gdb: fix value_subscript when array upper bound is not known
[binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2/loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42 #include "f-lang.h"
43 #include <algorithm>
44 #include "gmp-utils.h"
45
46 /* Initialize BADNESS constants. */
47
48 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
49
50 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
51 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
52
53 const struct rank EXACT_MATCH_BADNESS = {0,0};
54
55 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
56 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
57 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
58 const struct rank CV_CONVERSION_BADNESS = {1, 0};
59 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
60 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
61 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
62 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
63 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
64 const struct rank BASE_CONVERSION_BADNESS = {2,0};
65 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
66 const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
67 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
68 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
69 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
70
71 /* Floatformat pairs. */
72 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_half_big,
74 &floatformat_ieee_half_little
75 };
76 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_single_big,
78 &floatformat_ieee_single_little
79 };
80 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_little
83 };
84 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_ieee_double_big,
86 &floatformat_ieee_double_littlebyte_bigword
87 };
88 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_i387_ext,
90 &floatformat_i387_ext
91 };
92 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_m68881_ext,
94 &floatformat_m68881_ext
95 };
96 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_arm_ext_big,
98 &floatformat_arm_ext_littlebyte_bigword
99 };
100 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_spill_big,
102 &floatformat_ia64_spill_little
103 };
104 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_ia64_quad_big,
106 &floatformat_ia64_quad_little
107 };
108 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_f,
110 &floatformat_vax_f
111 };
112 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_vax_d,
114 &floatformat_vax_d
115 };
116 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
117 &floatformat_ibm_long_double_big,
118 &floatformat_ibm_long_double_little
119 };
120 const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN] = {
121 &floatformat_bfloat16_big,
122 &floatformat_bfloat16_little
123 };
124
125 /* Should opaque types be resolved? */
126
127 static bool opaque_type_resolution = true;
128
129 /* See gdbtypes.h. */
130
131 unsigned int overload_debug = 0;
132
133 /* A flag to enable strict type checking. */
134
135 static bool strict_type_checking = true;
136
137 /* A function to show whether opaque types are resolved. */
138
139 static void
140 show_opaque_type_resolution (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c,
142 const char *value)
143 {
144 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
145 "(if set before loading symbols) is %s.\n"),
146 value);
147 }
148
149 /* A function to show whether C++ overload debugging is enabled. */
150
151 static void
152 show_overload_debug (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
156 value);
157 }
158
159 /* A function to show the status of strict type checking. */
160
161 static void
162 show_strict_type_checking (struct ui_file *file, int from_tty,
163 struct cmd_list_element *c, const char *value)
164 {
165 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
166 }
167
168 \f
169 /* Allocate a new OBJFILE-associated type structure and fill it
170 with some defaults. Space for the type structure is allocated
171 on the objfile's objfile_obstack. */
172
173 struct type *
174 alloc_type (struct objfile *objfile)
175 {
176 struct type *type;
177
178 gdb_assert (objfile != NULL);
179
180 /* Alloc the structure and start off with all fields zeroed. */
181 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
182 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
183 struct main_type);
184 OBJSTAT (objfile, n_types++);
185
186 TYPE_OBJFILE_OWNED (type) = 1;
187 TYPE_OWNER (type).objfile = objfile;
188
189 /* Initialize the fields that might not be zero. */
190
191 type->set_code (TYPE_CODE_UNDEF);
192 TYPE_CHAIN (type) = type; /* Chain back to itself. */
193
194 return type;
195 }
196
197 /* Allocate a new GDBARCH-associated type structure and fill it
198 with some defaults. Space for the type structure is allocated
199 on the obstack associated with GDBARCH. */
200
201 struct type *
202 alloc_type_arch (struct gdbarch *gdbarch)
203 {
204 struct type *type;
205
206 gdb_assert (gdbarch != NULL);
207
208 /* Alloc the structure and start off with all fields zeroed. */
209
210 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
211 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
212
213 TYPE_OBJFILE_OWNED (type) = 0;
214 TYPE_OWNER (type).gdbarch = gdbarch;
215
216 /* Initialize the fields that might not be zero. */
217
218 type->set_code (TYPE_CODE_UNDEF);
219 TYPE_CHAIN (type) = type; /* Chain back to itself. */
220
221 return type;
222 }
223
224 /* If TYPE is objfile-associated, allocate a new type structure
225 associated with the same objfile. If TYPE is gdbarch-associated,
226 allocate a new type structure associated with the same gdbarch. */
227
228 struct type *
229 alloc_type_copy (const struct type *type)
230 {
231 if (TYPE_OBJFILE_OWNED (type))
232 return alloc_type (TYPE_OWNER (type).objfile);
233 else
234 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
235 }
236
237 /* If TYPE is gdbarch-associated, return that architecture.
238 If TYPE is objfile-associated, return that objfile's architecture. */
239
240 struct gdbarch *
241 get_type_arch (const struct type *type)
242 {
243 struct gdbarch *arch;
244
245 if (TYPE_OBJFILE_OWNED (type))
246 arch = TYPE_OWNER (type).objfile->arch ();
247 else
248 arch = TYPE_OWNER (type).gdbarch;
249
250 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
251 a gdbarch, however, this is very rare, and even then, in most cases
252 that get_type_arch is called, we assume that a non-NULL value is
253 returned. */
254 gdb_assert (arch != NULL);
255 return arch;
256 }
257
258 /* See gdbtypes.h. */
259
260 struct type *
261 get_target_type (struct type *type)
262 {
263 if (type != NULL)
264 {
265 type = TYPE_TARGET_TYPE (type);
266 if (type != NULL)
267 type = check_typedef (type);
268 }
269
270 return type;
271 }
272
273 /* See gdbtypes.h. */
274
275 unsigned int
276 type_length_units (struct type *type)
277 {
278 struct gdbarch *arch = get_type_arch (type);
279 int unit_size = gdbarch_addressable_memory_unit_size (arch);
280
281 return TYPE_LENGTH (type) / unit_size;
282 }
283
284 /* Alloc a new type instance structure, fill it with some defaults,
285 and point it at OLDTYPE. Allocate the new type instance from the
286 same place as OLDTYPE. */
287
288 static struct type *
289 alloc_type_instance (struct type *oldtype)
290 {
291 struct type *type;
292
293 /* Allocate the structure. */
294
295 if (! TYPE_OBJFILE_OWNED (oldtype))
296 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
297 else
298 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
299 struct type);
300
301 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
302
303 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
304
305 return type;
306 }
307
308 /* Clear all remnants of the previous type at TYPE, in preparation for
309 replacing it with something else. Preserve owner information. */
310
311 static void
312 smash_type (struct type *type)
313 {
314 int objfile_owned = TYPE_OBJFILE_OWNED (type);
315 union type_owner owner = TYPE_OWNER (type);
316
317 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
318
319 /* Restore owner information. */
320 TYPE_OBJFILE_OWNED (type) = objfile_owned;
321 TYPE_OWNER (type) = owner;
322
323 /* For now, delete the rings. */
324 TYPE_CHAIN (type) = type;
325
326 /* For now, leave the pointer/reference types alone. */
327 }
328
329 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
330 to a pointer to memory where the pointer type should be stored.
331 If *TYPEPTR is zero, update it to point to the pointer type we return.
332 We allocate new memory if needed. */
333
334 struct type *
335 make_pointer_type (struct type *type, struct type **typeptr)
336 {
337 struct type *ntype; /* New type */
338 struct type *chain;
339
340 ntype = TYPE_POINTER_TYPE (type);
341
342 if (ntype)
343 {
344 if (typeptr == 0)
345 return ntype; /* Don't care about alloc,
346 and have new type. */
347 else if (*typeptr == 0)
348 {
349 *typeptr = ntype; /* Tracking alloc, and have new type. */
350 return ntype;
351 }
352 }
353
354 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
355 {
356 ntype = alloc_type_copy (type);
357 if (typeptr)
358 *typeptr = ntype;
359 }
360 else /* We have storage, but need to reset it. */
361 {
362 ntype = *typeptr;
363 chain = TYPE_CHAIN (ntype);
364 smash_type (ntype);
365 TYPE_CHAIN (ntype) = chain;
366 }
367
368 TYPE_TARGET_TYPE (ntype) = type;
369 TYPE_POINTER_TYPE (type) = ntype;
370
371 /* FIXME! Assumes the machine has only one representation for pointers! */
372
373 TYPE_LENGTH (ntype)
374 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
375 ntype->set_code (TYPE_CODE_PTR);
376
377 /* Mark pointers as unsigned. The target converts between pointers
378 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
379 gdbarch_address_to_pointer. */
380 ntype->set_is_unsigned (true);
381
382 /* Update the length of all the other variants of this type. */
383 chain = TYPE_CHAIN (ntype);
384 while (chain != ntype)
385 {
386 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
387 chain = TYPE_CHAIN (chain);
388 }
389
390 return ntype;
391 }
392
393 /* Given a type TYPE, return a type of pointers to that type.
394 May need to construct such a type if this is the first use. */
395
396 struct type *
397 lookup_pointer_type (struct type *type)
398 {
399 return make_pointer_type (type, (struct type **) 0);
400 }
401
402 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
403 points to a pointer to memory where the reference type should be
404 stored. If *TYPEPTR is zero, update it to point to the reference
405 type we return. We allocate new memory if needed. REFCODE denotes
406 the kind of reference type to lookup (lvalue or rvalue reference). */
407
408 struct type *
409 make_reference_type (struct type *type, struct type **typeptr,
410 enum type_code refcode)
411 {
412 struct type *ntype; /* New type */
413 struct type **reftype;
414 struct type *chain;
415
416 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
417
418 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
419 : TYPE_RVALUE_REFERENCE_TYPE (type));
420
421 if (ntype)
422 {
423 if (typeptr == 0)
424 return ntype; /* Don't care about alloc,
425 and have new type. */
426 else if (*typeptr == 0)
427 {
428 *typeptr = ntype; /* Tracking alloc, and have new type. */
429 return ntype;
430 }
431 }
432
433 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
434 {
435 ntype = alloc_type_copy (type);
436 if (typeptr)
437 *typeptr = ntype;
438 }
439 else /* We have storage, but need to reset it. */
440 {
441 ntype = *typeptr;
442 chain = TYPE_CHAIN (ntype);
443 smash_type (ntype);
444 TYPE_CHAIN (ntype) = chain;
445 }
446
447 TYPE_TARGET_TYPE (ntype) = type;
448 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
449 : &TYPE_RVALUE_REFERENCE_TYPE (type));
450
451 *reftype = ntype;
452
453 /* FIXME! Assume the machine has only one representation for
454 references, and that it matches the (only) representation for
455 pointers! */
456
457 TYPE_LENGTH (ntype) =
458 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
459 ntype->set_code (refcode);
460
461 *reftype = ntype;
462
463 /* Update the length of all the other variants of this type. */
464 chain = TYPE_CHAIN (ntype);
465 while (chain != ntype)
466 {
467 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
468 chain = TYPE_CHAIN (chain);
469 }
470
471 return ntype;
472 }
473
474 /* Same as above, but caller doesn't care about memory allocation
475 details. */
476
477 struct type *
478 lookup_reference_type (struct type *type, enum type_code refcode)
479 {
480 return make_reference_type (type, (struct type **) 0, refcode);
481 }
482
483 /* Lookup the lvalue reference type for the type TYPE. */
484
485 struct type *
486 lookup_lvalue_reference_type (struct type *type)
487 {
488 return lookup_reference_type (type, TYPE_CODE_REF);
489 }
490
491 /* Lookup the rvalue reference type for the type TYPE. */
492
493 struct type *
494 lookup_rvalue_reference_type (struct type *type)
495 {
496 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
497 }
498
499 /* Lookup a function type that returns type TYPE. TYPEPTR, if
500 nonzero, points to a pointer to memory where the function type
501 should be stored. If *TYPEPTR is zero, update it to point to the
502 function type we return. We allocate new memory if needed. */
503
504 struct type *
505 make_function_type (struct type *type, struct type **typeptr)
506 {
507 struct type *ntype; /* New type */
508
509 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
510 {
511 ntype = alloc_type_copy (type);
512 if (typeptr)
513 *typeptr = ntype;
514 }
515 else /* We have storage, but need to reset it. */
516 {
517 ntype = *typeptr;
518 smash_type (ntype);
519 }
520
521 TYPE_TARGET_TYPE (ntype) = type;
522
523 TYPE_LENGTH (ntype) = 1;
524 ntype->set_code (TYPE_CODE_FUNC);
525
526 INIT_FUNC_SPECIFIC (ntype);
527
528 return ntype;
529 }
530
531 /* Given a type TYPE, return a type of functions that return that type.
532 May need to construct such a type if this is the first use. */
533
534 struct type *
535 lookup_function_type (struct type *type)
536 {
537 return make_function_type (type, (struct type **) 0);
538 }
539
540 /* Given a type TYPE and argument types, return the appropriate
541 function type. If the final type in PARAM_TYPES is NULL, make a
542 varargs function. */
543
544 struct type *
545 lookup_function_type_with_arguments (struct type *type,
546 int nparams,
547 struct type **param_types)
548 {
549 struct type *fn = make_function_type (type, (struct type **) 0);
550 int i;
551
552 if (nparams > 0)
553 {
554 if (param_types[nparams - 1] == NULL)
555 {
556 --nparams;
557 fn->set_has_varargs (true);
558 }
559 else if (check_typedef (param_types[nparams - 1])->code ()
560 == TYPE_CODE_VOID)
561 {
562 --nparams;
563 /* Caller should have ensured this. */
564 gdb_assert (nparams == 0);
565 fn->set_is_prototyped (true);
566 }
567 else
568 fn->set_is_prototyped (true);
569 }
570
571 fn->set_num_fields (nparams);
572 fn->set_fields
573 ((struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field)));
574 for (i = 0; i < nparams; ++i)
575 fn->field (i).set_type (param_types[i]);
576
577 return fn;
578 }
579
580 /* Identify address space identifier by name -- return a
581 type_instance_flags. */
582
583 type_instance_flags
584 address_space_name_to_type_instance_flags (struct gdbarch *gdbarch,
585 const char *space_identifier)
586 {
587 type_instance_flags type_flags;
588
589 /* Check for known address space delimiters. */
590 if (!strcmp (space_identifier, "code"))
591 return TYPE_INSTANCE_FLAG_CODE_SPACE;
592 else if (!strcmp (space_identifier, "data"))
593 return TYPE_INSTANCE_FLAG_DATA_SPACE;
594 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
595 && gdbarch_address_class_name_to_type_flags (gdbarch,
596 space_identifier,
597 &type_flags))
598 return type_flags;
599 else
600 error (_("Unknown address space specifier: \"%s\""), space_identifier);
601 }
602
603 /* Identify address space identifier by type_instance_flags and return
604 the string version of the adress space name. */
605
606 const char *
607 address_space_type_instance_flags_to_name (struct gdbarch *gdbarch,
608 type_instance_flags space_flag)
609 {
610 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
611 return "code";
612 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
613 return "data";
614 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
615 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
616 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
617 else
618 return NULL;
619 }
620
621 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
622
623 If STORAGE is non-NULL, create the new type instance there.
624 STORAGE must be in the same obstack as TYPE. */
625
626 static struct type *
627 make_qualified_type (struct type *type, type_instance_flags new_flags,
628 struct type *storage)
629 {
630 struct type *ntype;
631
632 ntype = type;
633 do
634 {
635 if (ntype->instance_flags () == new_flags)
636 return ntype;
637 ntype = TYPE_CHAIN (ntype);
638 }
639 while (ntype != type);
640
641 /* Create a new type instance. */
642 if (storage == NULL)
643 ntype = alloc_type_instance (type);
644 else
645 {
646 /* If STORAGE was provided, it had better be in the same objfile
647 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
648 if one objfile is freed and the other kept, we'd have
649 dangling pointers. */
650 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
651
652 ntype = storage;
653 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
654 TYPE_CHAIN (ntype) = ntype;
655 }
656
657 /* Pointers or references to the original type are not relevant to
658 the new type. */
659 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
660 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
661
662 /* Chain the new qualified type to the old type. */
663 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
664 TYPE_CHAIN (type) = ntype;
665
666 /* Now set the instance flags and return the new type. */
667 ntype->set_instance_flags (new_flags);
668
669 /* Set length of new type to that of the original type. */
670 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
671
672 return ntype;
673 }
674
675 /* Make an address-space-delimited variant of a type -- a type that
676 is identical to the one supplied except that it has an address
677 space attribute attached to it (such as "code" or "data").
678
679 The space attributes "code" and "data" are for Harvard
680 architectures. The address space attributes are for architectures
681 which have alternately sized pointers or pointers with alternate
682 representations. */
683
684 struct type *
685 make_type_with_address_space (struct type *type,
686 type_instance_flags space_flag)
687 {
688 type_instance_flags new_flags = ((type->instance_flags ()
689 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
690 | TYPE_INSTANCE_FLAG_DATA_SPACE
691 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
692 | space_flag);
693
694 return make_qualified_type (type, new_flags, NULL);
695 }
696
697 /* Make a "c-v" variant of a type -- a type that is identical to the
698 one supplied except that it may have const or volatile attributes
699 CNST is a flag for setting the const attribute
700 VOLTL is a flag for setting the volatile attribute
701 TYPE is the base type whose variant we are creating.
702
703 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
704 storage to hold the new qualified type; *TYPEPTR and TYPE must be
705 in the same objfile. Otherwise, allocate fresh memory for the new
706 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
707 new type we construct. */
708
709 struct type *
710 make_cv_type (int cnst, int voltl,
711 struct type *type,
712 struct type **typeptr)
713 {
714 struct type *ntype; /* New type */
715
716 type_instance_flags new_flags = (type->instance_flags ()
717 & ~(TYPE_INSTANCE_FLAG_CONST
718 | TYPE_INSTANCE_FLAG_VOLATILE));
719
720 if (cnst)
721 new_flags |= TYPE_INSTANCE_FLAG_CONST;
722
723 if (voltl)
724 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
725
726 if (typeptr && *typeptr != NULL)
727 {
728 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
729 a C-V variant chain that threads across objfiles: if one
730 objfile gets freed, then the other has a broken C-V chain.
731
732 This code used to try to copy over the main type from TYPE to
733 *TYPEPTR if they were in different objfiles, but that's
734 wrong, too: TYPE may have a field list or member function
735 lists, which refer to types of their own, etc. etc. The
736 whole shebang would need to be copied over recursively; you
737 can't have inter-objfile pointers. The only thing to do is
738 to leave stub types as stub types, and look them up afresh by
739 name each time you encounter them. */
740 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
741 }
742
743 ntype = make_qualified_type (type, new_flags,
744 typeptr ? *typeptr : NULL);
745
746 if (typeptr != NULL)
747 *typeptr = ntype;
748
749 return ntype;
750 }
751
752 /* Make a 'restrict'-qualified version of TYPE. */
753
754 struct type *
755 make_restrict_type (struct type *type)
756 {
757 return make_qualified_type (type,
758 (type->instance_flags ()
759 | TYPE_INSTANCE_FLAG_RESTRICT),
760 NULL);
761 }
762
763 /* Make a type without const, volatile, or restrict. */
764
765 struct type *
766 make_unqualified_type (struct type *type)
767 {
768 return make_qualified_type (type,
769 (type->instance_flags ()
770 & ~(TYPE_INSTANCE_FLAG_CONST
771 | TYPE_INSTANCE_FLAG_VOLATILE
772 | TYPE_INSTANCE_FLAG_RESTRICT)),
773 NULL);
774 }
775
776 /* Make a '_Atomic'-qualified version of TYPE. */
777
778 struct type *
779 make_atomic_type (struct type *type)
780 {
781 return make_qualified_type (type,
782 (type->instance_flags ()
783 | TYPE_INSTANCE_FLAG_ATOMIC),
784 NULL);
785 }
786
787 /* Replace the contents of ntype with the type *type. This changes the
788 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
789 the changes are propogated to all types in the TYPE_CHAIN.
790
791 In order to build recursive types, it's inevitable that we'll need
792 to update types in place --- but this sort of indiscriminate
793 smashing is ugly, and needs to be replaced with something more
794 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
795 clear if more steps are needed. */
796
797 void
798 replace_type (struct type *ntype, struct type *type)
799 {
800 struct type *chain;
801
802 /* These two types had better be in the same objfile. Otherwise,
803 the assignment of one type's main type structure to the other
804 will produce a type with references to objects (names; field
805 lists; etc.) allocated on an objfile other than its own. */
806 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
807
808 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
809
810 /* The type length is not a part of the main type. Update it for
811 each type on the variant chain. */
812 chain = ntype;
813 do
814 {
815 /* Assert that this element of the chain has no address-class bits
816 set in its flags. Such type variants might have type lengths
817 which are supposed to be different from the non-address-class
818 variants. This assertion shouldn't ever be triggered because
819 symbol readers which do construct address-class variants don't
820 call replace_type(). */
821 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
822
823 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
824 chain = TYPE_CHAIN (chain);
825 }
826 while (ntype != chain);
827
828 /* Assert that the two types have equivalent instance qualifiers.
829 This should be true for at least all of our debug readers. */
830 gdb_assert (ntype->instance_flags () == type->instance_flags ());
831 }
832
833 /* Implement direct support for MEMBER_TYPE in GNU C++.
834 May need to construct such a type if this is the first use.
835 The TYPE is the type of the member. The DOMAIN is the type
836 of the aggregate that the member belongs to. */
837
838 struct type *
839 lookup_memberptr_type (struct type *type, struct type *domain)
840 {
841 struct type *mtype;
842
843 mtype = alloc_type_copy (type);
844 smash_to_memberptr_type (mtype, domain, type);
845 return mtype;
846 }
847
848 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
849
850 struct type *
851 lookup_methodptr_type (struct type *to_type)
852 {
853 struct type *mtype;
854
855 mtype = alloc_type_copy (to_type);
856 smash_to_methodptr_type (mtype, to_type);
857 return mtype;
858 }
859
860 /* Allocate a stub method whose return type is TYPE. This apparently
861 happens for speed of symbol reading, since parsing out the
862 arguments to the method is cpu-intensive, the way we are doing it.
863 So, we will fill in arguments later. This always returns a fresh
864 type. */
865
866 struct type *
867 allocate_stub_method (struct type *type)
868 {
869 struct type *mtype;
870
871 mtype = alloc_type_copy (type);
872 mtype->set_code (TYPE_CODE_METHOD);
873 TYPE_LENGTH (mtype) = 1;
874 mtype->set_is_stub (true);
875 TYPE_TARGET_TYPE (mtype) = type;
876 /* TYPE_SELF_TYPE (mtype) = unknown yet */
877 return mtype;
878 }
879
880 /* See gdbtypes.h. */
881
882 bool
883 operator== (const dynamic_prop &l, const dynamic_prop &r)
884 {
885 if (l.kind () != r.kind ())
886 return false;
887
888 switch (l.kind ())
889 {
890 case PROP_UNDEFINED:
891 return true;
892 case PROP_CONST:
893 return l.const_val () == r.const_val ();
894 case PROP_ADDR_OFFSET:
895 case PROP_LOCEXPR:
896 case PROP_LOCLIST:
897 return l.baton () == r.baton ();
898 case PROP_VARIANT_PARTS:
899 return l.variant_parts () == r.variant_parts ();
900 case PROP_TYPE:
901 return l.original_type () == r.original_type ();
902 }
903
904 gdb_assert_not_reached ("unhandled dynamic_prop kind");
905 }
906
907 /* See gdbtypes.h. */
908
909 bool
910 operator== (const range_bounds &l, const range_bounds &r)
911 {
912 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
913
914 return (FIELD_EQ (low)
915 && FIELD_EQ (high)
916 && FIELD_EQ (flag_upper_bound_is_count)
917 && FIELD_EQ (flag_bound_evaluated)
918 && FIELD_EQ (bias));
919
920 #undef FIELD_EQ
921 }
922
923 /* Create a range type with a dynamic range from LOW_BOUND to
924 HIGH_BOUND, inclusive. See create_range_type for further details. */
925
926 struct type *
927 create_range_type (struct type *result_type, struct type *index_type,
928 const struct dynamic_prop *low_bound,
929 const struct dynamic_prop *high_bound,
930 LONGEST bias)
931 {
932 /* The INDEX_TYPE should be a type capable of holding the upper and lower
933 bounds, as such a zero sized, or void type makes no sense. */
934 gdb_assert (index_type->code () != TYPE_CODE_VOID);
935 gdb_assert (TYPE_LENGTH (index_type) > 0);
936
937 if (result_type == NULL)
938 result_type = alloc_type_copy (index_type);
939 result_type->set_code (TYPE_CODE_RANGE);
940 TYPE_TARGET_TYPE (result_type) = index_type;
941 if (index_type->is_stub ())
942 result_type->set_target_is_stub (true);
943 else
944 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
945
946 range_bounds *bounds
947 = (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds));
948 bounds->low = *low_bound;
949 bounds->high = *high_bound;
950 bounds->bias = bias;
951 bounds->stride.set_const_val (0);
952
953 result_type->set_bounds (bounds);
954
955 if (index_type->code () == TYPE_CODE_FIXED_POINT)
956 result_type->set_is_unsigned (index_type->is_unsigned ());
957 /* Note that the signed-ness of a range type can't simply be copied
958 from the underlying type. Consider a case where the underlying
959 type is 'int', but the range type can hold 0..65535, and where
960 the range is further specified to fit into 16 bits. In this
961 case, if we copy the underlying type's sign, then reading some
962 range values will cause an unwanted sign extension. So, we have
963 some heuristics here instead. */
964 else if (low_bound->kind () == PROP_CONST && low_bound->const_val () >= 0)
965 result_type->set_is_unsigned (true);
966 /* Ada allows the declaration of range types whose upper bound is
967 less than the lower bound, so checking the lower bound is not
968 enough. Make sure we do not mark a range type whose upper bound
969 is negative as unsigned. */
970 if (high_bound->kind () == PROP_CONST && high_bound->const_val () < 0)
971 result_type->set_is_unsigned (false);
972
973 result_type->set_endianity_is_not_default
974 (index_type->endianity_is_not_default ());
975
976 return result_type;
977 }
978
979 /* See gdbtypes.h. */
980
981 struct type *
982 create_range_type_with_stride (struct type *result_type,
983 struct type *index_type,
984 const struct dynamic_prop *low_bound,
985 const struct dynamic_prop *high_bound,
986 LONGEST bias,
987 const struct dynamic_prop *stride,
988 bool byte_stride_p)
989 {
990 result_type = create_range_type (result_type, index_type, low_bound,
991 high_bound, bias);
992
993 gdb_assert (stride != nullptr);
994 result_type->bounds ()->stride = *stride;
995 result_type->bounds ()->flag_is_byte_stride = byte_stride_p;
996
997 return result_type;
998 }
999
1000
1001
1002 /* Create a range type using either a blank type supplied in
1003 RESULT_TYPE, or creating a new type, inheriting the objfile from
1004 INDEX_TYPE.
1005
1006 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
1007 to HIGH_BOUND, inclusive.
1008
1009 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1010 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
1011
1012 struct type *
1013 create_static_range_type (struct type *result_type, struct type *index_type,
1014 LONGEST low_bound, LONGEST high_bound)
1015 {
1016 struct dynamic_prop low, high;
1017
1018 low.set_const_val (low_bound);
1019 high.set_const_val (high_bound);
1020
1021 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1022
1023 return result_type;
1024 }
1025
1026 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1027 are static, otherwise returns 0. */
1028
1029 static bool
1030 has_static_range (const struct range_bounds *bounds)
1031 {
1032 /* If the range doesn't have a defined stride then its stride field will
1033 be initialized to the constant 0. */
1034 return (bounds->low.kind () == PROP_CONST
1035 && bounds->high.kind () == PROP_CONST
1036 && bounds->stride.kind () == PROP_CONST);
1037 }
1038
1039 /* See gdbtypes.h. */
1040
1041 gdb::optional<LONGEST>
1042 get_discrete_low_bound (struct type *type)
1043 {
1044 type = check_typedef (type);
1045 switch (type->code ())
1046 {
1047 case TYPE_CODE_RANGE:
1048 {
1049 /* This function only works for ranges with a constant low bound. */
1050 if (type->bounds ()->low.kind () != PROP_CONST)
1051 return {};
1052
1053 LONGEST low = type->bounds ()->low.const_val ();
1054
1055 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
1056 {
1057 gdb::optional<LONGEST> low_pos
1058 = discrete_position (TYPE_TARGET_TYPE (type), low);
1059
1060 if (low_pos.has_value ())
1061 low = *low_pos;
1062 }
1063
1064 return low;
1065 }
1066
1067 case TYPE_CODE_ENUM:
1068 {
1069 if (type->num_fields () > 0)
1070 {
1071 /* The enums may not be sorted by value, so search all
1072 entries. */
1073 LONGEST low = TYPE_FIELD_ENUMVAL (type, 0);
1074
1075 for (int i = 0; i < type->num_fields (); i++)
1076 {
1077 if (TYPE_FIELD_ENUMVAL (type, i) < low)
1078 low = TYPE_FIELD_ENUMVAL (type, i);
1079 }
1080
1081 /* Set unsigned indicator if warranted. */
1082 if (low >= 0)
1083 type->set_is_unsigned (true);
1084
1085 return low;
1086 }
1087 else
1088 return 0;
1089 }
1090
1091 case TYPE_CODE_BOOL:
1092 return 0;
1093
1094 case TYPE_CODE_INT:
1095 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1096 return false;
1097
1098 if (!type->is_unsigned ())
1099 return -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1100
1101 /* fall through */
1102 case TYPE_CODE_CHAR:
1103 return 0;
1104
1105 default:
1106 return false;
1107 }
1108 }
1109
1110 /* See gdbtypes.h. */
1111
1112 gdb::optional<LONGEST>
1113 get_discrete_high_bound (struct type *type)
1114 {
1115 type = check_typedef (type);
1116 switch (type->code ())
1117 {
1118 case TYPE_CODE_RANGE:
1119 {
1120 /* This function only works for ranges with a constant high bound. */
1121 if (type->bounds ()->high.kind () != PROP_CONST)
1122 return {};
1123
1124 LONGEST high = type->bounds ()->high.const_val ();
1125
1126 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
1127 {
1128 gdb::optional<LONGEST> high_pos
1129 = discrete_position (TYPE_TARGET_TYPE (type), high);
1130
1131 if (high_pos.has_value ())
1132 high = *high_pos;
1133 }
1134
1135 return high;
1136 }
1137
1138 case TYPE_CODE_ENUM:
1139 {
1140 if (type->num_fields () > 0)
1141 {
1142 /* The enums may not be sorted by value, so search all
1143 entries. */
1144 LONGEST high = TYPE_FIELD_ENUMVAL (type, 0);
1145
1146 for (int i = 0; i < type->num_fields (); i++)
1147 {
1148 if (TYPE_FIELD_ENUMVAL (type, i) > high)
1149 high = TYPE_FIELD_ENUMVAL (type, i);
1150 }
1151
1152 return high;
1153 }
1154 else
1155 return -1;
1156 }
1157
1158 case TYPE_CODE_BOOL:
1159 return 1;
1160
1161 case TYPE_CODE_INT:
1162 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1163 return false;
1164
1165 if (!type->is_unsigned ())
1166 {
1167 LONGEST low = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1168 return -low - 1;
1169 }
1170
1171 /* fall through */
1172 case TYPE_CODE_CHAR:
1173 {
1174 /* This round-about calculation is to avoid shifting by
1175 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1176 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1177 LONGEST high = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1178 return (high - 1) | high;
1179 }
1180
1181 default:
1182 return false;
1183 }
1184 }
1185
1186 /* See gdbtypes.h. */
1187
1188 bool
1189 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1190 {
1191 gdb::optional<LONGEST> low = get_discrete_low_bound (type);
1192 gdb::optional<LONGEST> high = get_discrete_high_bound (type);
1193
1194 if (!low.has_value () || !high.has_value ())
1195 return false;
1196
1197 *lowp = *low;
1198 *highp = *high;
1199
1200 return true;
1201 }
1202
1203 /* See gdbtypes.h */
1204
1205 bool
1206 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1207 {
1208 struct type *index = type->index_type ();
1209 LONGEST low = 0;
1210 LONGEST high = 0;
1211
1212 if (index == NULL)
1213 return false;
1214
1215 if (!get_discrete_bounds (index, &low, &high))
1216 return false;
1217
1218 if (low_bound)
1219 *low_bound = low;
1220
1221 if (high_bound)
1222 *high_bound = high;
1223
1224 return true;
1225 }
1226
1227 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1228 representation of a value of this type, save the corresponding
1229 position number in POS.
1230
1231 Its differs from VAL only in the case of enumeration types. In
1232 this case, the position number of the value of the first listed
1233 enumeration literal is zero; the position number of the value of
1234 each subsequent enumeration literal is one more than that of its
1235 predecessor in the list.
1236
1237 Return 1 if the operation was successful. Return zero otherwise,
1238 in which case the value of POS is unmodified.
1239 */
1240
1241 gdb::optional<LONGEST>
1242 discrete_position (struct type *type, LONGEST val)
1243 {
1244 if (type->code () == TYPE_CODE_RANGE)
1245 type = TYPE_TARGET_TYPE (type);
1246
1247 if (type->code () == TYPE_CODE_ENUM)
1248 {
1249 int i;
1250
1251 for (i = 0; i < type->num_fields (); i += 1)
1252 {
1253 if (val == TYPE_FIELD_ENUMVAL (type, i))
1254 return i;
1255 }
1256
1257 /* Invalid enumeration value. */
1258 return {};
1259 }
1260 else
1261 return val;
1262 }
1263
1264 /* If the array TYPE has static bounds calculate and update its
1265 size, then return true. Otherwise return false and leave TYPE
1266 unchanged. */
1267
1268 static bool
1269 update_static_array_size (struct type *type)
1270 {
1271 gdb_assert (type->code () == TYPE_CODE_ARRAY);
1272
1273 struct type *range_type = type->index_type ();
1274
1275 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
1276 && has_static_range (range_type->bounds ())
1277 && (!type_not_associated (type)
1278 && !type_not_allocated (type)))
1279 {
1280 LONGEST low_bound, high_bound;
1281 int stride;
1282 struct type *element_type;
1283
1284 /* If the array itself doesn't provide a stride value then take
1285 whatever stride the range provides. Don't update BIT_STRIDE as
1286 we don't want to place the stride value from the range into this
1287 arrays bit size field. */
1288 stride = TYPE_FIELD_BITSIZE (type, 0);
1289 if (stride == 0)
1290 stride = range_type->bit_stride ();
1291
1292 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
1293 low_bound = high_bound = 0;
1294
1295 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1296 /* Be careful when setting the array length. Ada arrays can be
1297 empty arrays with the high_bound being smaller than the low_bound.
1298 In such cases, the array length should be zero. */
1299 if (high_bound < low_bound)
1300 TYPE_LENGTH (type) = 0;
1301 else if (stride != 0)
1302 {
1303 /* Ensure that the type length is always positive, even in the
1304 case where (for example in Fortran) we have a negative
1305 stride. It is possible to have a single element array with a
1306 negative stride in Fortran (this doesn't mean anything
1307 special, it's still just a single element array) so do
1308 consider that case when touching this code. */
1309 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1310 TYPE_LENGTH (type)
1311 = ((std::abs (stride) * element_count) + 7) / 8;
1312 }
1313 else
1314 TYPE_LENGTH (type) =
1315 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1316
1317 /* If this array's element is itself an array with a bit stride,
1318 then we want to update this array's bit stride to reflect the
1319 size of the sub-array. Otherwise, we'll end up using the
1320 wrong size when trying to find elements of the outer
1321 array. */
1322 if (element_type->code () == TYPE_CODE_ARRAY
1323 && TYPE_LENGTH (element_type) != 0
1324 && TYPE_FIELD_BITSIZE (element_type, 0) != 0
1325 && get_array_bounds (element_type, &low_bound, &high_bound)
1326 && high_bound >= low_bound)
1327 TYPE_FIELD_BITSIZE (type, 0)
1328 = ((high_bound - low_bound + 1)
1329 * TYPE_FIELD_BITSIZE (element_type, 0));
1330
1331 return true;
1332 }
1333
1334 return false;
1335 }
1336
1337 /* Create an array type using either a blank type supplied in
1338 RESULT_TYPE, or creating a new type, inheriting the objfile from
1339 RANGE_TYPE.
1340
1341 Elements will be of type ELEMENT_TYPE, the indices will be of type
1342 RANGE_TYPE.
1343
1344 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1345 This byte stride property is added to the resulting array type
1346 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1347 argument can only be used to create types that are objfile-owned
1348 (see add_dyn_prop), meaning that either this function must be called
1349 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1350
1351 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1352 If BIT_STRIDE is not zero, build a packed array type whose element
1353 size is BIT_STRIDE. Otherwise, ignore this parameter.
1354
1355 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1356 sure it is TYPE_CODE_UNDEF before we bash it into an array
1357 type? */
1358
1359 struct type *
1360 create_array_type_with_stride (struct type *result_type,
1361 struct type *element_type,
1362 struct type *range_type,
1363 struct dynamic_prop *byte_stride_prop,
1364 unsigned int bit_stride)
1365 {
1366 if (byte_stride_prop != NULL
1367 && byte_stride_prop->kind () == PROP_CONST)
1368 {
1369 /* The byte stride is actually not dynamic. Pretend we were
1370 called with bit_stride set instead of byte_stride_prop.
1371 This will give us the same result type, while avoiding
1372 the need to handle this as a special case. */
1373 bit_stride = byte_stride_prop->const_val () * 8;
1374 byte_stride_prop = NULL;
1375 }
1376
1377 if (result_type == NULL)
1378 result_type = alloc_type_copy (range_type);
1379
1380 result_type->set_code (TYPE_CODE_ARRAY);
1381 TYPE_TARGET_TYPE (result_type) = element_type;
1382
1383 result_type->set_num_fields (1);
1384 result_type->set_fields
1385 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1386 result_type->set_index_type (range_type);
1387 if (byte_stride_prop != NULL)
1388 result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
1389 else if (bit_stride > 0)
1390 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1391
1392 if (!update_static_array_size (result_type))
1393 {
1394 /* This type is dynamic and its length needs to be computed
1395 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1396 undefined by setting it to zero. Although we are not expected
1397 to trust TYPE_LENGTH in this case, setting the size to zero
1398 allows us to avoid allocating objects of random sizes in case
1399 we accidently do. */
1400 TYPE_LENGTH (result_type) = 0;
1401 }
1402
1403 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1404 if (TYPE_LENGTH (result_type) == 0)
1405 result_type->set_target_is_stub (true);
1406
1407 return result_type;
1408 }
1409
1410 /* Same as create_array_type_with_stride but with no bit_stride
1411 (BIT_STRIDE = 0), thus building an unpacked array. */
1412
1413 struct type *
1414 create_array_type (struct type *result_type,
1415 struct type *element_type,
1416 struct type *range_type)
1417 {
1418 return create_array_type_with_stride (result_type, element_type,
1419 range_type, NULL, 0);
1420 }
1421
1422 struct type *
1423 lookup_array_range_type (struct type *element_type,
1424 LONGEST low_bound, LONGEST high_bound)
1425 {
1426 struct type *index_type;
1427 struct type *range_type;
1428
1429 if (TYPE_OBJFILE_OWNED (element_type))
1430 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1431 else
1432 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1433 range_type = create_static_range_type (NULL, index_type,
1434 low_bound, high_bound);
1435
1436 return create_array_type (NULL, element_type, range_type);
1437 }
1438
1439 /* Create a string type using either a blank type supplied in
1440 RESULT_TYPE, or creating a new type. String types are similar
1441 enough to array of char types that we can use create_array_type to
1442 build the basic type and then bash it into a string type.
1443
1444 For fixed length strings, the range type contains 0 as the lower
1445 bound and the length of the string minus one as the upper bound.
1446
1447 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1448 sure it is TYPE_CODE_UNDEF before we bash it into a string
1449 type? */
1450
1451 struct type *
1452 create_string_type (struct type *result_type,
1453 struct type *string_char_type,
1454 struct type *range_type)
1455 {
1456 result_type = create_array_type (result_type,
1457 string_char_type,
1458 range_type);
1459 result_type->set_code (TYPE_CODE_STRING);
1460 return result_type;
1461 }
1462
1463 struct type *
1464 lookup_string_range_type (struct type *string_char_type,
1465 LONGEST low_bound, LONGEST high_bound)
1466 {
1467 struct type *result_type;
1468
1469 result_type = lookup_array_range_type (string_char_type,
1470 low_bound, high_bound);
1471 result_type->set_code (TYPE_CODE_STRING);
1472 return result_type;
1473 }
1474
1475 struct type *
1476 create_set_type (struct type *result_type, struct type *domain_type)
1477 {
1478 if (result_type == NULL)
1479 result_type = alloc_type_copy (domain_type);
1480
1481 result_type->set_code (TYPE_CODE_SET);
1482 result_type->set_num_fields (1);
1483 result_type->set_fields
1484 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1485
1486 if (!domain_type->is_stub ())
1487 {
1488 LONGEST low_bound, high_bound, bit_length;
1489
1490 if (!get_discrete_bounds (domain_type, &low_bound, &high_bound))
1491 low_bound = high_bound = 0;
1492
1493 bit_length = high_bound - low_bound + 1;
1494 TYPE_LENGTH (result_type)
1495 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1496 if (low_bound >= 0)
1497 result_type->set_is_unsigned (true);
1498 }
1499 result_type->field (0).set_type (domain_type);
1500
1501 return result_type;
1502 }
1503
1504 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1505 and any array types nested inside it. */
1506
1507 void
1508 make_vector_type (struct type *array_type)
1509 {
1510 struct type *inner_array, *elt_type;
1511
1512 /* Find the innermost array type, in case the array is
1513 multi-dimensional. */
1514 inner_array = array_type;
1515 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
1516 inner_array = TYPE_TARGET_TYPE (inner_array);
1517
1518 elt_type = TYPE_TARGET_TYPE (inner_array);
1519 if (elt_type->code () == TYPE_CODE_INT)
1520 {
1521 type_instance_flags flags
1522 = elt_type->instance_flags () | TYPE_INSTANCE_FLAG_NOTTEXT;
1523 elt_type = make_qualified_type (elt_type, flags, NULL);
1524 TYPE_TARGET_TYPE (inner_array) = elt_type;
1525 }
1526
1527 array_type->set_is_vector (true);
1528 }
1529
1530 struct type *
1531 init_vector_type (struct type *elt_type, int n)
1532 {
1533 struct type *array_type;
1534
1535 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1536 make_vector_type (array_type);
1537 return array_type;
1538 }
1539
1540 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1541 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1542 confusing. "self" is a common enough replacement for "this".
1543 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1544 TYPE_CODE_METHOD. */
1545
1546 struct type *
1547 internal_type_self_type (struct type *type)
1548 {
1549 switch (type->code ())
1550 {
1551 case TYPE_CODE_METHODPTR:
1552 case TYPE_CODE_MEMBERPTR:
1553 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1554 return NULL;
1555 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1556 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1557 case TYPE_CODE_METHOD:
1558 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1559 return NULL;
1560 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1561 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1562 default:
1563 gdb_assert_not_reached ("bad type");
1564 }
1565 }
1566
1567 /* Set the type of the class that TYPE belongs to.
1568 In c++ this is the class of "this".
1569 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1570 TYPE_CODE_METHOD. */
1571
1572 void
1573 set_type_self_type (struct type *type, struct type *self_type)
1574 {
1575 switch (type->code ())
1576 {
1577 case TYPE_CODE_METHODPTR:
1578 case TYPE_CODE_MEMBERPTR:
1579 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1580 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1581 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1582 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1583 break;
1584 case TYPE_CODE_METHOD:
1585 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1586 INIT_FUNC_SPECIFIC (type);
1587 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1588 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1589 break;
1590 default:
1591 gdb_assert_not_reached ("bad type");
1592 }
1593 }
1594
1595 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1596 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1597 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1598 TYPE doesn't include the offset (that's the value of the MEMBER
1599 itself), but does include the structure type into which it points
1600 (for some reason).
1601
1602 When "smashing" the type, we preserve the objfile that the old type
1603 pointed to, since we aren't changing where the type is actually
1604 allocated. */
1605
1606 void
1607 smash_to_memberptr_type (struct type *type, struct type *self_type,
1608 struct type *to_type)
1609 {
1610 smash_type (type);
1611 type->set_code (TYPE_CODE_MEMBERPTR);
1612 TYPE_TARGET_TYPE (type) = to_type;
1613 set_type_self_type (type, self_type);
1614 /* Assume that a data member pointer is the same size as a normal
1615 pointer. */
1616 TYPE_LENGTH (type)
1617 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1618 }
1619
1620 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1621
1622 When "smashing" the type, we preserve the objfile that the old type
1623 pointed to, since we aren't changing where the type is actually
1624 allocated. */
1625
1626 void
1627 smash_to_methodptr_type (struct type *type, struct type *to_type)
1628 {
1629 smash_type (type);
1630 type->set_code (TYPE_CODE_METHODPTR);
1631 TYPE_TARGET_TYPE (type) = to_type;
1632 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1633 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1634 }
1635
1636 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1637 METHOD just means `function that gets an extra "this" argument'.
1638
1639 When "smashing" the type, we preserve the objfile that the old type
1640 pointed to, since we aren't changing where the type is actually
1641 allocated. */
1642
1643 void
1644 smash_to_method_type (struct type *type, struct type *self_type,
1645 struct type *to_type, struct field *args,
1646 int nargs, int varargs)
1647 {
1648 smash_type (type);
1649 type->set_code (TYPE_CODE_METHOD);
1650 TYPE_TARGET_TYPE (type) = to_type;
1651 set_type_self_type (type, self_type);
1652 type->set_fields (args);
1653 type->set_num_fields (nargs);
1654 if (varargs)
1655 type->set_has_varargs (true);
1656 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1657 }
1658
1659 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1660 Since GCC PR debug/47510 DWARF provides associated information to detect the
1661 anonymous class linkage name from its typedef.
1662
1663 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1664 apply it itself. */
1665
1666 const char *
1667 type_name_or_error (struct type *type)
1668 {
1669 struct type *saved_type = type;
1670 const char *name;
1671 struct objfile *objfile;
1672
1673 type = check_typedef (type);
1674
1675 name = type->name ();
1676 if (name != NULL)
1677 return name;
1678
1679 name = saved_type->name ();
1680 objfile = TYPE_OBJFILE (saved_type);
1681 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1682 name ? name : "<anonymous>",
1683 objfile ? objfile_name (objfile) : "<arch>");
1684 }
1685
1686 /* Lookup a typedef or primitive type named NAME, visible in lexical
1687 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1688 suitably defined. */
1689
1690 struct type *
1691 lookup_typename (const struct language_defn *language,
1692 const char *name,
1693 const struct block *block, int noerr)
1694 {
1695 struct symbol *sym;
1696
1697 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1698 language->la_language, NULL).symbol;
1699 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1700 return SYMBOL_TYPE (sym);
1701
1702 if (noerr)
1703 return NULL;
1704 error (_("No type named %s."), name);
1705 }
1706
1707 struct type *
1708 lookup_unsigned_typename (const struct language_defn *language,
1709 const char *name)
1710 {
1711 char *uns = (char *) alloca (strlen (name) + 10);
1712
1713 strcpy (uns, "unsigned ");
1714 strcpy (uns + 9, name);
1715 return lookup_typename (language, uns, NULL, 0);
1716 }
1717
1718 struct type *
1719 lookup_signed_typename (const struct language_defn *language, const char *name)
1720 {
1721 struct type *t;
1722 char *uns = (char *) alloca (strlen (name) + 8);
1723
1724 strcpy (uns, "signed ");
1725 strcpy (uns + 7, name);
1726 t = lookup_typename (language, uns, NULL, 1);
1727 /* If we don't find "signed FOO" just try again with plain "FOO". */
1728 if (t != NULL)
1729 return t;
1730 return lookup_typename (language, name, NULL, 0);
1731 }
1732
1733 /* Lookup a structure type named "struct NAME",
1734 visible in lexical block BLOCK. */
1735
1736 struct type *
1737 lookup_struct (const char *name, const struct block *block)
1738 {
1739 struct symbol *sym;
1740
1741 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1742
1743 if (sym == NULL)
1744 {
1745 error (_("No struct type named %s."), name);
1746 }
1747 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1748 {
1749 error (_("This context has class, union or enum %s, not a struct."),
1750 name);
1751 }
1752 return (SYMBOL_TYPE (sym));
1753 }
1754
1755 /* Lookup a union type named "union NAME",
1756 visible in lexical block BLOCK. */
1757
1758 struct type *
1759 lookup_union (const char *name, const struct block *block)
1760 {
1761 struct symbol *sym;
1762 struct type *t;
1763
1764 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1765
1766 if (sym == NULL)
1767 error (_("No union type named %s."), name);
1768
1769 t = SYMBOL_TYPE (sym);
1770
1771 if (t->code () == TYPE_CODE_UNION)
1772 return t;
1773
1774 /* If we get here, it's not a union. */
1775 error (_("This context has class, struct or enum %s, not a union."),
1776 name);
1777 }
1778
1779 /* Lookup an enum type named "enum NAME",
1780 visible in lexical block BLOCK. */
1781
1782 struct type *
1783 lookup_enum (const char *name, const struct block *block)
1784 {
1785 struct symbol *sym;
1786
1787 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1788 if (sym == NULL)
1789 {
1790 error (_("No enum type named %s."), name);
1791 }
1792 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_ENUM)
1793 {
1794 error (_("This context has class, struct or union %s, not an enum."),
1795 name);
1796 }
1797 return (SYMBOL_TYPE (sym));
1798 }
1799
1800 /* Lookup a template type named "template NAME<TYPE>",
1801 visible in lexical block BLOCK. */
1802
1803 struct type *
1804 lookup_template_type (const char *name, struct type *type,
1805 const struct block *block)
1806 {
1807 struct symbol *sym;
1808 char *nam = (char *)
1809 alloca (strlen (name) + strlen (type->name ()) + 4);
1810
1811 strcpy (nam, name);
1812 strcat (nam, "<");
1813 strcat (nam, type->name ());
1814 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1815
1816 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1817
1818 if (sym == NULL)
1819 {
1820 error (_("No template type named %s."), name);
1821 }
1822 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1823 {
1824 error (_("This context has class, union or enum %s, not a struct."),
1825 name);
1826 }
1827 return (SYMBOL_TYPE (sym));
1828 }
1829
1830 /* See gdbtypes.h. */
1831
1832 struct_elt
1833 lookup_struct_elt (struct type *type, const char *name, int noerr)
1834 {
1835 int i;
1836
1837 for (;;)
1838 {
1839 type = check_typedef (type);
1840 if (type->code () != TYPE_CODE_PTR
1841 && type->code () != TYPE_CODE_REF)
1842 break;
1843 type = TYPE_TARGET_TYPE (type);
1844 }
1845
1846 if (type->code () != TYPE_CODE_STRUCT
1847 && type->code () != TYPE_CODE_UNION)
1848 {
1849 std::string type_name = type_to_string (type);
1850 error (_("Type %s is not a structure or union type."),
1851 type_name.c_str ());
1852 }
1853
1854 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1855 {
1856 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1857
1858 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1859 {
1860 return {&type->field (i), TYPE_FIELD_BITPOS (type, i)};
1861 }
1862 else if (!t_field_name || *t_field_name == '\0')
1863 {
1864 struct_elt elt
1865 = lookup_struct_elt (type->field (i).type (), name, 1);
1866 if (elt.field != NULL)
1867 {
1868 elt.offset += TYPE_FIELD_BITPOS (type, i);
1869 return elt;
1870 }
1871 }
1872 }
1873
1874 /* OK, it's not in this class. Recursively check the baseclasses. */
1875 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1876 {
1877 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1878 if (elt.field != NULL)
1879 return elt;
1880 }
1881
1882 if (noerr)
1883 return {nullptr, 0};
1884
1885 std::string type_name = type_to_string (type);
1886 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1887 }
1888
1889 /* See gdbtypes.h. */
1890
1891 struct type *
1892 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1893 {
1894 struct_elt elt = lookup_struct_elt (type, name, noerr);
1895 if (elt.field != NULL)
1896 return elt.field->type ();
1897 else
1898 return NULL;
1899 }
1900
1901 /* Store in *MAX the largest number representable by unsigned integer type
1902 TYPE. */
1903
1904 void
1905 get_unsigned_type_max (struct type *type, ULONGEST *max)
1906 {
1907 unsigned int n;
1908
1909 type = check_typedef (type);
1910 gdb_assert (type->code () == TYPE_CODE_INT && type->is_unsigned ());
1911 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1912
1913 /* Written this way to avoid overflow. */
1914 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1915 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1916 }
1917
1918 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1919 signed integer type TYPE. */
1920
1921 void
1922 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1923 {
1924 unsigned int n;
1925
1926 type = check_typedef (type);
1927 gdb_assert (type->code () == TYPE_CODE_INT && !type->is_unsigned ());
1928 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1929
1930 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1931 *min = -((ULONGEST) 1 << (n - 1));
1932 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1933 }
1934
1935 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1936 cplus_stuff.vptr_fieldno.
1937
1938 cplus_stuff is initialized to cplus_struct_default which does not
1939 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1940 designated initializers). We cope with that here. */
1941
1942 int
1943 internal_type_vptr_fieldno (struct type *type)
1944 {
1945 type = check_typedef (type);
1946 gdb_assert (type->code () == TYPE_CODE_STRUCT
1947 || type->code () == TYPE_CODE_UNION);
1948 if (!HAVE_CPLUS_STRUCT (type))
1949 return -1;
1950 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1951 }
1952
1953 /* Set the value of cplus_stuff.vptr_fieldno. */
1954
1955 void
1956 set_type_vptr_fieldno (struct type *type, int fieldno)
1957 {
1958 type = check_typedef (type);
1959 gdb_assert (type->code () == TYPE_CODE_STRUCT
1960 || type->code () == TYPE_CODE_UNION);
1961 if (!HAVE_CPLUS_STRUCT (type))
1962 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1963 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1964 }
1965
1966 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1967 cplus_stuff.vptr_basetype. */
1968
1969 struct type *
1970 internal_type_vptr_basetype (struct type *type)
1971 {
1972 type = check_typedef (type);
1973 gdb_assert (type->code () == TYPE_CODE_STRUCT
1974 || type->code () == TYPE_CODE_UNION);
1975 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1976 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1977 }
1978
1979 /* Set the value of cplus_stuff.vptr_basetype. */
1980
1981 void
1982 set_type_vptr_basetype (struct type *type, struct type *basetype)
1983 {
1984 type = check_typedef (type);
1985 gdb_assert (type->code () == TYPE_CODE_STRUCT
1986 || type->code () == TYPE_CODE_UNION);
1987 if (!HAVE_CPLUS_STRUCT (type))
1988 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1989 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1990 }
1991
1992 /* Lookup the vptr basetype/fieldno values for TYPE.
1993 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1994 vptr_fieldno. Also, if found and basetype is from the same objfile,
1995 cache the results.
1996 If not found, return -1 and ignore BASETYPEP.
1997 Callers should be aware that in some cases (for example,
1998 the type or one of its baseclasses is a stub type and we are
1999 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
2000 this function will not be able to find the
2001 virtual function table pointer, and vptr_fieldno will remain -1 and
2002 vptr_basetype will remain NULL or incomplete. */
2003
2004 int
2005 get_vptr_fieldno (struct type *type, struct type **basetypep)
2006 {
2007 type = check_typedef (type);
2008
2009 if (TYPE_VPTR_FIELDNO (type) < 0)
2010 {
2011 int i;
2012
2013 /* We must start at zero in case the first (and only) baseclass
2014 is virtual (and hence we cannot share the table pointer). */
2015 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2016 {
2017 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2018 int fieldno;
2019 struct type *basetype;
2020
2021 fieldno = get_vptr_fieldno (baseclass, &basetype);
2022 if (fieldno >= 0)
2023 {
2024 /* If the type comes from a different objfile we can't cache
2025 it, it may have a different lifetime. PR 2384 */
2026 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
2027 {
2028 set_type_vptr_fieldno (type, fieldno);
2029 set_type_vptr_basetype (type, basetype);
2030 }
2031 if (basetypep)
2032 *basetypep = basetype;
2033 return fieldno;
2034 }
2035 }
2036
2037 /* Not found. */
2038 return -1;
2039 }
2040 else
2041 {
2042 if (basetypep)
2043 *basetypep = TYPE_VPTR_BASETYPE (type);
2044 return TYPE_VPTR_FIELDNO (type);
2045 }
2046 }
2047
2048 static void
2049 stub_noname_complaint (void)
2050 {
2051 complaint (_("stub type has NULL name"));
2052 }
2053
2054 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
2055 attached to it, and that property has a non-constant value. */
2056
2057 static int
2058 array_type_has_dynamic_stride (struct type *type)
2059 {
2060 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
2061
2062 return (prop != NULL && prop->kind () != PROP_CONST);
2063 }
2064
2065 /* Worker for is_dynamic_type. */
2066
2067 static int
2068 is_dynamic_type_internal (struct type *type, int top_level)
2069 {
2070 type = check_typedef (type);
2071
2072 /* We only want to recognize references at the outermost level. */
2073 if (top_level && type->code () == TYPE_CODE_REF)
2074 type = check_typedef (TYPE_TARGET_TYPE (type));
2075
2076 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
2077 dynamic, even if the type itself is statically defined.
2078 From a user's point of view, this may appear counter-intuitive;
2079 but it makes sense in this context, because the point is to determine
2080 whether any part of the type needs to be resolved before it can
2081 be exploited. */
2082 if (TYPE_DATA_LOCATION (type) != NULL
2083 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
2084 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
2085 return 1;
2086
2087 if (TYPE_ASSOCIATED_PROP (type))
2088 return 1;
2089
2090 if (TYPE_ALLOCATED_PROP (type))
2091 return 1;
2092
2093 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2094 if (prop != nullptr && prop->kind () != PROP_TYPE)
2095 return 1;
2096
2097 if (TYPE_HAS_DYNAMIC_LENGTH (type))
2098 return 1;
2099
2100 switch (type->code ())
2101 {
2102 case TYPE_CODE_RANGE:
2103 {
2104 /* A range type is obviously dynamic if it has at least one
2105 dynamic bound. But also consider the range type to be
2106 dynamic when its subtype is dynamic, even if the bounds
2107 of the range type are static. It allows us to assume that
2108 the subtype of a static range type is also static. */
2109 return (!has_static_range (type->bounds ())
2110 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
2111 }
2112
2113 case TYPE_CODE_STRING:
2114 /* Strings are very much like an array of characters, and can be
2115 treated as one here. */
2116 case TYPE_CODE_ARRAY:
2117 {
2118 gdb_assert (type->num_fields () == 1);
2119
2120 /* The array is dynamic if either the bounds are dynamic... */
2121 if (is_dynamic_type_internal (type->index_type (), 0))
2122 return 1;
2123 /* ... or the elements it contains have a dynamic contents... */
2124 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2125 return 1;
2126 /* ... or if it has a dynamic stride... */
2127 if (array_type_has_dynamic_stride (type))
2128 return 1;
2129 return 0;
2130 }
2131
2132 case TYPE_CODE_STRUCT:
2133 case TYPE_CODE_UNION:
2134 {
2135 int i;
2136
2137 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2138
2139 for (i = 0; i < type->num_fields (); ++i)
2140 {
2141 /* Static fields can be ignored here. */
2142 if (field_is_static (&type->field (i)))
2143 continue;
2144 /* If the field has dynamic type, then so does TYPE. */
2145 if (is_dynamic_type_internal (type->field (i).type (), 0))
2146 return 1;
2147 /* If the field is at a fixed offset, then it is not
2148 dynamic. */
2149 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2150 continue;
2151 /* Do not consider C++ virtual base types to be dynamic
2152 due to the field's offset being dynamic; these are
2153 handled via other means. */
2154 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2155 continue;
2156 return 1;
2157 }
2158 }
2159 break;
2160 }
2161
2162 return 0;
2163 }
2164
2165 /* See gdbtypes.h. */
2166
2167 int
2168 is_dynamic_type (struct type *type)
2169 {
2170 return is_dynamic_type_internal (type, 1);
2171 }
2172
2173 static struct type *resolve_dynamic_type_internal
2174 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2175
2176 /* Given a dynamic range type (dyn_range_type) and a stack of
2177 struct property_addr_info elements, return a static version
2178 of that type. */
2179
2180 static struct type *
2181 resolve_dynamic_range (struct type *dyn_range_type,
2182 struct property_addr_info *addr_stack)
2183 {
2184 CORE_ADDR value;
2185 struct type *static_range_type, *static_target_type;
2186 struct dynamic_prop low_bound, high_bound, stride;
2187
2188 gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);
2189
2190 const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low;
2191 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2192 low_bound.set_const_val (value);
2193 else
2194 low_bound.set_undefined ();
2195
2196 prop = &dyn_range_type->bounds ()->high;
2197 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2198 {
2199 high_bound.set_const_val (value);
2200
2201 if (dyn_range_type->bounds ()->flag_upper_bound_is_count)
2202 high_bound.set_const_val
2203 (low_bound.const_val () + high_bound.const_val () - 1);
2204 }
2205 else
2206 high_bound.set_undefined ();
2207
2208 bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride;
2209 prop = &dyn_range_type->bounds ()->stride;
2210 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2211 {
2212 stride.set_const_val (value);
2213
2214 /* If we have a bit stride that is not an exact number of bytes then
2215 I really don't think this is going to work with current GDB, the
2216 array indexing code in GDB seems to be pretty heavily tied to byte
2217 offsets right now. Assuming 8 bits in a byte. */
2218 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2219 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2220 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2221 error (_("bit strides that are not a multiple of the byte size "
2222 "are currently not supported"));
2223 }
2224 else
2225 {
2226 stride.set_undefined ();
2227 byte_stride_p = true;
2228 }
2229
2230 static_target_type
2231 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2232 addr_stack, 0);
2233 LONGEST bias = dyn_range_type->bounds ()->bias;
2234 static_range_type = create_range_type_with_stride
2235 (copy_type (dyn_range_type), static_target_type,
2236 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2237 static_range_type->bounds ()->flag_bound_evaluated = 1;
2238 return static_range_type;
2239 }
2240
2241 /* Resolves dynamic bound values of an array or string type TYPE to static
2242 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2243 needed during the dynamic resolution. */
2244
2245 static struct type *
2246 resolve_dynamic_array_or_string (struct type *type,
2247 struct property_addr_info *addr_stack)
2248 {
2249 CORE_ADDR value;
2250 struct type *elt_type;
2251 struct type *range_type;
2252 struct type *ary_dim;
2253 struct dynamic_prop *prop;
2254 unsigned int bit_stride = 0;
2255
2256 /* For dynamic type resolution strings can be treated like arrays of
2257 characters. */
2258 gdb_assert (type->code () == TYPE_CODE_ARRAY
2259 || type->code () == TYPE_CODE_STRING);
2260
2261 type = copy_type (type);
2262
2263 elt_type = type;
2264 range_type = check_typedef (elt_type->index_type ());
2265 range_type = resolve_dynamic_range (range_type, addr_stack);
2266
2267 /* Resolve allocated/associated here before creating a new array type, which
2268 will update the length of the array accordingly. */
2269 prop = TYPE_ALLOCATED_PROP (type);
2270 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2271 prop->set_const_val (value);
2272
2273 prop = TYPE_ASSOCIATED_PROP (type);
2274 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2275 prop->set_const_val (value);
2276
2277 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2278
2279 if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
2280 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2281 else
2282 elt_type = TYPE_TARGET_TYPE (type);
2283
2284 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
2285 if (prop != NULL)
2286 {
2287 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2288 {
2289 type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
2290 bit_stride = (unsigned int) (value * 8);
2291 }
2292 else
2293 {
2294 /* Could be a bug in our code, but it could also happen
2295 if the DWARF info is not correct. Issue a warning,
2296 and assume no byte/bit stride (leave bit_stride = 0). */
2297 warning (_("cannot determine array stride for type %s"),
2298 type->name () ? type->name () : "<no name>");
2299 }
2300 }
2301 else
2302 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2303
2304 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2305 bit_stride);
2306 }
2307
2308 /* Resolve dynamic bounds of members of the union TYPE to static
2309 bounds. ADDR_STACK is a stack of struct property_addr_info
2310 to be used if needed during the dynamic resolution. */
2311
2312 static struct type *
2313 resolve_dynamic_union (struct type *type,
2314 struct property_addr_info *addr_stack)
2315 {
2316 struct type *resolved_type;
2317 int i;
2318 unsigned int max_len = 0;
2319
2320 gdb_assert (type->code () == TYPE_CODE_UNION);
2321
2322 resolved_type = copy_type (type);
2323 resolved_type->set_fields
2324 ((struct field *)
2325 TYPE_ALLOC (resolved_type,
2326 resolved_type->num_fields () * sizeof (struct field)));
2327 memcpy (resolved_type->fields (),
2328 type->fields (),
2329 resolved_type->num_fields () * sizeof (struct field));
2330 for (i = 0; i < resolved_type->num_fields (); ++i)
2331 {
2332 struct type *t;
2333
2334 if (field_is_static (&type->field (i)))
2335 continue;
2336
2337 t = resolve_dynamic_type_internal (resolved_type->field (i).type (),
2338 addr_stack, 0);
2339 resolved_type->field (i).set_type (t);
2340
2341 struct type *real_type = check_typedef (t);
2342 if (TYPE_LENGTH (real_type) > max_len)
2343 max_len = TYPE_LENGTH (real_type);
2344 }
2345
2346 TYPE_LENGTH (resolved_type) = max_len;
2347 return resolved_type;
2348 }
2349
2350 /* See gdbtypes.h. */
2351
2352 bool
2353 variant::matches (ULONGEST value, bool is_unsigned) const
2354 {
2355 for (const discriminant_range &range : discriminants)
2356 if (range.contains (value, is_unsigned))
2357 return true;
2358 return false;
2359 }
2360
2361 static void
2362 compute_variant_fields_inner (struct type *type,
2363 struct property_addr_info *addr_stack,
2364 const variant_part &part,
2365 std::vector<bool> &flags);
2366
2367 /* A helper function to determine which variant fields will be active.
2368 This handles both the variant's direct fields, and any variant
2369 parts embedded in this variant. TYPE is the type we're examining.
2370 ADDR_STACK holds information about the concrete object. VARIANT is
2371 the current variant to be handled. FLAGS is where the results are
2372 stored -- this function sets the Nth element in FLAGS if the
2373 corresponding field is enabled. ENABLED is whether this variant is
2374 enabled or not. */
2375
2376 static void
2377 compute_variant_fields_recurse (struct type *type,
2378 struct property_addr_info *addr_stack,
2379 const variant &variant,
2380 std::vector<bool> &flags,
2381 bool enabled)
2382 {
2383 for (int field = variant.first_field; field < variant.last_field; ++field)
2384 flags[field] = enabled;
2385
2386 for (const variant_part &new_part : variant.parts)
2387 {
2388 if (enabled)
2389 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2390 else
2391 {
2392 for (const auto &sub_variant : new_part.variants)
2393 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2394 flags, enabled);
2395 }
2396 }
2397 }
2398
2399 /* A helper function to determine which variant fields will be active.
2400 This evaluates the discriminant, decides which variant (if any) is
2401 active, and then updates FLAGS to reflect which fields should be
2402 available. TYPE is the type we're examining. ADDR_STACK holds
2403 information about the concrete object. VARIANT is the current
2404 variant to be handled. FLAGS is where the results are stored --
2405 this function sets the Nth element in FLAGS if the corresponding
2406 field is enabled. */
2407
2408 static void
2409 compute_variant_fields_inner (struct type *type,
2410 struct property_addr_info *addr_stack,
2411 const variant_part &part,
2412 std::vector<bool> &flags)
2413 {
2414 /* Evaluate the discriminant. */
2415 gdb::optional<ULONGEST> discr_value;
2416 if (part.discriminant_index != -1)
2417 {
2418 int idx = part.discriminant_index;
2419
2420 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2421 error (_("Cannot determine struct field location"
2422 " (invalid location kind)"));
2423
2424 if (addr_stack->valaddr.data () != NULL)
2425 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2426 idx);
2427 else
2428 {
2429 CORE_ADDR addr = (addr_stack->addr
2430 + (TYPE_FIELD_BITPOS (type, idx)
2431 / TARGET_CHAR_BIT));
2432
2433 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2434 LONGEST size = bitsize / 8;
2435 if (size == 0)
2436 size = TYPE_LENGTH (type->field (idx).type ());
2437
2438 gdb_byte bits[sizeof (ULONGEST)];
2439 read_memory (addr, bits, size);
2440
2441 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2442 % TARGET_CHAR_BIT);
2443
2444 discr_value = unpack_bits_as_long (type->field (idx).type (),
2445 bits, bitpos, bitsize);
2446 }
2447 }
2448
2449 /* Go through each variant and see which applies. */
2450 const variant *default_variant = nullptr;
2451 const variant *applied_variant = nullptr;
2452 for (const auto &variant : part.variants)
2453 {
2454 if (variant.is_default ())
2455 default_variant = &variant;
2456 else if (discr_value.has_value ()
2457 && variant.matches (*discr_value, part.is_unsigned))
2458 {
2459 applied_variant = &variant;
2460 break;
2461 }
2462 }
2463 if (applied_variant == nullptr)
2464 applied_variant = default_variant;
2465
2466 for (const auto &variant : part.variants)
2467 compute_variant_fields_recurse (type, addr_stack, variant,
2468 flags, applied_variant == &variant);
2469 }
2470
2471 /* Determine which variant fields are available in TYPE. The enabled
2472 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2473 about the concrete object. PARTS describes the top-level variant
2474 parts for this type. */
2475
2476 static void
2477 compute_variant_fields (struct type *type,
2478 struct type *resolved_type,
2479 struct property_addr_info *addr_stack,
2480 const gdb::array_view<variant_part> &parts)
2481 {
2482 /* Assume all fields are included by default. */
2483 std::vector<bool> flags (resolved_type->num_fields (), true);
2484
2485 /* Now disable fields based on the variants that control them. */
2486 for (const auto &part : parts)
2487 compute_variant_fields_inner (type, addr_stack, part, flags);
2488
2489 resolved_type->set_num_fields
2490 (std::count (flags.begin (), flags.end (), true));
2491 resolved_type->set_fields
2492 ((struct field *)
2493 TYPE_ALLOC (resolved_type,
2494 resolved_type->num_fields () * sizeof (struct field)));
2495
2496 int out = 0;
2497 for (int i = 0; i < type->num_fields (); ++i)
2498 {
2499 if (!flags[i])
2500 continue;
2501
2502 resolved_type->field (out) = type->field (i);
2503 ++out;
2504 }
2505 }
2506
2507 /* Resolve dynamic bounds of members of the struct TYPE to static
2508 bounds. ADDR_STACK is a stack of struct property_addr_info to
2509 be used if needed during the dynamic resolution. */
2510
2511 static struct type *
2512 resolve_dynamic_struct (struct type *type,
2513 struct property_addr_info *addr_stack)
2514 {
2515 struct type *resolved_type;
2516 int i;
2517 unsigned resolved_type_bit_length = 0;
2518
2519 gdb_assert (type->code () == TYPE_CODE_STRUCT);
2520 gdb_assert (type->num_fields () > 0);
2521
2522 resolved_type = copy_type (type);
2523
2524 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2525 if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS)
2526 {
2527 compute_variant_fields (type, resolved_type, addr_stack,
2528 *variant_prop->variant_parts ());
2529 /* We want to leave the property attached, so that the Rust code
2530 can tell whether the type was originally an enum. */
2531 variant_prop->set_original_type (type);
2532 }
2533 else
2534 {
2535 resolved_type->set_fields
2536 ((struct field *)
2537 TYPE_ALLOC (resolved_type,
2538 resolved_type->num_fields () * sizeof (struct field)));
2539 memcpy (resolved_type->fields (),
2540 type->fields (),
2541 resolved_type->num_fields () * sizeof (struct field));
2542 }
2543
2544 for (i = 0; i < resolved_type->num_fields (); ++i)
2545 {
2546 unsigned new_bit_length;
2547 struct property_addr_info pinfo;
2548
2549 if (field_is_static (&resolved_type->field (i)))
2550 continue;
2551
2552 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2553 {
2554 struct dwarf2_property_baton baton;
2555 baton.property_type
2556 = lookup_pointer_type (resolved_type->field (i).type ());
2557 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2558
2559 struct dynamic_prop prop;
2560 prop.set_locexpr (&baton);
2561
2562 CORE_ADDR addr;
2563 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2564 true))
2565 SET_FIELD_BITPOS (resolved_type->field (i),
2566 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2567 }
2568
2569 /* As we know this field is not a static field, the field's
2570 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2571 this is the case, but only trigger a simple error rather
2572 than an internal error if that fails. While failing
2573 that verification indicates a bug in our code, the error
2574 is not severe enough to suggest to the user he stops
2575 his debugging session because of it. */
2576 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
2577 error (_("Cannot determine struct field location"
2578 " (invalid location kind)"));
2579
2580 pinfo.type = check_typedef (resolved_type->field (i).type ());
2581 pinfo.valaddr = addr_stack->valaddr;
2582 pinfo.addr
2583 = (addr_stack->addr
2584 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2585 pinfo.next = addr_stack;
2586
2587 resolved_type->field (i).set_type
2588 (resolve_dynamic_type_internal (resolved_type->field (i).type (),
2589 &pinfo, 0));
2590 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2591 == FIELD_LOC_KIND_BITPOS);
2592
2593 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2594 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2595 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2596 else
2597 {
2598 struct type *real_type
2599 = check_typedef (resolved_type->field (i).type ());
2600
2601 new_bit_length += (TYPE_LENGTH (real_type) * TARGET_CHAR_BIT);
2602 }
2603
2604 /* Normally, we would use the position and size of the last field
2605 to determine the size of the enclosing structure. But GCC seems
2606 to be encoding the position of some fields incorrectly when
2607 the struct contains a dynamic field that is not placed last.
2608 So we compute the struct size based on the field that has
2609 the highest position + size - probably the best we can do. */
2610 if (new_bit_length > resolved_type_bit_length)
2611 resolved_type_bit_length = new_bit_length;
2612 }
2613
2614 /* The length of a type won't change for fortran, but it does for C and Ada.
2615 For fortran the size of dynamic fields might change over time but not the
2616 type length of the structure. If we adapt it, we run into problems
2617 when calculating the element offset for arrays of structs. */
2618 if (current_language->la_language != language_fortran)
2619 TYPE_LENGTH (resolved_type)
2620 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2621
2622 /* The Ada language uses this field as a cache for static fixed types: reset
2623 it as RESOLVED_TYPE must have its own static fixed type. */
2624 TYPE_TARGET_TYPE (resolved_type) = NULL;
2625
2626 return resolved_type;
2627 }
2628
2629 /* Worker for resolved_dynamic_type. */
2630
2631 static struct type *
2632 resolve_dynamic_type_internal (struct type *type,
2633 struct property_addr_info *addr_stack,
2634 int top_level)
2635 {
2636 struct type *real_type = check_typedef (type);
2637 struct type *resolved_type = nullptr;
2638 struct dynamic_prop *prop;
2639 CORE_ADDR value;
2640
2641 if (!is_dynamic_type_internal (real_type, top_level))
2642 return type;
2643
2644 gdb::optional<CORE_ADDR> type_length;
2645 prop = TYPE_DYNAMIC_LENGTH (type);
2646 if (prop != NULL
2647 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2648 type_length = value;
2649
2650 if (type->code () == TYPE_CODE_TYPEDEF)
2651 {
2652 resolved_type = copy_type (type);
2653 TYPE_TARGET_TYPE (resolved_type)
2654 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2655 top_level);
2656 }
2657 else
2658 {
2659 /* Before trying to resolve TYPE, make sure it is not a stub. */
2660 type = real_type;
2661
2662 switch (type->code ())
2663 {
2664 case TYPE_CODE_REF:
2665 {
2666 struct property_addr_info pinfo;
2667
2668 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2669 pinfo.valaddr = {};
2670 if (addr_stack->valaddr.data () != NULL)
2671 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2672 type);
2673 else
2674 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2675 pinfo.next = addr_stack;
2676
2677 resolved_type = copy_type (type);
2678 TYPE_TARGET_TYPE (resolved_type)
2679 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2680 &pinfo, top_level);
2681 break;
2682 }
2683
2684 case TYPE_CODE_STRING:
2685 /* Strings are very much like an array of characters, and can be
2686 treated as one here. */
2687 case TYPE_CODE_ARRAY:
2688 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2689 break;
2690
2691 case TYPE_CODE_RANGE:
2692 resolved_type = resolve_dynamic_range (type, addr_stack);
2693 break;
2694
2695 case TYPE_CODE_UNION:
2696 resolved_type = resolve_dynamic_union (type, addr_stack);
2697 break;
2698
2699 case TYPE_CODE_STRUCT:
2700 resolved_type = resolve_dynamic_struct (type, addr_stack);
2701 break;
2702 }
2703 }
2704
2705 if (resolved_type == nullptr)
2706 return type;
2707
2708 if (type_length.has_value ())
2709 {
2710 TYPE_LENGTH (resolved_type) = *type_length;
2711 resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
2712 }
2713
2714 /* Resolve data_location attribute. */
2715 prop = TYPE_DATA_LOCATION (resolved_type);
2716 if (prop != NULL
2717 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2718 {
2719 /* Start of Fortran hack. See comment in f-lang.h for what is going
2720 on here.*/
2721 if (current_language->la_language == language_fortran
2722 && resolved_type->code () == TYPE_CODE_ARRAY)
2723 value = fortran_adjust_dynamic_array_base_address_hack (resolved_type,
2724 value);
2725 /* End of Fortran hack. */
2726 prop->set_const_val (value);
2727 }
2728
2729 return resolved_type;
2730 }
2731
2732 /* See gdbtypes.h */
2733
2734 struct type *
2735 resolve_dynamic_type (struct type *type,
2736 gdb::array_view<const gdb_byte> valaddr,
2737 CORE_ADDR addr)
2738 {
2739 struct property_addr_info pinfo
2740 = {check_typedef (type), valaddr, addr, NULL};
2741
2742 return resolve_dynamic_type_internal (type, &pinfo, 1);
2743 }
2744
2745 /* See gdbtypes.h */
2746
2747 dynamic_prop *
2748 type::dyn_prop (dynamic_prop_node_kind prop_kind) const
2749 {
2750 dynamic_prop_list *node = this->main_type->dyn_prop_list;
2751
2752 while (node != NULL)
2753 {
2754 if (node->prop_kind == prop_kind)
2755 return &node->prop;
2756 node = node->next;
2757 }
2758 return NULL;
2759 }
2760
2761 /* See gdbtypes.h */
2762
2763 void
2764 type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
2765 {
2766 struct dynamic_prop_list *temp;
2767
2768 gdb_assert (TYPE_OBJFILE_OWNED (this));
2769
2770 temp = XOBNEW (&TYPE_OBJFILE (this)->objfile_obstack,
2771 struct dynamic_prop_list);
2772 temp->prop_kind = prop_kind;
2773 temp->prop = prop;
2774 temp->next = this->main_type->dyn_prop_list;
2775
2776 this->main_type->dyn_prop_list = temp;
2777 }
2778
2779 /* See gdbtypes.h. */
2780
2781 void
2782 type::remove_dyn_prop (dynamic_prop_node_kind kind)
2783 {
2784 struct dynamic_prop_list *prev_node, *curr_node;
2785
2786 curr_node = this->main_type->dyn_prop_list;
2787 prev_node = NULL;
2788
2789 while (NULL != curr_node)
2790 {
2791 if (curr_node->prop_kind == kind)
2792 {
2793 /* Update the linked list but don't free anything.
2794 The property was allocated on objstack and it is not known
2795 if we are on top of it. Nevertheless, everything is released
2796 when the complete objstack is freed. */
2797 if (NULL == prev_node)
2798 this->main_type->dyn_prop_list = curr_node->next;
2799 else
2800 prev_node->next = curr_node->next;
2801
2802 return;
2803 }
2804
2805 prev_node = curr_node;
2806 curr_node = curr_node->next;
2807 }
2808 }
2809
2810 /* Find the real type of TYPE. This function returns the real type,
2811 after removing all layers of typedefs, and completing opaque or stub
2812 types. Completion changes the TYPE argument, but stripping of
2813 typedefs does not.
2814
2815 Instance flags (e.g. const/volatile) are preserved as typedefs are
2816 stripped. If necessary a new qualified form of the underlying type
2817 is created.
2818
2819 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2820 not been computed and we're either in the middle of reading symbols, or
2821 there was no name for the typedef in the debug info.
2822
2823 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2824 QUITs in the symbol reading code can also throw.
2825 Thus this function can throw an exception.
2826
2827 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2828 the target type.
2829
2830 If this is a stubbed struct (i.e. declared as struct foo *), see if
2831 we can find a full definition in some other file. If so, copy this
2832 definition, so we can use it in future. There used to be a comment
2833 (but not any code) that if we don't find a full definition, we'd
2834 set a flag so we don't spend time in the future checking the same
2835 type. That would be a mistake, though--we might load in more
2836 symbols which contain a full definition for the type. */
2837
2838 struct type *
2839 check_typedef (struct type *type)
2840 {
2841 struct type *orig_type = type;
2842
2843 gdb_assert (type);
2844
2845 /* While we're removing typedefs, we don't want to lose qualifiers.
2846 E.g., const/volatile. */
2847 type_instance_flags instance_flags = type->instance_flags ();
2848
2849 while (type->code () == TYPE_CODE_TYPEDEF)
2850 {
2851 if (!TYPE_TARGET_TYPE (type))
2852 {
2853 const char *name;
2854 struct symbol *sym;
2855
2856 /* It is dangerous to call lookup_symbol if we are currently
2857 reading a symtab. Infinite recursion is one danger. */
2858 if (currently_reading_symtab)
2859 return make_qualified_type (type, instance_flags, NULL);
2860
2861 name = type->name ();
2862 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2863 VAR_DOMAIN as appropriate? */
2864 if (name == NULL)
2865 {
2866 stub_noname_complaint ();
2867 return make_qualified_type (type, instance_flags, NULL);
2868 }
2869 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2870 if (sym)
2871 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2872 else /* TYPE_CODE_UNDEF */
2873 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2874 }
2875 type = TYPE_TARGET_TYPE (type);
2876
2877 /* Preserve the instance flags as we traverse down the typedef chain.
2878
2879 Handling address spaces/classes is nasty, what do we do if there's a
2880 conflict?
2881 E.g., what if an outer typedef marks the type as class_1 and an inner
2882 typedef marks the type as class_2?
2883 This is the wrong place to do such error checking. We leave it to
2884 the code that created the typedef in the first place to flag the
2885 error. We just pick the outer address space (akin to letting the
2886 outer cast in a chain of casting win), instead of assuming
2887 "it can't happen". */
2888 {
2889 const type_instance_flags ALL_SPACES
2890 = (TYPE_INSTANCE_FLAG_CODE_SPACE
2891 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2892 const type_instance_flags ALL_CLASSES
2893 = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2894
2895 type_instance_flags new_instance_flags = type->instance_flags ();
2896
2897 /* Treat code vs data spaces and address classes separately. */
2898 if ((instance_flags & ALL_SPACES) != 0)
2899 new_instance_flags &= ~ALL_SPACES;
2900 if ((instance_flags & ALL_CLASSES) != 0)
2901 new_instance_flags &= ~ALL_CLASSES;
2902
2903 instance_flags |= new_instance_flags;
2904 }
2905 }
2906
2907 /* If this is a struct/class/union with no fields, then check
2908 whether a full definition exists somewhere else. This is for
2909 systems where a type definition with no fields is issued for such
2910 types, instead of identifying them as stub types in the first
2911 place. */
2912
2913 if (TYPE_IS_OPAQUE (type)
2914 && opaque_type_resolution
2915 && !currently_reading_symtab)
2916 {
2917 const char *name = type->name ();
2918 struct type *newtype;
2919
2920 if (name == NULL)
2921 {
2922 stub_noname_complaint ();
2923 return make_qualified_type (type, instance_flags, NULL);
2924 }
2925 newtype = lookup_transparent_type (name);
2926
2927 if (newtype)
2928 {
2929 /* If the resolved type and the stub are in the same
2930 objfile, then replace the stub type with the real deal.
2931 But if they're in separate objfiles, leave the stub
2932 alone; we'll just look up the transparent type every time
2933 we call check_typedef. We can't create pointers between
2934 types allocated to different objfiles, since they may
2935 have different lifetimes. Trying to copy NEWTYPE over to
2936 TYPE's objfile is pointless, too, since you'll have to
2937 move over any other types NEWTYPE refers to, which could
2938 be an unbounded amount of stuff. */
2939 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2940 type = make_qualified_type (newtype, type->instance_flags (), type);
2941 else
2942 type = newtype;
2943 }
2944 }
2945 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2946 types. */
2947 else if (type->is_stub () && !currently_reading_symtab)
2948 {
2949 const char *name = type->name ();
2950 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2951 as appropriate? */
2952 struct symbol *sym;
2953
2954 if (name == NULL)
2955 {
2956 stub_noname_complaint ();
2957 return make_qualified_type (type, instance_flags, NULL);
2958 }
2959 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2960 if (sym)
2961 {
2962 /* Same as above for opaque types, we can replace the stub
2963 with the complete type only if they are in the same
2964 objfile. */
2965 if (TYPE_OBJFILE (SYMBOL_TYPE (sym)) == TYPE_OBJFILE (type))
2966 type = make_qualified_type (SYMBOL_TYPE (sym),
2967 type->instance_flags (), type);
2968 else
2969 type = SYMBOL_TYPE (sym);
2970 }
2971 }
2972
2973 if (type->target_is_stub ())
2974 {
2975 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2976
2977 if (target_type->is_stub () || target_type->target_is_stub ())
2978 {
2979 /* Nothing we can do. */
2980 }
2981 else if (type->code () == TYPE_CODE_RANGE)
2982 {
2983 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2984 type->set_target_is_stub (false);
2985 }
2986 else if (type->code () == TYPE_CODE_ARRAY
2987 && update_static_array_size (type))
2988 type->set_target_is_stub (false);
2989 }
2990
2991 type = make_qualified_type (type, instance_flags, NULL);
2992
2993 /* Cache TYPE_LENGTH for future use. */
2994 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2995
2996 return type;
2997 }
2998
2999 /* Parse a type expression in the string [P..P+LENGTH). If an error
3000 occurs, silently return a void type. */
3001
3002 static struct type *
3003 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
3004 {
3005 struct ui_file *saved_gdb_stderr;
3006 struct type *type = NULL; /* Initialize to keep gcc happy. */
3007
3008 /* Suppress error messages. */
3009 saved_gdb_stderr = gdb_stderr;
3010 gdb_stderr = &null_stream;
3011
3012 /* Call parse_and_eval_type() without fear of longjmp()s. */
3013 try
3014 {
3015 type = parse_and_eval_type (p, length);
3016 }
3017 catch (const gdb_exception_error &except)
3018 {
3019 type = builtin_type (gdbarch)->builtin_void;
3020 }
3021
3022 /* Stop suppressing error messages. */
3023 gdb_stderr = saved_gdb_stderr;
3024
3025 return type;
3026 }
3027
3028 /* Ugly hack to convert method stubs into method types.
3029
3030 He ain't kiddin'. This demangles the name of the method into a
3031 string including argument types, parses out each argument type,
3032 generates a string casting a zero to that type, evaluates the
3033 string, and stuffs the resulting type into an argtype vector!!!
3034 Then it knows the type of the whole function (including argument
3035 types for overloading), which info used to be in the stab's but was
3036 removed to hack back the space required for them. */
3037
3038 static void
3039 check_stub_method (struct type *type, int method_id, int signature_id)
3040 {
3041 struct gdbarch *gdbarch = get_type_arch (type);
3042 struct fn_field *f;
3043 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
3044 char *demangled_name = gdb_demangle (mangled_name,
3045 DMGL_PARAMS | DMGL_ANSI);
3046 char *argtypetext, *p;
3047 int depth = 0, argcount = 1;
3048 struct field *argtypes;
3049 struct type *mtype;
3050
3051 /* Make sure we got back a function string that we can use. */
3052 if (demangled_name)
3053 p = strchr (demangled_name, '(');
3054 else
3055 p = NULL;
3056
3057 if (demangled_name == NULL || p == NULL)
3058 error (_("Internal: Cannot demangle mangled name `%s'."),
3059 mangled_name);
3060
3061 /* Now, read in the parameters that define this type. */
3062 p += 1;
3063 argtypetext = p;
3064 while (*p)
3065 {
3066 if (*p == '(' || *p == '<')
3067 {
3068 depth += 1;
3069 }
3070 else if (*p == ')' || *p == '>')
3071 {
3072 depth -= 1;
3073 }
3074 else if (*p == ',' && depth == 0)
3075 {
3076 argcount += 1;
3077 }
3078
3079 p += 1;
3080 }
3081
3082 /* If we read one argument and it was ``void'', don't count it. */
3083 if (startswith (argtypetext, "(void)"))
3084 argcount -= 1;
3085
3086 /* We need one extra slot, for the THIS pointer. */
3087
3088 argtypes = (struct field *)
3089 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
3090 p = argtypetext;
3091
3092 /* Add THIS pointer for non-static methods. */
3093 f = TYPE_FN_FIELDLIST1 (type, method_id);
3094 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
3095 argcount = 0;
3096 else
3097 {
3098 argtypes[0].set_type (lookup_pointer_type (type));
3099 argcount = 1;
3100 }
3101
3102 if (*p != ')') /* () means no args, skip while. */
3103 {
3104 depth = 0;
3105 while (*p)
3106 {
3107 if (depth <= 0 && (*p == ',' || *p == ')'))
3108 {
3109 /* Avoid parsing of ellipsis, they will be handled below.
3110 Also avoid ``void'' as above. */
3111 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3112 && strncmp (argtypetext, "void", p - argtypetext) != 0)
3113 {
3114 argtypes[argcount].set_type
3115 (safe_parse_type (gdbarch, argtypetext, p - argtypetext));
3116 argcount += 1;
3117 }
3118 argtypetext = p + 1;
3119 }
3120
3121 if (*p == '(' || *p == '<')
3122 {
3123 depth += 1;
3124 }
3125 else if (*p == ')' || *p == '>')
3126 {
3127 depth -= 1;
3128 }
3129
3130 p += 1;
3131 }
3132 }
3133
3134 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3135
3136 /* Now update the old "stub" type into a real type. */
3137 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
3138 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3139 We want a method (TYPE_CODE_METHOD). */
3140 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3141 argtypes, argcount, p[-2] == '.');
3142 mtype->set_is_stub (false);
3143 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
3144
3145 xfree (demangled_name);
3146 }
3147
3148 /* This is the external interface to check_stub_method, above. This
3149 function unstubs all of the signatures for TYPE's METHOD_ID method
3150 name. After calling this function TYPE_FN_FIELD_STUB will be
3151 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3152 correct.
3153
3154 This function unfortunately can not die until stabs do. */
3155
3156 void
3157 check_stub_method_group (struct type *type, int method_id)
3158 {
3159 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3160 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
3161
3162 for (int j = 0; j < len; j++)
3163 {
3164 if (TYPE_FN_FIELD_STUB (f, j))
3165 check_stub_method (type, method_id, j);
3166 }
3167 }
3168
3169 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
3170 const struct cplus_struct_type cplus_struct_default = { };
3171
3172 void
3173 allocate_cplus_struct_type (struct type *type)
3174 {
3175 if (HAVE_CPLUS_STRUCT (type))
3176 /* Structure was already allocated. Nothing more to do. */
3177 return;
3178
3179 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3180 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3181 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3182 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
3183 set_type_vptr_fieldno (type, -1);
3184 }
3185
3186 const struct gnat_aux_type gnat_aux_default =
3187 { NULL };
3188
3189 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3190 and allocate the associated gnat-specific data. The gnat-specific
3191 data is also initialized to gnat_aux_default. */
3192
3193 void
3194 allocate_gnat_aux_type (struct type *type)
3195 {
3196 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3197 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3198 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3199 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3200 }
3201
3202 /* Helper function to initialize a newly allocated type. Set type code
3203 to CODE and initialize the type-specific fields accordingly. */
3204
3205 static void
3206 set_type_code (struct type *type, enum type_code code)
3207 {
3208 type->set_code (code);
3209
3210 switch (code)
3211 {
3212 case TYPE_CODE_STRUCT:
3213 case TYPE_CODE_UNION:
3214 case TYPE_CODE_NAMESPACE:
3215 INIT_CPLUS_SPECIFIC (type);
3216 break;
3217 case TYPE_CODE_FLT:
3218 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3219 break;
3220 case TYPE_CODE_FUNC:
3221 INIT_FUNC_SPECIFIC (type);
3222 break;
3223 case TYPE_CODE_FIXED_POINT:
3224 INIT_FIXED_POINT_SPECIFIC (type);
3225 break;
3226 }
3227 }
3228
3229 /* Helper function to verify floating-point format and size.
3230 BIT is the type size in bits; if BIT equals -1, the size is
3231 determined by the floatformat. Returns size to be used. */
3232
3233 static int
3234 verify_floatformat (int bit, const struct floatformat *floatformat)
3235 {
3236 gdb_assert (floatformat != NULL);
3237
3238 if (bit == -1)
3239 bit = floatformat->totalsize;
3240
3241 gdb_assert (bit >= 0);
3242 gdb_assert (bit >= floatformat->totalsize);
3243
3244 return bit;
3245 }
3246
3247 /* Return the floating-point format for a floating-point variable of
3248 type TYPE. */
3249
3250 const struct floatformat *
3251 floatformat_from_type (const struct type *type)
3252 {
3253 gdb_assert (type->code () == TYPE_CODE_FLT);
3254 gdb_assert (TYPE_FLOATFORMAT (type));
3255 return TYPE_FLOATFORMAT (type);
3256 }
3257
3258 /* Helper function to initialize the standard scalar types.
3259
3260 If NAME is non-NULL, then it is used to initialize the type name.
3261 Note that NAME is not copied; it is required to have a lifetime at
3262 least as long as OBJFILE. */
3263
3264 struct type *
3265 init_type (struct objfile *objfile, enum type_code code, int bit,
3266 const char *name)
3267 {
3268 struct type *type;
3269
3270 type = alloc_type (objfile);
3271 set_type_code (type, code);
3272 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3273 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
3274 type->set_name (name);
3275
3276 return type;
3277 }
3278
3279 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3280 to use with variables that have no debug info. NAME is the type
3281 name. */
3282
3283 static struct type *
3284 init_nodebug_var_type (struct objfile *objfile, const char *name)
3285 {
3286 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3287 }
3288
3289 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3290 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3291 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3292
3293 struct type *
3294 init_integer_type (struct objfile *objfile,
3295 int bit, int unsigned_p, const char *name)
3296 {
3297 struct type *t;
3298
3299 t = init_type (objfile, TYPE_CODE_INT, bit, name);
3300 if (unsigned_p)
3301 t->set_is_unsigned (true);
3302
3303 TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT;
3304 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit;
3305 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0;
3306
3307 return t;
3308 }
3309
3310 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3311 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3312 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3313
3314 struct type *
3315 init_character_type (struct objfile *objfile,
3316 int bit, int unsigned_p, const char *name)
3317 {
3318 struct type *t;
3319
3320 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
3321 if (unsigned_p)
3322 t->set_is_unsigned (true);
3323
3324 return t;
3325 }
3326
3327 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3328 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3329 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3330
3331 struct type *
3332 init_boolean_type (struct objfile *objfile,
3333 int bit, int unsigned_p, const char *name)
3334 {
3335 struct type *t;
3336
3337 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
3338 if (unsigned_p)
3339 t->set_is_unsigned (true);
3340
3341 TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT;
3342 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit;
3343 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0;
3344
3345 return t;
3346 }
3347
3348 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3349 BIT is the type size in bits; if BIT equals -1, the size is
3350 determined by the floatformat. NAME is the type name. Set the
3351 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3352 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3353 order of the objfile's architecture is used. */
3354
3355 struct type *
3356 init_float_type (struct objfile *objfile,
3357 int bit, const char *name,
3358 const struct floatformat **floatformats,
3359 enum bfd_endian byte_order)
3360 {
3361 if (byte_order == BFD_ENDIAN_UNKNOWN)
3362 {
3363 struct gdbarch *gdbarch = objfile->arch ();
3364 byte_order = gdbarch_byte_order (gdbarch);
3365 }
3366 const struct floatformat *fmt = floatformats[byte_order];
3367 struct type *t;
3368
3369 bit = verify_floatformat (bit, fmt);
3370 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3371 TYPE_FLOATFORMAT (t) = fmt;
3372
3373 return t;
3374 }
3375
3376 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3377 BIT is the type size in bits. NAME is the type name. */
3378
3379 struct type *
3380 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3381 {
3382 struct type *t;
3383
3384 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3385 return t;
3386 }
3387
3388 /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3389 name. TARGET_TYPE is the component type. */
3390
3391 struct type *
3392 init_complex_type (const char *name, struct type *target_type)
3393 {
3394 struct type *t;
3395
3396 gdb_assert (target_type->code () == TYPE_CODE_INT
3397 || target_type->code () == TYPE_CODE_FLT);
3398
3399 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3400 {
3401 if (name == nullptr && target_type->name () != nullptr)
3402 {
3403 char *new_name
3404 = (char *) TYPE_ALLOC (target_type,
3405 strlen (target_type->name ())
3406 + strlen ("_Complex ") + 1);
3407 strcpy (new_name, "_Complex ");
3408 strcat (new_name, target_type->name ());
3409 name = new_name;
3410 }
3411
3412 t = alloc_type_copy (target_type);
3413 set_type_code (t, TYPE_CODE_COMPLEX);
3414 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3415 t->set_name (name);
3416
3417 TYPE_TARGET_TYPE (t) = target_type;
3418 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3419 }
3420
3421 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
3422 }
3423
3424 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3425 BIT is the pointer type size in bits. NAME is the type name.
3426 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3427 TYPE_UNSIGNED flag. */
3428
3429 struct type *
3430 init_pointer_type (struct objfile *objfile,
3431 int bit, const char *name, struct type *target_type)
3432 {
3433 struct type *t;
3434
3435 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3436 TYPE_TARGET_TYPE (t) = target_type;
3437 t->set_is_unsigned (true);
3438 return t;
3439 }
3440
3441 /* Allocate a TYPE_CODE_FIXED_POINT type structure associated with OBJFILE.
3442 BIT is the pointer type size in bits.
3443 UNSIGNED_P should be nonzero if the type is unsigned.
3444 NAME is the type name. */
3445
3446 struct type *
3447 init_fixed_point_type (struct objfile *objfile,
3448 int bit, int unsigned_p, const char *name)
3449 {
3450 struct type *t;
3451
3452 t = init_type (objfile, TYPE_CODE_FIXED_POINT, bit, name);
3453 if (unsigned_p)
3454 t->set_is_unsigned (true);
3455
3456 return t;
3457 }
3458
3459 /* See gdbtypes.h. */
3460
3461 unsigned
3462 type_raw_align (struct type *type)
3463 {
3464 if (type->align_log2 != 0)
3465 return 1 << (type->align_log2 - 1);
3466 return 0;
3467 }
3468
3469 /* See gdbtypes.h. */
3470
3471 unsigned
3472 type_align (struct type *type)
3473 {
3474 /* Check alignment provided in the debug information. */
3475 unsigned raw_align = type_raw_align (type);
3476 if (raw_align != 0)
3477 return raw_align;
3478
3479 /* Allow the architecture to provide an alignment. */
3480 struct gdbarch *arch = get_type_arch (type);
3481 ULONGEST align = gdbarch_type_align (arch, type);
3482 if (align != 0)
3483 return align;
3484
3485 switch (type->code ())
3486 {
3487 case TYPE_CODE_PTR:
3488 case TYPE_CODE_FUNC:
3489 case TYPE_CODE_FLAGS:
3490 case TYPE_CODE_INT:
3491 case TYPE_CODE_RANGE:
3492 case TYPE_CODE_FLT:
3493 case TYPE_CODE_ENUM:
3494 case TYPE_CODE_REF:
3495 case TYPE_CODE_RVALUE_REF:
3496 case TYPE_CODE_CHAR:
3497 case TYPE_CODE_BOOL:
3498 case TYPE_CODE_DECFLOAT:
3499 case TYPE_CODE_METHODPTR:
3500 case TYPE_CODE_MEMBERPTR:
3501 align = type_length_units (check_typedef (type));
3502 break;
3503
3504 case TYPE_CODE_ARRAY:
3505 case TYPE_CODE_COMPLEX:
3506 case TYPE_CODE_TYPEDEF:
3507 align = type_align (TYPE_TARGET_TYPE (type));
3508 break;
3509
3510 case TYPE_CODE_STRUCT:
3511 case TYPE_CODE_UNION:
3512 {
3513 int number_of_non_static_fields = 0;
3514 for (unsigned i = 0; i < type->num_fields (); ++i)
3515 {
3516 if (!field_is_static (&type->field (i)))
3517 {
3518 number_of_non_static_fields++;
3519 ULONGEST f_align = type_align (type->field (i).type ());
3520 if (f_align == 0)
3521 {
3522 /* Don't pretend we know something we don't. */
3523 align = 0;
3524 break;
3525 }
3526 if (f_align > align)
3527 align = f_align;
3528 }
3529 }
3530 /* A struct with no fields, or with only static fields has an
3531 alignment of 1. */
3532 if (number_of_non_static_fields == 0)
3533 align = 1;
3534 }
3535 break;
3536
3537 case TYPE_CODE_SET:
3538 case TYPE_CODE_STRING:
3539 /* Not sure what to do here, and these can't appear in C or C++
3540 anyway. */
3541 break;
3542
3543 case TYPE_CODE_VOID:
3544 align = 1;
3545 break;
3546
3547 case TYPE_CODE_ERROR:
3548 case TYPE_CODE_METHOD:
3549 default:
3550 break;
3551 }
3552
3553 if ((align & (align - 1)) != 0)
3554 {
3555 /* Not a power of 2, so pass. */
3556 align = 0;
3557 }
3558
3559 return align;
3560 }
3561
3562 /* See gdbtypes.h. */
3563
3564 bool
3565 set_type_align (struct type *type, ULONGEST align)
3566 {
3567 /* Must be a power of 2. Zero is ok. */
3568 gdb_assert ((align & (align - 1)) == 0);
3569
3570 unsigned result = 0;
3571 while (align != 0)
3572 {
3573 ++result;
3574 align >>= 1;
3575 }
3576
3577 if (result >= (1 << TYPE_ALIGN_BITS))
3578 return false;
3579
3580 type->align_log2 = result;
3581 return true;
3582 }
3583
3584 \f
3585 /* Queries on types. */
3586
3587 int
3588 can_dereference (struct type *t)
3589 {
3590 /* FIXME: Should we return true for references as well as
3591 pointers? */
3592 t = check_typedef (t);
3593 return
3594 (t != NULL
3595 && t->code () == TYPE_CODE_PTR
3596 && TYPE_TARGET_TYPE (t)->code () != TYPE_CODE_VOID);
3597 }
3598
3599 int
3600 is_integral_type (struct type *t)
3601 {
3602 t = check_typedef (t);
3603 return
3604 ((t != NULL)
3605 && !is_fixed_point_type (t)
3606 && ((t->code () == TYPE_CODE_INT)
3607 || (t->code () == TYPE_CODE_ENUM)
3608 || (t->code () == TYPE_CODE_FLAGS)
3609 || (t->code () == TYPE_CODE_CHAR)
3610 || (t->code () == TYPE_CODE_RANGE)
3611 || (t->code () == TYPE_CODE_BOOL)));
3612 }
3613
3614 int
3615 is_floating_type (struct type *t)
3616 {
3617 t = check_typedef (t);
3618 return
3619 ((t != NULL)
3620 && ((t->code () == TYPE_CODE_FLT)
3621 || (t->code () == TYPE_CODE_DECFLOAT)));
3622 }
3623
3624 /* Return true if TYPE is scalar. */
3625
3626 int
3627 is_scalar_type (struct type *type)
3628 {
3629 type = check_typedef (type);
3630
3631 if (is_fixed_point_type (type))
3632 return 0; /* Implemented as a scalar, but more like a floating point. */
3633
3634 switch (type->code ())
3635 {
3636 case TYPE_CODE_ARRAY:
3637 case TYPE_CODE_STRUCT:
3638 case TYPE_CODE_UNION:
3639 case TYPE_CODE_SET:
3640 case TYPE_CODE_STRING:
3641 return 0;
3642 default:
3643 return 1;
3644 }
3645 }
3646
3647 /* Return true if T is scalar, or a composite type which in practice has
3648 the memory layout of a scalar type. E.g., an array or struct with only
3649 one scalar element inside it, or a union with only scalar elements. */
3650
3651 int
3652 is_scalar_type_recursive (struct type *t)
3653 {
3654 t = check_typedef (t);
3655
3656 if (is_scalar_type (t))
3657 return 1;
3658 /* Are we dealing with an array or string of known dimensions? */
3659 else if ((t->code () == TYPE_CODE_ARRAY
3660 || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1
3661 && t->index_type ()->code () == TYPE_CODE_RANGE)
3662 {
3663 LONGEST low_bound, high_bound;
3664 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3665
3666 get_discrete_bounds (t->index_type (), &low_bound, &high_bound);
3667
3668 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3669 }
3670 /* Are we dealing with a struct with one element? */
3671 else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1)
3672 return is_scalar_type_recursive (t->field (0).type ());
3673 else if (t->code () == TYPE_CODE_UNION)
3674 {
3675 int i, n = t->num_fields ();
3676
3677 /* If all elements of the union are scalar, then the union is scalar. */
3678 for (i = 0; i < n; i++)
3679 if (!is_scalar_type_recursive (t->field (i).type ()))
3680 return 0;
3681
3682 return 1;
3683 }
3684
3685 return 0;
3686 }
3687
3688 /* Return true is T is a class or a union. False otherwise. */
3689
3690 int
3691 class_or_union_p (const struct type *t)
3692 {
3693 return (t->code () == TYPE_CODE_STRUCT
3694 || t->code () == TYPE_CODE_UNION);
3695 }
3696
3697 /* A helper function which returns true if types A and B represent the
3698 "same" class type. This is true if the types have the same main
3699 type, or the same name. */
3700
3701 int
3702 class_types_same_p (const struct type *a, const struct type *b)
3703 {
3704 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3705 || (a->name () && b->name ()
3706 && !strcmp (a->name (), b->name ())));
3707 }
3708
3709 /* If BASE is an ancestor of DCLASS return the distance between them.
3710 otherwise return -1;
3711 eg:
3712
3713 class A {};
3714 class B: public A {};
3715 class C: public B {};
3716 class D: C {};
3717
3718 distance_to_ancestor (A, A, 0) = 0
3719 distance_to_ancestor (A, B, 0) = 1
3720 distance_to_ancestor (A, C, 0) = 2
3721 distance_to_ancestor (A, D, 0) = 3
3722
3723 If PUBLIC is 1 then only public ancestors are considered,
3724 and the function returns the distance only if BASE is a public ancestor
3725 of DCLASS.
3726 Eg:
3727
3728 distance_to_ancestor (A, D, 1) = -1. */
3729
3730 static int
3731 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3732 {
3733 int i;
3734 int d;
3735
3736 base = check_typedef (base);
3737 dclass = check_typedef (dclass);
3738
3739 if (class_types_same_p (base, dclass))
3740 return 0;
3741
3742 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3743 {
3744 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3745 continue;
3746
3747 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3748 if (d >= 0)
3749 return 1 + d;
3750 }
3751
3752 return -1;
3753 }
3754
3755 /* Check whether BASE is an ancestor or base class or DCLASS
3756 Return 1 if so, and 0 if not.
3757 Note: If BASE and DCLASS are of the same type, this function
3758 will return 1. So for some class A, is_ancestor (A, A) will
3759 return 1. */
3760
3761 int
3762 is_ancestor (struct type *base, struct type *dclass)
3763 {
3764 return distance_to_ancestor (base, dclass, 0) >= 0;
3765 }
3766
3767 /* Like is_ancestor, but only returns true when BASE is a public
3768 ancestor of DCLASS. */
3769
3770 int
3771 is_public_ancestor (struct type *base, struct type *dclass)
3772 {
3773 return distance_to_ancestor (base, dclass, 1) >= 0;
3774 }
3775
3776 /* A helper function for is_unique_ancestor. */
3777
3778 static int
3779 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3780 int *offset,
3781 const gdb_byte *valaddr, int embedded_offset,
3782 CORE_ADDR address, struct value *val)
3783 {
3784 int i, count = 0;
3785
3786 base = check_typedef (base);
3787 dclass = check_typedef (dclass);
3788
3789 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3790 {
3791 struct type *iter;
3792 int this_offset;
3793
3794 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3795
3796 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3797 address, val);
3798
3799 if (class_types_same_p (base, iter))
3800 {
3801 /* If this is the first subclass, set *OFFSET and set count
3802 to 1. Otherwise, if this is at the same offset as
3803 previous instances, do nothing. Otherwise, increment
3804 count. */
3805 if (*offset == -1)
3806 {
3807 *offset = this_offset;
3808 count = 1;
3809 }
3810 else if (this_offset == *offset)
3811 {
3812 /* Nothing. */
3813 }
3814 else
3815 ++count;
3816 }
3817 else
3818 count += is_unique_ancestor_worker (base, iter, offset,
3819 valaddr,
3820 embedded_offset + this_offset,
3821 address, val);
3822 }
3823
3824 return count;
3825 }
3826
3827 /* Like is_ancestor, but only returns true if BASE is a unique base
3828 class of the type of VAL. */
3829
3830 int
3831 is_unique_ancestor (struct type *base, struct value *val)
3832 {
3833 int offset = -1;
3834
3835 return is_unique_ancestor_worker (base, value_type (val), &offset,
3836 value_contents_for_printing (val),
3837 value_embedded_offset (val),
3838 value_address (val), val) == 1;
3839 }
3840
3841 /* See gdbtypes.h. */
3842
3843 enum bfd_endian
3844 type_byte_order (const struct type *type)
3845 {
3846 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3847 if (type->endianity_is_not_default ())
3848 {
3849 if (byteorder == BFD_ENDIAN_BIG)
3850 return BFD_ENDIAN_LITTLE;
3851 else
3852 {
3853 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3854 return BFD_ENDIAN_BIG;
3855 }
3856 }
3857
3858 return byteorder;
3859 }
3860
3861 \f
3862 /* Overload resolution. */
3863
3864 /* Return the sum of the rank of A with the rank of B. */
3865
3866 struct rank
3867 sum_ranks (struct rank a, struct rank b)
3868 {
3869 struct rank c;
3870 c.rank = a.rank + b.rank;
3871 c.subrank = a.subrank + b.subrank;
3872 return c;
3873 }
3874
3875 /* Compare rank A and B and return:
3876 0 if a = b
3877 1 if a is better than b
3878 -1 if b is better than a. */
3879
3880 int
3881 compare_ranks (struct rank a, struct rank b)
3882 {
3883 if (a.rank == b.rank)
3884 {
3885 if (a.subrank == b.subrank)
3886 return 0;
3887 if (a.subrank < b.subrank)
3888 return 1;
3889 if (a.subrank > b.subrank)
3890 return -1;
3891 }
3892
3893 if (a.rank < b.rank)
3894 return 1;
3895
3896 /* a.rank > b.rank */
3897 return -1;
3898 }
3899
3900 /* Functions for overload resolution begin here. */
3901
3902 /* Compare two badness vectors A and B and return the result.
3903 0 => A and B are identical
3904 1 => A and B are incomparable
3905 2 => A is better than B
3906 3 => A is worse than B */
3907
3908 int
3909 compare_badness (const badness_vector &a, const badness_vector &b)
3910 {
3911 int i;
3912 int tmp;
3913 short found_pos = 0; /* any positives in c? */
3914 short found_neg = 0; /* any negatives in c? */
3915
3916 /* differing sizes => incomparable */
3917 if (a.size () != b.size ())
3918 return 1;
3919
3920 /* Subtract b from a */
3921 for (i = 0; i < a.size (); i++)
3922 {
3923 tmp = compare_ranks (b[i], a[i]);
3924 if (tmp > 0)
3925 found_pos = 1;
3926 else if (tmp < 0)
3927 found_neg = 1;
3928 }
3929
3930 if (found_pos)
3931 {
3932 if (found_neg)
3933 return 1; /* incomparable */
3934 else
3935 return 3; /* A > B */
3936 }
3937 else
3938 /* no positives */
3939 {
3940 if (found_neg)
3941 return 2; /* A < B */
3942 else
3943 return 0; /* A == B */
3944 }
3945 }
3946
3947 /* Rank a function by comparing its parameter types (PARMS), to the
3948 types of an argument list (ARGS). Return the badness vector. This
3949 has ARGS.size() + 1 entries. */
3950
3951 badness_vector
3952 rank_function (gdb::array_view<type *> parms,
3953 gdb::array_view<value *> args)
3954 {
3955 /* add 1 for the length-match rank. */
3956 badness_vector bv;
3957 bv.reserve (1 + args.size ());
3958
3959 /* First compare the lengths of the supplied lists.
3960 If there is a mismatch, set it to a high value. */
3961
3962 /* pai/1997-06-03 FIXME: when we have debug info about default
3963 arguments and ellipsis parameter lists, we should consider those
3964 and rank the length-match more finely. */
3965
3966 bv.push_back ((args.size () != parms.size ())
3967 ? LENGTH_MISMATCH_BADNESS
3968 : EXACT_MATCH_BADNESS);
3969
3970 /* Now rank all the parameters of the candidate function. */
3971 size_t min_len = std::min (parms.size (), args.size ());
3972
3973 for (size_t i = 0; i < min_len; i++)
3974 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3975 args[i]));
3976
3977 /* If more arguments than parameters, add dummy entries. */
3978 for (size_t i = min_len; i < args.size (); i++)
3979 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3980
3981 return bv;
3982 }
3983
3984 /* Compare the names of two integer types, assuming that any sign
3985 qualifiers have been checked already. We do it this way because
3986 there may be an "int" in the name of one of the types. */
3987
3988 static int
3989 integer_types_same_name_p (const char *first, const char *second)
3990 {
3991 int first_p, second_p;
3992
3993 /* If both are shorts, return 1; if neither is a short, keep
3994 checking. */
3995 first_p = (strstr (first, "short") != NULL);
3996 second_p = (strstr (second, "short") != NULL);
3997 if (first_p && second_p)
3998 return 1;
3999 if (first_p || second_p)
4000 return 0;
4001
4002 /* Likewise for long. */
4003 first_p = (strstr (first, "long") != NULL);
4004 second_p = (strstr (second, "long") != NULL);
4005 if (first_p && second_p)
4006 return 1;
4007 if (first_p || second_p)
4008 return 0;
4009
4010 /* Likewise for char. */
4011 first_p = (strstr (first, "char") != NULL);
4012 second_p = (strstr (second, "char") != NULL);
4013 if (first_p && second_p)
4014 return 1;
4015 if (first_p || second_p)
4016 return 0;
4017
4018 /* They must both be ints. */
4019 return 1;
4020 }
4021
4022 /* Compares type A to type B. Returns true if they represent the same
4023 type, false otherwise. */
4024
4025 bool
4026 types_equal (struct type *a, struct type *b)
4027 {
4028 /* Identical type pointers. */
4029 /* However, this still doesn't catch all cases of same type for b
4030 and a. The reason is that builtin types are different from
4031 the same ones constructed from the object. */
4032 if (a == b)
4033 return true;
4034
4035 /* Resolve typedefs */
4036 if (a->code () == TYPE_CODE_TYPEDEF)
4037 a = check_typedef (a);
4038 if (b->code () == TYPE_CODE_TYPEDEF)
4039 b = check_typedef (b);
4040
4041 /* If after resolving typedefs a and b are not of the same type
4042 code then they are not equal. */
4043 if (a->code () != b->code ())
4044 return false;
4045
4046 /* If a and b are both pointers types or both reference types then
4047 they are equal of the same type iff the objects they refer to are
4048 of the same type. */
4049 if (a->code () == TYPE_CODE_PTR
4050 || a->code () == TYPE_CODE_REF)
4051 return types_equal (TYPE_TARGET_TYPE (a),
4052 TYPE_TARGET_TYPE (b));
4053
4054 /* Well, damnit, if the names are exactly the same, I'll say they
4055 are exactly the same. This happens when we generate method
4056 stubs. The types won't point to the same address, but they
4057 really are the same. */
4058
4059 if (a->name () && b->name ()
4060 && strcmp (a->name (), b->name ()) == 0)
4061 return true;
4062
4063 /* Check if identical after resolving typedefs. */
4064 if (a == b)
4065 return true;
4066
4067 /* Two function types are equal if their argument and return types
4068 are equal. */
4069 if (a->code () == TYPE_CODE_FUNC)
4070 {
4071 int i;
4072
4073 if (a->num_fields () != b->num_fields ())
4074 return false;
4075
4076 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
4077 return false;
4078
4079 for (i = 0; i < a->num_fields (); ++i)
4080 if (!types_equal (a->field (i).type (), b->field (i).type ()))
4081 return false;
4082
4083 return true;
4084 }
4085
4086 return false;
4087 }
4088 \f
4089 /* Deep comparison of types. */
4090
4091 /* An entry in the type-equality bcache. */
4092
4093 struct type_equality_entry
4094 {
4095 type_equality_entry (struct type *t1, struct type *t2)
4096 : type1 (t1),
4097 type2 (t2)
4098 {
4099 }
4100
4101 struct type *type1, *type2;
4102 };
4103
4104 /* A helper function to compare two strings. Returns true if they are
4105 the same, false otherwise. Handles NULLs properly. */
4106
4107 static bool
4108 compare_maybe_null_strings (const char *s, const char *t)
4109 {
4110 if (s == NULL || t == NULL)
4111 return s == t;
4112 return strcmp (s, t) == 0;
4113 }
4114
4115 /* A helper function for check_types_worklist that checks two types for
4116 "deep" equality. Returns true if the types are considered the
4117 same, false otherwise. */
4118
4119 static bool
4120 check_types_equal (struct type *type1, struct type *type2,
4121 std::vector<type_equality_entry> *worklist)
4122 {
4123 type1 = check_typedef (type1);
4124 type2 = check_typedef (type2);
4125
4126 if (type1 == type2)
4127 return true;
4128
4129 if (type1->code () != type2->code ()
4130 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
4131 || type1->is_unsigned () != type2->is_unsigned ()
4132 || type1->has_no_signedness () != type2->has_no_signedness ()
4133 || type1->endianity_is_not_default () != type2->endianity_is_not_default ()
4134 || type1->has_varargs () != type2->has_varargs ()
4135 || type1->is_vector () != type2->is_vector ()
4136 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
4137 || type1->instance_flags () != type2->instance_flags ()
4138 || type1->num_fields () != type2->num_fields ())
4139 return false;
4140
4141 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4142 return false;
4143 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4144 return false;
4145
4146 if (type1->code () == TYPE_CODE_RANGE)
4147 {
4148 if (*type1->bounds () != *type2->bounds ())
4149 return false;
4150 }
4151 else
4152 {
4153 int i;
4154
4155 for (i = 0; i < type1->num_fields (); ++i)
4156 {
4157 const struct field *field1 = &type1->field (i);
4158 const struct field *field2 = &type2->field (i);
4159
4160 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4161 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4162 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
4163 return false;
4164 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4165 FIELD_NAME (*field2)))
4166 return false;
4167 switch (FIELD_LOC_KIND (*field1))
4168 {
4169 case FIELD_LOC_KIND_BITPOS:
4170 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
4171 return false;
4172 break;
4173 case FIELD_LOC_KIND_ENUMVAL:
4174 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
4175 return false;
4176 break;
4177 case FIELD_LOC_KIND_PHYSADDR:
4178 if (FIELD_STATIC_PHYSADDR (*field1)
4179 != FIELD_STATIC_PHYSADDR (*field2))
4180 return false;
4181 break;
4182 case FIELD_LOC_KIND_PHYSNAME:
4183 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4184 FIELD_STATIC_PHYSNAME (*field2)))
4185 return false;
4186 break;
4187 case FIELD_LOC_KIND_DWARF_BLOCK:
4188 {
4189 struct dwarf2_locexpr_baton *block1, *block2;
4190
4191 block1 = FIELD_DWARF_BLOCK (*field1);
4192 block2 = FIELD_DWARF_BLOCK (*field2);
4193 if (block1->per_cu != block2->per_cu
4194 || block1->size != block2->size
4195 || memcmp (block1->data, block2->data, block1->size) != 0)
4196 return false;
4197 }
4198 break;
4199 default:
4200 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4201 "%d by check_types_equal"),
4202 FIELD_LOC_KIND (*field1));
4203 }
4204
4205 worklist->emplace_back (field1->type (), field2->type ());
4206 }
4207 }
4208
4209 if (TYPE_TARGET_TYPE (type1) != NULL)
4210 {
4211 if (TYPE_TARGET_TYPE (type2) == NULL)
4212 return false;
4213
4214 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4215 TYPE_TARGET_TYPE (type2));
4216 }
4217 else if (TYPE_TARGET_TYPE (type2) != NULL)
4218 return false;
4219
4220 return true;
4221 }
4222
4223 /* Check types on a worklist for equality. Returns false if any pair
4224 is not equal, true if they are all considered equal. */
4225
4226 static bool
4227 check_types_worklist (std::vector<type_equality_entry> *worklist,
4228 gdb::bcache *cache)
4229 {
4230 while (!worklist->empty ())
4231 {
4232 bool added;
4233
4234 struct type_equality_entry entry = std::move (worklist->back ());
4235 worklist->pop_back ();
4236
4237 /* If the type pair has already been visited, we know it is
4238 ok. */
4239 cache->insert (&entry, sizeof (entry), &added);
4240 if (!added)
4241 continue;
4242
4243 if (!check_types_equal (entry.type1, entry.type2, worklist))
4244 return false;
4245 }
4246
4247 return true;
4248 }
4249
4250 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4251 "deep comparison". Otherwise return false. */
4252
4253 bool
4254 types_deeply_equal (struct type *type1, struct type *type2)
4255 {
4256 std::vector<type_equality_entry> worklist;
4257
4258 gdb_assert (type1 != NULL && type2 != NULL);
4259
4260 /* Early exit for the simple case. */
4261 if (type1 == type2)
4262 return true;
4263
4264 gdb::bcache cache;
4265 worklist.emplace_back (type1, type2);
4266 return check_types_worklist (&worklist, &cache);
4267 }
4268
4269 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4270 Otherwise return one. */
4271
4272 int
4273 type_not_allocated (const struct type *type)
4274 {
4275 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4276
4277 return (prop != nullptr && prop->kind () == PROP_CONST
4278 && prop->const_val () == 0);
4279 }
4280
4281 /* Associated status of type TYPE. Return zero if type TYPE is associated.
4282 Otherwise return one. */
4283
4284 int
4285 type_not_associated (const struct type *type)
4286 {
4287 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4288
4289 return (prop != nullptr && prop->kind () == PROP_CONST
4290 && prop->const_val () == 0);
4291 }
4292
4293 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4294
4295 static struct rank
4296 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4297 {
4298 struct rank rank = {0,0};
4299
4300 switch (arg->code ())
4301 {
4302 case TYPE_CODE_PTR:
4303
4304 /* Allowed pointer conversions are:
4305 (a) pointer to void-pointer conversion. */
4306 if (TYPE_TARGET_TYPE (parm)->code () == TYPE_CODE_VOID)
4307 return VOID_PTR_CONVERSION_BADNESS;
4308
4309 /* (b) pointer to ancestor-pointer conversion. */
4310 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4311 TYPE_TARGET_TYPE (arg),
4312 0);
4313 if (rank.subrank >= 0)
4314 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4315
4316 return INCOMPATIBLE_TYPE_BADNESS;
4317 case TYPE_CODE_ARRAY:
4318 {
4319 struct type *t1 = TYPE_TARGET_TYPE (parm);
4320 struct type *t2 = TYPE_TARGET_TYPE (arg);
4321
4322 if (types_equal (t1, t2))
4323 {
4324 /* Make sure they are CV equal. */
4325 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4326 rank.subrank |= CV_CONVERSION_CONST;
4327 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4328 rank.subrank |= CV_CONVERSION_VOLATILE;
4329 if (rank.subrank != 0)
4330 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4331 return EXACT_MATCH_BADNESS;
4332 }
4333 return INCOMPATIBLE_TYPE_BADNESS;
4334 }
4335 case TYPE_CODE_FUNC:
4336 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4337 case TYPE_CODE_INT:
4338 if (value != NULL && value_type (value)->code () == TYPE_CODE_INT)
4339 {
4340 if (value_as_long (value) == 0)
4341 {
4342 /* Null pointer conversion: allow it to be cast to a pointer.
4343 [4.10.1 of C++ standard draft n3290] */
4344 return NULL_POINTER_CONVERSION_BADNESS;
4345 }
4346 else
4347 {
4348 /* If type checking is disabled, allow the conversion. */
4349 if (!strict_type_checking)
4350 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4351 }
4352 }
4353 /* fall through */
4354 case TYPE_CODE_ENUM:
4355 case TYPE_CODE_FLAGS:
4356 case TYPE_CODE_CHAR:
4357 case TYPE_CODE_RANGE:
4358 case TYPE_CODE_BOOL:
4359 default:
4360 return INCOMPATIBLE_TYPE_BADNESS;
4361 }
4362 }
4363
4364 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4365
4366 static struct rank
4367 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4368 {
4369 switch (arg->code ())
4370 {
4371 case TYPE_CODE_PTR:
4372 case TYPE_CODE_ARRAY:
4373 return rank_one_type (TYPE_TARGET_TYPE (parm),
4374 TYPE_TARGET_TYPE (arg), NULL);
4375 default:
4376 return INCOMPATIBLE_TYPE_BADNESS;
4377 }
4378 }
4379
4380 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4381
4382 static struct rank
4383 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4384 {
4385 switch (arg->code ())
4386 {
4387 case TYPE_CODE_PTR: /* funcptr -> func */
4388 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4389 default:
4390 return INCOMPATIBLE_TYPE_BADNESS;
4391 }
4392 }
4393
4394 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4395
4396 static struct rank
4397 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4398 {
4399 switch (arg->code ())
4400 {
4401 case TYPE_CODE_INT:
4402 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4403 {
4404 /* Deal with signed, unsigned, and plain chars and
4405 signed and unsigned ints. */
4406 if (parm->has_no_signedness ())
4407 {
4408 /* This case only for character types. */
4409 if (arg->has_no_signedness ())
4410 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4411 else /* signed/unsigned char -> plain char */
4412 return INTEGER_CONVERSION_BADNESS;
4413 }
4414 else if (parm->is_unsigned ())
4415 {
4416 if (arg->is_unsigned ())
4417 {
4418 /* unsigned int -> unsigned int, or
4419 unsigned long -> unsigned long */
4420 if (integer_types_same_name_p (parm->name (),
4421 arg->name ()))
4422 return EXACT_MATCH_BADNESS;
4423 else if (integer_types_same_name_p (arg->name (),
4424 "int")
4425 && integer_types_same_name_p (parm->name (),
4426 "long"))
4427 /* unsigned int -> unsigned long */
4428 return INTEGER_PROMOTION_BADNESS;
4429 else
4430 /* unsigned long -> unsigned int */
4431 return INTEGER_CONVERSION_BADNESS;
4432 }
4433 else
4434 {
4435 if (integer_types_same_name_p (arg->name (),
4436 "long")
4437 && integer_types_same_name_p (parm->name (),
4438 "int"))
4439 /* signed long -> unsigned int */
4440 return INTEGER_CONVERSION_BADNESS;
4441 else
4442 /* signed int/long -> unsigned int/long */
4443 return INTEGER_CONVERSION_BADNESS;
4444 }
4445 }
4446 else if (!arg->has_no_signedness () && !arg->is_unsigned ())
4447 {
4448 if (integer_types_same_name_p (parm->name (),
4449 arg->name ()))
4450 return EXACT_MATCH_BADNESS;
4451 else if (integer_types_same_name_p (arg->name (),
4452 "int")
4453 && integer_types_same_name_p (parm->name (),
4454 "long"))
4455 return INTEGER_PROMOTION_BADNESS;
4456 else
4457 return INTEGER_CONVERSION_BADNESS;
4458 }
4459 else
4460 return INTEGER_CONVERSION_BADNESS;
4461 }
4462 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4463 return INTEGER_PROMOTION_BADNESS;
4464 else
4465 return INTEGER_CONVERSION_BADNESS;
4466 case TYPE_CODE_ENUM:
4467 case TYPE_CODE_FLAGS:
4468 case TYPE_CODE_CHAR:
4469 case TYPE_CODE_RANGE:
4470 case TYPE_CODE_BOOL:
4471 if (TYPE_DECLARED_CLASS (arg))
4472 return INCOMPATIBLE_TYPE_BADNESS;
4473 return INTEGER_PROMOTION_BADNESS;
4474 case TYPE_CODE_FLT:
4475 return INT_FLOAT_CONVERSION_BADNESS;
4476 case TYPE_CODE_PTR:
4477 return NS_POINTER_CONVERSION_BADNESS;
4478 default:
4479 return INCOMPATIBLE_TYPE_BADNESS;
4480 }
4481 }
4482
4483 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4484
4485 static struct rank
4486 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4487 {
4488 switch (arg->code ())
4489 {
4490 case TYPE_CODE_INT:
4491 case TYPE_CODE_CHAR:
4492 case TYPE_CODE_RANGE:
4493 case TYPE_CODE_BOOL:
4494 case TYPE_CODE_ENUM:
4495 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4496 return INCOMPATIBLE_TYPE_BADNESS;
4497 return INTEGER_CONVERSION_BADNESS;
4498 case TYPE_CODE_FLT:
4499 return INT_FLOAT_CONVERSION_BADNESS;
4500 default:
4501 return INCOMPATIBLE_TYPE_BADNESS;
4502 }
4503 }
4504
4505 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4506
4507 static struct rank
4508 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4509 {
4510 switch (arg->code ())
4511 {
4512 case TYPE_CODE_RANGE:
4513 case TYPE_CODE_BOOL:
4514 case TYPE_CODE_ENUM:
4515 if (TYPE_DECLARED_CLASS (arg))
4516 return INCOMPATIBLE_TYPE_BADNESS;
4517 return INTEGER_CONVERSION_BADNESS;
4518 case TYPE_CODE_FLT:
4519 return INT_FLOAT_CONVERSION_BADNESS;
4520 case TYPE_CODE_INT:
4521 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4522 return INTEGER_CONVERSION_BADNESS;
4523 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4524 return INTEGER_PROMOTION_BADNESS;
4525 /* fall through */
4526 case TYPE_CODE_CHAR:
4527 /* Deal with signed, unsigned, and plain chars for C++ and
4528 with int cases falling through from previous case. */
4529 if (parm->has_no_signedness ())
4530 {
4531 if (arg->has_no_signedness ())
4532 return EXACT_MATCH_BADNESS;
4533 else
4534 return INTEGER_CONVERSION_BADNESS;
4535 }
4536 else if (parm->is_unsigned ())
4537 {
4538 if (arg->is_unsigned ())
4539 return EXACT_MATCH_BADNESS;
4540 else
4541 return INTEGER_PROMOTION_BADNESS;
4542 }
4543 else if (!arg->has_no_signedness () && !arg->is_unsigned ())
4544 return EXACT_MATCH_BADNESS;
4545 else
4546 return INTEGER_CONVERSION_BADNESS;
4547 default:
4548 return INCOMPATIBLE_TYPE_BADNESS;
4549 }
4550 }
4551
4552 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4553
4554 static struct rank
4555 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4556 {
4557 switch (arg->code ())
4558 {
4559 case TYPE_CODE_INT:
4560 case TYPE_CODE_CHAR:
4561 case TYPE_CODE_RANGE:
4562 case TYPE_CODE_BOOL:
4563 case TYPE_CODE_ENUM:
4564 return INTEGER_CONVERSION_BADNESS;
4565 case TYPE_CODE_FLT:
4566 return INT_FLOAT_CONVERSION_BADNESS;
4567 default:
4568 return INCOMPATIBLE_TYPE_BADNESS;
4569 }
4570 }
4571
4572 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4573
4574 static struct rank
4575 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4576 {
4577 switch (arg->code ())
4578 {
4579 /* n3290 draft, section 4.12.1 (conv.bool):
4580
4581 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4582 pointer to member type can be converted to a prvalue of type
4583 bool. A zero value, null pointer value, or null member pointer
4584 value is converted to false; any other value is converted to
4585 true. A prvalue of type std::nullptr_t can be converted to a
4586 prvalue of type bool; the resulting value is false." */
4587 case TYPE_CODE_INT:
4588 case TYPE_CODE_CHAR:
4589 case TYPE_CODE_ENUM:
4590 case TYPE_CODE_FLT:
4591 case TYPE_CODE_MEMBERPTR:
4592 case TYPE_CODE_PTR:
4593 return BOOL_CONVERSION_BADNESS;
4594 case TYPE_CODE_RANGE:
4595 return INCOMPATIBLE_TYPE_BADNESS;
4596 case TYPE_CODE_BOOL:
4597 return EXACT_MATCH_BADNESS;
4598 default:
4599 return INCOMPATIBLE_TYPE_BADNESS;
4600 }
4601 }
4602
4603 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4604
4605 static struct rank
4606 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4607 {
4608 switch (arg->code ())
4609 {
4610 case TYPE_CODE_FLT:
4611 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4612 return FLOAT_PROMOTION_BADNESS;
4613 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4614 return EXACT_MATCH_BADNESS;
4615 else
4616 return FLOAT_CONVERSION_BADNESS;
4617 case TYPE_CODE_INT:
4618 case TYPE_CODE_BOOL:
4619 case TYPE_CODE_ENUM:
4620 case TYPE_CODE_RANGE:
4621 case TYPE_CODE_CHAR:
4622 return INT_FLOAT_CONVERSION_BADNESS;
4623 default:
4624 return INCOMPATIBLE_TYPE_BADNESS;
4625 }
4626 }
4627
4628 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4629
4630 static struct rank
4631 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4632 {
4633 switch (arg->code ())
4634 { /* Strictly not needed for C++, but... */
4635 case TYPE_CODE_FLT:
4636 return FLOAT_PROMOTION_BADNESS;
4637 case TYPE_CODE_COMPLEX:
4638 return EXACT_MATCH_BADNESS;
4639 default:
4640 return INCOMPATIBLE_TYPE_BADNESS;
4641 }
4642 }
4643
4644 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4645
4646 static struct rank
4647 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4648 {
4649 struct rank rank = {0, 0};
4650
4651 switch (arg->code ())
4652 {
4653 case TYPE_CODE_STRUCT:
4654 /* Check for derivation */
4655 rank.subrank = distance_to_ancestor (parm, arg, 0);
4656 if (rank.subrank >= 0)
4657 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4658 /* fall through */
4659 default:
4660 return INCOMPATIBLE_TYPE_BADNESS;
4661 }
4662 }
4663
4664 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4665
4666 static struct rank
4667 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4668 {
4669 switch (arg->code ())
4670 {
4671 /* Not in C++ */
4672 case TYPE_CODE_SET:
4673 return rank_one_type (parm->field (0).type (),
4674 arg->field (0).type (), NULL);
4675 default:
4676 return INCOMPATIBLE_TYPE_BADNESS;
4677 }
4678 }
4679
4680 /* Compare one type (PARM) for compatibility with another (ARG).
4681 * PARM is intended to be the parameter type of a function; and
4682 * ARG is the supplied argument's type. This function tests if
4683 * the latter can be converted to the former.
4684 * VALUE is the argument's value or NULL if none (or called recursively)
4685 *
4686 * Return 0 if they are identical types;
4687 * Otherwise, return an integer which corresponds to how compatible
4688 * PARM is to ARG. The higher the return value, the worse the match.
4689 * Generally the "bad" conversions are all uniformly assigned a 100. */
4690
4691 struct rank
4692 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4693 {
4694 struct rank rank = {0,0};
4695
4696 /* Resolve typedefs */
4697 if (parm->code () == TYPE_CODE_TYPEDEF)
4698 parm = check_typedef (parm);
4699 if (arg->code () == TYPE_CODE_TYPEDEF)
4700 arg = check_typedef (arg);
4701
4702 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4703 {
4704 if (VALUE_LVAL (value) == not_lval)
4705 {
4706 /* Rvalues should preferably bind to rvalue references or const
4707 lvalue references. */
4708 if (parm->code () == TYPE_CODE_RVALUE_REF)
4709 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4710 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4711 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4712 else
4713 return INCOMPATIBLE_TYPE_BADNESS;
4714 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4715 }
4716 else
4717 {
4718 /* It's illegal to pass an lvalue as an rvalue. */
4719 if (parm->code () == TYPE_CODE_RVALUE_REF)
4720 return INCOMPATIBLE_TYPE_BADNESS;
4721 }
4722 }
4723
4724 if (types_equal (parm, arg))
4725 {
4726 struct type *t1 = parm;
4727 struct type *t2 = arg;
4728
4729 /* For pointers and references, compare target type. */
4730 if (parm->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4731 {
4732 t1 = TYPE_TARGET_TYPE (parm);
4733 t2 = TYPE_TARGET_TYPE (arg);
4734 }
4735
4736 /* Make sure they are CV equal, too. */
4737 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4738 rank.subrank |= CV_CONVERSION_CONST;
4739 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4740 rank.subrank |= CV_CONVERSION_VOLATILE;
4741 if (rank.subrank != 0)
4742 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4743 return EXACT_MATCH_BADNESS;
4744 }
4745
4746 /* See through references, since we can almost make non-references
4747 references. */
4748
4749 if (TYPE_IS_REFERENCE (arg))
4750 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4751 REFERENCE_SEE_THROUGH_BADNESS));
4752 if (TYPE_IS_REFERENCE (parm))
4753 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4754 REFERENCE_SEE_THROUGH_BADNESS));
4755 if (overload_debug)
4756 /* Debugging only. */
4757 fprintf_filtered (gdb_stderr,
4758 "------ Arg is %s [%d], parm is %s [%d]\n",
4759 arg->name (), arg->code (),
4760 parm->name (), parm->code ());
4761
4762 /* x -> y means arg of type x being supplied for parameter of type y. */
4763
4764 switch (parm->code ())
4765 {
4766 case TYPE_CODE_PTR:
4767 return rank_one_type_parm_ptr (parm, arg, value);
4768 case TYPE_CODE_ARRAY:
4769 return rank_one_type_parm_array (parm, arg, value);
4770 case TYPE_CODE_FUNC:
4771 return rank_one_type_parm_func (parm, arg, value);
4772 case TYPE_CODE_INT:
4773 return rank_one_type_parm_int (parm, arg, value);
4774 case TYPE_CODE_ENUM:
4775 return rank_one_type_parm_enum (parm, arg, value);
4776 case TYPE_CODE_CHAR:
4777 return rank_one_type_parm_char (parm, arg, value);
4778 case TYPE_CODE_RANGE:
4779 return rank_one_type_parm_range (parm, arg, value);
4780 case TYPE_CODE_BOOL:
4781 return rank_one_type_parm_bool (parm, arg, value);
4782 case TYPE_CODE_FLT:
4783 return rank_one_type_parm_float (parm, arg, value);
4784 case TYPE_CODE_COMPLEX:
4785 return rank_one_type_parm_complex (parm, arg, value);
4786 case TYPE_CODE_STRUCT:
4787 return rank_one_type_parm_struct (parm, arg, value);
4788 case TYPE_CODE_SET:
4789 return rank_one_type_parm_set (parm, arg, value);
4790 default:
4791 return INCOMPATIBLE_TYPE_BADNESS;
4792 } /* switch (arg->code ()) */
4793 }
4794
4795 /* End of functions for overload resolution. */
4796 \f
4797 /* Routines to pretty-print types. */
4798
4799 static void
4800 print_bit_vector (B_TYPE *bits, int nbits)
4801 {
4802 int bitno;
4803
4804 for (bitno = 0; bitno < nbits; bitno++)
4805 {
4806 if ((bitno % 8) == 0)
4807 {
4808 puts_filtered (" ");
4809 }
4810 if (B_TST (bits, bitno))
4811 printf_filtered (("1"));
4812 else
4813 printf_filtered (("0"));
4814 }
4815 }
4816
4817 /* Note the first arg should be the "this" pointer, we may not want to
4818 include it since we may get into a infinitely recursive
4819 situation. */
4820
4821 static void
4822 print_args (struct field *args, int nargs, int spaces)
4823 {
4824 if (args != NULL)
4825 {
4826 int i;
4827
4828 for (i = 0; i < nargs; i++)
4829 {
4830 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4831 args[i].name != NULL ? args[i].name : "<NULL>");
4832 recursive_dump_type (args[i].type (), spaces + 2);
4833 }
4834 }
4835 }
4836
4837 int
4838 field_is_static (struct field *f)
4839 {
4840 /* "static" fields are the fields whose location is not relative
4841 to the address of the enclosing struct. It would be nice to
4842 have a dedicated flag that would be set for static fields when
4843 the type is being created. But in practice, checking the field
4844 loc_kind should give us an accurate answer. */
4845 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4846 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4847 }
4848
4849 static void
4850 dump_fn_fieldlists (struct type *type, int spaces)
4851 {
4852 int method_idx;
4853 int overload_idx;
4854 struct fn_field *f;
4855
4856 printfi_filtered (spaces, "fn_fieldlists ");
4857 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4858 printf_filtered ("\n");
4859 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4860 {
4861 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4862 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4863 method_idx,
4864 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4865 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4866 gdb_stdout);
4867 printf_filtered (_(") length %d\n"),
4868 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4869 for (overload_idx = 0;
4870 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4871 overload_idx++)
4872 {
4873 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4874 overload_idx,
4875 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4876 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4877 gdb_stdout);
4878 printf_filtered (")\n");
4879 printfi_filtered (spaces + 8, "type ");
4880 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4881 gdb_stdout);
4882 printf_filtered ("\n");
4883
4884 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4885 spaces + 8 + 2);
4886
4887 printfi_filtered (spaces + 8, "args ");
4888 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4889 gdb_stdout);
4890 printf_filtered ("\n");
4891 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4892 TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (),
4893 spaces + 8 + 2);
4894 printfi_filtered (spaces + 8, "fcontext ");
4895 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4896 gdb_stdout);
4897 printf_filtered ("\n");
4898
4899 printfi_filtered (spaces + 8, "is_const %d\n",
4900 TYPE_FN_FIELD_CONST (f, overload_idx));
4901 printfi_filtered (spaces + 8, "is_volatile %d\n",
4902 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4903 printfi_filtered (spaces + 8, "is_private %d\n",
4904 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4905 printfi_filtered (spaces + 8, "is_protected %d\n",
4906 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4907 printfi_filtered (spaces + 8, "is_stub %d\n",
4908 TYPE_FN_FIELD_STUB (f, overload_idx));
4909 printfi_filtered (spaces + 8, "defaulted %d\n",
4910 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4911 printfi_filtered (spaces + 8, "is_deleted %d\n",
4912 TYPE_FN_FIELD_DELETED (f, overload_idx));
4913 printfi_filtered (spaces + 8, "voffset %u\n",
4914 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4915 }
4916 }
4917 }
4918
4919 static void
4920 print_cplus_stuff (struct type *type, int spaces)
4921 {
4922 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4923 printfi_filtered (spaces, "vptr_basetype ");
4924 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4925 puts_filtered ("\n");
4926 if (TYPE_VPTR_BASETYPE (type) != NULL)
4927 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4928
4929 printfi_filtered (spaces, "n_baseclasses %d\n",
4930 TYPE_N_BASECLASSES (type));
4931 printfi_filtered (spaces, "nfn_fields %d\n",
4932 TYPE_NFN_FIELDS (type));
4933 if (TYPE_N_BASECLASSES (type) > 0)
4934 {
4935 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4936 TYPE_N_BASECLASSES (type));
4937 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4938 gdb_stdout);
4939 printf_filtered (")");
4940
4941 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4942 TYPE_N_BASECLASSES (type));
4943 puts_filtered ("\n");
4944 }
4945 if (type->num_fields () > 0)
4946 {
4947 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4948 {
4949 printfi_filtered (spaces,
4950 "private_field_bits (%d bits at *",
4951 type->num_fields ());
4952 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4953 gdb_stdout);
4954 printf_filtered (")");
4955 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4956 type->num_fields ());
4957 puts_filtered ("\n");
4958 }
4959 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4960 {
4961 printfi_filtered (spaces,
4962 "protected_field_bits (%d bits at *",
4963 type->num_fields ());
4964 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4965 gdb_stdout);
4966 printf_filtered (")");
4967 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4968 type->num_fields ());
4969 puts_filtered ("\n");
4970 }
4971 }
4972 if (TYPE_NFN_FIELDS (type) > 0)
4973 {
4974 dump_fn_fieldlists (type, spaces);
4975 }
4976
4977 printfi_filtered (spaces, "calling_convention %d\n",
4978 TYPE_CPLUS_CALLING_CONVENTION (type));
4979 }
4980
4981 /* Print the contents of the TYPE's type_specific union, assuming that
4982 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4983
4984 static void
4985 print_gnat_stuff (struct type *type, int spaces)
4986 {
4987 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4988
4989 if (descriptive_type == NULL)
4990 printfi_filtered (spaces + 2, "no descriptive type\n");
4991 else
4992 {
4993 printfi_filtered (spaces + 2, "descriptive type\n");
4994 recursive_dump_type (descriptive_type, spaces + 4);
4995 }
4996 }
4997
4998 /* Print the contents of the TYPE's type_specific union, assuming that
4999 its type-specific kind is TYPE_SPECIFIC_FIXED_POINT. */
5000
5001 static void
5002 print_fixed_point_type_info (struct type *type, int spaces)
5003 {
5004 printfi_filtered (spaces + 2, "scaling factor: %s\n",
5005 type->fixed_point_scaling_factor ().str ().c_str ());
5006 }
5007
5008 static struct obstack dont_print_type_obstack;
5009
5010 /* Print the dynamic_prop PROP. */
5011
5012 static void
5013 dump_dynamic_prop (dynamic_prop const& prop)
5014 {
5015 switch (prop.kind ())
5016 {
5017 case PROP_CONST:
5018 printf_filtered ("%s", plongest (prop.const_val ()));
5019 break;
5020 case PROP_UNDEFINED:
5021 printf_filtered ("(undefined)");
5022 break;
5023 case PROP_LOCEXPR:
5024 case PROP_LOCLIST:
5025 printf_filtered ("(dynamic)");
5026 break;
5027 default:
5028 gdb_assert_not_reached ("unhandled prop kind");
5029 break;
5030 }
5031 }
5032
5033 void
5034 recursive_dump_type (struct type *type, int spaces)
5035 {
5036 int idx;
5037
5038 if (spaces == 0)
5039 obstack_begin (&dont_print_type_obstack, 0);
5040
5041 if (type->num_fields () > 0
5042 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
5043 {
5044 struct type **first_dont_print
5045 = (struct type **) obstack_base (&dont_print_type_obstack);
5046
5047 int i = (struct type **)
5048 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
5049
5050 while (--i >= 0)
5051 {
5052 if (type == first_dont_print[i])
5053 {
5054 printfi_filtered (spaces, "type node ");
5055 gdb_print_host_address (type, gdb_stdout);
5056 printf_filtered (_(" <same as already seen type>\n"));
5057 return;
5058 }
5059 }
5060
5061 obstack_ptr_grow (&dont_print_type_obstack, type);
5062 }
5063
5064 printfi_filtered (spaces, "type node ");
5065 gdb_print_host_address (type, gdb_stdout);
5066 printf_filtered ("\n");
5067 printfi_filtered (spaces, "name '%s' (",
5068 type->name () ? type->name () : "<NULL>");
5069 gdb_print_host_address (type->name (), gdb_stdout);
5070 printf_filtered (")\n");
5071 printfi_filtered (spaces, "code 0x%x ", type->code ());
5072 switch (type->code ())
5073 {
5074 case TYPE_CODE_UNDEF:
5075 printf_filtered ("(TYPE_CODE_UNDEF)");
5076 break;
5077 case TYPE_CODE_PTR:
5078 printf_filtered ("(TYPE_CODE_PTR)");
5079 break;
5080 case TYPE_CODE_ARRAY:
5081 printf_filtered ("(TYPE_CODE_ARRAY)");
5082 break;
5083 case TYPE_CODE_STRUCT:
5084 printf_filtered ("(TYPE_CODE_STRUCT)");
5085 break;
5086 case TYPE_CODE_UNION:
5087 printf_filtered ("(TYPE_CODE_UNION)");
5088 break;
5089 case TYPE_CODE_ENUM:
5090 printf_filtered ("(TYPE_CODE_ENUM)");
5091 break;
5092 case TYPE_CODE_FLAGS:
5093 printf_filtered ("(TYPE_CODE_FLAGS)");
5094 break;
5095 case TYPE_CODE_FUNC:
5096 printf_filtered ("(TYPE_CODE_FUNC)");
5097 break;
5098 case TYPE_CODE_INT:
5099 printf_filtered ("(TYPE_CODE_INT)");
5100 break;
5101 case TYPE_CODE_FLT:
5102 printf_filtered ("(TYPE_CODE_FLT)");
5103 break;
5104 case TYPE_CODE_VOID:
5105 printf_filtered ("(TYPE_CODE_VOID)");
5106 break;
5107 case TYPE_CODE_SET:
5108 printf_filtered ("(TYPE_CODE_SET)");
5109 break;
5110 case TYPE_CODE_RANGE:
5111 printf_filtered ("(TYPE_CODE_RANGE)");
5112 break;
5113 case TYPE_CODE_STRING:
5114 printf_filtered ("(TYPE_CODE_STRING)");
5115 break;
5116 case TYPE_CODE_ERROR:
5117 printf_filtered ("(TYPE_CODE_ERROR)");
5118 break;
5119 case TYPE_CODE_MEMBERPTR:
5120 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
5121 break;
5122 case TYPE_CODE_METHODPTR:
5123 printf_filtered ("(TYPE_CODE_METHODPTR)");
5124 break;
5125 case TYPE_CODE_METHOD:
5126 printf_filtered ("(TYPE_CODE_METHOD)");
5127 break;
5128 case TYPE_CODE_REF:
5129 printf_filtered ("(TYPE_CODE_REF)");
5130 break;
5131 case TYPE_CODE_CHAR:
5132 printf_filtered ("(TYPE_CODE_CHAR)");
5133 break;
5134 case TYPE_CODE_BOOL:
5135 printf_filtered ("(TYPE_CODE_BOOL)");
5136 break;
5137 case TYPE_CODE_COMPLEX:
5138 printf_filtered ("(TYPE_CODE_COMPLEX)");
5139 break;
5140 case TYPE_CODE_TYPEDEF:
5141 printf_filtered ("(TYPE_CODE_TYPEDEF)");
5142 break;
5143 case TYPE_CODE_NAMESPACE:
5144 printf_filtered ("(TYPE_CODE_NAMESPACE)");
5145 break;
5146 case TYPE_CODE_FIXED_POINT:
5147 printf_filtered ("(TYPE_CODE_FIXED_POINT)");
5148 break;
5149 default:
5150 printf_filtered ("(UNKNOWN TYPE CODE)");
5151 break;
5152 }
5153 puts_filtered ("\n");
5154 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
5155 if (TYPE_OBJFILE_OWNED (type))
5156 {
5157 printfi_filtered (spaces, "objfile ");
5158 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
5159 }
5160 else
5161 {
5162 printfi_filtered (spaces, "gdbarch ");
5163 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
5164 }
5165 printf_filtered ("\n");
5166 printfi_filtered (spaces, "target_type ");
5167 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
5168 printf_filtered ("\n");
5169 if (TYPE_TARGET_TYPE (type) != NULL)
5170 {
5171 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5172 }
5173 printfi_filtered (spaces, "pointer_type ");
5174 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
5175 printf_filtered ("\n");
5176 printfi_filtered (spaces, "reference_type ");
5177 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
5178 printf_filtered ("\n");
5179 printfi_filtered (spaces, "type_chain ");
5180 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
5181 printf_filtered ("\n");
5182 printfi_filtered (spaces, "instance_flags 0x%x",
5183 (unsigned) type->instance_flags ());
5184 if (TYPE_CONST (type))
5185 {
5186 puts_filtered (" TYPE_CONST");
5187 }
5188 if (TYPE_VOLATILE (type))
5189 {
5190 puts_filtered (" TYPE_VOLATILE");
5191 }
5192 if (TYPE_CODE_SPACE (type))
5193 {
5194 puts_filtered (" TYPE_CODE_SPACE");
5195 }
5196 if (TYPE_DATA_SPACE (type))
5197 {
5198 puts_filtered (" TYPE_DATA_SPACE");
5199 }
5200 if (TYPE_ADDRESS_CLASS_1 (type))
5201 {
5202 puts_filtered (" TYPE_ADDRESS_CLASS_1");
5203 }
5204 if (TYPE_ADDRESS_CLASS_2 (type))
5205 {
5206 puts_filtered (" TYPE_ADDRESS_CLASS_2");
5207 }
5208 if (TYPE_RESTRICT (type))
5209 {
5210 puts_filtered (" TYPE_RESTRICT");
5211 }
5212 if (TYPE_ATOMIC (type))
5213 {
5214 puts_filtered (" TYPE_ATOMIC");
5215 }
5216 puts_filtered ("\n");
5217
5218 printfi_filtered (spaces, "flags");
5219 if (type->is_unsigned ())
5220 {
5221 puts_filtered (" TYPE_UNSIGNED");
5222 }
5223 if (type->has_no_signedness ())
5224 {
5225 puts_filtered (" TYPE_NOSIGN");
5226 }
5227 if (type->endianity_is_not_default ())
5228 {
5229 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5230 }
5231 if (type->is_stub ())
5232 {
5233 puts_filtered (" TYPE_STUB");
5234 }
5235 if (type->target_is_stub ())
5236 {
5237 puts_filtered (" TYPE_TARGET_STUB");
5238 }
5239 if (type->is_prototyped ())
5240 {
5241 puts_filtered (" TYPE_PROTOTYPED");
5242 }
5243 if (type->has_varargs ())
5244 {
5245 puts_filtered (" TYPE_VARARGS");
5246 }
5247 /* This is used for things like AltiVec registers on ppc. Gcc emits
5248 an attribute for the array type, which tells whether or not we
5249 have a vector, instead of a regular array. */
5250 if (type->is_vector ())
5251 {
5252 puts_filtered (" TYPE_VECTOR");
5253 }
5254 if (type->is_fixed_instance ())
5255 {
5256 puts_filtered (" TYPE_FIXED_INSTANCE");
5257 }
5258 if (type->stub_is_supported ())
5259 {
5260 puts_filtered (" TYPE_STUB_SUPPORTED");
5261 }
5262 if (TYPE_NOTTEXT (type))
5263 {
5264 puts_filtered (" TYPE_NOTTEXT");
5265 }
5266 puts_filtered ("\n");
5267 printfi_filtered (spaces, "nfields %d ", type->num_fields ());
5268 gdb_print_host_address (type->fields (), gdb_stdout);
5269 puts_filtered ("\n");
5270 for (idx = 0; idx < type->num_fields (); idx++)
5271 {
5272 if (type->code () == TYPE_CODE_ENUM)
5273 printfi_filtered (spaces + 2,
5274 "[%d] enumval %s type ",
5275 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5276 else
5277 printfi_filtered (spaces + 2,
5278 "[%d] bitpos %s bitsize %d type ",
5279 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
5280 TYPE_FIELD_BITSIZE (type, idx));
5281 gdb_print_host_address (type->field (idx).type (), gdb_stdout);
5282 printf_filtered (" name '%s' (",
5283 TYPE_FIELD_NAME (type, idx) != NULL
5284 ? TYPE_FIELD_NAME (type, idx)
5285 : "<NULL>");
5286 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
5287 printf_filtered (")\n");
5288 if (type->field (idx).type () != NULL)
5289 {
5290 recursive_dump_type (type->field (idx).type (), spaces + 4);
5291 }
5292 }
5293 if (type->code () == TYPE_CODE_RANGE)
5294 {
5295 printfi_filtered (spaces, "low ");
5296 dump_dynamic_prop (type->bounds ()->low);
5297 printf_filtered (" high ");
5298 dump_dynamic_prop (type->bounds ()->high);
5299 printf_filtered ("\n");
5300 }
5301
5302 switch (TYPE_SPECIFIC_FIELD (type))
5303 {
5304 case TYPE_SPECIFIC_CPLUS_STUFF:
5305 printfi_filtered (spaces, "cplus_stuff ");
5306 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5307 gdb_stdout);
5308 puts_filtered ("\n");
5309 print_cplus_stuff (type, spaces);
5310 break;
5311
5312 case TYPE_SPECIFIC_GNAT_STUFF:
5313 printfi_filtered (spaces, "gnat_stuff ");
5314 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5315 puts_filtered ("\n");
5316 print_gnat_stuff (type, spaces);
5317 break;
5318
5319 case TYPE_SPECIFIC_FLOATFORMAT:
5320 printfi_filtered (spaces, "floatformat ");
5321 if (TYPE_FLOATFORMAT (type) == NULL
5322 || TYPE_FLOATFORMAT (type)->name == NULL)
5323 puts_filtered ("(null)");
5324 else
5325 puts_filtered (TYPE_FLOATFORMAT (type)->name);
5326 puts_filtered ("\n");
5327 break;
5328
5329 case TYPE_SPECIFIC_FUNC:
5330 printfi_filtered (spaces, "calling_convention %d\n",
5331 TYPE_CALLING_CONVENTION (type));
5332 /* tail_call_list is not printed. */
5333 break;
5334
5335 case TYPE_SPECIFIC_SELF_TYPE:
5336 printfi_filtered (spaces, "self_type ");
5337 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5338 puts_filtered ("\n");
5339 break;
5340
5341 case TYPE_SPECIFIC_FIXED_POINT:
5342 printfi_filtered (spaces, "fixed_point_info ");
5343 print_fixed_point_type_info (type, spaces);
5344 puts_filtered ("\n");
5345 break;
5346
5347 case TYPE_SPECIFIC_INT:
5348 if (type->bit_size_differs_p ())
5349 {
5350 unsigned bit_size = type->bit_size ();
5351 unsigned bit_off = type->bit_offset ();
5352 printfi_filtered (spaces, " bit size = %u, bit offset = %u\n",
5353 bit_size, bit_off);
5354 }
5355 break;
5356 }
5357
5358 if (spaces == 0)
5359 obstack_free (&dont_print_type_obstack, NULL);
5360 }
5361 \f
5362 /* Trivial helpers for the libiberty hash table, for mapping one
5363 type to another. */
5364
5365 struct type_pair : public allocate_on_obstack
5366 {
5367 type_pair (struct type *old_, struct type *newobj_)
5368 : old (old_), newobj (newobj_)
5369 {}
5370
5371 struct type * const old, * const newobj;
5372 };
5373
5374 static hashval_t
5375 type_pair_hash (const void *item)
5376 {
5377 const struct type_pair *pair = (const struct type_pair *) item;
5378
5379 return htab_hash_pointer (pair->old);
5380 }
5381
5382 static int
5383 type_pair_eq (const void *item_lhs, const void *item_rhs)
5384 {
5385 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5386 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
5387
5388 return lhs->old == rhs->old;
5389 }
5390
5391 /* Allocate the hash table used by copy_type_recursive to walk
5392 types without duplicates. We use OBJFILE's obstack, because
5393 OBJFILE is about to be deleted. */
5394
5395 htab_up
5396 create_copied_types_hash (struct objfile *objfile)
5397 {
5398 return htab_up (htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5399 NULL, &objfile->objfile_obstack,
5400 hashtab_obstack_allocate,
5401 dummy_obstack_deallocate));
5402 }
5403
5404 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
5405
5406 static struct dynamic_prop_list *
5407 copy_dynamic_prop_list (struct obstack *objfile_obstack,
5408 struct dynamic_prop_list *list)
5409 {
5410 struct dynamic_prop_list *copy = list;
5411 struct dynamic_prop_list **node_ptr = &copy;
5412
5413 while (*node_ptr != NULL)
5414 {
5415 struct dynamic_prop_list *node_copy;
5416
5417 node_copy = ((struct dynamic_prop_list *)
5418 obstack_copy (objfile_obstack, *node_ptr,
5419 sizeof (struct dynamic_prop_list)));
5420 node_copy->prop = (*node_ptr)->prop;
5421 *node_ptr = node_copy;
5422
5423 node_ptr = &node_copy->next;
5424 }
5425
5426 return copy;
5427 }
5428
5429 /* Recursively copy (deep copy) TYPE, if it is associated with
5430 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5431 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5432 it is not associated with OBJFILE. */
5433
5434 struct type *
5435 copy_type_recursive (struct objfile *objfile,
5436 struct type *type,
5437 htab_t copied_types)
5438 {
5439 void **slot;
5440 struct type *new_type;
5441
5442 if (! TYPE_OBJFILE_OWNED (type))
5443 return type;
5444
5445 /* This type shouldn't be pointing to any types in other objfiles;
5446 if it did, the type might disappear unexpectedly. */
5447 gdb_assert (TYPE_OBJFILE (type) == objfile);
5448
5449 struct type_pair pair (type, nullptr);
5450
5451 slot = htab_find_slot (copied_types, &pair, INSERT);
5452 if (*slot != NULL)
5453 return ((struct type_pair *) *slot)->newobj;
5454
5455 new_type = alloc_type_arch (get_type_arch (type));
5456
5457 /* We must add the new type to the hash table immediately, in case
5458 we encounter this type again during a recursive call below. */
5459 struct type_pair *stored
5460 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5461
5462 *slot = stored;
5463
5464 /* Copy the common fields of types. For the main type, we simply
5465 copy the entire thing and then update specific fields as needed. */
5466 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5467 TYPE_OBJFILE_OWNED (new_type) = 0;
5468 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
5469
5470 if (type->name ())
5471 new_type->set_name (xstrdup (type->name ()));
5472
5473 new_type->set_instance_flags (type->instance_flags ());
5474 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5475
5476 /* Copy the fields. */
5477 if (type->num_fields ())
5478 {
5479 int i, nfields;
5480
5481 nfields = type->num_fields ();
5482 new_type->set_fields
5483 ((struct field *)
5484 TYPE_ZALLOC (new_type, nfields * sizeof (struct field)));
5485
5486 for (i = 0; i < nfields; i++)
5487 {
5488 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5489 TYPE_FIELD_ARTIFICIAL (type, i);
5490 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5491 if (type->field (i).type ())
5492 new_type->field (i).set_type
5493 (copy_type_recursive (objfile, type->field (i).type (),
5494 copied_types));
5495 if (TYPE_FIELD_NAME (type, i))
5496 TYPE_FIELD_NAME (new_type, i) =
5497 xstrdup (TYPE_FIELD_NAME (type, i));
5498 switch (TYPE_FIELD_LOC_KIND (type, i))
5499 {
5500 case FIELD_LOC_KIND_BITPOS:
5501 SET_FIELD_BITPOS (new_type->field (i),
5502 TYPE_FIELD_BITPOS (type, i));
5503 break;
5504 case FIELD_LOC_KIND_ENUMVAL:
5505 SET_FIELD_ENUMVAL (new_type->field (i),
5506 TYPE_FIELD_ENUMVAL (type, i));
5507 break;
5508 case FIELD_LOC_KIND_PHYSADDR:
5509 SET_FIELD_PHYSADDR (new_type->field (i),
5510 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5511 break;
5512 case FIELD_LOC_KIND_PHYSNAME:
5513 SET_FIELD_PHYSNAME (new_type->field (i),
5514 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5515 i)));
5516 break;
5517 default:
5518 internal_error (__FILE__, __LINE__,
5519 _("Unexpected type field location kind: %d"),
5520 TYPE_FIELD_LOC_KIND (type, i));
5521 }
5522 }
5523 }
5524
5525 /* For range types, copy the bounds information. */
5526 if (type->code () == TYPE_CODE_RANGE)
5527 {
5528 range_bounds *bounds
5529 = ((struct range_bounds *) TYPE_ALLOC
5530 (new_type, sizeof (struct range_bounds)));
5531
5532 *bounds = *type->bounds ();
5533 new_type->set_bounds (bounds);
5534 }
5535
5536 if (type->main_type->dyn_prop_list != NULL)
5537 new_type->main_type->dyn_prop_list
5538 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5539 type->main_type->dyn_prop_list);
5540
5541
5542 /* Copy pointers to other types. */
5543 if (TYPE_TARGET_TYPE (type))
5544 TYPE_TARGET_TYPE (new_type) =
5545 copy_type_recursive (objfile,
5546 TYPE_TARGET_TYPE (type),
5547 copied_types);
5548
5549 /* Maybe copy the type_specific bits.
5550
5551 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5552 base classes and methods. There's no fundamental reason why we
5553 can't, but at the moment it is not needed. */
5554
5555 switch (TYPE_SPECIFIC_FIELD (type))
5556 {
5557 case TYPE_SPECIFIC_NONE:
5558 break;
5559 case TYPE_SPECIFIC_FUNC:
5560 INIT_FUNC_SPECIFIC (new_type);
5561 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5562 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5563 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5564 break;
5565 case TYPE_SPECIFIC_FLOATFORMAT:
5566 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5567 break;
5568 case TYPE_SPECIFIC_CPLUS_STUFF:
5569 INIT_CPLUS_SPECIFIC (new_type);
5570 break;
5571 case TYPE_SPECIFIC_GNAT_STUFF:
5572 INIT_GNAT_SPECIFIC (new_type);
5573 break;
5574 case TYPE_SPECIFIC_SELF_TYPE:
5575 set_type_self_type (new_type,
5576 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5577 copied_types));
5578 break;
5579 case TYPE_SPECIFIC_FIXED_POINT:
5580 INIT_FIXED_POINT_SPECIFIC (new_type);
5581 new_type->fixed_point_info ().scaling_factor
5582 = type->fixed_point_info ().scaling_factor;
5583 break;
5584 case TYPE_SPECIFIC_INT:
5585 TYPE_SPECIFIC_FIELD (new_type) = TYPE_SPECIFIC_INT;
5586 TYPE_MAIN_TYPE (new_type)->type_specific.int_stuff
5587 = TYPE_MAIN_TYPE (type)->type_specific.int_stuff;
5588 break;
5589
5590 default:
5591 gdb_assert_not_reached ("bad type_specific_kind");
5592 }
5593
5594 return new_type;
5595 }
5596
5597 /* Make a copy of the given TYPE, except that the pointer & reference
5598 types are not preserved.
5599
5600 This function assumes that the given type has an associated objfile.
5601 This objfile is used to allocate the new type. */
5602
5603 struct type *
5604 copy_type (const struct type *type)
5605 {
5606 struct type *new_type;
5607
5608 gdb_assert (TYPE_OBJFILE_OWNED (type));
5609
5610 new_type = alloc_type_copy (type);
5611 new_type->set_instance_flags (type->instance_flags ());
5612 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5613 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5614 sizeof (struct main_type));
5615 if (type->main_type->dyn_prop_list != NULL)
5616 new_type->main_type->dyn_prop_list
5617 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5618 type->main_type->dyn_prop_list);
5619
5620 return new_type;
5621 }
5622 \f
5623 /* Helper functions to initialize architecture-specific types. */
5624
5625 /* Allocate a type structure associated with GDBARCH and set its
5626 CODE, LENGTH, and NAME fields. */
5627
5628 struct type *
5629 arch_type (struct gdbarch *gdbarch,
5630 enum type_code code, int bit, const char *name)
5631 {
5632 struct type *type;
5633
5634 type = alloc_type_arch (gdbarch);
5635 set_type_code (type, code);
5636 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5637 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5638
5639 if (name)
5640 type->set_name (gdbarch_obstack_strdup (gdbarch, name));
5641
5642 return type;
5643 }
5644
5645 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5646 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5647 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5648
5649 struct type *
5650 arch_integer_type (struct gdbarch *gdbarch,
5651 int bit, int unsigned_p, const char *name)
5652 {
5653 struct type *t;
5654
5655 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5656 if (unsigned_p)
5657 t->set_is_unsigned (true);
5658
5659 return t;
5660 }
5661
5662 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5663 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5664 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5665
5666 struct type *
5667 arch_character_type (struct gdbarch *gdbarch,
5668 int bit, int unsigned_p, const char *name)
5669 {
5670 struct type *t;
5671
5672 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5673 if (unsigned_p)
5674 t->set_is_unsigned (true);
5675
5676 return t;
5677 }
5678
5679 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5680 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5681 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5682
5683 struct type *
5684 arch_boolean_type (struct gdbarch *gdbarch,
5685 int bit, int unsigned_p, const char *name)
5686 {
5687 struct type *t;
5688
5689 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5690 if (unsigned_p)
5691 t->set_is_unsigned (true);
5692
5693 return t;
5694 }
5695
5696 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5697 BIT is the type size in bits; if BIT equals -1, the size is
5698 determined by the floatformat. NAME is the type name. Set the
5699 TYPE_FLOATFORMAT from FLOATFORMATS. */
5700
5701 struct type *
5702 arch_float_type (struct gdbarch *gdbarch,
5703 int bit, const char *name,
5704 const struct floatformat **floatformats)
5705 {
5706 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5707 struct type *t;
5708
5709 bit = verify_floatformat (bit, fmt);
5710 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5711 TYPE_FLOATFORMAT (t) = fmt;
5712
5713 return t;
5714 }
5715
5716 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5717 BIT is the type size in bits. NAME is the type name. */
5718
5719 struct type *
5720 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5721 {
5722 struct type *t;
5723
5724 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5725 return t;
5726 }
5727
5728 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5729 BIT is the pointer type size in bits. NAME is the type name.
5730 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5731 TYPE_UNSIGNED flag. */
5732
5733 struct type *
5734 arch_pointer_type (struct gdbarch *gdbarch,
5735 int bit, const char *name, struct type *target_type)
5736 {
5737 struct type *t;
5738
5739 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5740 TYPE_TARGET_TYPE (t) = target_type;
5741 t->set_is_unsigned (true);
5742 return t;
5743 }
5744
5745 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5746 NAME is the type name. BIT is the size of the flag word in bits. */
5747
5748 struct type *
5749 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5750 {
5751 struct type *type;
5752
5753 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5754 type->set_is_unsigned (true);
5755 type->set_num_fields (0);
5756 /* Pre-allocate enough space assuming every field is one bit. */
5757 type->set_fields
5758 ((struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field)));
5759
5760 return type;
5761 }
5762
5763 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5764 position BITPOS is called NAME. Pass NAME as "" for fields that
5765 should not be printed. */
5766
5767 void
5768 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5769 struct type *field_type, const char *name)
5770 {
5771 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5772 int field_nr = type->num_fields ();
5773
5774 gdb_assert (type->code () == TYPE_CODE_FLAGS);
5775 gdb_assert (type->num_fields () + 1 <= type_bitsize);
5776 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5777 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5778 gdb_assert (name != NULL);
5779
5780 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5781 type->field (field_nr).set_type (field_type);
5782 SET_FIELD_BITPOS (type->field (field_nr), start_bitpos);
5783 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5784 type->set_num_fields (type->num_fields () + 1);
5785 }
5786
5787 /* Special version of append_flags_type_field to add a flag field.
5788 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5789 position BITPOS is called NAME. */
5790
5791 void
5792 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5793 {
5794 struct gdbarch *gdbarch = get_type_arch (type);
5795
5796 append_flags_type_field (type, bitpos, 1,
5797 builtin_type (gdbarch)->builtin_bool,
5798 name);
5799 }
5800
5801 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5802 specified by CODE) associated with GDBARCH. NAME is the type name. */
5803
5804 struct type *
5805 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5806 enum type_code code)
5807 {
5808 struct type *t;
5809
5810 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5811 t = arch_type (gdbarch, code, 0, NULL);
5812 t->set_name (name);
5813 INIT_CPLUS_SPECIFIC (t);
5814 return t;
5815 }
5816
5817 /* Add new field with name NAME and type FIELD to composite type T.
5818 Do not set the field's position or adjust the type's length;
5819 the caller should do so. Return the new field. */
5820
5821 struct field *
5822 append_composite_type_field_raw (struct type *t, const char *name,
5823 struct type *field)
5824 {
5825 struct field *f;
5826
5827 t->set_num_fields (t->num_fields () + 1);
5828 t->set_fields (XRESIZEVEC (struct field, t->fields (),
5829 t->num_fields ()));
5830 f = &t->field (t->num_fields () - 1);
5831 memset (f, 0, sizeof f[0]);
5832 f[0].set_type (field);
5833 FIELD_NAME (f[0]) = name;
5834 return f;
5835 }
5836
5837 /* Add new field with name NAME and type FIELD to composite type T.
5838 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5839
5840 void
5841 append_composite_type_field_aligned (struct type *t, const char *name,
5842 struct type *field, int alignment)
5843 {
5844 struct field *f = append_composite_type_field_raw (t, name, field);
5845
5846 if (t->code () == TYPE_CODE_UNION)
5847 {
5848 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5849 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5850 }
5851 else if (t->code () == TYPE_CODE_STRUCT)
5852 {
5853 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5854 if (t->num_fields () > 1)
5855 {
5856 SET_FIELD_BITPOS (f[0],
5857 (FIELD_BITPOS (f[-1])
5858 + (TYPE_LENGTH (f[-1].type ())
5859 * TARGET_CHAR_BIT)));
5860
5861 if (alignment)
5862 {
5863 int left;
5864
5865 alignment *= TARGET_CHAR_BIT;
5866 left = FIELD_BITPOS (f[0]) % alignment;
5867
5868 if (left)
5869 {
5870 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5871 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5872 }
5873 }
5874 }
5875 }
5876 }
5877
5878 /* Add new field with name NAME and type FIELD to composite type T. */
5879
5880 void
5881 append_composite_type_field (struct type *t, const char *name,
5882 struct type *field)
5883 {
5884 append_composite_type_field_aligned (t, name, field, 0);
5885 }
5886
5887 \f
5888
5889 /* We manage the lifetimes of fixed_point_type_info objects by
5890 attaching them to the objfile. Currently, these objects are
5891 modified during construction, and GMP does not provide a way to
5892 hash the contents of an mpq_t; so it's a bit of a pain to hash-cons
5893 them. If we did do this, they could be moved to the per-BFD and
5894 shared across objfiles. */
5895 typedef std::vector<std::unique_ptr<fixed_point_type_info>>
5896 fixed_point_type_storage;
5897
5898 /* Key used for managing the storage of fixed-point type info. */
5899 static const struct objfile_key<fixed_point_type_storage>
5900 fixed_point_objfile_key;
5901
5902 /* See gdbtypes.h. */
5903
5904 void
5905 allocate_fixed_point_type_info (struct type *type)
5906 {
5907 std::unique_ptr<fixed_point_type_info> up (new fixed_point_type_info);
5908 fixed_point_type_info *info;
5909
5910 if (TYPE_OBJFILE_OWNED (type))
5911 {
5912 fixed_point_type_storage *storage
5913 = fixed_point_objfile_key.get (TYPE_OBJFILE (type));
5914 if (storage == nullptr)
5915 storage = fixed_point_objfile_key.emplace (TYPE_OBJFILE (type));
5916 info = up.get ();
5917 storage->push_back (std::move (up));
5918 }
5919 else
5920 {
5921 /* We just leak the memory, because that's what we do generally
5922 for non-objfile-attached types. */
5923 info = up.release ();
5924 }
5925
5926 type->set_fixed_point_info (info);
5927 }
5928
5929 /* See gdbtypes.h. */
5930
5931 bool
5932 is_fixed_point_type (struct type *type)
5933 {
5934 while (check_typedef (type)->code () == TYPE_CODE_RANGE)
5935 type = TYPE_TARGET_TYPE (check_typedef (type));
5936 type = check_typedef (type);
5937
5938 return type->code () == TYPE_CODE_FIXED_POINT;
5939 }
5940
5941 /* See gdbtypes.h. */
5942
5943 struct type *
5944 type::fixed_point_type_base_type ()
5945 {
5946 struct type *type = this;
5947
5948 while (check_typedef (type)->code () == TYPE_CODE_RANGE)
5949 type = TYPE_TARGET_TYPE (check_typedef (type));
5950 type = check_typedef (type);
5951
5952 gdb_assert (type->code () == TYPE_CODE_FIXED_POINT);
5953 return type;
5954 }
5955
5956 /* See gdbtypes.h. */
5957
5958 const gdb_mpq &
5959 type::fixed_point_scaling_factor ()
5960 {
5961 struct type *type = this->fixed_point_type_base_type ();
5962
5963 return type->fixed_point_info ().scaling_factor;
5964 }
5965
5966 \f
5967
5968 static struct gdbarch_data *gdbtypes_data;
5969
5970 const struct builtin_type *
5971 builtin_type (struct gdbarch *gdbarch)
5972 {
5973 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5974 }
5975
5976 static void *
5977 gdbtypes_post_init (struct gdbarch *gdbarch)
5978 {
5979 struct builtin_type *builtin_type
5980 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5981
5982 /* Basic types. */
5983 builtin_type->builtin_void
5984 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5985 builtin_type->builtin_char
5986 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5987 !gdbarch_char_signed (gdbarch), "char");
5988 builtin_type->builtin_char->set_has_no_signedness (true);
5989 builtin_type->builtin_signed_char
5990 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5991 0, "signed char");
5992 builtin_type->builtin_unsigned_char
5993 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5994 1, "unsigned char");
5995 builtin_type->builtin_short
5996 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5997 0, "short");
5998 builtin_type->builtin_unsigned_short
5999 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
6000 1, "unsigned short");
6001 builtin_type->builtin_int
6002 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
6003 0, "int");
6004 builtin_type->builtin_unsigned_int
6005 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
6006 1, "unsigned int");
6007 builtin_type->builtin_long
6008 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
6009 0, "long");
6010 builtin_type->builtin_unsigned_long
6011 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
6012 1, "unsigned long");
6013 builtin_type->builtin_long_long
6014 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
6015 0, "long long");
6016 builtin_type->builtin_unsigned_long_long
6017 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
6018 1, "unsigned long long");
6019 builtin_type->builtin_half
6020 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
6021 "half", gdbarch_half_format (gdbarch));
6022 builtin_type->builtin_float
6023 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
6024 "float", gdbarch_float_format (gdbarch));
6025 builtin_type->builtin_bfloat16
6026 = arch_float_type (gdbarch, gdbarch_bfloat16_bit (gdbarch),
6027 "bfloat16", gdbarch_bfloat16_format (gdbarch));
6028 builtin_type->builtin_double
6029 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
6030 "double", gdbarch_double_format (gdbarch));
6031 builtin_type->builtin_long_double
6032 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
6033 "long double", gdbarch_long_double_format (gdbarch));
6034 builtin_type->builtin_complex
6035 = init_complex_type ("complex", builtin_type->builtin_float);
6036 builtin_type->builtin_double_complex
6037 = init_complex_type ("double complex", builtin_type->builtin_double);
6038 builtin_type->builtin_string
6039 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
6040 builtin_type->builtin_bool
6041 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
6042
6043 /* The following three are about decimal floating point types, which
6044 are 32-bits, 64-bits and 128-bits respectively. */
6045 builtin_type->builtin_decfloat
6046 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
6047 builtin_type->builtin_decdouble
6048 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
6049 builtin_type->builtin_declong
6050 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
6051
6052 /* "True" character types. */
6053 builtin_type->builtin_true_char
6054 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
6055 builtin_type->builtin_true_unsigned_char
6056 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
6057
6058 /* Fixed-size integer types. */
6059 builtin_type->builtin_int0
6060 = arch_integer_type (gdbarch, 0, 0, "int0_t");
6061 builtin_type->builtin_int8
6062 = arch_integer_type (gdbarch, 8, 0, "int8_t");
6063 builtin_type->builtin_uint8
6064 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
6065 builtin_type->builtin_int16
6066 = arch_integer_type (gdbarch, 16, 0, "int16_t");
6067 builtin_type->builtin_uint16
6068 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
6069 builtin_type->builtin_int24
6070 = arch_integer_type (gdbarch, 24, 0, "int24_t");
6071 builtin_type->builtin_uint24
6072 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
6073 builtin_type->builtin_int32
6074 = arch_integer_type (gdbarch, 32, 0, "int32_t");
6075 builtin_type->builtin_uint32
6076 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
6077 builtin_type->builtin_int64
6078 = arch_integer_type (gdbarch, 64, 0, "int64_t");
6079 builtin_type->builtin_uint64
6080 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
6081 builtin_type->builtin_int128
6082 = arch_integer_type (gdbarch, 128, 0, "int128_t");
6083 builtin_type->builtin_uint128
6084 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
6085
6086 builtin_type->builtin_int8->set_instance_flags
6087 (builtin_type->builtin_int8->instance_flags ()
6088 | TYPE_INSTANCE_FLAG_NOTTEXT);
6089
6090 builtin_type->builtin_uint8->set_instance_flags
6091 (builtin_type->builtin_uint8->instance_flags ()
6092 | TYPE_INSTANCE_FLAG_NOTTEXT);
6093
6094 /* Wide character types. */
6095 builtin_type->builtin_char16
6096 = arch_integer_type (gdbarch, 16, 1, "char16_t");
6097 builtin_type->builtin_char32
6098 = arch_integer_type (gdbarch, 32, 1, "char32_t");
6099 builtin_type->builtin_wchar
6100 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
6101 !gdbarch_wchar_signed (gdbarch), "wchar_t");
6102
6103 /* Default data/code pointer types. */
6104 builtin_type->builtin_data_ptr
6105 = lookup_pointer_type (builtin_type->builtin_void);
6106 builtin_type->builtin_func_ptr
6107 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
6108 builtin_type->builtin_func_func
6109 = lookup_function_type (builtin_type->builtin_func_ptr);
6110
6111 /* This type represents a GDB internal function. */
6112 builtin_type->internal_fn
6113 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
6114 "<internal function>");
6115
6116 /* This type represents an xmethod. */
6117 builtin_type->xmethod
6118 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
6119
6120 return builtin_type;
6121 }
6122
6123 /* This set of objfile-based types is intended to be used by symbol
6124 readers as basic types. */
6125
6126 static const struct objfile_key<struct objfile_type,
6127 gdb::noop_deleter<struct objfile_type>>
6128 objfile_type_data;
6129
6130 const struct objfile_type *
6131 objfile_type (struct objfile *objfile)
6132 {
6133 struct gdbarch *gdbarch;
6134 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
6135
6136 if (objfile_type)
6137 return objfile_type;
6138
6139 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
6140 1, struct objfile_type);
6141
6142 /* Use the objfile architecture to determine basic type properties. */
6143 gdbarch = objfile->arch ();
6144
6145 /* Basic types. */
6146 objfile_type->builtin_void
6147 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
6148 objfile_type->builtin_char
6149 = init_integer_type (objfile, TARGET_CHAR_BIT,
6150 !gdbarch_char_signed (gdbarch), "char");
6151 objfile_type->builtin_char->set_has_no_signedness (true);
6152 objfile_type->builtin_signed_char
6153 = init_integer_type (objfile, TARGET_CHAR_BIT,
6154 0, "signed char");
6155 objfile_type->builtin_unsigned_char
6156 = init_integer_type (objfile, TARGET_CHAR_BIT,
6157 1, "unsigned char");
6158 objfile_type->builtin_short
6159 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
6160 0, "short");
6161 objfile_type->builtin_unsigned_short
6162 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
6163 1, "unsigned short");
6164 objfile_type->builtin_int
6165 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
6166 0, "int");
6167 objfile_type->builtin_unsigned_int
6168 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
6169 1, "unsigned int");
6170 objfile_type->builtin_long
6171 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
6172 0, "long");
6173 objfile_type->builtin_unsigned_long
6174 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
6175 1, "unsigned long");
6176 objfile_type->builtin_long_long
6177 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
6178 0, "long long");
6179 objfile_type->builtin_unsigned_long_long
6180 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
6181 1, "unsigned long long");
6182 objfile_type->builtin_float
6183 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
6184 "float", gdbarch_float_format (gdbarch));
6185 objfile_type->builtin_double
6186 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
6187 "double", gdbarch_double_format (gdbarch));
6188 objfile_type->builtin_long_double
6189 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
6190 "long double", gdbarch_long_double_format (gdbarch));
6191
6192 /* This type represents a type that was unrecognized in symbol read-in. */
6193 objfile_type->builtin_error
6194 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
6195
6196 /* The following set of types is used for symbols with no
6197 debug information. */
6198 objfile_type->nodebug_text_symbol
6199 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
6200 "<text variable, no debug info>");
6201
6202 objfile_type->nodebug_text_gnu_ifunc_symbol
6203 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
6204 "<text gnu-indirect-function variable, no debug info>");
6205 objfile_type->nodebug_text_gnu_ifunc_symbol->set_is_gnu_ifunc (true);
6206
6207 objfile_type->nodebug_got_plt_symbol
6208 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
6209 "<text from jump slot in .got.plt, no debug info>",
6210 objfile_type->nodebug_text_symbol);
6211 objfile_type->nodebug_data_symbol
6212 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
6213 objfile_type->nodebug_unknown_symbol
6214 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
6215 objfile_type->nodebug_tls_symbol
6216 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
6217
6218 /* NOTE: on some targets, addresses and pointers are not necessarily
6219 the same.
6220
6221 The upshot is:
6222 - gdb's `struct type' always describes the target's
6223 representation.
6224 - gdb's `struct value' objects should always hold values in
6225 target form.
6226 - gdb's CORE_ADDR values are addresses in the unified virtual
6227 address space that the assembler and linker work with. Thus,
6228 since target_read_memory takes a CORE_ADDR as an argument, it
6229 can access any memory on the target, even if the processor has
6230 separate code and data address spaces.
6231
6232 In this context, objfile_type->builtin_core_addr is a bit odd:
6233 it's a target type for a value the target will never see. It's
6234 only used to hold the values of (typeless) linker symbols, which
6235 are indeed in the unified virtual address space. */
6236
6237 objfile_type->builtin_core_addr
6238 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
6239 "__CORE_ADDR");
6240
6241 objfile_type_data.set (objfile, objfile_type);
6242 return objfile_type;
6243 }
6244
6245 void _initialize_gdbtypes ();
6246 void
6247 _initialize_gdbtypes ()
6248 {
6249 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
6250
6251 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
6252 _("Set debugging of C++ overloading."),
6253 _("Show debugging of C++ overloading."),
6254 _("When enabled, ranking of the "
6255 "functions is displayed."),
6256 NULL,
6257 show_overload_debug,
6258 &setdebuglist, &showdebuglist);
6259
6260 /* Add user knob for controlling resolution of opaque types. */
6261 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
6262 &opaque_type_resolution,
6263 _("Set resolution of opaque struct/class/union"
6264 " types (if set before loading symbols)."),
6265 _("Show resolution of opaque struct/class/union"
6266 " types (if set before loading symbols)."),
6267 NULL, NULL,
6268 show_opaque_type_resolution,
6269 &setlist, &showlist);
6270
6271 /* Add an option to permit non-strict type checking. */
6272 add_setshow_boolean_cmd ("type", class_support,
6273 &strict_type_checking,
6274 _("Set strict type checking."),
6275 _("Show strict type checking."),
6276 NULL, NULL,
6277 show_strict_type_checking,
6278 &setchecklist, &showchecklist);
6279 }