_ADDR values are addresses in the unified virtual
5560 address space that the assembler and linker work with. Thus,
5561 since target_read_memory takes a CORE_ADDR as an argument, it
5562 can access any memory on the target, even if the processor has
5563 separate code and data address spaces.
5564
5565 In this context, objfile_type->builtin_core_addr is a bit odd:
5566 it's a target type for a value the target will never see. It's
5567 only used to hold the values of (typeless) linker symbols, which
5568 are indeed in the unified virtual address space. */
5569
5570 objfile_type->builtin_core_addr
5571 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5572 "__CORE_ADDR");
5573
5574 set_objfile_data (objfile, objfile_type_data, objfile_type);
5575 return objfile_type;
5576 }
5577
5578 void
5579 _initialize_gdbtypes (void)
5580 {
5581 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5582 objfile_type_data = register_objfile_data ();
5583
5584 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5585 _("Set debugging of C++ overloading."),
5586 _("Show debugging of C++ overloading."),
5587 _("When enabled, ranking of the "
5588 "functions is displayed."),
5589 NULL,
5590 show_overload_debug,
5591 &setdebuglist, &showdebuglist);
5592
5593 /* Add user knob for controlling resolution of opaque types. */
5594 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5595 &opaque_type_resolution,
5596 _("Set resolution of opaque struct/class/union"
5597 " types (if set before loading symbols)."),
5598 _("Show resolution of opaque struct/class/union"
5599 " types (if set before loading symbols)."),
5600 NULL, NULL,
5601 show_opaque_type_resolution,
5602 &setlist, &showlist);
5603
5604 /* Add an option to permit non-strict type checking. */
5605 add_setshow_boolean_cmd ("type", class_support,
5606 &strict_type_checking,
5607 _("Set strict type checking."),
5608 _("Show strict type checking."),
5609 NULL, NULL,
5610 show_strict_type_checking,
5611 &setchecklist, &showchecklist);
5612 }