vla: evaluate operand of sizeof if its type is a vla
[binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include "bfd.h"
25 #include "symtab.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "language.h"
31 #include "target.h"
32 #include "value.h"
33 #include "demangle.h"
34 #include "complaints.h"
35 #include "gdbcmd.h"
36 #include "cp-abi.h"
37 #include "gdb_assert.h"
38 #include "hashtab.h"
39 #include "exceptions.h"
40 #include "cp-support.h"
41 #include "bcache.h"
42 #include "dwarf2loc.h"
43
44 /* Initialize BADNESS constants. */
45
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static int opaque_type_resolution = 1;
120
121 /* A flag to enable printing of debugging information of C++
122 overloading. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static int strict_type_checking = 1;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_VPTR_FIELDNO (type) = -1;
186 TYPE_CHAIN (type) = type; /* Chain back to itself. */
187
188 return type;
189 }
190
191 /* Allocate a new GDBARCH-associated type structure and fill it
192 with some defaults. Space for the type structure is allocated
193 on the heap. */
194
195 struct type *
196 alloc_type_arch (struct gdbarch *gdbarch)
197 {
198 struct type *type;
199
200 gdb_assert (gdbarch != NULL);
201
202 /* Alloc the structure and start off with all fields zeroed. */
203
204 type = XCNEW (struct type);
205 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
206
207 TYPE_OBJFILE_OWNED (type) = 0;
208 TYPE_OWNER (type).gdbarch = gdbarch;
209
210 /* Initialize the fields that might not be zero. */
211
212 TYPE_CODE (type) = TYPE_CODE_UNDEF;
213 TYPE_VPTR_FIELDNO (type) = -1;
214 TYPE_CHAIN (type) = type; /* Chain back to itself. */
215
216 return type;
217 }
218
219 /* If TYPE is objfile-associated, allocate a new type structure
220 associated with the same objfile. If TYPE is gdbarch-associated,
221 allocate a new type structure associated with the same gdbarch. */
222
223 struct type *
224 alloc_type_copy (const struct type *type)
225 {
226 if (TYPE_OBJFILE_OWNED (type))
227 return alloc_type (TYPE_OWNER (type).objfile);
228 else
229 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
230 }
231
232 /* If TYPE is gdbarch-associated, return that architecture.
233 If TYPE is objfile-associated, return that objfile's architecture. */
234
235 struct gdbarch *
236 get_type_arch (const struct type *type)
237 {
238 if (TYPE_OBJFILE_OWNED (type))
239 return get_objfile_arch (TYPE_OWNER (type).objfile);
240 else
241 return TYPE_OWNER (type).gdbarch;
242 }
243
244 /* See gdbtypes.h. */
245
246 struct type *
247 get_target_type (struct type *type)
248 {
249 if (type != NULL)
250 {
251 type = TYPE_TARGET_TYPE (type);
252 if (type != NULL)
253 type = check_typedef (type);
254 }
255
256 return type;
257 }
258
259 /* Alloc a new type instance structure, fill it with some defaults,
260 and point it at OLDTYPE. Allocate the new type instance from the
261 same place as OLDTYPE. */
262
263 static struct type *
264 alloc_type_instance (struct type *oldtype)
265 {
266 struct type *type;
267
268 /* Allocate the structure. */
269
270 if (! TYPE_OBJFILE_OWNED (oldtype))
271 type = XCNEW (struct type);
272 else
273 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
274 struct type);
275
276 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
277
278 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
279
280 return type;
281 }
282
283 /* Clear all remnants of the previous type at TYPE, in preparation for
284 replacing it with something else. Preserve owner information. */
285
286 static void
287 smash_type (struct type *type)
288 {
289 int objfile_owned = TYPE_OBJFILE_OWNED (type);
290 union type_owner owner = TYPE_OWNER (type);
291
292 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
293
294 /* Restore owner information. */
295 TYPE_OBJFILE_OWNED (type) = objfile_owned;
296 TYPE_OWNER (type) = owner;
297
298 /* For now, delete the rings. */
299 TYPE_CHAIN (type) = type;
300
301 /* For now, leave the pointer/reference types alone. */
302 }
303
304 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
305 to a pointer to memory where the pointer type should be stored.
306 If *TYPEPTR is zero, update it to point to the pointer type we return.
307 We allocate new memory if needed. */
308
309 struct type *
310 make_pointer_type (struct type *type, struct type **typeptr)
311 {
312 struct type *ntype; /* New type */
313 struct type *chain;
314
315 ntype = TYPE_POINTER_TYPE (type);
316
317 if (ntype)
318 {
319 if (typeptr == 0)
320 return ntype; /* Don't care about alloc,
321 and have new type. */
322 else if (*typeptr == 0)
323 {
324 *typeptr = ntype; /* Tracking alloc, and have new type. */
325 return ntype;
326 }
327 }
328
329 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
330 {
331 ntype = alloc_type_copy (type);
332 if (typeptr)
333 *typeptr = ntype;
334 }
335 else /* We have storage, but need to reset it. */
336 {
337 ntype = *typeptr;
338 chain = TYPE_CHAIN (ntype);
339 smash_type (ntype);
340 TYPE_CHAIN (ntype) = chain;
341 }
342
343 TYPE_TARGET_TYPE (ntype) = type;
344 TYPE_POINTER_TYPE (type) = ntype;
345
346 /* FIXME! Assumes the machine has only one representation for pointers! */
347
348 TYPE_LENGTH (ntype)
349 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
350 TYPE_CODE (ntype) = TYPE_CODE_PTR;
351
352 /* Mark pointers as unsigned. The target converts between pointers
353 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
354 gdbarch_address_to_pointer. */
355 TYPE_UNSIGNED (ntype) = 1;
356
357 /* Update the length of all the other variants of this type. */
358 chain = TYPE_CHAIN (ntype);
359 while (chain != ntype)
360 {
361 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
362 chain = TYPE_CHAIN (chain);
363 }
364
365 return ntype;
366 }
367
368 /* Given a type TYPE, return a type of pointers to that type.
369 May need to construct such a type if this is the first use. */
370
371 struct type *
372 lookup_pointer_type (struct type *type)
373 {
374 return make_pointer_type (type, (struct type **) 0);
375 }
376
377 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
378 points to a pointer to memory where the reference type should be
379 stored. If *TYPEPTR is zero, update it to point to the reference
380 type we return. We allocate new memory if needed. */
381
382 struct type *
383 make_reference_type (struct type *type, struct type **typeptr)
384 {
385 struct type *ntype; /* New type */
386 struct type *chain;
387
388 ntype = TYPE_REFERENCE_TYPE (type);
389
390 if (ntype)
391 {
392 if (typeptr == 0)
393 return ntype; /* Don't care about alloc,
394 and have new type. */
395 else if (*typeptr == 0)
396 {
397 *typeptr = ntype; /* Tracking alloc, and have new type. */
398 return ntype;
399 }
400 }
401
402 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
403 {
404 ntype = alloc_type_copy (type);
405 if (typeptr)
406 *typeptr = ntype;
407 }
408 else /* We have storage, but need to reset it. */
409 {
410 ntype = *typeptr;
411 chain = TYPE_CHAIN (ntype);
412 smash_type (ntype);
413 TYPE_CHAIN (ntype) = chain;
414 }
415
416 TYPE_TARGET_TYPE (ntype) = type;
417 TYPE_REFERENCE_TYPE (type) = ntype;
418
419 /* FIXME! Assume the machine has only one representation for
420 references, and that it matches the (only) representation for
421 pointers! */
422
423 TYPE_LENGTH (ntype) =
424 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
425 TYPE_CODE (ntype) = TYPE_CODE_REF;
426
427 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
428 TYPE_REFERENCE_TYPE (type) = ntype;
429
430 /* Update the length of all the other variants of this type. */
431 chain = TYPE_CHAIN (ntype);
432 while (chain != ntype)
433 {
434 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
435 chain = TYPE_CHAIN (chain);
436 }
437
438 return ntype;
439 }
440
441 /* Same as above, but caller doesn't care about memory allocation
442 details. */
443
444 struct type *
445 lookup_reference_type (struct type *type)
446 {
447 return make_reference_type (type, (struct type **) 0);
448 }
449
450 /* Lookup a function type that returns type TYPE. TYPEPTR, if
451 nonzero, points to a pointer to memory where the function type
452 should be stored. If *TYPEPTR is zero, update it to point to the
453 function type we return. We allocate new memory if needed. */
454
455 struct type *
456 make_function_type (struct type *type, struct type **typeptr)
457 {
458 struct type *ntype; /* New type */
459
460 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
461 {
462 ntype = alloc_type_copy (type);
463 if (typeptr)
464 *typeptr = ntype;
465 }
466 else /* We have storage, but need to reset it. */
467 {
468 ntype = *typeptr;
469 smash_type (ntype);
470 }
471
472 TYPE_TARGET_TYPE (ntype) = type;
473
474 TYPE_LENGTH (ntype) = 1;
475 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
476
477 INIT_FUNC_SPECIFIC (ntype);
478
479 return ntype;
480 }
481
482 /* Given a type TYPE, return a type of functions that return that type.
483 May need to construct such a type if this is the first use. */
484
485 struct type *
486 lookup_function_type (struct type *type)
487 {
488 return make_function_type (type, (struct type **) 0);
489 }
490
491 /* Given a type TYPE and argument types, return the appropriate
492 function type. If the final type in PARAM_TYPES is NULL, make a
493 varargs function. */
494
495 struct type *
496 lookup_function_type_with_arguments (struct type *type,
497 int nparams,
498 struct type **param_types)
499 {
500 struct type *fn = make_function_type (type, (struct type **) 0);
501 int i;
502
503 if (nparams > 0)
504 {
505 if (param_types[nparams - 1] == NULL)
506 {
507 --nparams;
508 TYPE_VARARGS (fn) = 1;
509 }
510 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
511 == TYPE_CODE_VOID)
512 {
513 --nparams;
514 /* Caller should have ensured this. */
515 gdb_assert (nparams == 0);
516 TYPE_PROTOTYPED (fn) = 1;
517 }
518 }
519
520 TYPE_NFIELDS (fn) = nparams;
521 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
522 for (i = 0; i < nparams; ++i)
523 TYPE_FIELD_TYPE (fn, i) = param_types[i];
524
525 return fn;
526 }
527
528 /* Identify address space identifier by name --
529 return the integer flag defined in gdbtypes.h. */
530
531 int
532 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
533 {
534 int type_flags;
535
536 /* Check for known address space delimiters. */
537 if (!strcmp (space_identifier, "code"))
538 return TYPE_INSTANCE_FLAG_CODE_SPACE;
539 else if (!strcmp (space_identifier, "data"))
540 return TYPE_INSTANCE_FLAG_DATA_SPACE;
541 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
542 && gdbarch_address_class_name_to_type_flags (gdbarch,
543 space_identifier,
544 &type_flags))
545 return type_flags;
546 else
547 error (_("Unknown address space specifier: \"%s\""), space_identifier);
548 }
549
550 /* Identify address space identifier by integer flag as defined in
551 gdbtypes.h -- return the string version of the adress space name. */
552
553 const char *
554 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
555 {
556 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
557 return "code";
558 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
559 return "data";
560 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
561 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
562 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
563 else
564 return NULL;
565 }
566
567 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
568
569 If STORAGE is non-NULL, create the new type instance there.
570 STORAGE must be in the same obstack as TYPE. */
571
572 static struct type *
573 make_qualified_type (struct type *type, int new_flags,
574 struct type *storage)
575 {
576 struct type *ntype;
577
578 ntype = type;
579 do
580 {
581 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
582 return ntype;
583 ntype = TYPE_CHAIN (ntype);
584 }
585 while (ntype != type);
586
587 /* Create a new type instance. */
588 if (storage == NULL)
589 ntype = alloc_type_instance (type);
590 else
591 {
592 /* If STORAGE was provided, it had better be in the same objfile
593 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
594 if one objfile is freed and the other kept, we'd have
595 dangling pointers. */
596 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
597
598 ntype = storage;
599 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
600 TYPE_CHAIN (ntype) = ntype;
601 }
602
603 /* Pointers or references to the original type are not relevant to
604 the new type. */
605 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
606 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
607
608 /* Chain the new qualified type to the old type. */
609 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
610 TYPE_CHAIN (type) = ntype;
611
612 /* Now set the instance flags and return the new type. */
613 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
614
615 /* Set length of new type to that of the original type. */
616 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
617
618 return ntype;
619 }
620
621 /* Make an address-space-delimited variant of a type -- a type that
622 is identical to the one supplied except that it has an address
623 space attribute attached to it (such as "code" or "data").
624
625 The space attributes "code" and "data" are for Harvard
626 architectures. The address space attributes are for architectures
627 which have alternately sized pointers or pointers with alternate
628 representations. */
629
630 struct type *
631 make_type_with_address_space (struct type *type, int space_flag)
632 {
633 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
634 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
635 | TYPE_INSTANCE_FLAG_DATA_SPACE
636 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
637 | space_flag);
638
639 return make_qualified_type (type, new_flags, NULL);
640 }
641
642 /* Make a "c-v" variant of a type -- a type that is identical to the
643 one supplied except that it may have const or volatile attributes
644 CNST is a flag for setting the const attribute
645 VOLTL is a flag for setting the volatile attribute
646 TYPE is the base type whose variant we are creating.
647
648 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
649 storage to hold the new qualified type; *TYPEPTR and TYPE must be
650 in the same objfile. Otherwise, allocate fresh memory for the new
651 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
652 new type we construct. */
653
654 struct type *
655 make_cv_type (int cnst, int voltl,
656 struct type *type,
657 struct type **typeptr)
658 {
659 struct type *ntype; /* New type */
660
661 int new_flags = (TYPE_INSTANCE_FLAGS (type)
662 & ~(TYPE_INSTANCE_FLAG_CONST
663 | TYPE_INSTANCE_FLAG_VOLATILE));
664
665 if (cnst)
666 new_flags |= TYPE_INSTANCE_FLAG_CONST;
667
668 if (voltl)
669 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
670
671 if (typeptr && *typeptr != NULL)
672 {
673 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
674 a C-V variant chain that threads across objfiles: if one
675 objfile gets freed, then the other has a broken C-V chain.
676
677 This code used to try to copy over the main type from TYPE to
678 *TYPEPTR if they were in different objfiles, but that's
679 wrong, too: TYPE may have a field list or member function
680 lists, which refer to types of their own, etc. etc. The
681 whole shebang would need to be copied over recursively; you
682 can't have inter-objfile pointers. The only thing to do is
683 to leave stub types as stub types, and look them up afresh by
684 name each time you encounter them. */
685 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
686 }
687
688 ntype = make_qualified_type (type, new_flags,
689 typeptr ? *typeptr : NULL);
690
691 if (typeptr != NULL)
692 *typeptr = ntype;
693
694 return ntype;
695 }
696
697 /* Make a 'restrict'-qualified version of TYPE. */
698
699 struct type *
700 make_restrict_type (struct type *type)
701 {
702 return make_qualified_type (type,
703 (TYPE_INSTANCE_FLAGS (type)
704 | TYPE_INSTANCE_FLAG_RESTRICT),
705 NULL);
706 }
707
708 /* Replace the contents of ntype with the type *type. This changes the
709 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
710 the changes are propogated to all types in the TYPE_CHAIN.
711
712 In order to build recursive types, it's inevitable that we'll need
713 to update types in place --- but this sort of indiscriminate
714 smashing is ugly, and needs to be replaced with something more
715 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
716 clear if more steps are needed. */
717
718 void
719 replace_type (struct type *ntype, struct type *type)
720 {
721 struct type *chain;
722
723 /* These two types had better be in the same objfile. Otherwise,
724 the assignment of one type's main type structure to the other
725 will produce a type with references to objects (names; field
726 lists; etc.) allocated on an objfile other than its own. */
727 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
728
729 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
730
731 /* The type length is not a part of the main type. Update it for
732 each type on the variant chain. */
733 chain = ntype;
734 do
735 {
736 /* Assert that this element of the chain has no address-class bits
737 set in its flags. Such type variants might have type lengths
738 which are supposed to be different from the non-address-class
739 variants. This assertion shouldn't ever be triggered because
740 symbol readers which do construct address-class variants don't
741 call replace_type(). */
742 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
743
744 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
745 chain = TYPE_CHAIN (chain);
746 }
747 while (ntype != chain);
748
749 /* Assert that the two types have equivalent instance qualifiers.
750 This should be true for at least all of our debug readers. */
751 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
752 }
753
754 /* Implement direct support for MEMBER_TYPE in GNU C++.
755 May need to construct such a type if this is the first use.
756 The TYPE is the type of the member. The DOMAIN is the type
757 of the aggregate that the member belongs to. */
758
759 struct type *
760 lookup_memberptr_type (struct type *type, struct type *domain)
761 {
762 struct type *mtype;
763
764 mtype = alloc_type_copy (type);
765 smash_to_memberptr_type (mtype, domain, type);
766 return mtype;
767 }
768
769 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
770
771 struct type *
772 lookup_methodptr_type (struct type *to_type)
773 {
774 struct type *mtype;
775
776 mtype = alloc_type_copy (to_type);
777 smash_to_methodptr_type (mtype, to_type);
778 return mtype;
779 }
780
781 /* Allocate a stub method whose return type is TYPE. This apparently
782 happens for speed of symbol reading, since parsing out the
783 arguments to the method is cpu-intensive, the way we are doing it.
784 So, we will fill in arguments later. This always returns a fresh
785 type. */
786
787 struct type *
788 allocate_stub_method (struct type *type)
789 {
790 struct type *mtype;
791
792 mtype = alloc_type_copy (type);
793 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
794 TYPE_LENGTH (mtype) = 1;
795 TYPE_STUB (mtype) = 1;
796 TYPE_TARGET_TYPE (mtype) = type;
797 /* _DOMAIN_TYPE (mtype) = unknown yet */
798 return mtype;
799 }
800
801 /* Create a range type with a dynamic range from LOW_BOUND to
802 HIGH_BOUND, inclusive. See create_range_type for further details. */
803
804 struct type *
805 create_range_type (struct type *result_type, struct type *index_type,
806 const struct dynamic_prop *low_bound,
807 const struct dynamic_prop *high_bound)
808 {
809 if (result_type == NULL)
810 result_type = alloc_type_copy (index_type);
811 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
812 TYPE_TARGET_TYPE (result_type) = index_type;
813 if (TYPE_STUB (index_type))
814 TYPE_TARGET_STUB (result_type) = 1;
815 else
816 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
817
818 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
819 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
820 TYPE_RANGE_DATA (result_type)->low = *low_bound;
821 TYPE_RANGE_DATA (result_type)->high = *high_bound;
822
823 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
824 TYPE_UNSIGNED (result_type) = 1;
825
826 return result_type;
827 }
828
829 /* Create a range type using either a blank type supplied in
830 RESULT_TYPE, or creating a new type, inheriting the objfile from
831 INDEX_TYPE.
832
833 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
834 to HIGH_BOUND, inclusive.
835
836 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
837 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
838
839 struct type *
840 create_static_range_type (struct type *result_type, struct type *index_type,
841 LONGEST low_bound, LONGEST high_bound)
842 {
843 struct dynamic_prop low, high;
844
845 low.kind = PROP_CONST;
846 low.data.const_val = low_bound;
847
848 high.kind = PROP_CONST;
849 high.data.const_val = high_bound;
850
851 result_type = create_range_type (result_type, index_type, &low, &high);
852
853 return result_type;
854 }
855
856 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
857 are static, otherwise returns 0. */
858
859 static int
860 has_static_range (const struct range_bounds *bounds)
861 {
862 return (bounds->low.kind == PROP_CONST
863 && bounds->high.kind == PROP_CONST);
864 }
865
866
867 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
868 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
869 bounds will fit in LONGEST), or -1 otherwise. */
870
871 int
872 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
873 {
874 CHECK_TYPEDEF (type);
875 switch (TYPE_CODE (type))
876 {
877 case TYPE_CODE_RANGE:
878 *lowp = TYPE_LOW_BOUND (type);
879 *highp = TYPE_HIGH_BOUND (type);
880 return 1;
881 case TYPE_CODE_ENUM:
882 if (TYPE_NFIELDS (type) > 0)
883 {
884 /* The enums may not be sorted by value, so search all
885 entries. */
886 int i;
887
888 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
889 for (i = 0; i < TYPE_NFIELDS (type); i++)
890 {
891 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
892 *lowp = TYPE_FIELD_ENUMVAL (type, i);
893 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
894 *highp = TYPE_FIELD_ENUMVAL (type, i);
895 }
896
897 /* Set unsigned indicator if warranted. */
898 if (*lowp >= 0)
899 {
900 TYPE_UNSIGNED (type) = 1;
901 }
902 }
903 else
904 {
905 *lowp = 0;
906 *highp = -1;
907 }
908 return 0;
909 case TYPE_CODE_BOOL:
910 *lowp = 0;
911 *highp = 1;
912 return 0;
913 case TYPE_CODE_INT:
914 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
915 return -1;
916 if (!TYPE_UNSIGNED (type))
917 {
918 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
919 *highp = -*lowp - 1;
920 return 0;
921 }
922 /* ... fall through for unsigned ints ... */
923 case TYPE_CODE_CHAR:
924 *lowp = 0;
925 /* This round-about calculation is to avoid shifting by
926 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
927 if TYPE_LENGTH (type) == sizeof (LONGEST). */
928 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
929 *highp = (*highp - 1) | *highp;
930 return 0;
931 default:
932 return -1;
933 }
934 }
935
936 /* Assuming TYPE is a simple, non-empty array type, compute its upper
937 and lower bound. Save the low bound into LOW_BOUND if not NULL.
938 Save the high bound into HIGH_BOUND if not NULL.
939
940 Return 1 if the operation was successful. Return zero otherwise,
941 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
942
943 We now simply use get_discrete_bounds call to get the values
944 of the low and high bounds.
945 get_discrete_bounds can return three values:
946 1, meaning that index is a range,
947 0, meaning that index is a discrete type,
948 or -1 for failure. */
949
950 int
951 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
952 {
953 struct type *index = TYPE_INDEX_TYPE (type);
954 LONGEST low = 0;
955 LONGEST high = 0;
956 int res;
957
958 if (index == NULL)
959 return 0;
960
961 res = get_discrete_bounds (index, &low, &high);
962 if (res == -1)
963 return 0;
964
965 /* Check if the array bounds are undefined. */
966 if (res == 1
967 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
968 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
969 return 0;
970
971 if (low_bound)
972 *low_bound = low;
973
974 if (high_bound)
975 *high_bound = high;
976
977 return 1;
978 }
979
980 /* Create an array type using either a blank type supplied in
981 RESULT_TYPE, or creating a new type, inheriting the objfile from
982 RANGE_TYPE.
983
984 Elements will be of type ELEMENT_TYPE, the indices will be of type
985 RANGE_TYPE.
986
987 If BIT_STRIDE is not zero, build a packed array type whose element
988 size is BIT_STRIDE. Otherwise, ignore this parameter.
989
990 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
991 sure it is TYPE_CODE_UNDEF before we bash it into an array
992 type? */
993
994 struct type *
995 create_array_type_with_stride (struct type *result_type,
996 struct type *element_type,
997 struct type *range_type,
998 unsigned int bit_stride)
999 {
1000 if (result_type == NULL)
1001 result_type = alloc_type_copy (range_type);
1002
1003 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1004 TYPE_TARGET_TYPE (result_type) = element_type;
1005 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1006 {
1007 LONGEST low_bound, high_bound;
1008
1009 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1010 low_bound = high_bound = 0;
1011 CHECK_TYPEDEF (element_type);
1012 /* Be careful when setting the array length. Ada arrays can be
1013 empty arrays with the high_bound being smaller than the low_bound.
1014 In such cases, the array length should be zero. */
1015 if (high_bound < low_bound)
1016 TYPE_LENGTH (result_type) = 0;
1017 else if (bit_stride > 0)
1018 TYPE_LENGTH (result_type) =
1019 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1020 else
1021 TYPE_LENGTH (result_type) =
1022 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1023 }
1024 else
1025 {
1026 /* This type is dynamic and its length needs to be computed
1027 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1028 undefined by setting it to zero. Although we are not expected
1029 to trust TYPE_LENGTH in this case, setting the size to zero
1030 allows us to avoid allocating objects of random sizes in case
1031 we accidently do. */
1032 TYPE_LENGTH (result_type) = 0;
1033 }
1034
1035 TYPE_NFIELDS (result_type) = 1;
1036 TYPE_FIELDS (result_type) =
1037 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1038 TYPE_INDEX_TYPE (result_type) = range_type;
1039 TYPE_VPTR_FIELDNO (result_type) = -1;
1040 if (bit_stride > 0)
1041 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1042
1043 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1044 if (TYPE_LENGTH (result_type) == 0)
1045 TYPE_TARGET_STUB (result_type) = 1;
1046
1047 return result_type;
1048 }
1049
1050 /* Same as create_array_type_with_stride but with no bit_stride
1051 (BIT_STRIDE = 0), thus building an unpacked array. */
1052
1053 struct type *
1054 create_array_type (struct type *result_type,
1055 struct type *element_type,
1056 struct type *range_type)
1057 {
1058 return create_array_type_with_stride (result_type, element_type,
1059 range_type, 0);
1060 }
1061
1062 struct type *
1063 lookup_array_range_type (struct type *element_type,
1064 LONGEST low_bound, LONGEST high_bound)
1065 {
1066 struct gdbarch *gdbarch = get_type_arch (element_type);
1067 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1068 struct type *range_type
1069 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1070
1071 return create_array_type (NULL, element_type, range_type);
1072 }
1073
1074 /* Create a string type using either a blank type supplied in
1075 RESULT_TYPE, or creating a new type. String types are similar
1076 enough to array of char types that we can use create_array_type to
1077 build the basic type and then bash it into a string type.
1078
1079 For fixed length strings, the range type contains 0 as the lower
1080 bound and the length of the string minus one as the upper bound.
1081
1082 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1083 sure it is TYPE_CODE_UNDEF before we bash it into a string
1084 type? */
1085
1086 struct type *
1087 create_string_type (struct type *result_type,
1088 struct type *string_char_type,
1089 struct type *range_type)
1090 {
1091 result_type = create_array_type (result_type,
1092 string_char_type,
1093 range_type);
1094 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1095 return result_type;
1096 }
1097
1098 struct type *
1099 lookup_string_range_type (struct type *string_char_type,
1100 LONGEST low_bound, LONGEST high_bound)
1101 {
1102 struct type *result_type;
1103
1104 result_type = lookup_array_range_type (string_char_type,
1105 low_bound, high_bound);
1106 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1107 return result_type;
1108 }
1109
1110 struct type *
1111 create_set_type (struct type *result_type, struct type *domain_type)
1112 {
1113 if (result_type == NULL)
1114 result_type = alloc_type_copy (domain_type);
1115
1116 TYPE_CODE (result_type) = TYPE_CODE_SET;
1117 TYPE_NFIELDS (result_type) = 1;
1118 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1119
1120 if (!TYPE_STUB (domain_type))
1121 {
1122 LONGEST low_bound, high_bound, bit_length;
1123
1124 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1125 low_bound = high_bound = 0;
1126 bit_length = high_bound - low_bound + 1;
1127 TYPE_LENGTH (result_type)
1128 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1129 if (low_bound >= 0)
1130 TYPE_UNSIGNED (result_type) = 1;
1131 }
1132 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1133
1134 return result_type;
1135 }
1136
1137 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1138 and any array types nested inside it. */
1139
1140 void
1141 make_vector_type (struct type *array_type)
1142 {
1143 struct type *inner_array, *elt_type;
1144 int flags;
1145
1146 /* Find the innermost array type, in case the array is
1147 multi-dimensional. */
1148 inner_array = array_type;
1149 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1150 inner_array = TYPE_TARGET_TYPE (inner_array);
1151
1152 elt_type = TYPE_TARGET_TYPE (inner_array);
1153 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1154 {
1155 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1156 elt_type = make_qualified_type (elt_type, flags, NULL);
1157 TYPE_TARGET_TYPE (inner_array) = elt_type;
1158 }
1159
1160 TYPE_VECTOR (array_type) = 1;
1161 }
1162
1163 struct type *
1164 init_vector_type (struct type *elt_type, int n)
1165 {
1166 struct type *array_type;
1167
1168 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1169 make_vector_type (array_type);
1170 return array_type;
1171 }
1172
1173 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1174 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1175 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1176 TYPE doesn't include the offset (that's the value of the MEMBER
1177 itself), but does include the structure type into which it points
1178 (for some reason).
1179
1180 When "smashing" the type, we preserve the objfile that the old type
1181 pointed to, since we aren't changing where the type is actually
1182 allocated. */
1183
1184 void
1185 smash_to_memberptr_type (struct type *type, struct type *domain,
1186 struct type *to_type)
1187 {
1188 smash_type (type);
1189 TYPE_TARGET_TYPE (type) = to_type;
1190 TYPE_DOMAIN_TYPE (type) = domain;
1191 /* Assume that a data member pointer is the same size as a normal
1192 pointer. */
1193 TYPE_LENGTH (type)
1194 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1195 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1196 }
1197
1198 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1199
1200 When "smashing" the type, we preserve the objfile that the old type
1201 pointed to, since we aren't changing where the type is actually
1202 allocated. */
1203
1204 void
1205 smash_to_methodptr_type (struct type *type, struct type *to_type)
1206 {
1207 smash_type (type);
1208 TYPE_TARGET_TYPE (type) = to_type;
1209 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1210 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1211 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1212 }
1213
1214 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1215 METHOD just means `function that gets an extra "this" argument'.
1216
1217 When "smashing" the type, we preserve the objfile that the old type
1218 pointed to, since we aren't changing where the type is actually
1219 allocated. */
1220
1221 void
1222 smash_to_method_type (struct type *type, struct type *domain,
1223 struct type *to_type, struct field *args,
1224 int nargs, int varargs)
1225 {
1226 smash_type (type);
1227 TYPE_TARGET_TYPE (type) = to_type;
1228 TYPE_DOMAIN_TYPE (type) = domain;
1229 TYPE_FIELDS (type) = args;
1230 TYPE_NFIELDS (type) = nargs;
1231 if (varargs)
1232 TYPE_VARARGS (type) = 1;
1233 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1234 TYPE_CODE (type) = TYPE_CODE_METHOD;
1235 }
1236
1237 /* Return a typename for a struct/union/enum type without "struct ",
1238 "union ", or "enum ". If the type has a NULL name, return NULL. */
1239
1240 const char *
1241 type_name_no_tag (const struct type *type)
1242 {
1243 if (TYPE_TAG_NAME (type) != NULL)
1244 return TYPE_TAG_NAME (type);
1245
1246 /* Is there code which expects this to return the name if there is
1247 no tag name? My guess is that this is mainly used for C++ in
1248 cases where the two will always be the same. */
1249 return TYPE_NAME (type);
1250 }
1251
1252 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1253 Since GCC PR debug/47510 DWARF provides associated information to detect the
1254 anonymous class linkage name from its typedef.
1255
1256 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1257 apply it itself. */
1258
1259 const char *
1260 type_name_no_tag_or_error (struct type *type)
1261 {
1262 struct type *saved_type = type;
1263 const char *name;
1264 struct objfile *objfile;
1265
1266 CHECK_TYPEDEF (type);
1267
1268 name = type_name_no_tag (type);
1269 if (name != NULL)
1270 return name;
1271
1272 name = type_name_no_tag (saved_type);
1273 objfile = TYPE_OBJFILE (saved_type);
1274 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1275 name ? name : "<anonymous>",
1276 objfile ? objfile_name (objfile) : "<arch>");
1277 }
1278
1279 /* Lookup a typedef or primitive type named NAME, visible in lexical
1280 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1281 suitably defined. */
1282
1283 struct type *
1284 lookup_typename (const struct language_defn *language,
1285 struct gdbarch *gdbarch, const char *name,
1286 const struct block *block, int noerr)
1287 {
1288 struct symbol *sym;
1289 struct type *type;
1290
1291 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1292 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1293 return SYMBOL_TYPE (sym);
1294
1295 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1296 if (type)
1297 return type;
1298
1299 if (noerr)
1300 return NULL;
1301 error (_("No type named %s."), name);
1302 }
1303
1304 struct type *
1305 lookup_unsigned_typename (const struct language_defn *language,
1306 struct gdbarch *gdbarch, const char *name)
1307 {
1308 char *uns = alloca (strlen (name) + 10);
1309
1310 strcpy (uns, "unsigned ");
1311 strcpy (uns + 9, name);
1312 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1313 }
1314
1315 struct type *
1316 lookup_signed_typename (const struct language_defn *language,
1317 struct gdbarch *gdbarch, const char *name)
1318 {
1319 struct type *t;
1320 char *uns = alloca (strlen (name) + 8);
1321
1322 strcpy (uns, "signed ");
1323 strcpy (uns + 7, name);
1324 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1325 /* If we don't find "signed FOO" just try again with plain "FOO". */
1326 if (t != NULL)
1327 return t;
1328 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1329 }
1330
1331 /* Lookup a structure type named "struct NAME",
1332 visible in lexical block BLOCK. */
1333
1334 struct type *
1335 lookup_struct (const char *name, const struct block *block)
1336 {
1337 struct symbol *sym;
1338
1339 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1340
1341 if (sym == NULL)
1342 {
1343 error (_("No struct type named %s."), name);
1344 }
1345 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1346 {
1347 error (_("This context has class, union or enum %s, not a struct."),
1348 name);
1349 }
1350 return (SYMBOL_TYPE (sym));
1351 }
1352
1353 /* Lookup a union type named "union NAME",
1354 visible in lexical block BLOCK. */
1355
1356 struct type *
1357 lookup_union (const char *name, const struct block *block)
1358 {
1359 struct symbol *sym;
1360 struct type *t;
1361
1362 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1363
1364 if (sym == NULL)
1365 error (_("No union type named %s."), name);
1366
1367 t = SYMBOL_TYPE (sym);
1368
1369 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1370 return t;
1371
1372 /* If we get here, it's not a union. */
1373 error (_("This context has class, struct or enum %s, not a union."),
1374 name);
1375 }
1376
1377 /* Lookup an enum type named "enum NAME",
1378 visible in lexical block BLOCK. */
1379
1380 struct type *
1381 lookup_enum (const char *name, const struct block *block)
1382 {
1383 struct symbol *sym;
1384
1385 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1386 if (sym == NULL)
1387 {
1388 error (_("No enum type named %s."), name);
1389 }
1390 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1391 {
1392 error (_("This context has class, struct or union %s, not an enum."),
1393 name);
1394 }
1395 return (SYMBOL_TYPE (sym));
1396 }
1397
1398 /* Lookup a template type named "template NAME<TYPE>",
1399 visible in lexical block BLOCK. */
1400
1401 struct type *
1402 lookup_template_type (char *name, struct type *type,
1403 const struct block *block)
1404 {
1405 struct symbol *sym;
1406 char *nam = (char *)
1407 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1408
1409 strcpy (nam, name);
1410 strcat (nam, "<");
1411 strcat (nam, TYPE_NAME (type));
1412 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1413
1414 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1415
1416 if (sym == NULL)
1417 {
1418 error (_("No template type named %s."), name);
1419 }
1420 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1421 {
1422 error (_("This context has class, union or enum %s, not a struct."),
1423 name);
1424 }
1425 return (SYMBOL_TYPE (sym));
1426 }
1427
1428 /* Given a type TYPE, lookup the type of the component of type named
1429 NAME.
1430
1431 TYPE can be either a struct or union, or a pointer or reference to
1432 a struct or union. If it is a pointer or reference, its target
1433 type is automatically used. Thus '.' and '->' are interchangable,
1434 as specified for the definitions of the expression element types
1435 STRUCTOP_STRUCT and STRUCTOP_PTR.
1436
1437 If NOERR is nonzero, return zero if NAME is not suitably defined.
1438 If NAME is the name of a baseclass type, return that type. */
1439
1440 struct type *
1441 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1442 {
1443 int i;
1444 char *typename;
1445
1446 for (;;)
1447 {
1448 CHECK_TYPEDEF (type);
1449 if (TYPE_CODE (type) != TYPE_CODE_PTR
1450 && TYPE_CODE (type) != TYPE_CODE_REF)
1451 break;
1452 type = TYPE_TARGET_TYPE (type);
1453 }
1454
1455 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1456 && TYPE_CODE (type) != TYPE_CODE_UNION)
1457 {
1458 typename = type_to_string (type);
1459 make_cleanup (xfree, typename);
1460 error (_("Type %s is not a structure or union type."), typename);
1461 }
1462
1463 #if 0
1464 /* FIXME: This change put in by Michael seems incorrect for the case
1465 where the structure tag name is the same as the member name.
1466 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1467 foo; } bell;" Disabled by fnf. */
1468 {
1469 char *typename;
1470
1471 typename = type_name_no_tag (type);
1472 if (typename != NULL && strcmp (typename, name) == 0)
1473 return type;
1474 }
1475 #endif
1476
1477 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1478 {
1479 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1480
1481 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1482 {
1483 return TYPE_FIELD_TYPE (type, i);
1484 }
1485 else if (!t_field_name || *t_field_name == '\0')
1486 {
1487 struct type *subtype
1488 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1489
1490 if (subtype != NULL)
1491 return subtype;
1492 }
1493 }
1494
1495 /* OK, it's not in this class. Recursively check the baseclasses. */
1496 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1497 {
1498 struct type *t;
1499
1500 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1501 if (t != NULL)
1502 {
1503 return t;
1504 }
1505 }
1506
1507 if (noerr)
1508 {
1509 return NULL;
1510 }
1511
1512 typename = type_to_string (type);
1513 make_cleanup (xfree, typename);
1514 error (_("Type %s has no component named %s."), typename, name);
1515 }
1516
1517 /* Store in *MAX the largest number representable by unsigned integer type
1518 TYPE. */
1519
1520 void
1521 get_unsigned_type_max (struct type *type, ULONGEST *max)
1522 {
1523 unsigned int n;
1524
1525 CHECK_TYPEDEF (type);
1526 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1527 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1528
1529 /* Written this way to avoid overflow. */
1530 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1531 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1532 }
1533
1534 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1535 signed integer type TYPE. */
1536
1537 void
1538 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1539 {
1540 unsigned int n;
1541
1542 CHECK_TYPEDEF (type);
1543 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1544 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1545
1546 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1547 *min = -((ULONGEST) 1 << (n - 1));
1548 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1549 }
1550
1551 /* Lookup the vptr basetype/fieldno values for TYPE.
1552 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1553 vptr_fieldno. Also, if found and basetype is from the same objfile,
1554 cache the results.
1555 If not found, return -1 and ignore BASETYPEP.
1556 Callers should be aware that in some cases (for example,
1557 the type or one of its baseclasses is a stub type and we are
1558 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1559 this function will not be able to find the
1560 virtual function table pointer, and vptr_fieldno will remain -1 and
1561 vptr_basetype will remain NULL or incomplete. */
1562
1563 int
1564 get_vptr_fieldno (struct type *type, struct type **basetypep)
1565 {
1566 CHECK_TYPEDEF (type);
1567
1568 if (TYPE_VPTR_FIELDNO (type) < 0)
1569 {
1570 int i;
1571
1572 /* We must start at zero in case the first (and only) baseclass
1573 is virtual (and hence we cannot share the table pointer). */
1574 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1575 {
1576 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1577 int fieldno;
1578 struct type *basetype;
1579
1580 fieldno = get_vptr_fieldno (baseclass, &basetype);
1581 if (fieldno >= 0)
1582 {
1583 /* If the type comes from a different objfile we can't cache
1584 it, it may have a different lifetime. PR 2384 */
1585 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1586 {
1587 TYPE_VPTR_FIELDNO (type) = fieldno;
1588 TYPE_VPTR_BASETYPE (type) = basetype;
1589 }
1590 if (basetypep)
1591 *basetypep = basetype;
1592 return fieldno;
1593 }
1594 }
1595
1596 /* Not found. */
1597 return -1;
1598 }
1599 else
1600 {
1601 if (basetypep)
1602 *basetypep = TYPE_VPTR_BASETYPE (type);
1603 return TYPE_VPTR_FIELDNO (type);
1604 }
1605 }
1606
1607 static void
1608 stub_noname_complaint (void)
1609 {
1610 complaint (&symfile_complaints, _("stub type has NULL name"));
1611 }
1612
1613 /* See gdbtypes.h. */
1614
1615 int
1616 is_dynamic_type (struct type *type)
1617 {
1618 type = check_typedef (type);
1619
1620 if (TYPE_CODE (type) == TYPE_CODE_REF)
1621 type = check_typedef (TYPE_TARGET_TYPE (type));
1622
1623 switch (TYPE_CODE (type))
1624 {
1625 case TYPE_CODE_ARRAY:
1626 {
1627 const struct type *range_type;
1628
1629 gdb_assert (TYPE_NFIELDS (type) == 1);
1630 range_type = TYPE_INDEX_TYPE (type);
1631 if (!has_static_range (TYPE_RANGE_DATA (range_type)))
1632 return 1;
1633 else
1634 return is_dynamic_type (TYPE_TARGET_TYPE (type));
1635 break;
1636 }
1637 default:
1638 return 0;
1639 break;
1640 }
1641 }
1642
1643 /* Resolves dynamic bound values of an array type TYPE to static ones.
1644 ADDRESS might be needed to resolve the subrange bounds, it is the location
1645 of the associated array. */
1646
1647 static struct type *
1648 resolve_dynamic_bounds (struct type *type, CORE_ADDR addr)
1649 {
1650 CORE_ADDR value;
1651 struct type *elt_type;
1652 struct type *range_type;
1653 struct type *ary_dim;
1654 const struct dynamic_prop *prop;
1655 const struct dwarf2_locexpr_baton *baton;
1656 struct dynamic_prop low_bound, high_bound;
1657
1658 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1659 {
1660 struct type *copy = copy_type (type);
1661
1662 TYPE_TARGET_TYPE (copy)
1663 = resolve_dynamic_bounds (TYPE_TARGET_TYPE (type), addr);
1664
1665 return copy;
1666 }
1667
1668 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1669
1670 elt_type = type;
1671 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1672
1673 prop = &TYPE_RANGE_DATA (range_type)->low;
1674 if (dwarf2_evaluate_property (prop, addr, &value))
1675 {
1676 low_bound.kind = PROP_CONST;
1677 low_bound.data.const_val = value;
1678 }
1679 else
1680 {
1681 low_bound.kind = PROP_UNDEFINED;
1682 low_bound.data.const_val = 0;
1683 }
1684
1685 prop = &TYPE_RANGE_DATA (range_type)->high;
1686 if (dwarf2_evaluate_property (prop, addr, &value))
1687 {
1688 high_bound.kind = PROP_CONST;
1689 high_bound.data.const_val = value;
1690
1691 if (TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count)
1692 high_bound.data.const_val
1693 = low_bound.data.const_val + high_bound.data.const_val - 1;
1694 }
1695 else
1696 {
1697 high_bound.kind = PROP_UNDEFINED;
1698 high_bound.data.const_val = 0;
1699 }
1700
1701 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1702
1703 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1704 elt_type = resolve_dynamic_bounds (TYPE_TARGET_TYPE (type), addr);
1705 else
1706 elt_type = TYPE_TARGET_TYPE (type);
1707
1708 range_type = create_range_type (NULL,
1709 TYPE_TARGET_TYPE (range_type),
1710 &low_bound, &high_bound);
1711 TYPE_RANGE_DATA (range_type)->flag_bound_evaluated = 1;
1712 return create_array_type (copy_type (type),
1713 elt_type,
1714 range_type);
1715 }
1716
1717 /* See gdbtypes.h */
1718
1719 struct type *
1720 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1721 {
1722 struct type *real_type = check_typedef (type);
1723 struct type *resolved_type;
1724
1725 if (!is_dynamic_type (real_type))
1726 return type;
1727
1728 resolved_type = resolve_dynamic_bounds (type, addr);
1729
1730 return resolved_type;
1731 }
1732
1733 /* Find the real type of TYPE. This function returns the real type,
1734 after removing all layers of typedefs, and completing opaque or stub
1735 types. Completion changes the TYPE argument, but stripping of
1736 typedefs does not.
1737
1738 Instance flags (e.g. const/volatile) are preserved as typedefs are
1739 stripped. If necessary a new qualified form of the underlying type
1740 is created.
1741
1742 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1743 not been computed and we're either in the middle of reading symbols, or
1744 there was no name for the typedef in the debug info.
1745
1746 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1747 QUITs in the symbol reading code can also throw.
1748 Thus this function can throw an exception.
1749
1750 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1751 the target type.
1752
1753 If this is a stubbed struct (i.e. declared as struct foo *), see if
1754 we can find a full definition in some other file. If so, copy this
1755 definition, so we can use it in future. There used to be a comment
1756 (but not any code) that if we don't find a full definition, we'd
1757 set a flag so we don't spend time in the future checking the same
1758 type. That would be a mistake, though--we might load in more
1759 symbols which contain a full definition for the type. */
1760
1761 struct type *
1762 check_typedef (struct type *type)
1763 {
1764 struct type *orig_type = type;
1765 /* While we're removing typedefs, we don't want to lose qualifiers.
1766 E.g., const/volatile. */
1767 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1768
1769 gdb_assert (type);
1770
1771 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1772 {
1773 if (!TYPE_TARGET_TYPE (type))
1774 {
1775 const char *name;
1776 struct symbol *sym;
1777
1778 /* It is dangerous to call lookup_symbol if we are currently
1779 reading a symtab. Infinite recursion is one danger. */
1780 if (currently_reading_symtab)
1781 return make_qualified_type (type, instance_flags, NULL);
1782
1783 name = type_name_no_tag (type);
1784 /* FIXME: shouldn't we separately check the TYPE_NAME and
1785 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1786 VAR_DOMAIN as appropriate? (this code was written before
1787 TYPE_NAME and TYPE_TAG_NAME were separate). */
1788 if (name == NULL)
1789 {
1790 stub_noname_complaint ();
1791 return make_qualified_type (type, instance_flags, NULL);
1792 }
1793 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1794 if (sym)
1795 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1796 else /* TYPE_CODE_UNDEF */
1797 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1798 }
1799 type = TYPE_TARGET_TYPE (type);
1800
1801 /* Preserve the instance flags as we traverse down the typedef chain.
1802
1803 Handling address spaces/classes is nasty, what do we do if there's a
1804 conflict?
1805 E.g., what if an outer typedef marks the type as class_1 and an inner
1806 typedef marks the type as class_2?
1807 This is the wrong place to do such error checking. We leave it to
1808 the code that created the typedef in the first place to flag the
1809 error. We just pick the outer address space (akin to letting the
1810 outer cast in a chain of casting win), instead of assuming
1811 "it can't happen". */
1812 {
1813 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1814 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1815 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1816 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1817
1818 /* Treat code vs data spaces and address classes separately. */
1819 if ((instance_flags & ALL_SPACES) != 0)
1820 new_instance_flags &= ~ALL_SPACES;
1821 if ((instance_flags & ALL_CLASSES) != 0)
1822 new_instance_flags &= ~ALL_CLASSES;
1823
1824 instance_flags |= new_instance_flags;
1825 }
1826 }
1827
1828 /* If this is a struct/class/union with no fields, then check
1829 whether a full definition exists somewhere else. This is for
1830 systems where a type definition with no fields is issued for such
1831 types, instead of identifying them as stub types in the first
1832 place. */
1833
1834 if (TYPE_IS_OPAQUE (type)
1835 && opaque_type_resolution
1836 && !currently_reading_symtab)
1837 {
1838 const char *name = type_name_no_tag (type);
1839 struct type *newtype;
1840
1841 if (name == NULL)
1842 {
1843 stub_noname_complaint ();
1844 return make_qualified_type (type, instance_flags, NULL);
1845 }
1846 newtype = lookup_transparent_type (name);
1847
1848 if (newtype)
1849 {
1850 /* If the resolved type and the stub are in the same
1851 objfile, then replace the stub type with the real deal.
1852 But if they're in separate objfiles, leave the stub
1853 alone; we'll just look up the transparent type every time
1854 we call check_typedef. We can't create pointers between
1855 types allocated to different objfiles, since they may
1856 have different lifetimes. Trying to copy NEWTYPE over to
1857 TYPE's objfile is pointless, too, since you'll have to
1858 move over any other types NEWTYPE refers to, which could
1859 be an unbounded amount of stuff. */
1860 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1861 type = make_qualified_type (newtype,
1862 TYPE_INSTANCE_FLAGS (type),
1863 type);
1864 else
1865 type = newtype;
1866 }
1867 }
1868 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1869 types. */
1870 else if (TYPE_STUB (type) && !currently_reading_symtab)
1871 {
1872 const char *name = type_name_no_tag (type);
1873 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1874 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1875 as appropriate? (this code was written before TYPE_NAME and
1876 TYPE_TAG_NAME were separate). */
1877 struct symbol *sym;
1878
1879 if (name == NULL)
1880 {
1881 stub_noname_complaint ();
1882 return make_qualified_type (type, instance_flags, NULL);
1883 }
1884 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1885 if (sym)
1886 {
1887 /* Same as above for opaque types, we can replace the stub
1888 with the complete type only if they are in the same
1889 objfile. */
1890 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1891 type = make_qualified_type (SYMBOL_TYPE (sym),
1892 TYPE_INSTANCE_FLAGS (type),
1893 type);
1894 else
1895 type = SYMBOL_TYPE (sym);
1896 }
1897 }
1898
1899 if (TYPE_TARGET_STUB (type))
1900 {
1901 struct type *range_type;
1902 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1903
1904 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1905 {
1906 /* Nothing we can do. */
1907 }
1908 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1909 {
1910 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1911 TYPE_TARGET_STUB (type) = 0;
1912 }
1913 }
1914
1915 type = make_qualified_type (type, instance_flags, NULL);
1916
1917 /* Cache TYPE_LENGTH for future use. */
1918 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1919
1920 return type;
1921 }
1922
1923 /* Parse a type expression in the string [P..P+LENGTH). If an error
1924 occurs, silently return a void type. */
1925
1926 static struct type *
1927 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1928 {
1929 struct ui_file *saved_gdb_stderr;
1930 struct type *type = NULL; /* Initialize to keep gcc happy. */
1931 volatile struct gdb_exception except;
1932
1933 /* Suppress error messages. */
1934 saved_gdb_stderr = gdb_stderr;
1935 gdb_stderr = ui_file_new ();
1936
1937 /* Call parse_and_eval_type() without fear of longjmp()s. */
1938 TRY_CATCH (except, RETURN_MASK_ERROR)
1939 {
1940 type = parse_and_eval_type (p, length);
1941 }
1942
1943 if (except.reason < 0)
1944 type = builtin_type (gdbarch)->builtin_void;
1945
1946 /* Stop suppressing error messages. */
1947 ui_file_delete (gdb_stderr);
1948 gdb_stderr = saved_gdb_stderr;
1949
1950 return type;
1951 }
1952
1953 /* Ugly hack to convert method stubs into method types.
1954
1955 He ain't kiddin'. This demangles the name of the method into a
1956 string including argument types, parses out each argument type,
1957 generates a string casting a zero to that type, evaluates the
1958 string, and stuffs the resulting type into an argtype vector!!!
1959 Then it knows the type of the whole function (including argument
1960 types for overloading), which info used to be in the stab's but was
1961 removed to hack back the space required for them. */
1962
1963 static void
1964 check_stub_method (struct type *type, int method_id, int signature_id)
1965 {
1966 struct gdbarch *gdbarch = get_type_arch (type);
1967 struct fn_field *f;
1968 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1969 char *demangled_name = gdb_demangle (mangled_name,
1970 DMGL_PARAMS | DMGL_ANSI);
1971 char *argtypetext, *p;
1972 int depth = 0, argcount = 1;
1973 struct field *argtypes;
1974 struct type *mtype;
1975
1976 /* Make sure we got back a function string that we can use. */
1977 if (demangled_name)
1978 p = strchr (demangled_name, '(');
1979 else
1980 p = NULL;
1981
1982 if (demangled_name == NULL || p == NULL)
1983 error (_("Internal: Cannot demangle mangled name `%s'."),
1984 mangled_name);
1985
1986 /* Now, read in the parameters that define this type. */
1987 p += 1;
1988 argtypetext = p;
1989 while (*p)
1990 {
1991 if (*p == '(' || *p == '<')
1992 {
1993 depth += 1;
1994 }
1995 else if (*p == ')' || *p == '>')
1996 {
1997 depth -= 1;
1998 }
1999 else if (*p == ',' && depth == 0)
2000 {
2001 argcount += 1;
2002 }
2003
2004 p += 1;
2005 }
2006
2007 /* If we read one argument and it was ``void'', don't count it. */
2008 if (strncmp (argtypetext, "(void)", 6) == 0)
2009 argcount -= 1;
2010
2011 /* We need one extra slot, for the THIS pointer. */
2012
2013 argtypes = (struct field *)
2014 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2015 p = argtypetext;
2016
2017 /* Add THIS pointer for non-static methods. */
2018 f = TYPE_FN_FIELDLIST1 (type, method_id);
2019 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2020 argcount = 0;
2021 else
2022 {
2023 argtypes[0].type = lookup_pointer_type (type);
2024 argcount = 1;
2025 }
2026
2027 if (*p != ')') /* () means no args, skip while. */
2028 {
2029 depth = 0;
2030 while (*p)
2031 {
2032 if (depth <= 0 && (*p == ',' || *p == ')'))
2033 {
2034 /* Avoid parsing of ellipsis, they will be handled below.
2035 Also avoid ``void'' as above. */
2036 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2037 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2038 {
2039 argtypes[argcount].type =
2040 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2041 argcount += 1;
2042 }
2043 argtypetext = p + 1;
2044 }
2045
2046 if (*p == '(' || *p == '<')
2047 {
2048 depth += 1;
2049 }
2050 else if (*p == ')' || *p == '>')
2051 {
2052 depth -= 1;
2053 }
2054
2055 p += 1;
2056 }
2057 }
2058
2059 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2060
2061 /* Now update the old "stub" type into a real type. */
2062 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2063 TYPE_DOMAIN_TYPE (mtype) = type;
2064 TYPE_FIELDS (mtype) = argtypes;
2065 TYPE_NFIELDS (mtype) = argcount;
2066 TYPE_STUB (mtype) = 0;
2067 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2068 if (p[-2] == '.')
2069 TYPE_VARARGS (mtype) = 1;
2070
2071 xfree (demangled_name);
2072 }
2073
2074 /* This is the external interface to check_stub_method, above. This
2075 function unstubs all of the signatures for TYPE's METHOD_ID method
2076 name. After calling this function TYPE_FN_FIELD_STUB will be
2077 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2078 correct.
2079
2080 This function unfortunately can not die until stabs do. */
2081
2082 void
2083 check_stub_method_group (struct type *type, int method_id)
2084 {
2085 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2086 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2087 int j, found_stub = 0;
2088
2089 for (j = 0; j < len; j++)
2090 if (TYPE_FN_FIELD_STUB (f, j))
2091 {
2092 found_stub = 1;
2093 check_stub_method (type, method_id, j);
2094 }
2095
2096 /* GNU v3 methods with incorrect names were corrected when we read
2097 in type information, because it was cheaper to do it then. The
2098 only GNU v2 methods with incorrect method names are operators and
2099 destructors; destructors were also corrected when we read in type
2100 information.
2101
2102 Therefore the only thing we need to handle here are v2 operator
2103 names. */
2104 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2105 {
2106 int ret;
2107 char dem_opname[256];
2108
2109 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2110 method_id),
2111 dem_opname, DMGL_ANSI);
2112 if (!ret)
2113 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2114 method_id),
2115 dem_opname, 0);
2116 if (ret)
2117 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2118 }
2119 }
2120
2121 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2122 const struct cplus_struct_type cplus_struct_default = { };
2123
2124 void
2125 allocate_cplus_struct_type (struct type *type)
2126 {
2127 if (HAVE_CPLUS_STRUCT (type))
2128 /* Structure was already allocated. Nothing more to do. */
2129 return;
2130
2131 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2132 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2133 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2134 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2135 }
2136
2137 const struct gnat_aux_type gnat_aux_default =
2138 { NULL };
2139
2140 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2141 and allocate the associated gnat-specific data. The gnat-specific
2142 data is also initialized to gnat_aux_default. */
2143
2144 void
2145 allocate_gnat_aux_type (struct type *type)
2146 {
2147 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2148 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2149 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2150 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2151 }
2152
2153 /* Helper function to initialize the standard scalar types.
2154
2155 If NAME is non-NULL, then it is used to initialize the type name.
2156 Note that NAME is not copied; it is required to have a lifetime at
2157 least as long as OBJFILE. */
2158
2159 struct type *
2160 init_type (enum type_code code, int length, int flags,
2161 const char *name, struct objfile *objfile)
2162 {
2163 struct type *type;
2164
2165 type = alloc_type (objfile);
2166 TYPE_CODE (type) = code;
2167 TYPE_LENGTH (type) = length;
2168
2169 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2170 if (flags & TYPE_FLAG_UNSIGNED)
2171 TYPE_UNSIGNED (type) = 1;
2172 if (flags & TYPE_FLAG_NOSIGN)
2173 TYPE_NOSIGN (type) = 1;
2174 if (flags & TYPE_FLAG_STUB)
2175 TYPE_STUB (type) = 1;
2176 if (flags & TYPE_FLAG_TARGET_STUB)
2177 TYPE_TARGET_STUB (type) = 1;
2178 if (flags & TYPE_FLAG_STATIC)
2179 TYPE_STATIC (type) = 1;
2180 if (flags & TYPE_FLAG_PROTOTYPED)
2181 TYPE_PROTOTYPED (type) = 1;
2182 if (flags & TYPE_FLAG_INCOMPLETE)
2183 TYPE_INCOMPLETE (type) = 1;
2184 if (flags & TYPE_FLAG_VARARGS)
2185 TYPE_VARARGS (type) = 1;
2186 if (flags & TYPE_FLAG_VECTOR)
2187 TYPE_VECTOR (type) = 1;
2188 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2189 TYPE_STUB_SUPPORTED (type) = 1;
2190 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2191 TYPE_FIXED_INSTANCE (type) = 1;
2192 if (flags & TYPE_FLAG_GNU_IFUNC)
2193 TYPE_GNU_IFUNC (type) = 1;
2194
2195 TYPE_NAME (type) = name;
2196
2197 /* C++ fancies. */
2198
2199 if (name && strcmp (name, "char") == 0)
2200 TYPE_NOSIGN (type) = 1;
2201
2202 switch (code)
2203 {
2204 case TYPE_CODE_STRUCT:
2205 case TYPE_CODE_UNION:
2206 case TYPE_CODE_NAMESPACE:
2207 INIT_CPLUS_SPECIFIC (type);
2208 break;
2209 case TYPE_CODE_FLT:
2210 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2211 break;
2212 case TYPE_CODE_FUNC:
2213 INIT_FUNC_SPECIFIC (type);
2214 break;
2215 }
2216 return type;
2217 }
2218 \f
2219 /* Queries on types. */
2220
2221 int
2222 can_dereference (struct type *t)
2223 {
2224 /* FIXME: Should we return true for references as well as
2225 pointers? */
2226 CHECK_TYPEDEF (t);
2227 return
2228 (t != NULL
2229 && TYPE_CODE (t) == TYPE_CODE_PTR
2230 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2231 }
2232
2233 int
2234 is_integral_type (struct type *t)
2235 {
2236 CHECK_TYPEDEF (t);
2237 return
2238 ((t != NULL)
2239 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2240 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2241 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2242 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2243 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2244 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2245 }
2246
2247 /* Return true if TYPE is scalar. */
2248
2249 static int
2250 is_scalar_type (struct type *type)
2251 {
2252 CHECK_TYPEDEF (type);
2253
2254 switch (TYPE_CODE (type))
2255 {
2256 case TYPE_CODE_ARRAY:
2257 case TYPE_CODE_STRUCT:
2258 case TYPE_CODE_UNION:
2259 case TYPE_CODE_SET:
2260 case TYPE_CODE_STRING:
2261 return 0;
2262 default:
2263 return 1;
2264 }
2265 }
2266
2267 /* Return true if T is scalar, or a composite type which in practice has
2268 the memory layout of a scalar type. E.g., an array or struct with only
2269 one scalar element inside it, or a union with only scalar elements. */
2270
2271 int
2272 is_scalar_type_recursive (struct type *t)
2273 {
2274 CHECK_TYPEDEF (t);
2275
2276 if (is_scalar_type (t))
2277 return 1;
2278 /* Are we dealing with an array or string of known dimensions? */
2279 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2280 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2281 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2282 {
2283 LONGEST low_bound, high_bound;
2284 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2285
2286 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2287
2288 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2289 }
2290 /* Are we dealing with a struct with one element? */
2291 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2292 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2293 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2294 {
2295 int i, n = TYPE_NFIELDS (t);
2296
2297 /* If all elements of the union are scalar, then the union is scalar. */
2298 for (i = 0; i < n; i++)
2299 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2300 return 0;
2301
2302 return 1;
2303 }
2304
2305 return 0;
2306 }
2307
2308 /* A helper function which returns true if types A and B represent the
2309 "same" class type. This is true if the types have the same main
2310 type, or the same name. */
2311
2312 int
2313 class_types_same_p (const struct type *a, const struct type *b)
2314 {
2315 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2316 || (TYPE_NAME (a) && TYPE_NAME (b)
2317 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2318 }
2319
2320 /* If BASE is an ancestor of DCLASS return the distance between them.
2321 otherwise return -1;
2322 eg:
2323
2324 class A {};
2325 class B: public A {};
2326 class C: public B {};
2327 class D: C {};
2328
2329 distance_to_ancestor (A, A, 0) = 0
2330 distance_to_ancestor (A, B, 0) = 1
2331 distance_to_ancestor (A, C, 0) = 2
2332 distance_to_ancestor (A, D, 0) = 3
2333
2334 If PUBLIC is 1 then only public ancestors are considered,
2335 and the function returns the distance only if BASE is a public ancestor
2336 of DCLASS.
2337 Eg:
2338
2339 distance_to_ancestor (A, D, 1) = -1. */
2340
2341 static int
2342 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2343 {
2344 int i;
2345 int d;
2346
2347 CHECK_TYPEDEF (base);
2348 CHECK_TYPEDEF (dclass);
2349
2350 if (class_types_same_p (base, dclass))
2351 return 0;
2352
2353 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2354 {
2355 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2356 continue;
2357
2358 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2359 if (d >= 0)
2360 return 1 + d;
2361 }
2362
2363 return -1;
2364 }
2365
2366 /* Check whether BASE is an ancestor or base class or DCLASS
2367 Return 1 if so, and 0 if not.
2368 Note: If BASE and DCLASS are of the same type, this function
2369 will return 1. So for some class A, is_ancestor (A, A) will
2370 return 1. */
2371
2372 int
2373 is_ancestor (struct type *base, struct type *dclass)
2374 {
2375 return distance_to_ancestor (base, dclass, 0) >= 0;
2376 }
2377
2378 /* Like is_ancestor, but only returns true when BASE is a public
2379 ancestor of DCLASS. */
2380
2381 int
2382 is_public_ancestor (struct type *base, struct type *dclass)
2383 {
2384 return distance_to_ancestor (base, dclass, 1) >= 0;
2385 }
2386
2387 /* A helper function for is_unique_ancestor. */
2388
2389 static int
2390 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2391 int *offset,
2392 const gdb_byte *valaddr, int embedded_offset,
2393 CORE_ADDR address, struct value *val)
2394 {
2395 int i, count = 0;
2396
2397 CHECK_TYPEDEF (base);
2398 CHECK_TYPEDEF (dclass);
2399
2400 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2401 {
2402 struct type *iter;
2403 int this_offset;
2404
2405 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2406
2407 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2408 address, val);
2409
2410 if (class_types_same_p (base, iter))
2411 {
2412 /* If this is the first subclass, set *OFFSET and set count
2413 to 1. Otherwise, if this is at the same offset as
2414 previous instances, do nothing. Otherwise, increment
2415 count. */
2416 if (*offset == -1)
2417 {
2418 *offset = this_offset;
2419 count = 1;
2420 }
2421 else if (this_offset == *offset)
2422 {
2423 /* Nothing. */
2424 }
2425 else
2426 ++count;
2427 }
2428 else
2429 count += is_unique_ancestor_worker (base, iter, offset,
2430 valaddr,
2431 embedded_offset + this_offset,
2432 address, val);
2433 }
2434
2435 return count;
2436 }
2437
2438 /* Like is_ancestor, but only returns true if BASE is a unique base
2439 class of the type of VAL. */
2440
2441 int
2442 is_unique_ancestor (struct type *base, struct value *val)
2443 {
2444 int offset = -1;
2445
2446 return is_unique_ancestor_worker (base, value_type (val), &offset,
2447 value_contents_for_printing (val),
2448 value_embedded_offset (val),
2449 value_address (val), val) == 1;
2450 }
2451
2452 \f
2453 /* Overload resolution. */
2454
2455 /* Return the sum of the rank of A with the rank of B. */
2456
2457 struct rank
2458 sum_ranks (struct rank a, struct rank b)
2459 {
2460 struct rank c;
2461 c.rank = a.rank + b.rank;
2462 c.subrank = a.subrank + b.subrank;
2463 return c;
2464 }
2465
2466 /* Compare rank A and B and return:
2467 0 if a = b
2468 1 if a is better than b
2469 -1 if b is better than a. */
2470
2471 int
2472 compare_ranks (struct rank a, struct rank b)
2473 {
2474 if (a.rank == b.rank)
2475 {
2476 if (a.subrank == b.subrank)
2477 return 0;
2478 if (a.subrank < b.subrank)
2479 return 1;
2480 if (a.subrank > b.subrank)
2481 return -1;
2482 }
2483
2484 if (a.rank < b.rank)
2485 return 1;
2486
2487 /* a.rank > b.rank */
2488 return -1;
2489 }
2490
2491 /* Functions for overload resolution begin here. */
2492
2493 /* Compare two badness vectors A and B and return the result.
2494 0 => A and B are identical
2495 1 => A and B are incomparable
2496 2 => A is better than B
2497 3 => A is worse than B */
2498
2499 int
2500 compare_badness (struct badness_vector *a, struct badness_vector *b)
2501 {
2502 int i;
2503 int tmp;
2504 short found_pos = 0; /* any positives in c? */
2505 short found_neg = 0; /* any negatives in c? */
2506
2507 /* differing lengths => incomparable */
2508 if (a->length != b->length)
2509 return 1;
2510
2511 /* Subtract b from a */
2512 for (i = 0; i < a->length; i++)
2513 {
2514 tmp = compare_ranks (b->rank[i], a->rank[i]);
2515 if (tmp > 0)
2516 found_pos = 1;
2517 else if (tmp < 0)
2518 found_neg = 1;
2519 }
2520
2521 if (found_pos)
2522 {
2523 if (found_neg)
2524 return 1; /* incomparable */
2525 else
2526 return 3; /* A > B */
2527 }
2528 else
2529 /* no positives */
2530 {
2531 if (found_neg)
2532 return 2; /* A < B */
2533 else
2534 return 0; /* A == B */
2535 }
2536 }
2537
2538 /* Rank a function by comparing its parameter types (PARMS, length
2539 NPARMS), to the types of an argument list (ARGS, length NARGS).
2540 Return a pointer to a badness vector. This has NARGS + 1
2541 entries. */
2542
2543 struct badness_vector *
2544 rank_function (struct type **parms, int nparms,
2545 struct value **args, int nargs)
2546 {
2547 int i;
2548 struct badness_vector *bv;
2549 int min_len = nparms < nargs ? nparms : nargs;
2550
2551 bv = xmalloc (sizeof (struct badness_vector));
2552 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2553 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2554
2555 /* First compare the lengths of the supplied lists.
2556 If there is a mismatch, set it to a high value. */
2557
2558 /* pai/1997-06-03 FIXME: when we have debug info about default
2559 arguments and ellipsis parameter lists, we should consider those
2560 and rank the length-match more finely. */
2561
2562 LENGTH_MATCH (bv) = (nargs != nparms)
2563 ? LENGTH_MISMATCH_BADNESS
2564 : EXACT_MATCH_BADNESS;
2565
2566 /* Now rank all the parameters of the candidate function. */
2567 for (i = 1; i <= min_len; i++)
2568 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2569 args[i - 1]);
2570
2571 /* If more arguments than parameters, add dummy entries. */
2572 for (i = min_len + 1; i <= nargs; i++)
2573 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2574
2575 return bv;
2576 }
2577
2578 /* Compare the names of two integer types, assuming that any sign
2579 qualifiers have been checked already. We do it this way because
2580 there may be an "int" in the name of one of the types. */
2581
2582 static int
2583 integer_types_same_name_p (const char *first, const char *second)
2584 {
2585 int first_p, second_p;
2586
2587 /* If both are shorts, return 1; if neither is a short, keep
2588 checking. */
2589 first_p = (strstr (first, "short") != NULL);
2590 second_p = (strstr (second, "short") != NULL);
2591 if (first_p && second_p)
2592 return 1;
2593 if (first_p || second_p)
2594 return 0;
2595
2596 /* Likewise for long. */
2597 first_p = (strstr (first, "long") != NULL);
2598 second_p = (strstr (second, "long") != NULL);
2599 if (first_p && second_p)
2600 return 1;
2601 if (first_p || second_p)
2602 return 0;
2603
2604 /* Likewise for char. */
2605 first_p = (strstr (first, "char") != NULL);
2606 second_p = (strstr (second, "char") != NULL);
2607 if (first_p && second_p)
2608 return 1;
2609 if (first_p || second_p)
2610 return 0;
2611
2612 /* They must both be ints. */
2613 return 1;
2614 }
2615
2616 /* Compares type A to type B returns 1 if the represent the same type
2617 0 otherwise. */
2618
2619 int
2620 types_equal (struct type *a, struct type *b)
2621 {
2622 /* Identical type pointers. */
2623 /* However, this still doesn't catch all cases of same type for b
2624 and a. The reason is that builtin types are different from
2625 the same ones constructed from the object. */
2626 if (a == b)
2627 return 1;
2628
2629 /* Resolve typedefs */
2630 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2631 a = check_typedef (a);
2632 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2633 b = check_typedef (b);
2634
2635 /* If after resolving typedefs a and b are not of the same type
2636 code then they are not equal. */
2637 if (TYPE_CODE (a) != TYPE_CODE (b))
2638 return 0;
2639
2640 /* If a and b are both pointers types or both reference types then
2641 they are equal of the same type iff the objects they refer to are
2642 of the same type. */
2643 if (TYPE_CODE (a) == TYPE_CODE_PTR
2644 || TYPE_CODE (a) == TYPE_CODE_REF)
2645 return types_equal (TYPE_TARGET_TYPE (a),
2646 TYPE_TARGET_TYPE (b));
2647
2648 /* Well, damnit, if the names are exactly the same, I'll say they
2649 are exactly the same. This happens when we generate method
2650 stubs. The types won't point to the same address, but they
2651 really are the same. */
2652
2653 if (TYPE_NAME (a) && TYPE_NAME (b)
2654 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2655 return 1;
2656
2657 /* Check if identical after resolving typedefs. */
2658 if (a == b)
2659 return 1;
2660
2661 /* Two function types are equal if their argument and return types
2662 are equal. */
2663 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2664 {
2665 int i;
2666
2667 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2668 return 0;
2669
2670 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2671 return 0;
2672
2673 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2674 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2675 return 0;
2676
2677 return 1;
2678 }
2679
2680 return 0;
2681 }
2682 \f
2683 /* Deep comparison of types. */
2684
2685 /* An entry in the type-equality bcache. */
2686
2687 typedef struct type_equality_entry
2688 {
2689 struct type *type1, *type2;
2690 } type_equality_entry_d;
2691
2692 DEF_VEC_O (type_equality_entry_d);
2693
2694 /* A helper function to compare two strings. Returns 1 if they are
2695 the same, 0 otherwise. Handles NULLs properly. */
2696
2697 static int
2698 compare_maybe_null_strings (const char *s, const char *t)
2699 {
2700 if (s == NULL && t != NULL)
2701 return 0;
2702 else if (s != NULL && t == NULL)
2703 return 0;
2704 else if (s == NULL && t== NULL)
2705 return 1;
2706 return strcmp (s, t) == 0;
2707 }
2708
2709 /* A helper function for check_types_worklist that checks two types for
2710 "deep" equality. Returns non-zero if the types are considered the
2711 same, zero otherwise. */
2712
2713 static int
2714 check_types_equal (struct type *type1, struct type *type2,
2715 VEC (type_equality_entry_d) **worklist)
2716 {
2717 CHECK_TYPEDEF (type1);
2718 CHECK_TYPEDEF (type2);
2719
2720 if (type1 == type2)
2721 return 1;
2722
2723 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2724 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2725 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2726 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2727 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2728 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2729 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2730 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2731 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2732 return 0;
2733
2734 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2735 TYPE_TAG_NAME (type2)))
2736 return 0;
2737 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2738 return 0;
2739
2740 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2741 {
2742 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2743 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2744 return 0;
2745 }
2746 else
2747 {
2748 int i;
2749
2750 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2751 {
2752 const struct field *field1 = &TYPE_FIELD (type1, i);
2753 const struct field *field2 = &TYPE_FIELD (type2, i);
2754 struct type_equality_entry entry;
2755
2756 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2757 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2758 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2759 return 0;
2760 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2761 FIELD_NAME (*field2)))
2762 return 0;
2763 switch (FIELD_LOC_KIND (*field1))
2764 {
2765 case FIELD_LOC_KIND_BITPOS:
2766 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2767 return 0;
2768 break;
2769 case FIELD_LOC_KIND_ENUMVAL:
2770 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2771 return 0;
2772 break;
2773 case FIELD_LOC_KIND_PHYSADDR:
2774 if (FIELD_STATIC_PHYSADDR (*field1)
2775 != FIELD_STATIC_PHYSADDR (*field2))
2776 return 0;
2777 break;
2778 case FIELD_LOC_KIND_PHYSNAME:
2779 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2780 FIELD_STATIC_PHYSNAME (*field2)))
2781 return 0;
2782 break;
2783 case FIELD_LOC_KIND_DWARF_BLOCK:
2784 {
2785 struct dwarf2_locexpr_baton *block1, *block2;
2786
2787 block1 = FIELD_DWARF_BLOCK (*field1);
2788 block2 = FIELD_DWARF_BLOCK (*field2);
2789 if (block1->per_cu != block2->per_cu
2790 || block1->size != block2->size
2791 || memcmp (block1->data, block2->data, block1->size) != 0)
2792 return 0;
2793 }
2794 break;
2795 default:
2796 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
2797 "%d by check_types_equal"),
2798 FIELD_LOC_KIND (*field1));
2799 }
2800
2801 entry.type1 = FIELD_TYPE (*field1);
2802 entry.type2 = FIELD_TYPE (*field2);
2803 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2804 }
2805 }
2806
2807 if (TYPE_TARGET_TYPE (type1) != NULL)
2808 {
2809 struct type_equality_entry entry;
2810
2811 if (TYPE_TARGET_TYPE (type2) == NULL)
2812 return 0;
2813
2814 entry.type1 = TYPE_TARGET_TYPE (type1);
2815 entry.type2 = TYPE_TARGET_TYPE (type2);
2816 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2817 }
2818 else if (TYPE_TARGET_TYPE (type2) != NULL)
2819 return 0;
2820
2821 return 1;
2822 }
2823
2824 /* Check types on a worklist for equality. Returns zero if any pair
2825 is not equal, non-zero if they are all considered equal. */
2826
2827 static int
2828 check_types_worklist (VEC (type_equality_entry_d) **worklist,
2829 struct bcache *cache)
2830 {
2831 while (!VEC_empty (type_equality_entry_d, *worklist))
2832 {
2833 struct type_equality_entry entry;
2834 int added;
2835
2836 entry = *VEC_last (type_equality_entry_d, *worklist);
2837 VEC_pop (type_equality_entry_d, *worklist);
2838
2839 /* If the type pair has already been visited, we know it is
2840 ok. */
2841 bcache_full (&entry, sizeof (entry), cache, &added);
2842 if (!added)
2843 continue;
2844
2845 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
2846 return 0;
2847 }
2848
2849 return 1;
2850 }
2851
2852 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
2853 "deep comparison". Otherwise return zero. */
2854
2855 int
2856 types_deeply_equal (struct type *type1, struct type *type2)
2857 {
2858 volatile struct gdb_exception except;
2859 int result = 0;
2860 struct bcache *cache;
2861 VEC (type_equality_entry_d) *worklist = NULL;
2862 struct type_equality_entry entry;
2863
2864 gdb_assert (type1 != NULL && type2 != NULL);
2865
2866 /* Early exit for the simple case. */
2867 if (type1 == type2)
2868 return 1;
2869
2870 cache = bcache_xmalloc (NULL, NULL);
2871
2872 entry.type1 = type1;
2873 entry.type2 = type2;
2874 VEC_safe_push (type_equality_entry_d, worklist, &entry);
2875
2876 TRY_CATCH (except, RETURN_MASK_ALL)
2877 {
2878 result = check_types_worklist (&worklist, cache);
2879 }
2880 /* check_types_worklist calls several nested helper functions,
2881 some of which can raise a GDB Exception, so we just check
2882 and rethrow here. If there is a GDB exception, a comparison
2883 is not capable (or trusted), so exit. */
2884 bcache_xfree (cache);
2885 VEC_free (type_equality_entry_d, worklist);
2886 /* Rethrow if there was a problem. */
2887 if (except.reason < 0)
2888 throw_exception (except);
2889
2890 return result;
2891 }
2892 \f
2893 /* Compare one type (PARM) for compatibility with another (ARG).
2894 * PARM is intended to be the parameter type of a function; and
2895 * ARG is the supplied argument's type. This function tests if
2896 * the latter can be converted to the former.
2897 * VALUE is the argument's value or NULL if none (or called recursively)
2898 *
2899 * Return 0 if they are identical types;
2900 * Otherwise, return an integer which corresponds to how compatible
2901 * PARM is to ARG. The higher the return value, the worse the match.
2902 * Generally the "bad" conversions are all uniformly assigned a 100. */
2903
2904 struct rank
2905 rank_one_type (struct type *parm, struct type *arg, struct value *value)
2906 {
2907 struct rank rank = {0,0};
2908
2909 if (types_equal (parm, arg))
2910 return EXACT_MATCH_BADNESS;
2911
2912 /* Resolve typedefs */
2913 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2914 parm = check_typedef (parm);
2915 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2916 arg = check_typedef (arg);
2917
2918 /* See through references, since we can almost make non-references
2919 references. */
2920 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2921 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
2922 REFERENCE_CONVERSION_BADNESS));
2923 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2924 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
2925 REFERENCE_CONVERSION_BADNESS));
2926 if (overload_debug)
2927 /* Debugging only. */
2928 fprintf_filtered (gdb_stderr,
2929 "------ Arg is %s [%d], parm is %s [%d]\n",
2930 TYPE_NAME (arg), TYPE_CODE (arg),
2931 TYPE_NAME (parm), TYPE_CODE (parm));
2932
2933 /* x -> y means arg of type x being supplied for parameter of type y. */
2934
2935 switch (TYPE_CODE (parm))
2936 {
2937 case TYPE_CODE_PTR:
2938 switch (TYPE_CODE (arg))
2939 {
2940 case TYPE_CODE_PTR:
2941
2942 /* Allowed pointer conversions are:
2943 (a) pointer to void-pointer conversion. */
2944 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2945 return VOID_PTR_CONVERSION_BADNESS;
2946
2947 /* (b) pointer to ancestor-pointer conversion. */
2948 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2949 TYPE_TARGET_TYPE (arg),
2950 0);
2951 if (rank.subrank >= 0)
2952 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2953
2954 return INCOMPATIBLE_TYPE_BADNESS;
2955 case TYPE_CODE_ARRAY:
2956 if (types_equal (TYPE_TARGET_TYPE (parm),
2957 TYPE_TARGET_TYPE (arg)))
2958 return EXACT_MATCH_BADNESS;
2959 return INCOMPATIBLE_TYPE_BADNESS;
2960 case TYPE_CODE_FUNC:
2961 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
2962 case TYPE_CODE_INT:
2963 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
2964 {
2965 if (value_as_long (value) == 0)
2966 {
2967 /* Null pointer conversion: allow it to be cast to a pointer.
2968 [4.10.1 of C++ standard draft n3290] */
2969 return NULL_POINTER_CONVERSION_BADNESS;
2970 }
2971 else
2972 {
2973 /* If type checking is disabled, allow the conversion. */
2974 if (!strict_type_checking)
2975 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
2976 }
2977 }
2978 /* fall through */
2979 case TYPE_CODE_ENUM:
2980 case TYPE_CODE_FLAGS:
2981 case TYPE_CODE_CHAR:
2982 case TYPE_CODE_RANGE:
2983 case TYPE_CODE_BOOL:
2984 default:
2985 return INCOMPATIBLE_TYPE_BADNESS;
2986 }
2987 case TYPE_CODE_ARRAY:
2988 switch (TYPE_CODE (arg))
2989 {
2990 case TYPE_CODE_PTR:
2991 case TYPE_CODE_ARRAY:
2992 return rank_one_type (TYPE_TARGET_TYPE (parm),
2993 TYPE_TARGET_TYPE (arg), NULL);
2994 default:
2995 return INCOMPATIBLE_TYPE_BADNESS;
2996 }
2997 case TYPE_CODE_FUNC:
2998 switch (TYPE_CODE (arg))
2999 {
3000 case TYPE_CODE_PTR: /* funcptr -> func */
3001 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3002 default:
3003 return INCOMPATIBLE_TYPE_BADNESS;
3004 }
3005 case TYPE_CODE_INT:
3006 switch (TYPE_CODE (arg))
3007 {
3008 case TYPE_CODE_INT:
3009 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3010 {
3011 /* Deal with signed, unsigned, and plain chars and
3012 signed and unsigned ints. */
3013 if (TYPE_NOSIGN (parm))
3014 {
3015 /* This case only for character types. */
3016 if (TYPE_NOSIGN (arg))
3017 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3018 else /* signed/unsigned char -> plain char */
3019 return INTEGER_CONVERSION_BADNESS;
3020 }
3021 else if (TYPE_UNSIGNED (parm))
3022 {
3023 if (TYPE_UNSIGNED (arg))
3024 {
3025 /* unsigned int -> unsigned int, or
3026 unsigned long -> unsigned long */
3027 if (integer_types_same_name_p (TYPE_NAME (parm),
3028 TYPE_NAME (arg)))
3029 return EXACT_MATCH_BADNESS;
3030 else if (integer_types_same_name_p (TYPE_NAME (arg),
3031 "int")
3032 && integer_types_same_name_p (TYPE_NAME (parm),
3033 "long"))
3034 /* unsigned int -> unsigned long */
3035 return INTEGER_PROMOTION_BADNESS;
3036 else
3037 /* unsigned long -> unsigned int */
3038 return INTEGER_CONVERSION_BADNESS;
3039 }
3040 else
3041 {
3042 if (integer_types_same_name_p (TYPE_NAME (arg),
3043 "long")
3044 && integer_types_same_name_p (TYPE_NAME (parm),
3045 "int"))
3046 /* signed long -> unsigned int */
3047 return INTEGER_CONVERSION_BADNESS;
3048 else
3049 /* signed int/long -> unsigned int/long */
3050 return INTEGER_CONVERSION_BADNESS;
3051 }
3052 }
3053 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3054 {
3055 if (integer_types_same_name_p (TYPE_NAME (parm),
3056 TYPE_NAME (arg)))
3057 return EXACT_MATCH_BADNESS;
3058 else if (integer_types_same_name_p (TYPE_NAME (arg),
3059 "int")
3060 && integer_types_same_name_p (TYPE_NAME (parm),
3061 "long"))
3062 return INTEGER_PROMOTION_BADNESS;
3063 else
3064 return INTEGER_CONVERSION_BADNESS;
3065 }
3066 else
3067 return INTEGER_CONVERSION_BADNESS;
3068 }
3069 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3070 return INTEGER_PROMOTION_BADNESS;
3071 else
3072 return INTEGER_CONVERSION_BADNESS;
3073 case TYPE_CODE_ENUM:
3074 case TYPE_CODE_FLAGS:
3075 case TYPE_CODE_CHAR:
3076 case TYPE_CODE_RANGE:
3077 case TYPE_CODE_BOOL:
3078 return INTEGER_PROMOTION_BADNESS;
3079 case TYPE_CODE_FLT:
3080 return INT_FLOAT_CONVERSION_BADNESS;
3081 case TYPE_CODE_PTR:
3082 return NS_POINTER_CONVERSION_BADNESS;
3083 default:
3084 return INCOMPATIBLE_TYPE_BADNESS;
3085 }
3086 break;
3087 case TYPE_CODE_ENUM:
3088 switch (TYPE_CODE (arg))
3089 {
3090 case TYPE_CODE_INT:
3091 case TYPE_CODE_CHAR:
3092 case TYPE_CODE_RANGE:
3093 case TYPE_CODE_BOOL:
3094 case TYPE_CODE_ENUM:
3095 return INTEGER_CONVERSION_BADNESS;
3096 case TYPE_CODE_FLT:
3097 return INT_FLOAT_CONVERSION_BADNESS;
3098 default:
3099 return INCOMPATIBLE_TYPE_BADNESS;
3100 }
3101 break;
3102 case TYPE_CODE_CHAR:
3103 switch (TYPE_CODE (arg))
3104 {
3105 case TYPE_CODE_RANGE:
3106 case TYPE_CODE_BOOL:
3107 case TYPE_CODE_ENUM:
3108 return INTEGER_CONVERSION_BADNESS;
3109 case TYPE_CODE_FLT:
3110 return INT_FLOAT_CONVERSION_BADNESS;
3111 case TYPE_CODE_INT:
3112 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3113 return INTEGER_CONVERSION_BADNESS;
3114 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3115 return INTEGER_PROMOTION_BADNESS;
3116 /* >>> !! else fall through !! <<< */
3117 case TYPE_CODE_CHAR:
3118 /* Deal with signed, unsigned, and plain chars for C++ and
3119 with int cases falling through from previous case. */
3120 if (TYPE_NOSIGN (parm))
3121 {
3122 if (TYPE_NOSIGN (arg))
3123 return EXACT_MATCH_BADNESS;
3124 else
3125 return INTEGER_CONVERSION_BADNESS;
3126 }
3127 else if (TYPE_UNSIGNED (parm))
3128 {
3129 if (TYPE_UNSIGNED (arg))
3130 return EXACT_MATCH_BADNESS;
3131 else
3132 return INTEGER_PROMOTION_BADNESS;
3133 }
3134 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3135 return EXACT_MATCH_BADNESS;
3136 else
3137 return INTEGER_CONVERSION_BADNESS;
3138 default:
3139 return INCOMPATIBLE_TYPE_BADNESS;
3140 }
3141 break;
3142 case TYPE_CODE_RANGE:
3143 switch (TYPE_CODE (arg))
3144 {
3145 case TYPE_CODE_INT:
3146 case TYPE_CODE_CHAR:
3147 case TYPE_CODE_RANGE:
3148 case TYPE_CODE_BOOL:
3149 case TYPE_CODE_ENUM:
3150 return INTEGER_CONVERSION_BADNESS;
3151 case TYPE_CODE_FLT:
3152 return INT_FLOAT_CONVERSION_BADNESS;
3153 default:
3154 return INCOMPATIBLE_TYPE_BADNESS;
3155 }
3156 break;
3157 case TYPE_CODE_BOOL:
3158 switch (TYPE_CODE (arg))
3159 {
3160 /* n3290 draft, section 4.12.1 (conv.bool):
3161
3162 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3163 pointer to member type can be converted to a prvalue of type
3164 bool. A zero value, null pointer value, or null member pointer
3165 value is converted to false; any other value is converted to
3166 true. A prvalue of type std::nullptr_t can be converted to a
3167 prvalue of type bool; the resulting value is false." */
3168 case TYPE_CODE_INT:
3169 case TYPE_CODE_CHAR:
3170 case TYPE_CODE_ENUM:
3171 case TYPE_CODE_FLT:
3172 case TYPE_CODE_MEMBERPTR:
3173 case TYPE_CODE_PTR:
3174 return BOOL_CONVERSION_BADNESS;
3175 case TYPE_CODE_RANGE:
3176 return INCOMPATIBLE_TYPE_BADNESS;
3177 case TYPE_CODE_BOOL:
3178 return EXACT_MATCH_BADNESS;
3179 default:
3180 return INCOMPATIBLE_TYPE_BADNESS;
3181 }
3182 break;
3183 case TYPE_CODE_FLT:
3184 switch (TYPE_CODE (arg))
3185 {
3186 case TYPE_CODE_FLT:
3187 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3188 return FLOAT_PROMOTION_BADNESS;
3189 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3190 return EXACT_MATCH_BADNESS;
3191 else
3192 return FLOAT_CONVERSION_BADNESS;
3193 case TYPE_CODE_INT:
3194 case TYPE_CODE_BOOL:
3195 case TYPE_CODE_ENUM:
3196 case TYPE_CODE_RANGE:
3197 case TYPE_CODE_CHAR:
3198 return INT_FLOAT_CONVERSION_BADNESS;
3199 default:
3200 return INCOMPATIBLE_TYPE_BADNESS;
3201 }
3202 break;
3203 case TYPE_CODE_COMPLEX:
3204 switch (TYPE_CODE (arg))
3205 { /* Strictly not needed for C++, but... */
3206 case TYPE_CODE_FLT:
3207 return FLOAT_PROMOTION_BADNESS;
3208 case TYPE_CODE_COMPLEX:
3209 return EXACT_MATCH_BADNESS;
3210 default:
3211 return INCOMPATIBLE_TYPE_BADNESS;
3212 }
3213 break;
3214 case TYPE_CODE_STRUCT:
3215 /* currently same as TYPE_CODE_CLASS. */
3216 switch (TYPE_CODE (arg))
3217 {
3218 case TYPE_CODE_STRUCT:
3219 /* Check for derivation */
3220 rank.subrank = distance_to_ancestor (parm, arg, 0);
3221 if (rank.subrank >= 0)
3222 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3223 /* else fall through */
3224 default:
3225 return INCOMPATIBLE_TYPE_BADNESS;
3226 }
3227 break;
3228 case TYPE_CODE_UNION:
3229 switch (TYPE_CODE (arg))
3230 {
3231 case TYPE_CODE_UNION:
3232 default:
3233 return INCOMPATIBLE_TYPE_BADNESS;
3234 }
3235 break;
3236 case TYPE_CODE_MEMBERPTR:
3237 switch (TYPE_CODE (arg))
3238 {
3239 default:
3240 return INCOMPATIBLE_TYPE_BADNESS;
3241 }
3242 break;
3243 case TYPE_CODE_METHOD:
3244 switch (TYPE_CODE (arg))
3245 {
3246
3247 default:
3248 return INCOMPATIBLE_TYPE_BADNESS;
3249 }
3250 break;
3251 case TYPE_CODE_REF:
3252 switch (TYPE_CODE (arg))
3253 {
3254
3255 default:
3256 return INCOMPATIBLE_TYPE_BADNESS;
3257 }
3258
3259 break;
3260 case TYPE_CODE_SET:
3261 switch (TYPE_CODE (arg))
3262 {
3263 /* Not in C++ */
3264 case TYPE_CODE_SET:
3265 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3266 TYPE_FIELD_TYPE (arg, 0), NULL);
3267 default:
3268 return INCOMPATIBLE_TYPE_BADNESS;
3269 }
3270 break;
3271 case TYPE_CODE_VOID:
3272 default:
3273 return INCOMPATIBLE_TYPE_BADNESS;
3274 } /* switch (TYPE_CODE (arg)) */
3275 }
3276
3277 /* End of functions for overload resolution. */
3278 \f
3279 /* Routines to pretty-print types. */
3280
3281 static void
3282 print_bit_vector (B_TYPE *bits, int nbits)
3283 {
3284 int bitno;
3285
3286 for (bitno = 0; bitno < nbits; bitno++)
3287 {
3288 if ((bitno % 8) == 0)
3289 {
3290 puts_filtered (" ");
3291 }
3292 if (B_TST (bits, bitno))
3293 printf_filtered (("1"));
3294 else
3295 printf_filtered (("0"));
3296 }
3297 }
3298
3299 /* Note the first arg should be the "this" pointer, we may not want to
3300 include it since we may get into a infinitely recursive
3301 situation. */
3302
3303 static void
3304 print_arg_types (struct field *args, int nargs, int spaces)
3305 {
3306 if (args != NULL)
3307 {
3308 int i;
3309
3310 for (i = 0; i < nargs; i++)
3311 recursive_dump_type (args[i].type, spaces + 2);
3312 }
3313 }
3314
3315 int
3316 field_is_static (struct field *f)
3317 {
3318 /* "static" fields are the fields whose location is not relative
3319 to the address of the enclosing struct. It would be nice to
3320 have a dedicated flag that would be set for static fields when
3321 the type is being created. But in practice, checking the field
3322 loc_kind should give us an accurate answer. */
3323 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3324 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3325 }
3326
3327 static void
3328 dump_fn_fieldlists (struct type *type, int spaces)
3329 {
3330 int method_idx;
3331 int overload_idx;
3332 struct fn_field *f;
3333
3334 printfi_filtered (spaces, "fn_fieldlists ");
3335 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3336 printf_filtered ("\n");
3337 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3338 {
3339 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3340 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3341 method_idx,
3342 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3343 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3344 gdb_stdout);
3345 printf_filtered (_(") length %d\n"),
3346 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3347 for (overload_idx = 0;
3348 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3349 overload_idx++)
3350 {
3351 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3352 overload_idx,
3353 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3354 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3355 gdb_stdout);
3356 printf_filtered (")\n");
3357 printfi_filtered (spaces + 8, "type ");
3358 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3359 gdb_stdout);
3360 printf_filtered ("\n");
3361
3362 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3363 spaces + 8 + 2);
3364
3365 printfi_filtered (spaces + 8, "args ");
3366 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3367 gdb_stdout);
3368 printf_filtered ("\n");
3369
3370 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
3371 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
3372 overload_idx)),
3373 spaces);
3374 printfi_filtered (spaces + 8, "fcontext ");
3375 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3376 gdb_stdout);
3377 printf_filtered ("\n");
3378
3379 printfi_filtered (spaces + 8, "is_const %d\n",
3380 TYPE_FN_FIELD_CONST (f, overload_idx));
3381 printfi_filtered (spaces + 8, "is_volatile %d\n",
3382 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3383 printfi_filtered (spaces + 8, "is_private %d\n",
3384 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3385 printfi_filtered (spaces + 8, "is_protected %d\n",
3386 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3387 printfi_filtered (spaces + 8, "is_stub %d\n",
3388 TYPE_FN_FIELD_STUB (f, overload_idx));
3389 printfi_filtered (spaces + 8, "voffset %u\n",
3390 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3391 }
3392 }
3393 }
3394
3395 static void
3396 print_cplus_stuff (struct type *type, int spaces)
3397 {
3398 printfi_filtered (spaces, "n_baseclasses %d\n",
3399 TYPE_N_BASECLASSES (type));
3400 printfi_filtered (spaces, "nfn_fields %d\n",
3401 TYPE_NFN_FIELDS (type));
3402 if (TYPE_N_BASECLASSES (type) > 0)
3403 {
3404 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3405 TYPE_N_BASECLASSES (type));
3406 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3407 gdb_stdout);
3408 printf_filtered (")");
3409
3410 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3411 TYPE_N_BASECLASSES (type));
3412 puts_filtered ("\n");
3413 }
3414 if (TYPE_NFIELDS (type) > 0)
3415 {
3416 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3417 {
3418 printfi_filtered (spaces,
3419 "private_field_bits (%d bits at *",
3420 TYPE_NFIELDS (type));
3421 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3422 gdb_stdout);
3423 printf_filtered (")");
3424 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3425 TYPE_NFIELDS (type));
3426 puts_filtered ("\n");
3427 }
3428 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3429 {
3430 printfi_filtered (spaces,
3431 "protected_field_bits (%d bits at *",
3432 TYPE_NFIELDS (type));
3433 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3434 gdb_stdout);
3435 printf_filtered (")");
3436 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3437 TYPE_NFIELDS (type));
3438 puts_filtered ("\n");
3439 }
3440 }
3441 if (TYPE_NFN_FIELDS (type) > 0)
3442 {
3443 dump_fn_fieldlists (type, spaces);
3444 }
3445 }
3446
3447 /* Print the contents of the TYPE's type_specific union, assuming that
3448 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3449
3450 static void
3451 print_gnat_stuff (struct type *type, int spaces)
3452 {
3453 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3454
3455 recursive_dump_type (descriptive_type, spaces + 2);
3456 }
3457
3458 static struct obstack dont_print_type_obstack;
3459
3460 void
3461 recursive_dump_type (struct type *type, int spaces)
3462 {
3463 int idx;
3464
3465 if (spaces == 0)
3466 obstack_begin (&dont_print_type_obstack, 0);
3467
3468 if (TYPE_NFIELDS (type) > 0
3469 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3470 {
3471 struct type **first_dont_print
3472 = (struct type **) obstack_base (&dont_print_type_obstack);
3473
3474 int i = (struct type **)
3475 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3476
3477 while (--i >= 0)
3478 {
3479 if (type == first_dont_print[i])
3480 {
3481 printfi_filtered (spaces, "type node ");
3482 gdb_print_host_address (type, gdb_stdout);
3483 printf_filtered (_(" <same as already seen type>\n"));
3484 return;
3485 }
3486 }
3487
3488 obstack_ptr_grow (&dont_print_type_obstack, type);
3489 }
3490
3491 printfi_filtered (spaces, "type node ");
3492 gdb_print_host_address (type, gdb_stdout);
3493 printf_filtered ("\n");
3494 printfi_filtered (spaces, "name '%s' (",
3495 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3496 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3497 printf_filtered (")\n");
3498 printfi_filtered (spaces, "tagname '%s' (",
3499 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3500 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3501 printf_filtered (")\n");
3502 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3503 switch (TYPE_CODE (type))
3504 {
3505 case TYPE_CODE_UNDEF:
3506 printf_filtered ("(TYPE_CODE_UNDEF)");
3507 break;
3508 case TYPE_CODE_PTR:
3509 printf_filtered ("(TYPE_CODE_PTR)");
3510 break;
3511 case TYPE_CODE_ARRAY:
3512 printf_filtered ("(TYPE_CODE_ARRAY)");
3513 break;
3514 case TYPE_CODE_STRUCT:
3515 printf_filtered ("(TYPE_CODE_STRUCT)");
3516 break;
3517 case TYPE_CODE_UNION:
3518 printf_filtered ("(TYPE_CODE_UNION)");
3519 break;
3520 case TYPE_CODE_ENUM:
3521 printf_filtered ("(TYPE_CODE_ENUM)");
3522 break;
3523 case TYPE_CODE_FLAGS:
3524 printf_filtered ("(TYPE_CODE_FLAGS)");
3525 break;
3526 case TYPE_CODE_FUNC:
3527 printf_filtered ("(TYPE_CODE_FUNC)");
3528 break;
3529 case TYPE_CODE_INT:
3530 printf_filtered ("(TYPE_CODE_INT)");
3531 break;
3532 case TYPE_CODE_FLT:
3533 printf_filtered ("(TYPE_CODE_FLT)");
3534 break;
3535 case TYPE_CODE_VOID:
3536 printf_filtered ("(TYPE_CODE_VOID)");
3537 break;
3538 case TYPE_CODE_SET:
3539 printf_filtered ("(TYPE_CODE_SET)");
3540 break;
3541 case TYPE_CODE_RANGE:
3542 printf_filtered ("(TYPE_CODE_RANGE)");
3543 break;
3544 case TYPE_CODE_STRING:
3545 printf_filtered ("(TYPE_CODE_STRING)");
3546 break;
3547 case TYPE_CODE_ERROR:
3548 printf_filtered ("(TYPE_CODE_ERROR)");
3549 break;
3550 case TYPE_CODE_MEMBERPTR:
3551 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3552 break;
3553 case TYPE_CODE_METHODPTR:
3554 printf_filtered ("(TYPE_CODE_METHODPTR)");
3555 break;
3556 case TYPE_CODE_METHOD:
3557 printf_filtered ("(TYPE_CODE_METHOD)");
3558 break;
3559 case TYPE_CODE_REF:
3560 printf_filtered ("(TYPE_CODE_REF)");
3561 break;
3562 case TYPE_CODE_CHAR:
3563 printf_filtered ("(TYPE_CODE_CHAR)");
3564 break;
3565 case TYPE_CODE_BOOL:
3566 printf_filtered ("(TYPE_CODE_BOOL)");
3567 break;
3568 case TYPE_CODE_COMPLEX:
3569 printf_filtered ("(TYPE_CODE_COMPLEX)");
3570 break;
3571 case TYPE_CODE_TYPEDEF:
3572 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3573 break;
3574 case TYPE_CODE_NAMESPACE:
3575 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3576 break;
3577 default:
3578 printf_filtered ("(UNKNOWN TYPE CODE)");
3579 break;
3580 }
3581 puts_filtered ("\n");
3582 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3583 if (TYPE_OBJFILE_OWNED (type))
3584 {
3585 printfi_filtered (spaces, "objfile ");
3586 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3587 }
3588 else
3589 {
3590 printfi_filtered (spaces, "gdbarch ");
3591 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3592 }
3593 printf_filtered ("\n");
3594 printfi_filtered (spaces, "target_type ");
3595 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3596 printf_filtered ("\n");
3597 if (TYPE_TARGET_TYPE (type) != NULL)
3598 {
3599 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3600 }
3601 printfi_filtered (spaces, "pointer_type ");
3602 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3603 printf_filtered ("\n");
3604 printfi_filtered (spaces, "reference_type ");
3605 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3606 printf_filtered ("\n");
3607 printfi_filtered (spaces, "type_chain ");
3608 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3609 printf_filtered ("\n");
3610 printfi_filtered (spaces, "instance_flags 0x%x",
3611 TYPE_INSTANCE_FLAGS (type));
3612 if (TYPE_CONST (type))
3613 {
3614 puts_filtered (" TYPE_FLAG_CONST");
3615 }
3616 if (TYPE_VOLATILE (type))
3617 {
3618 puts_filtered (" TYPE_FLAG_VOLATILE");
3619 }
3620 if (TYPE_CODE_SPACE (type))
3621 {
3622 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3623 }
3624 if (TYPE_DATA_SPACE (type))
3625 {
3626 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3627 }
3628 if (TYPE_ADDRESS_CLASS_1 (type))
3629 {
3630 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3631 }
3632 if (TYPE_ADDRESS_CLASS_2 (type))
3633 {
3634 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3635 }
3636 if (TYPE_RESTRICT (type))
3637 {
3638 puts_filtered (" TYPE_FLAG_RESTRICT");
3639 }
3640 puts_filtered ("\n");
3641
3642 printfi_filtered (spaces, "flags");
3643 if (TYPE_UNSIGNED (type))
3644 {
3645 puts_filtered (" TYPE_FLAG_UNSIGNED");
3646 }
3647 if (TYPE_NOSIGN (type))
3648 {
3649 puts_filtered (" TYPE_FLAG_NOSIGN");
3650 }
3651 if (TYPE_STUB (type))
3652 {
3653 puts_filtered (" TYPE_FLAG_STUB");
3654 }
3655 if (TYPE_TARGET_STUB (type))
3656 {
3657 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3658 }
3659 if (TYPE_STATIC (type))
3660 {
3661 puts_filtered (" TYPE_FLAG_STATIC");
3662 }
3663 if (TYPE_PROTOTYPED (type))
3664 {
3665 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3666 }
3667 if (TYPE_INCOMPLETE (type))
3668 {
3669 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3670 }
3671 if (TYPE_VARARGS (type))
3672 {
3673 puts_filtered (" TYPE_FLAG_VARARGS");
3674 }
3675 /* This is used for things like AltiVec registers on ppc. Gcc emits
3676 an attribute for the array type, which tells whether or not we
3677 have a vector, instead of a regular array. */
3678 if (TYPE_VECTOR (type))
3679 {
3680 puts_filtered (" TYPE_FLAG_VECTOR");
3681 }
3682 if (TYPE_FIXED_INSTANCE (type))
3683 {
3684 puts_filtered (" TYPE_FIXED_INSTANCE");
3685 }
3686 if (TYPE_STUB_SUPPORTED (type))
3687 {
3688 puts_filtered (" TYPE_STUB_SUPPORTED");
3689 }
3690 if (TYPE_NOTTEXT (type))
3691 {
3692 puts_filtered (" TYPE_NOTTEXT");
3693 }
3694 puts_filtered ("\n");
3695 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3696 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3697 puts_filtered ("\n");
3698 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3699 {
3700 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3701 printfi_filtered (spaces + 2,
3702 "[%d] enumval %s type ",
3703 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3704 else
3705 printfi_filtered (spaces + 2,
3706 "[%d] bitpos %d bitsize %d type ",
3707 idx, TYPE_FIELD_BITPOS (type, idx),
3708 TYPE_FIELD_BITSIZE (type, idx));
3709 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3710 printf_filtered (" name '%s' (",
3711 TYPE_FIELD_NAME (type, idx) != NULL
3712 ? TYPE_FIELD_NAME (type, idx)
3713 : "<NULL>");
3714 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3715 printf_filtered (")\n");
3716 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3717 {
3718 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3719 }
3720 }
3721 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3722 {
3723 printfi_filtered (spaces, "low %s%s high %s%s\n",
3724 plongest (TYPE_LOW_BOUND (type)),
3725 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3726 plongest (TYPE_HIGH_BOUND (type)),
3727 TYPE_HIGH_BOUND_UNDEFINED (type)
3728 ? " (undefined)" : "");
3729 }
3730 printfi_filtered (spaces, "vptr_basetype ");
3731 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3732 puts_filtered ("\n");
3733 if (TYPE_VPTR_BASETYPE (type) != NULL)
3734 {
3735 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3736 }
3737 printfi_filtered (spaces, "vptr_fieldno %d\n",
3738 TYPE_VPTR_FIELDNO (type));
3739
3740 switch (TYPE_SPECIFIC_FIELD (type))
3741 {
3742 case TYPE_SPECIFIC_CPLUS_STUFF:
3743 printfi_filtered (spaces, "cplus_stuff ");
3744 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3745 gdb_stdout);
3746 puts_filtered ("\n");
3747 print_cplus_stuff (type, spaces);
3748 break;
3749
3750 case TYPE_SPECIFIC_GNAT_STUFF:
3751 printfi_filtered (spaces, "gnat_stuff ");
3752 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3753 puts_filtered ("\n");
3754 print_gnat_stuff (type, spaces);
3755 break;
3756
3757 case TYPE_SPECIFIC_FLOATFORMAT:
3758 printfi_filtered (spaces, "floatformat ");
3759 if (TYPE_FLOATFORMAT (type) == NULL)
3760 puts_filtered ("(null)");
3761 else
3762 {
3763 puts_filtered ("{ ");
3764 if (TYPE_FLOATFORMAT (type)[0] == NULL
3765 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3766 puts_filtered ("(null)");
3767 else
3768 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3769
3770 puts_filtered (", ");
3771 if (TYPE_FLOATFORMAT (type)[1] == NULL
3772 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3773 puts_filtered ("(null)");
3774 else
3775 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3776
3777 puts_filtered (" }");
3778 }
3779 puts_filtered ("\n");
3780 break;
3781
3782 case TYPE_SPECIFIC_FUNC:
3783 printfi_filtered (spaces, "calling_convention %d\n",
3784 TYPE_CALLING_CONVENTION (type));
3785 /* tail_call_list is not printed. */
3786 break;
3787 }
3788
3789 if (spaces == 0)
3790 obstack_free (&dont_print_type_obstack, NULL);
3791 }
3792 \f
3793 /* Trivial helpers for the libiberty hash table, for mapping one
3794 type to another. */
3795
3796 struct type_pair
3797 {
3798 struct type *old, *new;
3799 };
3800
3801 static hashval_t
3802 type_pair_hash (const void *item)
3803 {
3804 const struct type_pair *pair = item;
3805
3806 return htab_hash_pointer (pair->old);
3807 }
3808
3809 static int
3810 type_pair_eq (const void *item_lhs, const void *item_rhs)
3811 {
3812 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3813
3814 return lhs->old == rhs->old;
3815 }
3816
3817 /* Allocate the hash table used by copy_type_recursive to walk
3818 types without duplicates. We use OBJFILE's obstack, because
3819 OBJFILE is about to be deleted. */
3820
3821 htab_t
3822 create_copied_types_hash (struct objfile *objfile)
3823 {
3824 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3825 NULL, &objfile->objfile_obstack,
3826 hashtab_obstack_allocate,
3827 dummy_obstack_deallocate);
3828 }
3829
3830 /* Recursively copy (deep copy) TYPE, if it is associated with
3831 OBJFILE. Return a new type allocated using malloc, a saved type if
3832 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3833 not associated with OBJFILE. */
3834
3835 struct type *
3836 copy_type_recursive (struct objfile *objfile,
3837 struct type *type,
3838 htab_t copied_types)
3839 {
3840 struct type_pair *stored, pair;
3841 void **slot;
3842 struct type *new_type;
3843
3844 if (! TYPE_OBJFILE_OWNED (type))
3845 return type;
3846
3847 /* This type shouldn't be pointing to any types in other objfiles;
3848 if it did, the type might disappear unexpectedly. */
3849 gdb_assert (TYPE_OBJFILE (type) == objfile);
3850
3851 pair.old = type;
3852 slot = htab_find_slot (copied_types, &pair, INSERT);
3853 if (*slot != NULL)
3854 return ((struct type_pair *) *slot)->new;
3855
3856 new_type = alloc_type_arch (get_type_arch (type));
3857
3858 /* We must add the new type to the hash table immediately, in case
3859 we encounter this type again during a recursive call below. */
3860 stored
3861 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3862 stored->old = type;
3863 stored->new = new_type;
3864 *slot = stored;
3865
3866 /* Copy the common fields of types. For the main type, we simply
3867 copy the entire thing and then update specific fields as needed. */
3868 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3869 TYPE_OBJFILE_OWNED (new_type) = 0;
3870 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3871
3872 if (TYPE_NAME (type))
3873 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3874 if (TYPE_TAG_NAME (type))
3875 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3876
3877 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3878 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3879
3880 /* Copy the fields. */
3881 if (TYPE_NFIELDS (type))
3882 {
3883 int i, nfields;
3884
3885 nfields = TYPE_NFIELDS (type);
3886 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
3887 for (i = 0; i < nfields; i++)
3888 {
3889 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3890 TYPE_FIELD_ARTIFICIAL (type, i);
3891 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3892 if (TYPE_FIELD_TYPE (type, i))
3893 TYPE_FIELD_TYPE (new_type, i)
3894 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3895 copied_types);
3896 if (TYPE_FIELD_NAME (type, i))
3897 TYPE_FIELD_NAME (new_type, i) =
3898 xstrdup (TYPE_FIELD_NAME (type, i));
3899 switch (TYPE_FIELD_LOC_KIND (type, i))
3900 {
3901 case FIELD_LOC_KIND_BITPOS:
3902 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3903 TYPE_FIELD_BITPOS (type, i));
3904 break;
3905 case FIELD_LOC_KIND_ENUMVAL:
3906 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3907 TYPE_FIELD_ENUMVAL (type, i));
3908 break;
3909 case FIELD_LOC_KIND_PHYSADDR:
3910 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3911 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3912 break;
3913 case FIELD_LOC_KIND_PHYSNAME:
3914 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3915 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3916 i)));
3917 break;
3918 default:
3919 internal_error (__FILE__, __LINE__,
3920 _("Unexpected type field location kind: %d"),
3921 TYPE_FIELD_LOC_KIND (type, i));
3922 }
3923 }
3924 }
3925
3926 /* For range types, copy the bounds information. */
3927 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3928 {
3929 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3930 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3931 }
3932
3933 /* Copy pointers to other types. */
3934 if (TYPE_TARGET_TYPE (type))
3935 TYPE_TARGET_TYPE (new_type) =
3936 copy_type_recursive (objfile,
3937 TYPE_TARGET_TYPE (type),
3938 copied_types);
3939 if (TYPE_VPTR_BASETYPE (type))
3940 TYPE_VPTR_BASETYPE (new_type) =
3941 copy_type_recursive (objfile,
3942 TYPE_VPTR_BASETYPE (type),
3943 copied_types);
3944 /* Maybe copy the type_specific bits.
3945
3946 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3947 base classes and methods. There's no fundamental reason why we
3948 can't, but at the moment it is not needed. */
3949
3950 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3951 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3952 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3953 || TYPE_CODE (type) == TYPE_CODE_UNION
3954 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3955 INIT_CPLUS_SPECIFIC (new_type);
3956
3957 return new_type;
3958 }
3959
3960 /* Make a copy of the given TYPE, except that the pointer & reference
3961 types are not preserved.
3962
3963 This function assumes that the given type has an associated objfile.
3964 This objfile is used to allocate the new type. */
3965
3966 struct type *
3967 copy_type (const struct type *type)
3968 {
3969 struct type *new_type;
3970
3971 gdb_assert (TYPE_OBJFILE_OWNED (type));
3972
3973 new_type = alloc_type_copy (type);
3974 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3975 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3976 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3977 sizeof (struct main_type));
3978
3979 return new_type;
3980 }
3981 \f
3982 /* Helper functions to initialize architecture-specific types. */
3983
3984 /* Allocate a type structure associated with GDBARCH and set its
3985 CODE, LENGTH, and NAME fields. */
3986
3987 struct type *
3988 arch_type (struct gdbarch *gdbarch,
3989 enum type_code code, int length, char *name)
3990 {
3991 struct type *type;
3992
3993 type = alloc_type_arch (gdbarch);
3994 TYPE_CODE (type) = code;
3995 TYPE_LENGTH (type) = length;
3996
3997 if (name)
3998 TYPE_NAME (type) = xstrdup (name);
3999
4000 return type;
4001 }
4002
4003 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4004 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4005 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4006
4007 struct type *
4008 arch_integer_type (struct gdbarch *gdbarch,
4009 int bit, int unsigned_p, char *name)
4010 {
4011 struct type *t;
4012
4013 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4014 if (unsigned_p)
4015 TYPE_UNSIGNED (t) = 1;
4016 if (name && strcmp (name, "char") == 0)
4017 TYPE_NOSIGN (t) = 1;
4018
4019 return t;
4020 }
4021
4022 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4023 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4024 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4025
4026 struct type *
4027 arch_character_type (struct gdbarch *gdbarch,
4028 int bit, int unsigned_p, char *name)
4029 {
4030 struct type *t;
4031
4032 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4033 if (unsigned_p)
4034 TYPE_UNSIGNED (t) = 1;
4035
4036 return t;
4037 }
4038
4039 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4040 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4041 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4042
4043 struct type *
4044 arch_boolean_type (struct gdbarch *gdbarch,
4045 int bit, int unsigned_p, char *name)
4046 {
4047 struct type *t;
4048
4049 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4050 if (unsigned_p)
4051 TYPE_UNSIGNED (t) = 1;
4052
4053 return t;
4054 }
4055
4056 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4057 BIT is the type size in bits; if BIT equals -1, the size is
4058 determined by the floatformat. NAME is the type name. Set the
4059 TYPE_FLOATFORMAT from FLOATFORMATS. */
4060
4061 struct type *
4062 arch_float_type (struct gdbarch *gdbarch,
4063 int bit, char *name, const struct floatformat **floatformats)
4064 {
4065 struct type *t;
4066
4067 if (bit == -1)
4068 {
4069 gdb_assert (floatformats != NULL);
4070 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4071 bit = floatformats[0]->totalsize;
4072 }
4073 gdb_assert (bit >= 0);
4074
4075 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4076 TYPE_FLOATFORMAT (t) = floatformats;
4077 return t;
4078 }
4079
4080 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4081 NAME is the type name. TARGET_TYPE is the component float type. */
4082
4083 struct type *
4084 arch_complex_type (struct gdbarch *gdbarch,
4085 char *name, struct type *target_type)
4086 {
4087 struct type *t;
4088
4089 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4090 2 * TYPE_LENGTH (target_type), name);
4091 TYPE_TARGET_TYPE (t) = target_type;
4092 return t;
4093 }
4094
4095 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4096 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4097
4098 struct type *
4099 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4100 {
4101 int nfields = length * TARGET_CHAR_BIT;
4102 struct type *type;
4103
4104 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4105 TYPE_UNSIGNED (type) = 1;
4106 TYPE_NFIELDS (type) = nfields;
4107 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4108
4109 return type;
4110 }
4111
4112 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4113 position BITPOS is called NAME. */
4114
4115 void
4116 append_flags_type_flag (struct type *type, int bitpos, char *name)
4117 {
4118 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4119 gdb_assert (bitpos < TYPE_NFIELDS (type));
4120 gdb_assert (bitpos >= 0);
4121
4122 if (name)
4123 {
4124 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4125 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4126 }
4127 else
4128 {
4129 /* Don't show this field to the user. */
4130 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4131 }
4132 }
4133
4134 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4135 specified by CODE) associated with GDBARCH. NAME is the type name. */
4136
4137 struct type *
4138 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4139 {
4140 struct type *t;
4141
4142 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4143 t = arch_type (gdbarch, code, 0, NULL);
4144 TYPE_TAG_NAME (t) = name;
4145 INIT_CPLUS_SPECIFIC (t);
4146 return t;
4147 }
4148
4149 /* Add new field with name NAME and type FIELD to composite type T.
4150 Do not set the field's position or adjust the type's length;
4151 the caller should do so. Return the new field. */
4152
4153 struct field *
4154 append_composite_type_field_raw (struct type *t, char *name,
4155 struct type *field)
4156 {
4157 struct field *f;
4158
4159 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4160 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4161 sizeof (struct field) * TYPE_NFIELDS (t));
4162 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4163 memset (f, 0, sizeof f[0]);
4164 FIELD_TYPE (f[0]) = field;
4165 FIELD_NAME (f[0]) = name;
4166 return f;
4167 }
4168
4169 /* Add new field with name NAME and type FIELD to composite type T.
4170 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4171
4172 void
4173 append_composite_type_field_aligned (struct type *t, char *name,
4174 struct type *field, int alignment)
4175 {
4176 struct field *f = append_composite_type_field_raw (t, name, field);
4177
4178 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4179 {
4180 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4181 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4182 }
4183 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4184 {
4185 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4186 if (TYPE_NFIELDS (t) > 1)
4187 {
4188 SET_FIELD_BITPOS (f[0],
4189 (FIELD_BITPOS (f[-1])
4190 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4191 * TARGET_CHAR_BIT)));
4192
4193 if (alignment)
4194 {
4195 int left;
4196
4197 alignment *= TARGET_CHAR_BIT;
4198 left = FIELD_BITPOS (f[0]) % alignment;
4199
4200 if (left)
4201 {
4202 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4203 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4204 }
4205 }
4206 }
4207 }
4208 }
4209
4210 /* Add new field with name NAME and type FIELD to composite type T. */
4211
4212 void
4213 append_composite_type_field (struct type *t, char *name,
4214 struct type *field)
4215 {
4216 append_composite_type_field_aligned (t, name, field, 0);
4217 }
4218
4219 static struct gdbarch_data *gdbtypes_data;
4220
4221 const struct builtin_type *
4222 builtin_type (struct gdbarch *gdbarch)
4223 {
4224 return gdbarch_data (gdbarch, gdbtypes_data);
4225 }
4226
4227 static void *
4228 gdbtypes_post_init (struct gdbarch *gdbarch)
4229 {
4230 struct builtin_type *builtin_type
4231 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4232
4233 /* Basic types. */
4234 builtin_type->builtin_void
4235 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4236 builtin_type->builtin_char
4237 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4238 !gdbarch_char_signed (gdbarch), "char");
4239 builtin_type->builtin_signed_char
4240 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4241 0, "signed char");
4242 builtin_type->builtin_unsigned_char
4243 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4244 1, "unsigned char");
4245 builtin_type->builtin_short
4246 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4247 0, "short");
4248 builtin_type->builtin_unsigned_short
4249 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4250 1, "unsigned short");
4251 builtin_type->builtin_int
4252 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4253 0, "int");
4254 builtin_type->builtin_unsigned_int
4255 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4256 1, "unsigned int");
4257 builtin_type->builtin_long
4258 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4259 0, "long");
4260 builtin_type->builtin_unsigned_long
4261 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4262 1, "unsigned long");
4263 builtin_type->builtin_long_long
4264 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4265 0, "long long");
4266 builtin_type->builtin_unsigned_long_long
4267 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4268 1, "unsigned long long");
4269 builtin_type->builtin_float
4270 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4271 "float", gdbarch_float_format (gdbarch));
4272 builtin_type->builtin_double
4273 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4274 "double", gdbarch_double_format (gdbarch));
4275 builtin_type->builtin_long_double
4276 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4277 "long double", gdbarch_long_double_format (gdbarch));
4278 builtin_type->builtin_complex
4279 = arch_complex_type (gdbarch, "complex",
4280 builtin_type->builtin_float);
4281 builtin_type->builtin_double_complex
4282 = arch_complex_type (gdbarch, "double complex",
4283 builtin_type->builtin_double);
4284 builtin_type->builtin_string
4285 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4286 builtin_type->builtin_bool
4287 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4288
4289 /* The following three are about decimal floating point types, which
4290 are 32-bits, 64-bits and 128-bits respectively. */
4291 builtin_type->builtin_decfloat
4292 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4293 builtin_type->builtin_decdouble
4294 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4295 builtin_type->builtin_declong
4296 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4297
4298 /* "True" character types. */
4299 builtin_type->builtin_true_char
4300 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4301 builtin_type->builtin_true_unsigned_char
4302 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4303
4304 /* Fixed-size integer types. */
4305 builtin_type->builtin_int0
4306 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4307 builtin_type->builtin_int8
4308 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4309 builtin_type->builtin_uint8
4310 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4311 builtin_type->builtin_int16
4312 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4313 builtin_type->builtin_uint16
4314 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4315 builtin_type->builtin_int32
4316 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4317 builtin_type->builtin_uint32
4318 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4319 builtin_type->builtin_int64
4320 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4321 builtin_type->builtin_uint64
4322 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4323 builtin_type->builtin_int128
4324 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4325 builtin_type->builtin_uint128
4326 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4327 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4328 TYPE_INSTANCE_FLAG_NOTTEXT;
4329 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4330 TYPE_INSTANCE_FLAG_NOTTEXT;
4331
4332 /* Wide character types. */
4333 builtin_type->builtin_char16
4334 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4335 builtin_type->builtin_char32
4336 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4337
4338
4339 /* Default data/code pointer types. */
4340 builtin_type->builtin_data_ptr
4341 = lookup_pointer_type (builtin_type->builtin_void);
4342 builtin_type->builtin_func_ptr
4343 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4344 builtin_type->builtin_func_func
4345 = lookup_function_type (builtin_type->builtin_func_ptr);
4346
4347 /* This type represents a GDB internal function. */
4348 builtin_type->internal_fn
4349 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4350 "<internal function>");
4351
4352 return builtin_type;
4353 }
4354
4355 /* This set of objfile-based types is intended to be used by symbol
4356 readers as basic types. */
4357
4358 static const struct objfile_data *objfile_type_data;
4359
4360 const struct objfile_type *
4361 objfile_type (struct objfile *objfile)
4362 {
4363 struct gdbarch *gdbarch;
4364 struct objfile_type *objfile_type
4365 = objfile_data (objfile, objfile_type_data);
4366
4367 if (objfile_type)
4368 return objfile_type;
4369
4370 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4371 1, struct objfile_type);
4372
4373 /* Use the objfile architecture to determine basic type properties. */
4374 gdbarch = get_objfile_arch (objfile);
4375
4376 /* Basic types. */
4377 objfile_type->builtin_void
4378 = init_type (TYPE_CODE_VOID, 1,
4379 0,
4380 "void", objfile);
4381
4382 objfile_type->builtin_char
4383 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4384 (TYPE_FLAG_NOSIGN
4385 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4386 "char", objfile);
4387 objfile_type->builtin_signed_char
4388 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4389 0,
4390 "signed char", objfile);
4391 objfile_type->builtin_unsigned_char
4392 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4393 TYPE_FLAG_UNSIGNED,
4394 "unsigned char", objfile);
4395 objfile_type->builtin_short
4396 = init_type (TYPE_CODE_INT,
4397 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4398 0, "short", objfile);
4399 objfile_type->builtin_unsigned_short
4400 = init_type (TYPE_CODE_INT,
4401 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4402 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4403 objfile_type->builtin_int
4404 = init_type (TYPE_CODE_INT,
4405 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4406 0, "int", objfile);
4407 objfile_type->builtin_unsigned_int
4408 = init_type (TYPE_CODE_INT,
4409 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4410 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4411 objfile_type->builtin_long
4412 = init_type (TYPE_CODE_INT,
4413 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4414 0, "long", objfile);
4415 objfile_type->builtin_unsigned_long
4416 = init_type (TYPE_CODE_INT,
4417 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4418 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4419 objfile_type->builtin_long_long
4420 = init_type (TYPE_CODE_INT,
4421 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4422 0, "long long", objfile);
4423 objfile_type->builtin_unsigned_long_long
4424 = init_type (TYPE_CODE_INT,
4425 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4426 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4427
4428 objfile_type->builtin_float
4429 = init_type (TYPE_CODE_FLT,
4430 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4431 0, "float", objfile);
4432 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4433 = gdbarch_float_format (gdbarch);
4434 objfile_type->builtin_double
4435 = init_type (TYPE_CODE_FLT,
4436 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4437 0, "double", objfile);
4438 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4439 = gdbarch_double_format (gdbarch);
4440 objfile_type->builtin_long_double
4441 = init_type (TYPE_CODE_FLT,
4442 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4443 0, "long double", objfile);
4444 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4445 = gdbarch_long_double_format (gdbarch);
4446
4447 /* This type represents a type that was unrecognized in symbol read-in. */
4448 objfile_type->builtin_error
4449 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4450
4451 /* The following set of types is used for symbols with no
4452 debug information. */
4453 objfile_type->nodebug_text_symbol
4454 = init_type (TYPE_CODE_FUNC, 1, 0,
4455 "<text variable, no debug info>", objfile);
4456 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4457 = objfile_type->builtin_int;
4458 objfile_type->nodebug_text_gnu_ifunc_symbol
4459 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4460 "<text gnu-indirect-function variable, no debug info>",
4461 objfile);
4462 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4463 = objfile_type->nodebug_text_symbol;
4464 objfile_type->nodebug_got_plt_symbol
4465 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4466 "<text from jump slot in .got.plt, no debug info>",
4467 objfile);
4468 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4469 = objfile_type->nodebug_text_symbol;
4470 objfile_type->nodebug_data_symbol
4471 = init_type (TYPE_CODE_INT,
4472 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4473 "<data variable, no debug info>", objfile);
4474 objfile_type->nodebug_unknown_symbol
4475 = init_type (TYPE_CODE_INT, 1, 0,
4476 "<variable (not text or data), no debug info>", objfile);
4477 objfile_type->nodebug_tls_symbol
4478 = init_type (TYPE_CODE_INT,
4479 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4480 "<thread local variable, no debug info>", objfile);
4481
4482 /* NOTE: on some targets, addresses and pointers are not necessarily
4483 the same.
4484
4485 The upshot is:
4486 - gdb's `struct type' always describes the target's
4487 representation.
4488 - gdb's `struct value' objects should always hold values in
4489 target form.
4490 - gdb's CORE_ADDR values are addresses in the unified virtual
4491 address space that the assembler and linker work with. Thus,
4492 since target_read_memory takes a CORE_ADDR as an argument, it
4493 can access any memory on the target, even if the processor has
4494 separate code and data address spaces.
4495
4496 In this context, objfile_type->builtin_core_addr is a bit odd:
4497 it's a target type for a value the target will never see. It's
4498 only used to hold the values of (typeless) linker symbols, which
4499 are indeed in the unified virtual address space. */
4500
4501 objfile_type->builtin_core_addr
4502 = init_type (TYPE_CODE_INT,
4503 gdbarch_addr_bit (gdbarch) / 8,
4504 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4505
4506 set_objfile_data (objfile, objfile_type_data, objfile_type);
4507 return objfile_type;
4508 }
4509
4510 extern initialize_file_ftype _initialize_gdbtypes;
4511
4512 void
4513 _initialize_gdbtypes (void)
4514 {
4515 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4516 objfile_type_data = register_objfile_data ();
4517
4518 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4519 _("Set debugging of C++ overloading."),
4520 _("Show debugging of C++ overloading."),
4521 _("When enabled, ranking of the "
4522 "functions is displayed."),
4523 NULL,
4524 show_overload_debug,
4525 &setdebuglist, &showdebuglist);
4526
4527 /* Add user knob for controlling resolution of opaque types. */
4528 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4529 &opaque_type_resolution,
4530 _("Set resolution of opaque struct/class/union"
4531 " types (if set before loading symbols)."),
4532 _("Show resolution of opaque struct/class/union"
4533 " types (if set before loading symbols)."),
4534 NULL, NULL,
4535 show_opaque_type_resolution,
4536 &setlist, &showlist);
4537
4538 /* Add an option to permit non-strict type checking. */
4539 add_setshow_boolean_cmd ("type", class_support,
4540 &strict_type_checking,
4541 _("Set strict type checking."),
4542 _("Show strict type checking."),
4543 NULL, NULL,
4544 show_strict_type_checking,
4545 &setchecklist, &showchecklist);
4546 }