gdb: Convert dwarf2_evaluate_property to return bool
[binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static int opaque_type_resolution = 1;
120
121 /* A flag to enable printing of debugging information of C++
122 overloading. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static int strict_type_checking = 1;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
186
187 return type;
188 }
189
190 /* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
192 on the obstack associated with GDBARCH. */
193
194 struct type *
195 alloc_type_arch (struct gdbarch *gdbarch)
196 {
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 struct gdbarch *arch;
237
238 if (TYPE_OBJFILE_OWNED (type))
239 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
240 else
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
249 }
250
251 /* See gdbtypes.h. */
252
253 struct type *
254 get_target_type (struct type *type)
255 {
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264 }
265
266 /* See gdbtypes.h. */
267
268 unsigned int
269 type_length_units (struct type *type)
270 {
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275 }
276
277 /* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281 static struct type *
282 alloc_type_instance (struct type *oldtype)
283 {
284 struct type *type;
285
286 /* Allocate the structure. */
287
288 if (! TYPE_OBJFILE_OWNED (oldtype))
289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
290 else
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
298 return type;
299 }
300
301 /* Clear all remnants of the previous type at TYPE, in preparation for
302 replacing it with something else. Preserve owner information. */
303
304 static void
305 smash_type (struct type *type)
306 {
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320 }
321
322 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327 struct type *
328 make_pointer_type (struct type *type, struct type **typeptr)
329 {
330 struct type *ntype; /* New type */
331 struct type *chain;
332
333 ntype = TYPE_POINTER_TYPE (type);
334
335 if (ntype)
336 {
337 if (typeptr == 0)
338 return ntype; /* Don't care about alloc,
339 and have new type. */
340 else if (*typeptr == 0)
341 {
342 *typeptr = ntype; /* Tracking alloc, and have new type. */
343 return ntype;
344 }
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
349 ntype = alloc_type_copy (type);
350 if (typeptr)
351 *typeptr = ntype;
352 }
353 else /* We have storage, but need to reset it. */
354 {
355 ntype = *typeptr;
356 chain = TYPE_CHAIN (ntype);
357 smash_type (ntype);
358 TYPE_CHAIN (ntype) = chain;
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
364 /* FIXME! Assumes the machine has only one representation for pointers! */
365
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
370 /* Mark pointers as unsigned. The target converts between pointers
371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
372 gdbarch_address_to_pointer. */
373 TYPE_UNSIGNED (ntype) = 1;
374
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
383 return ntype;
384 }
385
386 /* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389 struct type *
390 lookup_pointer_type (struct type *type)
391 {
392 return make_pointer_type (type, (struct type **) 0);
393 }
394
395 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
400
401 struct type *
402 make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
404 {
405 struct type *ntype; /* New type */
406 struct type **reftype;
407 struct type *chain;
408
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
413
414 if (ntype)
415 {
416 if (typeptr == 0)
417 return ntype; /* Don't care about alloc,
418 and have new type. */
419 else if (*typeptr == 0)
420 {
421 *typeptr = ntype; /* Tracking alloc, and have new type. */
422 return ntype;
423 }
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
428 ntype = alloc_type_copy (type);
429 if (typeptr)
430 *typeptr = ntype;
431 }
432 else /* We have storage, but need to reset it. */
433 {
434 ntype = *typeptr;
435 chain = TYPE_CHAIN (ntype);
436 smash_type (ntype);
437 TYPE_CHAIN (ntype) = chain;
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
445
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
449
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
452 TYPE_CODE (ntype) = refcode;
453
454 *reftype = ntype;
455
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
464 return ntype;
465 }
466
467 /* Same as above, but caller doesn't care about memory allocation
468 details. */
469
470 struct type *
471 lookup_reference_type (struct type *type, enum type_code refcode)
472 {
473 return make_reference_type (type, (struct type **) 0, refcode);
474 }
475
476 /* Lookup the lvalue reference type for the type TYPE. */
477
478 struct type *
479 lookup_lvalue_reference_type (struct type *type)
480 {
481 return lookup_reference_type (type, TYPE_CODE_REF);
482 }
483
484 /* Lookup the rvalue reference type for the type TYPE. */
485
486 struct type *
487 lookup_rvalue_reference_type (struct type *type)
488 {
489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
490 }
491
492 /* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
495 function type we return. We allocate new memory if needed. */
496
497 struct type *
498 make_function_type (struct type *type, struct type **typeptr)
499 {
500 struct type *ntype; /* New type */
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
504 ntype = alloc_type_copy (type);
505 if (typeptr)
506 *typeptr = ntype;
507 }
508 else /* We have storage, but need to reset it. */
509 {
510 ntype = *typeptr;
511 smash_type (ntype);
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
518
519 INIT_FUNC_SPECIFIC (ntype);
520
521 return ntype;
522 }
523
524 /* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527 struct type *
528 lookup_function_type (struct type *type)
529 {
530 return make_function_type (type, (struct type **) 0);
531 }
532
533 /* Given a type TYPE and argument types, return the appropriate
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
536
537 struct type *
538 lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541 {
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
545 if (nparams > 0)
546 {
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
560 else
561 TYPE_PROTOTYPED (fn) = 1;
562 }
563
564 TYPE_NFIELDS (fn) = nparams;
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571 }
572
573 /* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
575
576 int
577 address_space_name_to_int (struct gdbarch *gdbarch,
578 const char *space_identifier)
579 {
580 int type_flags;
581
582 /* Check for known address space delimiters. */
583 if (!strcmp (space_identifier, "code"))
584 return TYPE_INSTANCE_FLAG_CODE_SPACE;
585 else if (!strcmp (space_identifier, "data"))
586 return TYPE_INSTANCE_FLAG_DATA_SPACE;
587 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
588 && gdbarch_address_class_name_to_type_flags (gdbarch,
589 space_identifier,
590 &type_flags))
591 return type_flags;
592 else
593 error (_("Unknown address space specifier: \"%s\""), space_identifier);
594 }
595
596 /* Identify address space identifier by integer flag as defined in
597 gdbtypes.h -- return the string version of the adress space name. */
598
599 const char *
600 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
601 {
602 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
603 return "code";
604 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
605 return "data";
606 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
607 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
608 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
609 else
610 return NULL;
611 }
612
613 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
614
615 If STORAGE is non-NULL, create the new type instance there.
616 STORAGE must be in the same obstack as TYPE. */
617
618 static struct type *
619 make_qualified_type (struct type *type, int new_flags,
620 struct type *storage)
621 {
622 struct type *ntype;
623
624 ntype = type;
625 do
626 {
627 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
628 return ntype;
629 ntype = TYPE_CHAIN (ntype);
630 }
631 while (ntype != type);
632
633 /* Create a new type instance. */
634 if (storage == NULL)
635 ntype = alloc_type_instance (type);
636 else
637 {
638 /* If STORAGE was provided, it had better be in the same objfile
639 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
640 if one objfile is freed and the other kept, we'd have
641 dangling pointers. */
642 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
643
644 ntype = storage;
645 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
646 TYPE_CHAIN (ntype) = ntype;
647 }
648
649 /* Pointers or references to the original type are not relevant to
650 the new type. */
651 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
652 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
653
654 /* Chain the new qualified type to the old type. */
655 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
656 TYPE_CHAIN (type) = ntype;
657
658 /* Now set the instance flags and return the new type. */
659 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
660
661 /* Set length of new type to that of the original type. */
662 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
663
664 return ntype;
665 }
666
667 /* Make an address-space-delimited variant of a type -- a type that
668 is identical to the one supplied except that it has an address
669 space attribute attached to it (such as "code" or "data").
670
671 The space attributes "code" and "data" are for Harvard
672 architectures. The address space attributes are for architectures
673 which have alternately sized pointers or pointers with alternate
674 representations. */
675
676 struct type *
677 make_type_with_address_space (struct type *type, int space_flag)
678 {
679 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
680 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
681 | TYPE_INSTANCE_FLAG_DATA_SPACE
682 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
683 | space_flag);
684
685 return make_qualified_type (type, new_flags, NULL);
686 }
687
688 /* Make a "c-v" variant of a type -- a type that is identical to the
689 one supplied except that it may have const or volatile attributes
690 CNST is a flag for setting the const attribute
691 VOLTL is a flag for setting the volatile attribute
692 TYPE is the base type whose variant we are creating.
693
694 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
695 storage to hold the new qualified type; *TYPEPTR and TYPE must be
696 in the same objfile. Otherwise, allocate fresh memory for the new
697 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
698 new type we construct. */
699
700 struct type *
701 make_cv_type (int cnst, int voltl,
702 struct type *type,
703 struct type **typeptr)
704 {
705 struct type *ntype; /* New type */
706
707 int new_flags = (TYPE_INSTANCE_FLAGS (type)
708 & ~(TYPE_INSTANCE_FLAG_CONST
709 | TYPE_INSTANCE_FLAG_VOLATILE));
710
711 if (cnst)
712 new_flags |= TYPE_INSTANCE_FLAG_CONST;
713
714 if (voltl)
715 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
716
717 if (typeptr && *typeptr != NULL)
718 {
719 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
720 a C-V variant chain that threads across objfiles: if one
721 objfile gets freed, then the other has a broken C-V chain.
722
723 This code used to try to copy over the main type from TYPE to
724 *TYPEPTR if they were in different objfiles, but that's
725 wrong, too: TYPE may have a field list or member function
726 lists, which refer to types of their own, etc. etc. The
727 whole shebang would need to be copied over recursively; you
728 can't have inter-objfile pointers. The only thing to do is
729 to leave stub types as stub types, and look them up afresh by
730 name each time you encounter them. */
731 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
732 }
733
734 ntype = make_qualified_type (type, new_flags,
735 typeptr ? *typeptr : NULL);
736
737 if (typeptr != NULL)
738 *typeptr = ntype;
739
740 return ntype;
741 }
742
743 /* Make a 'restrict'-qualified version of TYPE. */
744
745 struct type *
746 make_restrict_type (struct type *type)
747 {
748 return make_qualified_type (type,
749 (TYPE_INSTANCE_FLAGS (type)
750 | TYPE_INSTANCE_FLAG_RESTRICT),
751 NULL);
752 }
753
754 /* Make a type without const, volatile, or restrict. */
755
756 struct type *
757 make_unqualified_type (struct type *type)
758 {
759 return make_qualified_type (type,
760 (TYPE_INSTANCE_FLAGS (type)
761 & ~(TYPE_INSTANCE_FLAG_CONST
762 | TYPE_INSTANCE_FLAG_VOLATILE
763 | TYPE_INSTANCE_FLAG_RESTRICT)),
764 NULL);
765 }
766
767 /* Make a '_Atomic'-qualified version of TYPE. */
768
769 struct type *
770 make_atomic_type (struct type *type)
771 {
772 return make_qualified_type (type,
773 (TYPE_INSTANCE_FLAGS (type)
774 | TYPE_INSTANCE_FLAG_ATOMIC),
775 NULL);
776 }
777
778 /* Replace the contents of ntype with the type *type. This changes the
779 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
780 the changes are propogated to all types in the TYPE_CHAIN.
781
782 In order to build recursive types, it's inevitable that we'll need
783 to update types in place --- but this sort of indiscriminate
784 smashing is ugly, and needs to be replaced with something more
785 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
786 clear if more steps are needed. */
787
788 void
789 replace_type (struct type *ntype, struct type *type)
790 {
791 struct type *chain;
792
793 /* These two types had better be in the same objfile. Otherwise,
794 the assignment of one type's main type structure to the other
795 will produce a type with references to objects (names; field
796 lists; etc.) allocated on an objfile other than its own. */
797 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
798
799 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
800
801 /* The type length is not a part of the main type. Update it for
802 each type on the variant chain. */
803 chain = ntype;
804 do
805 {
806 /* Assert that this element of the chain has no address-class bits
807 set in its flags. Such type variants might have type lengths
808 which are supposed to be different from the non-address-class
809 variants. This assertion shouldn't ever be triggered because
810 symbol readers which do construct address-class variants don't
811 call replace_type(). */
812 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
813
814 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
815 chain = TYPE_CHAIN (chain);
816 }
817 while (ntype != chain);
818
819 /* Assert that the two types have equivalent instance qualifiers.
820 This should be true for at least all of our debug readers. */
821 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
822 }
823
824 /* Implement direct support for MEMBER_TYPE in GNU C++.
825 May need to construct such a type if this is the first use.
826 The TYPE is the type of the member. The DOMAIN is the type
827 of the aggregate that the member belongs to. */
828
829 struct type *
830 lookup_memberptr_type (struct type *type, struct type *domain)
831 {
832 struct type *mtype;
833
834 mtype = alloc_type_copy (type);
835 smash_to_memberptr_type (mtype, domain, type);
836 return mtype;
837 }
838
839 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
840
841 struct type *
842 lookup_methodptr_type (struct type *to_type)
843 {
844 struct type *mtype;
845
846 mtype = alloc_type_copy (to_type);
847 smash_to_methodptr_type (mtype, to_type);
848 return mtype;
849 }
850
851 /* Allocate a stub method whose return type is TYPE. This apparently
852 happens for speed of symbol reading, since parsing out the
853 arguments to the method is cpu-intensive, the way we are doing it.
854 So, we will fill in arguments later. This always returns a fresh
855 type. */
856
857 struct type *
858 allocate_stub_method (struct type *type)
859 {
860 struct type *mtype;
861
862 mtype = alloc_type_copy (type);
863 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
864 TYPE_LENGTH (mtype) = 1;
865 TYPE_STUB (mtype) = 1;
866 TYPE_TARGET_TYPE (mtype) = type;
867 /* TYPE_SELF_TYPE (mtype) = unknown yet */
868 return mtype;
869 }
870
871 /* See gdbtypes.h. */
872
873 bool
874 operator== (const dynamic_prop &l, const dynamic_prop &r)
875 {
876 if (l.kind != r.kind)
877 return false;
878
879 switch (l.kind)
880 {
881 case PROP_UNDEFINED:
882 return true;
883 case PROP_CONST:
884 return l.data.const_val == r.data.const_val;
885 case PROP_ADDR_OFFSET:
886 case PROP_LOCEXPR:
887 case PROP_LOCLIST:
888 return l.data.baton == r.data.baton;
889 }
890
891 gdb_assert_not_reached ("unhandled dynamic_prop kind");
892 }
893
894 /* See gdbtypes.h. */
895
896 bool
897 operator== (const range_bounds &l, const range_bounds &r)
898 {
899 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
900
901 return (FIELD_EQ (low)
902 && FIELD_EQ (high)
903 && FIELD_EQ (flag_upper_bound_is_count)
904 && FIELD_EQ (flag_bound_evaluated));
905
906 #undef FIELD_EQ
907 }
908
909 /* Create a range type with a dynamic range from LOW_BOUND to
910 HIGH_BOUND, inclusive. See create_range_type for further details. */
911
912 struct type *
913 create_range_type (struct type *result_type, struct type *index_type,
914 const struct dynamic_prop *low_bound,
915 const struct dynamic_prop *high_bound)
916 {
917 if (result_type == NULL)
918 result_type = alloc_type_copy (index_type);
919 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
920 TYPE_TARGET_TYPE (result_type) = index_type;
921 if (TYPE_STUB (index_type))
922 TYPE_TARGET_STUB (result_type) = 1;
923 else
924 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
925
926 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
927 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
928 TYPE_RANGE_DATA (result_type)->low = *low_bound;
929 TYPE_RANGE_DATA (result_type)->high = *high_bound;
930
931 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
932 TYPE_UNSIGNED (result_type) = 1;
933
934 /* Ada allows the declaration of range types whose upper bound is
935 less than the lower bound, so checking the lower bound is not
936 enough. Make sure we do not mark a range type whose upper bound
937 is negative as unsigned. */
938 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
939 TYPE_UNSIGNED (result_type) = 0;
940
941 return result_type;
942 }
943
944 /* Create a range type using either a blank type supplied in
945 RESULT_TYPE, or creating a new type, inheriting the objfile from
946 INDEX_TYPE.
947
948 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
949 to HIGH_BOUND, inclusive.
950
951 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
952 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
953
954 struct type *
955 create_static_range_type (struct type *result_type, struct type *index_type,
956 LONGEST low_bound, LONGEST high_bound)
957 {
958 struct dynamic_prop low, high;
959
960 low.kind = PROP_CONST;
961 low.data.const_val = low_bound;
962
963 high.kind = PROP_CONST;
964 high.data.const_val = high_bound;
965
966 result_type = create_range_type (result_type, index_type, &low, &high);
967
968 return result_type;
969 }
970
971 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
972 are static, otherwise returns 0. */
973
974 static int
975 has_static_range (const struct range_bounds *bounds)
976 {
977 return (bounds->low.kind == PROP_CONST
978 && bounds->high.kind == PROP_CONST);
979 }
980
981
982 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
983 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
984 bounds will fit in LONGEST), or -1 otherwise. */
985
986 int
987 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
988 {
989 type = check_typedef (type);
990 switch (TYPE_CODE (type))
991 {
992 case TYPE_CODE_RANGE:
993 *lowp = TYPE_LOW_BOUND (type);
994 *highp = TYPE_HIGH_BOUND (type);
995 return 1;
996 case TYPE_CODE_ENUM:
997 if (TYPE_NFIELDS (type) > 0)
998 {
999 /* The enums may not be sorted by value, so search all
1000 entries. */
1001 int i;
1002
1003 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1004 for (i = 0; i < TYPE_NFIELDS (type); i++)
1005 {
1006 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1007 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1008 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1009 *highp = TYPE_FIELD_ENUMVAL (type, i);
1010 }
1011
1012 /* Set unsigned indicator if warranted. */
1013 if (*lowp >= 0)
1014 {
1015 TYPE_UNSIGNED (type) = 1;
1016 }
1017 }
1018 else
1019 {
1020 *lowp = 0;
1021 *highp = -1;
1022 }
1023 return 0;
1024 case TYPE_CODE_BOOL:
1025 *lowp = 0;
1026 *highp = 1;
1027 return 0;
1028 case TYPE_CODE_INT:
1029 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1030 return -1;
1031 if (!TYPE_UNSIGNED (type))
1032 {
1033 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1034 *highp = -*lowp - 1;
1035 return 0;
1036 }
1037 /* fall through */
1038 case TYPE_CODE_CHAR:
1039 *lowp = 0;
1040 /* This round-about calculation is to avoid shifting by
1041 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1042 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1043 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1044 *highp = (*highp - 1) | *highp;
1045 return 0;
1046 default:
1047 return -1;
1048 }
1049 }
1050
1051 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1052 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1053 Save the high bound into HIGH_BOUND if not NULL.
1054
1055 Return 1 if the operation was successful. Return zero otherwise,
1056 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1057
1058 We now simply use get_discrete_bounds call to get the values
1059 of the low and high bounds.
1060 get_discrete_bounds can return three values:
1061 1, meaning that index is a range,
1062 0, meaning that index is a discrete type,
1063 or -1 for failure. */
1064
1065 int
1066 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1067 {
1068 struct type *index = TYPE_INDEX_TYPE (type);
1069 LONGEST low = 0;
1070 LONGEST high = 0;
1071 int res;
1072
1073 if (index == NULL)
1074 return 0;
1075
1076 res = get_discrete_bounds (index, &low, &high);
1077 if (res == -1)
1078 return 0;
1079
1080 /* Check if the array bounds are undefined. */
1081 if (res == 1
1082 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1083 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1084 return 0;
1085
1086 if (low_bound)
1087 *low_bound = low;
1088
1089 if (high_bound)
1090 *high_bound = high;
1091
1092 return 1;
1093 }
1094
1095 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1096 representation of a value of this type, save the corresponding
1097 position number in POS.
1098
1099 Its differs from VAL only in the case of enumeration types. In
1100 this case, the position number of the value of the first listed
1101 enumeration literal is zero; the position number of the value of
1102 each subsequent enumeration literal is one more than that of its
1103 predecessor in the list.
1104
1105 Return 1 if the operation was successful. Return zero otherwise,
1106 in which case the value of POS is unmodified.
1107 */
1108
1109 int
1110 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1111 {
1112 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1113 {
1114 int i;
1115
1116 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1117 {
1118 if (val == TYPE_FIELD_ENUMVAL (type, i))
1119 {
1120 *pos = i;
1121 return 1;
1122 }
1123 }
1124 /* Invalid enumeration value. */
1125 return 0;
1126 }
1127 else
1128 {
1129 *pos = val;
1130 return 1;
1131 }
1132 }
1133
1134 /* Create an array type using either a blank type supplied in
1135 RESULT_TYPE, or creating a new type, inheriting the objfile from
1136 RANGE_TYPE.
1137
1138 Elements will be of type ELEMENT_TYPE, the indices will be of type
1139 RANGE_TYPE.
1140
1141 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1142 This byte stride property is added to the resulting array type
1143 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1144 argument can only be used to create types that are objfile-owned
1145 (see add_dyn_prop), meaning that either this function must be called
1146 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1147
1148 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1149 If BIT_STRIDE is not zero, build a packed array type whose element
1150 size is BIT_STRIDE. Otherwise, ignore this parameter.
1151
1152 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1153 sure it is TYPE_CODE_UNDEF before we bash it into an array
1154 type? */
1155
1156 struct type *
1157 create_array_type_with_stride (struct type *result_type,
1158 struct type *element_type,
1159 struct type *range_type,
1160 struct dynamic_prop *byte_stride_prop,
1161 unsigned int bit_stride)
1162 {
1163 if (byte_stride_prop != NULL
1164 && byte_stride_prop->kind == PROP_CONST)
1165 {
1166 /* The byte stride is actually not dynamic. Pretend we were
1167 called with bit_stride set instead of byte_stride_prop.
1168 This will give us the same result type, while avoiding
1169 the need to handle this as a special case. */
1170 bit_stride = byte_stride_prop->data.const_val * 8;
1171 byte_stride_prop = NULL;
1172 }
1173
1174 if (result_type == NULL)
1175 result_type = alloc_type_copy (range_type);
1176
1177 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1178 TYPE_TARGET_TYPE (result_type) = element_type;
1179 if (byte_stride_prop == NULL
1180 && has_static_range (TYPE_RANGE_DATA (range_type))
1181 && (!type_not_associated (result_type)
1182 && !type_not_allocated (result_type)))
1183 {
1184 LONGEST low_bound, high_bound;
1185
1186 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1187 low_bound = high_bound = 0;
1188 element_type = check_typedef (element_type);
1189 /* Be careful when setting the array length. Ada arrays can be
1190 empty arrays with the high_bound being smaller than the low_bound.
1191 In such cases, the array length should be zero. */
1192 if (high_bound < low_bound)
1193 TYPE_LENGTH (result_type) = 0;
1194 else if (bit_stride > 0)
1195 TYPE_LENGTH (result_type) =
1196 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1197 else
1198 TYPE_LENGTH (result_type) =
1199 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1200 }
1201 else
1202 {
1203 /* This type is dynamic and its length needs to be computed
1204 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1205 undefined by setting it to zero. Although we are not expected
1206 to trust TYPE_LENGTH in this case, setting the size to zero
1207 allows us to avoid allocating objects of random sizes in case
1208 we accidently do. */
1209 TYPE_LENGTH (result_type) = 0;
1210 }
1211
1212 TYPE_NFIELDS (result_type) = 1;
1213 TYPE_FIELDS (result_type) =
1214 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1215 TYPE_INDEX_TYPE (result_type) = range_type;
1216 if (byte_stride_prop != NULL)
1217 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1218 else if (bit_stride > 0)
1219 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1220
1221 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1222 if (TYPE_LENGTH (result_type) == 0)
1223 TYPE_TARGET_STUB (result_type) = 1;
1224
1225 return result_type;
1226 }
1227
1228 /* Same as create_array_type_with_stride but with no bit_stride
1229 (BIT_STRIDE = 0), thus building an unpacked array. */
1230
1231 struct type *
1232 create_array_type (struct type *result_type,
1233 struct type *element_type,
1234 struct type *range_type)
1235 {
1236 return create_array_type_with_stride (result_type, element_type,
1237 range_type, NULL, 0);
1238 }
1239
1240 struct type *
1241 lookup_array_range_type (struct type *element_type,
1242 LONGEST low_bound, LONGEST high_bound)
1243 {
1244 struct type *index_type;
1245 struct type *range_type;
1246
1247 if (TYPE_OBJFILE_OWNED (element_type))
1248 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1249 else
1250 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1251 range_type = create_static_range_type (NULL, index_type,
1252 low_bound, high_bound);
1253
1254 return create_array_type (NULL, element_type, range_type);
1255 }
1256
1257 /* Create a string type using either a blank type supplied in
1258 RESULT_TYPE, or creating a new type. String types are similar
1259 enough to array of char types that we can use create_array_type to
1260 build the basic type and then bash it into a string type.
1261
1262 For fixed length strings, the range type contains 0 as the lower
1263 bound and the length of the string minus one as the upper bound.
1264
1265 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1266 sure it is TYPE_CODE_UNDEF before we bash it into a string
1267 type? */
1268
1269 struct type *
1270 create_string_type (struct type *result_type,
1271 struct type *string_char_type,
1272 struct type *range_type)
1273 {
1274 result_type = create_array_type (result_type,
1275 string_char_type,
1276 range_type);
1277 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1278 return result_type;
1279 }
1280
1281 struct type *
1282 lookup_string_range_type (struct type *string_char_type,
1283 LONGEST low_bound, LONGEST high_bound)
1284 {
1285 struct type *result_type;
1286
1287 result_type = lookup_array_range_type (string_char_type,
1288 low_bound, high_bound);
1289 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1290 return result_type;
1291 }
1292
1293 struct type *
1294 create_set_type (struct type *result_type, struct type *domain_type)
1295 {
1296 if (result_type == NULL)
1297 result_type = alloc_type_copy (domain_type);
1298
1299 TYPE_CODE (result_type) = TYPE_CODE_SET;
1300 TYPE_NFIELDS (result_type) = 1;
1301 TYPE_FIELDS (result_type)
1302 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1303
1304 if (!TYPE_STUB (domain_type))
1305 {
1306 LONGEST low_bound, high_bound, bit_length;
1307
1308 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1309 low_bound = high_bound = 0;
1310 bit_length = high_bound - low_bound + 1;
1311 TYPE_LENGTH (result_type)
1312 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1313 if (low_bound >= 0)
1314 TYPE_UNSIGNED (result_type) = 1;
1315 }
1316 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1317
1318 return result_type;
1319 }
1320
1321 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1322 and any array types nested inside it. */
1323
1324 void
1325 make_vector_type (struct type *array_type)
1326 {
1327 struct type *inner_array, *elt_type;
1328 int flags;
1329
1330 /* Find the innermost array type, in case the array is
1331 multi-dimensional. */
1332 inner_array = array_type;
1333 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1334 inner_array = TYPE_TARGET_TYPE (inner_array);
1335
1336 elt_type = TYPE_TARGET_TYPE (inner_array);
1337 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1338 {
1339 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1340 elt_type = make_qualified_type (elt_type, flags, NULL);
1341 TYPE_TARGET_TYPE (inner_array) = elt_type;
1342 }
1343
1344 TYPE_VECTOR (array_type) = 1;
1345 }
1346
1347 struct type *
1348 init_vector_type (struct type *elt_type, int n)
1349 {
1350 struct type *array_type;
1351
1352 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1353 make_vector_type (array_type);
1354 return array_type;
1355 }
1356
1357 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1358 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1359 confusing. "self" is a common enough replacement for "this".
1360 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1361 TYPE_CODE_METHOD. */
1362
1363 struct type *
1364 internal_type_self_type (struct type *type)
1365 {
1366 switch (TYPE_CODE (type))
1367 {
1368 case TYPE_CODE_METHODPTR:
1369 case TYPE_CODE_MEMBERPTR:
1370 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1371 return NULL;
1372 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1373 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1374 case TYPE_CODE_METHOD:
1375 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1376 return NULL;
1377 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1378 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1379 default:
1380 gdb_assert_not_reached ("bad type");
1381 }
1382 }
1383
1384 /* Set the type of the class that TYPE belongs to.
1385 In c++ this is the class of "this".
1386 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1387 TYPE_CODE_METHOD. */
1388
1389 void
1390 set_type_self_type (struct type *type, struct type *self_type)
1391 {
1392 switch (TYPE_CODE (type))
1393 {
1394 case TYPE_CODE_METHODPTR:
1395 case TYPE_CODE_MEMBERPTR:
1396 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1397 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1398 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1399 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1400 break;
1401 case TYPE_CODE_METHOD:
1402 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1403 INIT_FUNC_SPECIFIC (type);
1404 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1405 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1406 break;
1407 default:
1408 gdb_assert_not_reached ("bad type");
1409 }
1410 }
1411
1412 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1413 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1414 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1415 TYPE doesn't include the offset (that's the value of the MEMBER
1416 itself), but does include the structure type into which it points
1417 (for some reason).
1418
1419 When "smashing" the type, we preserve the objfile that the old type
1420 pointed to, since we aren't changing where the type is actually
1421 allocated. */
1422
1423 void
1424 smash_to_memberptr_type (struct type *type, struct type *self_type,
1425 struct type *to_type)
1426 {
1427 smash_type (type);
1428 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1429 TYPE_TARGET_TYPE (type) = to_type;
1430 set_type_self_type (type, self_type);
1431 /* Assume that a data member pointer is the same size as a normal
1432 pointer. */
1433 TYPE_LENGTH (type)
1434 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1435 }
1436
1437 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1438
1439 When "smashing" the type, we preserve the objfile that the old type
1440 pointed to, since we aren't changing where the type is actually
1441 allocated. */
1442
1443 void
1444 smash_to_methodptr_type (struct type *type, struct type *to_type)
1445 {
1446 smash_type (type);
1447 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1448 TYPE_TARGET_TYPE (type) = to_type;
1449 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1450 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1451 }
1452
1453 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1454 METHOD just means `function that gets an extra "this" argument'.
1455
1456 When "smashing" the type, we preserve the objfile that the old type
1457 pointed to, since we aren't changing where the type is actually
1458 allocated. */
1459
1460 void
1461 smash_to_method_type (struct type *type, struct type *self_type,
1462 struct type *to_type, struct field *args,
1463 int nargs, int varargs)
1464 {
1465 smash_type (type);
1466 TYPE_CODE (type) = TYPE_CODE_METHOD;
1467 TYPE_TARGET_TYPE (type) = to_type;
1468 set_type_self_type (type, self_type);
1469 TYPE_FIELDS (type) = args;
1470 TYPE_NFIELDS (type) = nargs;
1471 if (varargs)
1472 TYPE_VARARGS (type) = 1;
1473 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1474 }
1475
1476 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1477 Since GCC PR debug/47510 DWARF provides associated information to detect the
1478 anonymous class linkage name from its typedef.
1479
1480 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1481 apply it itself. */
1482
1483 const char *
1484 type_name_or_error (struct type *type)
1485 {
1486 struct type *saved_type = type;
1487 const char *name;
1488 struct objfile *objfile;
1489
1490 type = check_typedef (type);
1491
1492 name = TYPE_NAME (type);
1493 if (name != NULL)
1494 return name;
1495
1496 name = TYPE_NAME (saved_type);
1497 objfile = TYPE_OBJFILE (saved_type);
1498 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1499 name ? name : "<anonymous>",
1500 objfile ? objfile_name (objfile) : "<arch>");
1501 }
1502
1503 /* Lookup a typedef or primitive type named NAME, visible in lexical
1504 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1505 suitably defined. */
1506
1507 struct type *
1508 lookup_typename (const struct language_defn *language,
1509 struct gdbarch *gdbarch, const char *name,
1510 const struct block *block, int noerr)
1511 {
1512 struct symbol *sym;
1513
1514 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1515 language->la_language, NULL).symbol;
1516 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1517 return SYMBOL_TYPE (sym);
1518
1519 if (noerr)
1520 return NULL;
1521 error (_("No type named %s."), name);
1522 }
1523
1524 struct type *
1525 lookup_unsigned_typename (const struct language_defn *language,
1526 struct gdbarch *gdbarch, const char *name)
1527 {
1528 char *uns = (char *) alloca (strlen (name) + 10);
1529
1530 strcpy (uns, "unsigned ");
1531 strcpy (uns + 9, name);
1532 return lookup_typename (language, gdbarch, uns, NULL, 0);
1533 }
1534
1535 struct type *
1536 lookup_signed_typename (const struct language_defn *language,
1537 struct gdbarch *gdbarch, const char *name)
1538 {
1539 struct type *t;
1540 char *uns = (char *) alloca (strlen (name) + 8);
1541
1542 strcpy (uns, "signed ");
1543 strcpy (uns + 7, name);
1544 t = lookup_typename (language, gdbarch, uns, NULL, 1);
1545 /* If we don't find "signed FOO" just try again with plain "FOO". */
1546 if (t != NULL)
1547 return t;
1548 return lookup_typename (language, gdbarch, name, NULL, 0);
1549 }
1550
1551 /* Lookup a structure type named "struct NAME",
1552 visible in lexical block BLOCK. */
1553
1554 struct type *
1555 lookup_struct (const char *name, const struct block *block)
1556 {
1557 struct symbol *sym;
1558
1559 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1560
1561 if (sym == NULL)
1562 {
1563 error (_("No struct type named %s."), name);
1564 }
1565 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1566 {
1567 error (_("This context has class, union or enum %s, not a struct."),
1568 name);
1569 }
1570 return (SYMBOL_TYPE (sym));
1571 }
1572
1573 /* Lookup a union type named "union NAME",
1574 visible in lexical block BLOCK. */
1575
1576 struct type *
1577 lookup_union (const char *name, const struct block *block)
1578 {
1579 struct symbol *sym;
1580 struct type *t;
1581
1582 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1583
1584 if (sym == NULL)
1585 error (_("No union type named %s."), name);
1586
1587 t = SYMBOL_TYPE (sym);
1588
1589 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1590 return t;
1591
1592 /* If we get here, it's not a union. */
1593 error (_("This context has class, struct or enum %s, not a union."),
1594 name);
1595 }
1596
1597 /* Lookup an enum type named "enum NAME",
1598 visible in lexical block BLOCK. */
1599
1600 struct type *
1601 lookup_enum (const char *name, const struct block *block)
1602 {
1603 struct symbol *sym;
1604
1605 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1606 if (sym == NULL)
1607 {
1608 error (_("No enum type named %s."), name);
1609 }
1610 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1611 {
1612 error (_("This context has class, struct or union %s, not an enum."),
1613 name);
1614 }
1615 return (SYMBOL_TYPE (sym));
1616 }
1617
1618 /* Lookup a template type named "template NAME<TYPE>",
1619 visible in lexical block BLOCK. */
1620
1621 struct type *
1622 lookup_template_type (const char *name, struct type *type,
1623 const struct block *block)
1624 {
1625 struct symbol *sym;
1626 char *nam = (char *)
1627 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1628
1629 strcpy (nam, name);
1630 strcat (nam, "<");
1631 strcat (nam, TYPE_NAME (type));
1632 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1633
1634 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1635
1636 if (sym == NULL)
1637 {
1638 error (_("No template type named %s."), name);
1639 }
1640 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1641 {
1642 error (_("This context has class, union or enum %s, not a struct."),
1643 name);
1644 }
1645 return (SYMBOL_TYPE (sym));
1646 }
1647
1648 /* See gdbtypes.h. */
1649
1650 struct_elt
1651 lookup_struct_elt (struct type *type, const char *name, int noerr)
1652 {
1653 int i;
1654
1655 for (;;)
1656 {
1657 type = check_typedef (type);
1658 if (TYPE_CODE (type) != TYPE_CODE_PTR
1659 && TYPE_CODE (type) != TYPE_CODE_REF)
1660 break;
1661 type = TYPE_TARGET_TYPE (type);
1662 }
1663
1664 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1665 && TYPE_CODE (type) != TYPE_CODE_UNION)
1666 {
1667 std::string type_name = type_to_string (type);
1668 error (_("Type %s is not a structure or union type."),
1669 type_name.c_str ());
1670 }
1671
1672 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1673 {
1674 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1675
1676 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1677 {
1678 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
1679 }
1680 else if (!t_field_name || *t_field_name == '\0')
1681 {
1682 struct_elt elt
1683 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1684 if (elt.field != NULL)
1685 {
1686 elt.offset += TYPE_FIELD_BITPOS (type, i);
1687 return elt;
1688 }
1689 }
1690 }
1691
1692 /* OK, it's not in this class. Recursively check the baseclasses. */
1693 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1694 {
1695 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1696 if (elt.field != NULL)
1697 return elt;
1698 }
1699
1700 if (noerr)
1701 return {nullptr, 0};
1702
1703 std::string type_name = type_to_string (type);
1704 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1705 }
1706
1707 /* See gdbtypes.h. */
1708
1709 struct type *
1710 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1711 {
1712 struct_elt elt = lookup_struct_elt (type, name, noerr);
1713 if (elt.field != NULL)
1714 return FIELD_TYPE (*elt.field);
1715 else
1716 return NULL;
1717 }
1718
1719 /* Store in *MAX the largest number representable by unsigned integer type
1720 TYPE. */
1721
1722 void
1723 get_unsigned_type_max (struct type *type, ULONGEST *max)
1724 {
1725 unsigned int n;
1726
1727 type = check_typedef (type);
1728 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1729 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1730
1731 /* Written this way to avoid overflow. */
1732 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1733 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1734 }
1735
1736 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1737 signed integer type TYPE. */
1738
1739 void
1740 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1741 {
1742 unsigned int n;
1743
1744 type = check_typedef (type);
1745 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1746 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1747
1748 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1749 *min = -((ULONGEST) 1 << (n - 1));
1750 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1751 }
1752
1753 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1754 cplus_stuff.vptr_fieldno.
1755
1756 cplus_stuff is initialized to cplus_struct_default which does not
1757 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1758 designated initializers). We cope with that here. */
1759
1760 int
1761 internal_type_vptr_fieldno (struct type *type)
1762 {
1763 type = check_typedef (type);
1764 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1765 || TYPE_CODE (type) == TYPE_CODE_UNION);
1766 if (!HAVE_CPLUS_STRUCT (type))
1767 return -1;
1768 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1769 }
1770
1771 /* Set the value of cplus_stuff.vptr_fieldno. */
1772
1773 void
1774 set_type_vptr_fieldno (struct type *type, int fieldno)
1775 {
1776 type = check_typedef (type);
1777 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1778 || TYPE_CODE (type) == TYPE_CODE_UNION);
1779 if (!HAVE_CPLUS_STRUCT (type))
1780 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1781 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1782 }
1783
1784 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1785 cplus_stuff.vptr_basetype. */
1786
1787 struct type *
1788 internal_type_vptr_basetype (struct type *type)
1789 {
1790 type = check_typedef (type);
1791 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1792 || TYPE_CODE (type) == TYPE_CODE_UNION);
1793 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1794 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1795 }
1796
1797 /* Set the value of cplus_stuff.vptr_basetype. */
1798
1799 void
1800 set_type_vptr_basetype (struct type *type, struct type *basetype)
1801 {
1802 type = check_typedef (type);
1803 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1804 || TYPE_CODE (type) == TYPE_CODE_UNION);
1805 if (!HAVE_CPLUS_STRUCT (type))
1806 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1807 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1808 }
1809
1810 /* Lookup the vptr basetype/fieldno values for TYPE.
1811 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1812 vptr_fieldno. Also, if found and basetype is from the same objfile,
1813 cache the results.
1814 If not found, return -1 and ignore BASETYPEP.
1815 Callers should be aware that in some cases (for example,
1816 the type or one of its baseclasses is a stub type and we are
1817 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1818 this function will not be able to find the
1819 virtual function table pointer, and vptr_fieldno will remain -1 and
1820 vptr_basetype will remain NULL or incomplete. */
1821
1822 int
1823 get_vptr_fieldno (struct type *type, struct type **basetypep)
1824 {
1825 type = check_typedef (type);
1826
1827 if (TYPE_VPTR_FIELDNO (type) < 0)
1828 {
1829 int i;
1830
1831 /* We must start at zero in case the first (and only) baseclass
1832 is virtual (and hence we cannot share the table pointer). */
1833 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1834 {
1835 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1836 int fieldno;
1837 struct type *basetype;
1838
1839 fieldno = get_vptr_fieldno (baseclass, &basetype);
1840 if (fieldno >= 0)
1841 {
1842 /* If the type comes from a different objfile we can't cache
1843 it, it may have a different lifetime. PR 2384 */
1844 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1845 {
1846 set_type_vptr_fieldno (type, fieldno);
1847 set_type_vptr_basetype (type, basetype);
1848 }
1849 if (basetypep)
1850 *basetypep = basetype;
1851 return fieldno;
1852 }
1853 }
1854
1855 /* Not found. */
1856 return -1;
1857 }
1858 else
1859 {
1860 if (basetypep)
1861 *basetypep = TYPE_VPTR_BASETYPE (type);
1862 return TYPE_VPTR_FIELDNO (type);
1863 }
1864 }
1865
1866 static void
1867 stub_noname_complaint (void)
1868 {
1869 complaint (_("stub type has NULL name"));
1870 }
1871
1872 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1873 attached to it, and that property has a non-constant value. */
1874
1875 static int
1876 array_type_has_dynamic_stride (struct type *type)
1877 {
1878 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1879
1880 return (prop != NULL && prop->kind != PROP_CONST);
1881 }
1882
1883 /* Worker for is_dynamic_type. */
1884
1885 static int
1886 is_dynamic_type_internal (struct type *type, int top_level)
1887 {
1888 type = check_typedef (type);
1889
1890 /* We only want to recognize references at the outermost level. */
1891 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1892 type = check_typedef (TYPE_TARGET_TYPE (type));
1893
1894 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1895 dynamic, even if the type itself is statically defined.
1896 From a user's point of view, this may appear counter-intuitive;
1897 but it makes sense in this context, because the point is to determine
1898 whether any part of the type needs to be resolved before it can
1899 be exploited. */
1900 if (TYPE_DATA_LOCATION (type) != NULL
1901 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1902 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1903 return 1;
1904
1905 if (TYPE_ASSOCIATED_PROP (type))
1906 return 1;
1907
1908 if (TYPE_ALLOCATED_PROP (type))
1909 return 1;
1910
1911 switch (TYPE_CODE (type))
1912 {
1913 case TYPE_CODE_RANGE:
1914 {
1915 /* A range type is obviously dynamic if it has at least one
1916 dynamic bound. But also consider the range type to be
1917 dynamic when its subtype is dynamic, even if the bounds
1918 of the range type are static. It allows us to assume that
1919 the subtype of a static range type is also static. */
1920 return (!has_static_range (TYPE_RANGE_DATA (type))
1921 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1922 }
1923
1924 case TYPE_CODE_ARRAY:
1925 {
1926 gdb_assert (TYPE_NFIELDS (type) == 1);
1927
1928 /* The array is dynamic if either the bounds are dynamic... */
1929 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1930 return 1;
1931 /* ... or the elements it contains have a dynamic contents... */
1932 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1933 return 1;
1934 /* ... or if it has a dynamic stride... */
1935 if (array_type_has_dynamic_stride (type))
1936 return 1;
1937 return 0;
1938 }
1939
1940 case TYPE_CODE_STRUCT:
1941 case TYPE_CODE_UNION:
1942 {
1943 int i;
1944
1945 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1946 if (!field_is_static (&TYPE_FIELD (type, i))
1947 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1948 return 1;
1949 }
1950 break;
1951 }
1952
1953 return 0;
1954 }
1955
1956 /* See gdbtypes.h. */
1957
1958 int
1959 is_dynamic_type (struct type *type)
1960 {
1961 return is_dynamic_type_internal (type, 1);
1962 }
1963
1964 static struct type *resolve_dynamic_type_internal
1965 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1966
1967 /* Given a dynamic range type (dyn_range_type) and a stack of
1968 struct property_addr_info elements, return a static version
1969 of that type. */
1970
1971 static struct type *
1972 resolve_dynamic_range (struct type *dyn_range_type,
1973 struct property_addr_info *addr_stack)
1974 {
1975 CORE_ADDR value;
1976 struct type *static_range_type, *static_target_type;
1977 const struct dynamic_prop *prop;
1978 struct dynamic_prop low_bound, high_bound;
1979
1980 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1981
1982 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1983 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1984 {
1985 low_bound.kind = PROP_CONST;
1986 low_bound.data.const_val = value;
1987 }
1988 else
1989 {
1990 low_bound.kind = PROP_UNDEFINED;
1991 low_bound.data.const_val = 0;
1992 }
1993
1994 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1995 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1996 {
1997 high_bound.kind = PROP_CONST;
1998 high_bound.data.const_val = value;
1999
2000 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2001 high_bound.data.const_val
2002 = low_bound.data.const_val + high_bound.data.const_val - 1;
2003 }
2004 else
2005 {
2006 high_bound.kind = PROP_UNDEFINED;
2007 high_bound.data.const_val = 0;
2008 }
2009
2010 static_target_type
2011 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2012 addr_stack, 0);
2013 static_range_type = create_range_type (copy_type (dyn_range_type),
2014 static_target_type,
2015 &low_bound, &high_bound);
2016 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2017 return static_range_type;
2018 }
2019
2020 /* Resolves dynamic bound values of an array type TYPE to static ones.
2021 ADDR_STACK is a stack of struct property_addr_info to be used
2022 if needed during the dynamic resolution. */
2023
2024 static struct type *
2025 resolve_dynamic_array (struct type *type,
2026 struct property_addr_info *addr_stack)
2027 {
2028 CORE_ADDR value;
2029 struct type *elt_type;
2030 struct type *range_type;
2031 struct type *ary_dim;
2032 struct dynamic_prop *prop;
2033 unsigned int bit_stride = 0;
2034
2035 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2036
2037 type = copy_type (type);
2038
2039 elt_type = type;
2040 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2041 range_type = resolve_dynamic_range (range_type, addr_stack);
2042
2043 /* Resolve allocated/associated here before creating a new array type, which
2044 will update the length of the array accordingly. */
2045 prop = TYPE_ALLOCATED_PROP (type);
2046 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2047 {
2048 TYPE_DYN_PROP_ADDR (prop) = value;
2049 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2050 }
2051 prop = TYPE_ASSOCIATED_PROP (type);
2052 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2053 {
2054 TYPE_DYN_PROP_ADDR (prop) = value;
2055 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2056 }
2057
2058 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2059
2060 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2061 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
2062 else
2063 elt_type = TYPE_TARGET_TYPE (type);
2064
2065 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2066 if (prop != NULL)
2067 {
2068 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2069 {
2070 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2071 bit_stride = (unsigned int) (value * 8);
2072 }
2073 else
2074 {
2075 /* Could be a bug in our code, but it could also happen
2076 if the DWARF info is not correct. Issue a warning,
2077 and assume no byte/bit stride (leave bit_stride = 0). */
2078 warning (_("cannot determine array stride for type %s"),
2079 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2080 }
2081 }
2082 else
2083 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2084
2085 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2086 bit_stride);
2087 }
2088
2089 /* Resolve dynamic bounds of members of the union TYPE to static
2090 bounds. ADDR_STACK is a stack of struct property_addr_info
2091 to be used if needed during the dynamic resolution. */
2092
2093 static struct type *
2094 resolve_dynamic_union (struct type *type,
2095 struct property_addr_info *addr_stack)
2096 {
2097 struct type *resolved_type;
2098 int i;
2099 unsigned int max_len = 0;
2100
2101 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2102
2103 resolved_type = copy_type (type);
2104 TYPE_FIELDS (resolved_type)
2105 = (struct field *) TYPE_ALLOC (resolved_type,
2106 TYPE_NFIELDS (resolved_type)
2107 * sizeof (struct field));
2108 memcpy (TYPE_FIELDS (resolved_type),
2109 TYPE_FIELDS (type),
2110 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2111 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2112 {
2113 struct type *t;
2114
2115 if (field_is_static (&TYPE_FIELD (type, i)))
2116 continue;
2117
2118 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2119 addr_stack, 0);
2120 TYPE_FIELD_TYPE (resolved_type, i) = t;
2121 if (TYPE_LENGTH (t) > max_len)
2122 max_len = TYPE_LENGTH (t);
2123 }
2124
2125 TYPE_LENGTH (resolved_type) = max_len;
2126 return resolved_type;
2127 }
2128
2129 /* Resolve dynamic bounds of members of the struct TYPE to static
2130 bounds. ADDR_STACK is a stack of struct property_addr_info to
2131 be used if needed during the dynamic resolution. */
2132
2133 static struct type *
2134 resolve_dynamic_struct (struct type *type,
2135 struct property_addr_info *addr_stack)
2136 {
2137 struct type *resolved_type;
2138 int i;
2139 unsigned resolved_type_bit_length = 0;
2140
2141 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2142 gdb_assert (TYPE_NFIELDS (type) > 0);
2143
2144 resolved_type = copy_type (type);
2145 TYPE_FIELDS (resolved_type)
2146 = (struct field *) TYPE_ALLOC (resolved_type,
2147 TYPE_NFIELDS (resolved_type)
2148 * sizeof (struct field));
2149 memcpy (TYPE_FIELDS (resolved_type),
2150 TYPE_FIELDS (type),
2151 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2152 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2153 {
2154 unsigned new_bit_length;
2155 struct property_addr_info pinfo;
2156
2157 if (field_is_static (&TYPE_FIELD (type, i)))
2158 continue;
2159
2160 /* As we know this field is not a static field, the field's
2161 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2162 this is the case, but only trigger a simple error rather
2163 than an internal error if that fails. While failing
2164 that verification indicates a bug in our code, the error
2165 is not severe enough to suggest to the user he stops
2166 his debugging session because of it. */
2167 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2168 error (_("Cannot determine struct field location"
2169 " (invalid location kind)"));
2170
2171 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2172 pinfo.valaddr = addr_stack->valaddr;
2173 pinfo.addr
2174 = (addr_stack->addr
2175 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2176 pinfo.next = addr_stack;
2177
2178 TYPE_FIELD_TYPE (resolved_type, i)
2179 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2180 &pinfo, 0);
2181 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2182 == FIELD_LOC_KIND_BITPOS);
2183
2184 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2185 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2186 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2187 else
2188 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2189 * TARGET_CHAR_BIT);
2190
2191 /* Normally, we would use the position and size of the last field
2192 to determine the size of the enclosing structure. But GCC seems
2193 to be encoding the position of some fields incorrectly when
2194 the struct contains a dynamic field that is not placed last.
2195 So we compute the struct size based on the field that has
2196 the highest position + size - probably the best we can do. */
2197 if (new_bit_length > resolved_type_bit_length)
2198 resolved_type_bit_length = new_bit_length;
2199 }
2200
2201 /* The length of a type won't change for fortran, but it does for C and Ada.
2202 For fortran the size of dynamic fields might change over time but not the
2203 type length of the structure. If we adapt it, we run into problems
2204 when calculating the element offset for arrays of structs. */
2205 if (current_language->la_language != language_fortran)
2206 TYPE_LENGTH (resolved_type)
2207 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2208
2209 /* The Ada language uses this field as a cache for static fixed types: reset
2210 it as RESOLVED_TYPE must have its own static fixed type. */
2211 TYPE_TARGET_TYPE (resolved_type) = NULL;
2212
2213 return resolved_type;
2214 }
2215
2216 /* Worker for resolved_dynamic_type. */
2217
2218 static struct type *
2219 resolve_dynamic_type_internal (struct type *type,
2220 struct property_addr_info *addr_stack,
2221 int top_level)
2222 {
2223 struct type *real_type = check_typedef (type);
2224 struct type *resolved_type = type;
2225 struct dynamic_prop *prop;
2226 CORE_ADDR value;
2227
2228 if (!is_dynamic_type_internal (real_type, top_level))
2229 return type;
2230
2231 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2232 {
2233 resolved_type = copy_type (type);
2234 TYPE_TARGET_TYPE (resolved_type)
2235 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2236 top_level);
2237 }
2238 else
2239 {
2240 /* Before trying to resolve TYPE, make sure it is not a stub. */
2241 type = real_type;
2242
2243 switch (TYPE_CODE (type))
2244 {
2245 case TYPE_CODE_REF:
2246 {
2247 struct property_addr_info pinfo;
2248
2249 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2250 pinfo.valaddr = NULL;
2251 if (addr_stack->valaddr != NULL)
2252 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2253 else
2254 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2255 pinfo.next = addr_stack;
2256
2257 resolved_type = copy_type (type);
2258 TYPE_TARGET_TYPE (resolved_type)
2259 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2260 &pinfo, top_level);
2261 break;
2262 }
2263
2264 case TYPE_CODE_ARRAY:
2265 resolved_type = resolve_dynamic_array (type, addr_stack);
2266 break;
2267
2268 case TYPE_CODE_RANGE:
2269 resolved_type = resolve_dynamic_range (type, addr_stack);
2270 break;
2271
2272 case TYPE_CODE_UNION:
2273 resolved_type = resolve_dynamic_union (type, addr_stack);
2274 break;
2275
2276 case TYPE_CODE_STRUCT:
2277 resolved_type = resolve_dynamic_struct (type, addr_stack);
2278 break;
2279 }
2280 }
2281
2282 /* Resolve data_location attribute. */
2283 prop = TYPE_DATA_LOCATION (resolved_type);
2284 if (prop != NULL
2285 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2286 {
2287 TYPE_DYN_PROP_ADDR (prop) = value;
2288 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2289 }
2290
2291 return resolved_type;
2292 }
2293
2294 /* See gdbtypes.h */
2295
2296 struct type *
2297 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2298 CORE_ADDR addr)
2299 {
2300 struct property_addr_info pinfo
2301 = {check_typedef (type), valaddr, addr, NULL};
2302
2303 return resolve_dynamic_type_internal (type, &pinfo, 1);
2304 }
2305
2306 /* See gdbtypes.h */
2307
2308 struct dynamic_prop *
2309 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2310 {
2311 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2312
2313 while (node != NULL)
2314 {
2315 if (node->prop_kind == prop_kind)
2316 return &node->prop;
2317 node = node->next;
2318 }
2319 return NULL;
2320 }
2321
2322 /* See gdbtypes.h */
2323
2324 void
2325 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2326 struct type *type)
2327 {
2328 struct dynamic_prop_list *temp;
2329
2330 gdb_assert (TYPE_OBJFILE_OWNED (type));
2331
2332 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2333 struct dynamic_prop_list);
2334 temp->prop_kind = prop_kind;
2335 temp->prop = prop;
2336 temp->next = TYPE_DYN_PROP_LIST (type);
2337
2338 TYPE_DYN_PROP_LIST (type) = temp;
2339 }
2340
2341 /* Remove dynamic property from TYPE in case it exists. */
2342
2343 void
2344 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2345 struct type *type)
2346 {
2347 struct dynamic_prop_list *prev_node, *curr_node;
2348
2349 curr_node = TYPE_DYN_PROP_LIST (type);
2350 prev_node = NULL;
2351
2352 while (NULL != curr_node)
2353 {
2354 if (curr_node->prop_kind == prop_kind)
2355 {
2356 /* Update the linked list but don't free anything.
2357 The property was allocated on objstack and it is not known
2358 if we are on top of it. Nevertheless, everything is released
2359 when the complete objstack is freed. */
2360 if (NULL == prev_node)
2361 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2362 else
2363 prev_node->next = curr_node->next;
2364
2365 return;
2366 }
2367
2368 prev_node = curr_node;
2369 curr_node = curr_node->next;
2370 }
2371 }
2372
2373 /* Find the real type of TYPE. This function returns the real type,
2374 after removing all layers of typedefs, and completing opaque or stub
2375 types. Completion changes the TYPE argument, but stripping of
2376 typedefs does not.
2377
2378 Instance flags (e.g. const/volatile) are preserved as typedefs are
2379 stripped. If necessary a new qualified form of the underlying type
2380 is created.
2381
2382 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2383 not been computed and we're either in the middle of reading symbols, or
2384 there was no name for the typedef in the debug info.
2385
2386 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2387 QUITs in the symbol reading code can also throw.
2388 Thus this function can throw an exception.
2389
2390 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2391 the target type.
2392
2393 If this is a stubbed struct (i.e. declared as struct foo *), see if
2394 we can find a full definition in some other file. If so, copy this
2395 definition, so we can use it in future. There used to be a comment
2396 (but not any code) that if we don't find a full definition, we'd
2397 set a flag so we don't spend time in the future checking the same
2398 type. That would be a mistake, though--we might load in more
2399 symbols which contain a full definition for the type. */
2400
2401 struct type *
2402 check_typedef (struct type *type)
2403 {
2404 struct type *orig_type = type;
2405 /* While we're removing typedefs, we don't want to lose qualifiers.
2406 E.g., const/volatile. */
2407 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2408
2409 gdb_assert (type);
2410
2411 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2412 {
2413 if (!TYPE_TARGET_TYPE (type))
2414 {
2415 const char *name;
2416 struct symbol *sym;
2417
2418 /* It is dangerous to call lookup_symbol if we are currently
2419 reading a symtab. Infinite recursion is one danger. */
2420 if (currently_reading_symtab)
2421 return make_qualified_type (type, instance_flags, NULL);
2422
2423 name = TYPE_NAME (type);
2424 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2425 VAR_DOMAIN as appropriate? */
2426 if (name == NULL)
2427 {
2428 stub_noname_complaint ();
2429 return make_qualified_type (type, instance_flags, NULL);
2430 }
2431 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2432 if (sym)
2433 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2434 else /* TYPE_CODE_UNDEF */
2435 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2436 }
2437 type = TYPE_TARGET_TYPE (type);
2438
2439 /* Preserve the instance flags as we traverse down the typedef chain.
2440
2441 Handling address spaces/classes is nasty, what do we do if there's a
2442 conflict?
2443 E.g., what if an outer typedef marks the type as class_1 and an inner
2444 typedef marks the type as class_2?
2445 This is the wrong place to do such error checking. We leave it to
2446 the code that created the typedef in the first place to flag the
2447 error. We just pick the outer address space (akin to letting the
2448 outer cast in a chain of casting win), instead of assuming
2449 "it can't happen". */
2450 {
2451 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2452 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2453 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2454 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2455
2456 /* Treat code vs data spaces and address classes separately. */
2457 if ((instance_flags & ALL_SPACES) != 0)
2458 new_instance_flags &= ~ALL_SPACES;
2459 if ((instance_flags & ALL_CLASSES) != 0)
2460 new_instance_flags &= ~ALL_CLASSES;
2461
2462 instance_flags |= new_instance_flags;
2463 }
2464 }
2465
2466 /* If this is a struct/class/union with no fields, then check
2467 whether a full definition exists somewhere else. This is for
2468 systems where a type definition with no fields is issued for such
2469 types, instead of identifying them as stub types in the first
2470 place. */
2471
2472 if (TYPE_IS_OPAQUE (type)
2473 && opaque_type_resolution
2474 && !currently_reading_symtab)
2475 {
2476 const char *name = TYPE_NAME (type);
2477 struct type *newtype;
2478
2479 if (name == NULL)
2480 {
2481 stub_noname_complaint ();
2482 return make_qualified_type (type, instance_flags, NULL);
2483 }
2484 newtype = lookup_transparent_type (name);
2485
2486 if (newtype)
2487 {
2488 /* If the resolved type and the stub are in the same
2489 objfile, then replace the stub type with the real deal.
2490 But if they're in separate objfiles, leave the stub
2491 alone; we'll just look up the transparent type every time
2492 we call check_typedef. We can't create pointers between
2493 types allocated to different objfiles, since they may
2494 have different lifetimes. Trying to copy NEWTYPE over to
2495 TYPE's objfile is pointless, too, since you'll have to
2496 move over any other types NEWTYPE refers to, which could
2497 be an unbounded amount of stuff. */
2498 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2499 type = make_qualified_type (newtype,
2500 TYPE_INSTANCE_FLAGS (type),
2501 type);
2502 else
2503 type = newtype;
2504 }
2505 }
2506 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2507 types. */
2508 else if (TYPE_STUB (type) && !currently_reading_symtab)
2509 {
2510 const char *name = TYPE_NAME (type);
2511 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2512 as appropriate? */
2513 struct symbol *sym;
2514
2515 if (name == NULL)
2516 {
2517 stub_noname_complaint ();
2518 return make_qualified_type (type, instance_flags, NULL);
2519 }
2520 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2521 if (sym)
2522 {
2523 /* Same as above for opaque types, we can replace the stub
2524 with the complete type only if they are in the same
2525 objfile. */
2526 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2527 type = make_qualified_type (SYMBOL_TYPE (sym),
2528 TYPE_INSTANCE_FLAGS (type),
2529 type);
2530 else
2531 type = SYMBOL_TYPE (sym);
2532 }
2533 }
2534
2535 if (TYPE_TARGET_STUB (type))
2536 {
2537 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2538
2539 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2540 {
2541 /* Nothing we can do. */
2542 }
2543 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2544 {
2545 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2546 TYPE_TARGET_STUB (type) = 0;
2547 }
2548 }
2549
2550 type = make_qualified_type (type, instance_flags, NULL);
2551
2552 /* Cache TYPE_LENGTH for future use. */
2553 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2554
2555 return type;
2556 }
2557
2558 /* Parse a type expression in the string [P..P+LENGTH). If an error
2559 occurs, silently return a void type. */
2560
2561 static struct type *
2562 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2563 {
2564 struct ui_file *saved_gdb_stderr;
2565 struct type *type = NULL; /* Initialize to keep gcc happy. */
2566
2567 /* Suppress error messages. */
2568 saved_gdb_stderr = gdb_stderr;
2569 gdb_stderr = &null_stream;
2570
2571 /* Call parse_and_eval_type() without fear of longjmp()s. */
2572 try
2573 {
2574 type = parse_and_eval_type (p, length);
2575 }
2576 catch (const gdb_exception_error &except)
2577 {
2578 type = builtin_type (gdbarch)->builtin_void;
2579 }
2580
2581 /* Stop suppressing error messages. */
2582 gdb_stderr = saved_gdb_stderr;
2583
2584 return type;
2585 }
2586
2587 /* Ugly hack to convert method stubs into method types.
2588
2589 He ain't kiddin'. This demangles the name of the method into a
2590 string including argument types, parses out each argument type,
2591 generates a string casting a zero to that type, evaluates the
2592 string, and stuffs the resulting type into an argtype vector!!!
2593 Then it knows the type of the whole function (including argument
2594 types for overloading), which info used to be in the stab's but was
2595 removed to hack back the space required for them. */
2596
2597 static void
2598 check_stub_method (struct type *type, int method_id, int signature_id)
2599 {
2600 struct gdbarch *gdbarch = get_type_arch (type);
2601 struct fn_field *f;
2602 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2603 char *demangled_name = gdb_demangle (mangled_name,
2604 DMGL_PARAMS | DMGL_ANSI);
2605 char *argtypetext, *p;
2606 int depth = 0, argcount = 1;
2607 struct field *argtypes;
2608 struct type *mtype;
2609
2610 /* Make sure we got back a function string that we can use. */
2611 if (demangled_name)
2612 p = strchr (demangled_name, '(');
2613 else
2614 p = NULL;
2615
2616 if (demangled_name == NULL || p == NULL)
2617 error (_("Internal: Cannot demangle mangled name `%s'."),
2618 mangled_name);
2619
2620 /* Now, read in the parameters that define this type. */
2621 p += 1;
2622 argtypetext = p;
2623 while (*p)
2624 {
2625 if (*p == '(' || *p == '<')
2626 {
2627 depth += 1;
2628 }
2629 else if (*p == ')' || *p == '>')
2630 {
2631 depth -= 1;
2632 }
2633 else if (*p == ',' && depth == 0)
2634 {
2635 argcount += 1;
2636 }
2637
2638 p += 1;
2639 }
2640
2641 /* If we read one argument and it was ``void'', don't count it. */
2642 if (startswith (argtypetext, "(void)"))
2643 argcount -= 1;
2644
2645 /* We need one extra slot, for the THIS pointer. */
2646
2647 argtypes = (struct field *)
2648 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2649 p = argtypetext;
2650
2651 /* Add THIS pointer for non-static methods. */
2652 f = TYPE_FN_FIELDLIST1 (type, method_id);
2653 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2654 argcount = 0;
2655 else
2656 {
2657 argtypes[0].type = lookup_pointer_type (type);
2658 argcount = 1;
2659 }
2660
2661 if (*p != ')') /* () means no args, skip while. */
2662 {
2663 depth = 0;
2664 while (*p)
2665 {
2666 if (depth <= 0 && (*p == ',' || *p == ')'))
2667 {
2668 /* Avoid parsing of ellipsis, they will be handled below.
2669 Also avoid ``void'' as above. */
2670 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2671 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2672 {
2673 argtypes[argcount].type =
2674 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2675 argcount += 1;
2676 }
2677 argtypetext = p + 1;
2678 }
2679
2680 if (*p == '(' || *p == '<')
2681 {
2682 depth += 1;
2683 }
2684 else if (*p == ')' || *p == '>')
2685 {
2686 depth -= 1;
2687 }
2688
2689 p += 1;
2690 }
2691 }
2692
2693 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2694
2695 /* Now update the old "stub" type into a real type. */
2696 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2697 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2698 We want a method (TYPE_CODE_METHOD). */
2699 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2700 argtypes, argcount, p[-2] == '.');
2701 TYPE_STUB (mtype) = 0;
2702 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2703
2704 xfree (demangled_name);
2705 }
2706
2707 /* This is the external interface to check_stub_method, above. This
2708 function unstubs all of the signatures for TYPE's METHOD_ID method
2709 name. After calling this function TYPE_FN_FIELD_STUB will be
2710 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2711 correct.
2712
2713 This function unfortunately can not die until stabs do. */
2714
2715 void
2716 check_stub_method_group (struct type *type, int method_id)
2717 {
2718 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2719 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2720
2721 for (int j = 0; j < len; j++)
2722 {
2723 if (TYPE_FN_FIELD_STUB (f, j))
2724 check_stub_method (type, method_id, j);
2725 }
2726 }
2727
2728 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2729 const struct cplus_struct_type cplus_struct_default = { };
2730
2731 void
2732 allocate_cplus_struct_type (struct type *type)
2733 {
2734 if (HAVE_CPLUS_STRUCT (type))
2735 /* Structure was already allocated. Nothing more to do. */
2736 return;
2737
2738 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2739 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2740 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2741 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2742 set_type_vptr_fieldno (type, -1);
2743 }
2744
2745 const struct gnat_aux_type gnat_aux_default =
2746 { NULL };
2747
2748 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2749 and allocate the associated gnat-specific data. The gnat-specific
2750 data is also initialized to gnat_aux_default. */
2751
2752 void
2753 allocate_gnat_aux_type (struct type *type)
2754 {
2755 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2756 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2757 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2758 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2759 }
2760
2761 /* Helper function to initialize a newly allocated type. Set type code
2762 to CODE and initialize the type-specific fields accordingly. */
2763
2764 static void
2765 set_type_code (struct type *type, enum type_code code)
2766 {
2767 TYPE_CODE (type) = code;
2768
2769 switch (code)
2770 {
2771 case TYPE_CODE_STRUCT:
2772 case TYPE_CODE_UNION:
2773 case TYPE_CODE_NAMESPACE:
2774 INIT_CPLUS_SPECIFIC (type);
2775 break;
2776 case TYPE_CODE_FLT:
2777 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2778 break;
2779 case TYPE_CODE_FUNC:
2780 INIT_FUNC_SPECIFIC (type);
2781 break;
2782 }
2783 }
2784
2785 /* Helper function to verify floating-point format and size.
2786 BIT is the type size in bits; if BIT equals -1, the size is
2787 determined by the floatformat. Returns size to be used. */
2788
2789 static int
2790 verify_floatformat (int bit, const struct floatformat *floatformat)
2791 {
2792 gdb_assert (floatformat != NULL);
2793
2794 if (bit == -1)
2795 bit = floatformat->totalsize;
2796
2797 gdb_assert (bit >= 0);
2798 gdb_assert (bit >= floatformat->totalsize);
2799
2800 return bit;
2801 }
2802
2803 /* Return the floating-point format for a floating-point variable of
2804 type TYPE. */
2805
2806 const struct floatformat *
2807 floatformat_from_type (const struct type *type)
2808 {
2809 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2810 gdb_assert (TYPE_FLOATFORMAT (type));
2811 return TYPE_FLOATFORMAT (type);
2812 }
2813
2814 /* Helper function to initialize the standard scalar types.
2815
2816 If NAME is non-NULL, then it is used to initialize the type name.
2817 Note that NAME is not copied; it is required to have a lifetime at
2818 least as long as OBJFILE. */
2819
2820 struct type *
2821 init_type (struct objfile *objfile, enum type_code code, int bit,
2822 const char *name)
2823 {
2824 struct type *type;
2825
2826 type = alloc_type (objfile);
2827 set_type_code (type, code);
2828 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2829 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2830 TYPE_NAME (type) = name;
2831
2832 return type;
2833 }
2834
2835 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2836 to use with variables that have no debug info. NAME is the type
2837 name. */
2838
2839 static struct type *
2840 init_nodebug_var_type (struct objfile *objfile, const char *name)
2841 {
2842 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2843 }
2844
2845 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2846 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2847 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2848
2849 struct type *
2850 init_integer_type (struct objfile *objfile,
2851 int bit, int unsigned_p, const char *name)
2852 {
2853 struct type *t;
2854
2855 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2856 if (unsigned_p)
2857 TYPE_UNSIGNED (t) = 1;
2858
2859 return t;
2860 }
2861
2862 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2863 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2864 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2865
2866 struct type *
2867 init_character_type (struct objfile *objfile,
2868 int bit, int unsigned_p, const char *name)
2869 {
2870 struct type *t;
2871
2872 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2873 if (unsigned_p)
2874 TYPE_UNSIGNED (t) = 1;
2875
2876 return t;
2877 }
2878
2879 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2880 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2881 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2882
2883 struct type *
2884 init_boolean_type (struct objfile *objfile,
2885 int bit, int unsigned_p, const char *name)
2886 {
2887 struct type *t;
2888
2889 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2890 if (unsigned_p)
2891 TYPE_UNSIGNED (t) = 1;
2892
2893 return t;
2894 }
2895
2896 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2897 BIT is the type size in bits; if BIT equals -1, the size is
2898 determined by the floatformat. NAME is the type name. Set the
2899 TYPE_FLOATFORMAT from FLOATFORMATS. */
2900
2901 struct type *
2902 init_float_type (struct objfile *objfile,
2903 int bit, const char *name,
2904 const struct floatformat **floatformats)
2905 {
2906 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2907 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
2908 struct type *t;
2909
2910 bit = verify_floatformat (bit, fmt);
2911 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
2912 TYPE_FLOATFORMAT (t) = fmt;
2913
2914 return t;
2915 }
2916
2917 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2918 BIT is the type size in bits. NAME is the type name. */
2919
2920 struct type *
2921 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2922 {
2923 struct type *t;
2924
2925 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
2926 return t;
2927 }
2928
2929 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2930 NAME is the type name. TARGET_TYPE is the component float type. */
2931
2932 struct type *
2933 init_complex_type (struct objfile *objfile,
2934 const char *name, struct type *target_type)
2935 {
2936 struct type *t;
2937
2938 t = init_type (objfile, TYPE_CODE_COMPLEX,
2939 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
2940 TYPE_TARGET_TYPE (t) = target_type;
2941 return t;
2942 }
2943
2944 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2945 BIT is the pointer type size in bits. NAME is the type name.
2946 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2947 TYPE_UNSIGNED flag. */
2948
2949 struct type *
2950 init_pointer_type (struct objfile *objfile,
2951 int bit, const char *name, struct type *target_type)
2952 {
2953 struct type *t;
2954
2955 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
2956 TYPE_TARGET_TYPE (t) = target_type;
2957 TYPE_UNSIGNED (t) = 1;
2958 return t;
2959 }
2960
2961 /* See gdbtypes.h. */
2962
2963 unsigned
2964 type_raw_align (struct type *type)
2965 {
2966 if (type->align_log2 != 0)
2967 return 1 << (type->align_log2 - 1);
2968 return 0;
2969 }
2970
2971 /* See gdbtypes.h. */
2972
2973 unsigned
2974 type_align (struct type *type)
2975 {
2976 /* Check alignment provided in the debug information. */
2977 unsigned raw_align = type_raw_align (type);
2978 if (raw_align != 0)
2979 return raw_align;
2980
2981 /* Allow the architecture to provide an alignment. */
2982 struct gdbarch *arch = get_type_arch (type);
2983 ULONGEST align = gdbarch_type_align (arch, type);
2984 if (align != 0)
2985 return align;
2986
2987 switch (TYPE_CODE (type))
2988 {
2989 case TYPE_CODE_PTR:
2990 case TYPE_CODE_FUNC:
2991 case TYPE_CODE_FLAGS:
2992 case TYPE_CODE_INT:
2993 case TYPE_CODE_RANGE:
2994 case TYPE_CODE_FLT:
2995 case TYPE_CODE_ENUM:
2996 case TYPE_CODE_REF:
2997 case TYPE_CODE_RVALUE_REF:
2998 case TYPE_CODE_CHAR:
2999 case TYPE_CODE_BOOL:
3000 case TYPE_CODE_DECFLOAT:
3001 case TYPE_CODE_METHODPTR:
3002 case TYPE_CODE_MEMBERPTR:
3003 align = type_length_units (check_typedef (type));
3004 break;
3005
3006 case TYPE_CODE_ARRAY:
3007 case TYPE_CODE_COMPLEX:
3008 case TYPE_CODE_TYPEDEF:
3009 align = type_align (TYPE_TARGET_TYPE (type));
3010 break;
3011
3012 case TYPE_CODE_STRUCT:
3013 case TYPE_CODE_UNION:
3014 {
3015 int number_of_non_static_fields = 0;
3016 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3017 {
3018 if (!field_is_static (&TYPE_FIELD (type, i)))
3019 {
3020 number_of_non_static_fields++;
3021 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3022 if (f_align == 0)
3023 {
3024 /* Don't pretend we know something we don't. */
3025 align = 0;
3026 break;
3027 }
3028 if (f_align > align)
3029 align = f_align;
3030 }
3031 }
3032 /* A struct with no fields, or with only static fields has an
3033 alignment of 1. */
3034 if (number_of_non_static_fields == 0)
3035 align = 1;
3036 }
3037 break;
3038
3039 case TYPE_CODE_SET:
3040 case TYPE_CODE_STRING:
3041 /* Not sure what to do here, and these can't appear in C or C++
3042 anyway. */
3043 break;
3044
3045 case TYPE_CODE_VOID:
3046 align = 1;
3047 break;
3048
3049 case TYPE_CODE_ERROR:
3050 case TYPE_CODE_METHOD:
3051 default:
3052 break;
3053 }
3054
3055 if ((align & (align - 1)) != 0)
3056 {
3057 /* Not a power of 2, so pass. */
3058 align = 0;
3059 }
3060
3061 return align;
3062 }
3063
3064 /* See gdbtypes.h. */
3065
3066 bool
3067 set_type_align (struct type *type, ULONGEST align)
3068 {
3069 /* Must be a power of 2. Zero is ok. */
3070 gdb_assert ((align & (align - 1)) == 0);
3071
3072 unsigned result = 0;
3073 while (align != 0)
3074 {
3075 ++result;
3076 align >>= 1;
3077 }
3078
3079 if (result >= (1 << TYPE_ALIGN_BITS))
3080 return false;
3081
3082 type->align_log2 = result;
3083 return true;
3084 }
3085
3086 \f
3087 /* Queries on types. */
3088
3089 int
3090 can_dereference (struct type *t)
3091 {
3092 /* FIXME: Should we return true for references as well as
3093 pointers? */
3094 t = check_typedef (t);
3095 return
3096 (t != NULL
3097 && TYPE_CODE (t) == TYPE_CODE_PTR
3098 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3099 }
3100
3101 int
3102 is_integral_type (struct type *t)
3103 {
3104 t = check_typedef (t);
3105 return
3106 ((t != NULL)
3107 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3108 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3109 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3110 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3111 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3112 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3113 }
3114
3115 int
3116 is_floating_type (struct type *t)
3117 {
3118 t = check_typedef (t);
3119 return
3120 ((t != NULL)
3121 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3122 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3123 }
3124
3125 /* Return true if TYPE is scalar. */
3126
3127 int
3128 is_scalar_type (struct type *type)
3129 {
3130 type = check_typedef (type);
3131
3132 switch (TYPE_CODE (type))
3133 {
3134 case TYPE_CODE_ARRAY:
3135 case TYPE_CODE_STRUCT:
3136 case TYPE_CODE_UNION:
3137 case TYPE_CODE_SET:
3138 case TYPE_CODE_STRING:
3139 return 0;
3140 default:
3141 return 1;
3142 }
3143 }
3144
3145 /* Return true if T is scalar, or a composite type which in practice has
3146 the memory layout of a scalar type. E.g., an array or struct with only
3147 one scalar element inside it, or a union with only scalar elements. */
3148
3149 int
3150 is_scalar_type_recursive (struct type *t)
3151 {
3152 t = check_typedef (t);
3153
3154 if (is_scalar_type (t))
3155 return 1;
3156 /* Are we dealing with an array or string of known dimensions? */
3157 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3158 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3159 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3160 {
3161 LONGEST low_bound, high_bound;
3162 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3163
3164 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3165
3166 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3167 }
3168 /* Are we dealing with a struct with one element? */
3169 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3170 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3171 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3172 {
3173 int i, n = TYPE_NFIELDS (t);
3174
3175 /* If all elements of the union are scalar, then the union is scalar. */
3176 for (i = 0; i < n; i++)
3177 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3178 return 0;
3179
3180 return 1;
3181 }
3182
3183 return 0;
3184 }
3185
3186 /* Return true is T is a class or a union. False otherwise. */
3187
3188 int
3189 class_or_union_p (const struct type *t)
3190 {
3191 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3192 || TYPE_CODE (t) == TYPE_CODE_UNION);
3193 }
3194
3195 /* A helper function which returns true if types A and B represent the
3196 "same" class type. This is true if the types have the same main
3197 type, or the same name. */
3198
3199 int
3200 class_types_same_p (const struct type *a, const struct type *b)
3201 {
3202 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3203 || (TYPE_NAME (a) && TYPE_NAME (b)
3204 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3205 }
3206
3207 /* If BASE is an ancestor of DCLASS return the distance between them.
3208 otherwise return -1;
3209 eg:
3210
3211 class A {};
3212 class B: public A {};
3213 class C: public B {};
3214 class D: C {};
3215
3216 distance_to_ancestor (A, A, 0) = 0
3217 distance_to_ancestor (A, B, 0) = 1
3218 distance_to_ancestor (A, C, 0) = 2
3219 distance_to_ancestor (A, D, 0) = 3
3220
3221 If PUBLIC is 1 then only public ancestors are considered,
3222 and the function returns the distance only if BASE is a public ancestor
3223 of DCLASS.
3224 Eg:
3225
3226 distance_to_ancestor (A, D, 1) = -1. */
3227
3228 static int
3229 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3230 {
3231 int i;
3232 int d;
3233
3234 base = check_typedef (base);
3235 dclass = check_typedef (dclass);
3236
3237 if (class_types_same_p (base, dclass))
3238 return 0;
3239
3240 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3241 {
3242 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3243 continue;
3244
3245 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3246 if (d >= 0)
3247 return 1 + d;
3248 }
3249
3250 return -1;
3251 }
3252
3253 /* Check whether BASE is an ancestor or base class or DCLASS
3254 Return 1 if so, and 0 if not.
3255 Note: If BASE and DCLASS are of the same type, this function
3256 will return 1. So for some class A, is_ancestor (A, A) will
3257 return 1. */
3258
3259 int
3260 is_ancestor (struct type *base, struct type *dclass)
3261 {
3262 return distance_to_ancestor (base, dclass, 0) >= 0;
3263 }
3264
3265 /* Like is_ancestor, but only returns true when BASE is a public
3266 ancestor of DCLASS. */
3267
3268 int
3269 is_public_ancestor (struct type *base, struct type *dclass)
3270 {
3271 return distance_to_ancestor (base, dclass, 1) >= 0;
3272 }
3273
3274 /* A helper function for is_unique_ancestor. */
3275
3276 static int
3277 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3278 int *offset,
3279 const gdb_byte *valaddr, int embedded_offset,
3280 CORE_ADDR address, struct value *val)
3281 {
3282 int i, count = 0;
3283
3284 base = check_typedef (base);
3285 dclass = check_typedef (dclass);
3286
3287 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3288 {
3289 struct type *iter;
3290 int this_offset;
3291
3292 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3293
3294 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3295 address, val);
3296
3297 if (class_types_same_p (base, iter))
3298 {
3299 /* If this is the first subclass, set *OFFSET and set count
3300 to 1. Otherwise, if this is at the same offset as
3301 previous instances, do nothing. Otherwise, increment
3302 count. */
3303 if (*offset == -1)
3304 {
3305 *offset = this_offset;
3306 count = 1;
3307 }
3308 else if (this_offset == *offset)
3309 {
3310 /* Nothing. */
3311 }
3312 else
3313 ++count;
3314 }
3315 else
3316 count += is_unique_ancestor_worker (base, iter, offset,
3317 valaddr,
3318 embedded_offset + this_offset,
3319 address, val);
3320 }
3321
3322 return count;
3323 }
3324
3325 /* Like is_ancestor, but only returns true if BASE is a unique base
3326 class of the type of VAL. */
3327
3328 int
3329 is_unique_ancestor (struct type *base, struct value *val)
3330 {
3331 int offset = -1;
3332
3333 return is_unique_ancestor_worker (base, value_type (val), &offset,
3334 value_contents_for_printing (val),
3335 value_embedded_offset (val),
3336 value_address (val), val) == 1;
3337 }
3338
3339 \f
3340 /* Overload resolution. */
3341
3342 /* Return the sum of the rank of A with the rank of B. */
3343
3344 struct rank
3345 sum_ranks (struct rank a, struct rank b)
3346 {
3347 struct rank c;
3348 c.rank = a.rank + b.rank;
3349 c.subrank = a.subrank + b.subrank;
3350 return c;
3351 }
3352
3353 /* Compare rank A and B and return:
3354 0 if a = b
3355 1 if a is better than b
3356 -1 if b is better than a. */
3357
3358 int
3359 compare_ranks (struct rank a, struct rank b)
3360 {
3361 if (a.rank == b.rank)
3362 {
3363 if (a.subrank == b.subrank)
3364 return 0;
3365 if (a.subrank < b.subrank)
3366 return 1;
3367 if (a.subrank > b.subrank)
3368 return -1;
3369 }
3370
3371 if (a.rank < b.rank)
3372 return 1;
3373
3374 /* a.rank > b.rank */
3375 return -1;
3376 }
3377
3378 /* Functions for overload resolution begin here. */
3379
3380 /* Compare two badness vectors A and B and return the result.
3381 0 => A and B are identical
3382 1 => A and B are incomparable
3383 2 => A is better than B
3384 3 => A is worse than B */
3385
3386 int
3387 compare_badness (const badness_vector &a, const badness_vector &b)
3388 {
3389 int i;
3390 int tmp;
3391 short found_pos = 0; /* any positives in c? */
3392 short found_neg = 0; /* any negatives in c? */
3393
3394 /* differing sizes => incomparable */
3395 if (a.size () != b.size ())
3396 return 1;
3397
3398 /* Subtract b from a */
3399 for (i = 0; i < a.size (); i++)
3400 {
3401 tmp = compare_ranks (b[i], a[i]);
3402 if (tmp > 0)
3403 found_pos = 1;
3404 else if (tmp < 0)
3405 found_neg = 1;
3406 }
3407
3408 if (found_pos)
3409 {
3410 if (found_neg)
3411 return 1; /* incomparable */
3412 else
3413 return 3; /* A > B */
3414 }
3415 else
3416 /* no positives */
3417 {
3418 if (found_neg)
3419 return 2; /* A < B */
3420 else
3421 return 0; /* A == B */
3422 }
3423 }
3424
3425 /* Rank a function by comparing its parameter types (PARMS), to the
3426 types of an argument list (ARGS). Return the badness vector. This
3427 has ARGS.size() + 1 entries. */
3428
3429 badness_vector
3430 rank_function (gdb::array_view<type *> parms,
3431 gdb::array_view<value *> args)
3432 {
3433 /* add 1 for the length-match rank. */
3434 badness_vector bv;
3435 bv.reserve (1 + args.size ());
3436
3437 /* First compare the lengths of the supplied lists.
3438 If there is a mismatch, set it to a high value. */
3439
3440 /* pai/1997-06-03 FIXME: when we have debug info about default
3441 arguments and ellipsis parameter lists, we should consider those
3442 and rank the length-match more finely. */
3443
3444 bv.push_back ((args.size () != parms.size ())
3445 ? LENGTH_MISMATCH_BADNESS
3446 : EXACT_MATCH_BADNESS);
3447
3448 /* Now rank all the parameters of the candidate function. */
3449 size_t min_len = std::min (parms.size (), args.size ());
3450
3451 for (size_t i = 0; i < min_len; i++)
3452 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3453 args[i]));
3454
3455 /* If more arguments than parameters, add dummy entries. */
3456 for (size_t i = min_len; i < args.size (); i++)
3457 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3458
3459 return bv;
3460 }
3461
3462 /* Compare the names of two integer types, assuming that any sign
3463 qualifiers have been checked already. We do it this way because
3464 there may be an "int" in the name of one of the types. */
3465
3466 static int
3467 integer_types_same_name_p (const char *first, const char *second)
3468 {
3469 int first_p, second_p;
3470
3471 /* If both are shorts, return 1; if neither is a short, keep
3472 checking. */
3473 first_p = (strstr (first, "short") != NULL);
3474 second_p = (strstr (second, "short") != NULL);
3475 if (first_p && second_p)
3476 return 1;
3477 if (first_p || second_p)
3478 return 0;
3479
3480 /* Likewise for long. */
3481 first_p = (strstr (first, "long") != NULL);
3482 second_p = (strstr (second, "long") != NULL);
3483 if (first_p && second_p)
3484 return 1;
3485 if (first_p || second_p)
3486 return 0;
3487
3488 /* Likewise for char. */
3489 first_p = (strstr (first, "char") != NULL);
3490 second_p = (strstr (second, "char") != NULL);
3491 if (first_p && second_p)
3492 return 1;
3493 if (first_p || second_p)
3494 return 0;
3495
3496 /* They must both be ints. */
3497 return 1;
3498 }
3499
3500 /* Compares type A to type B. Returns true if they represent the same
3501 type, false otherwise. */
3502
3503 bool
3504 types_equal (struct type *a, struct type *b)
3505 {
3506 /* Identical type pointers. */
3507 /* However, this still doesn't catch all cases of same type for b
3508 and a. The reason is that builtin types are different from
3509 the same ones constructed from the object. */
3510 if (a == b)
3511 return true;
3512
3513 /* Resolve typedefs */
3514 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3515 a = check_typedef (a);
3516 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3517 b = check_typedef (b);
3518
3519 /* If after resolving typedefs a and b are not of the same type
3520 code then they are not equal. */
3521 if (TYPE_CODE (a) != TYPE_CODE (b))
3522 return false;
3523
3524 /* If a and b are both pointers types or both reference types then
3525 they are equal of the same type iff the objects they refer to are
3526 of the same type. */
3527 if (TYPE_CODE (a) == TYPE_CODE_PTR
3528 || TYPE_CODE (a) == TYPE_CODE_REF)
3529 return types_equal (TYPE_TARGET_TYPE (a),
3530 TYPE_TARGET_TYPE (b));
3531
3532 /* Well, damnit, if the names are exactly the same, I'll say they
3533 are exactly the same. This happens when we generate method
3534 stubs. The types won't point to the same address, but they
3535 really are the same. */
3536
3537 if (TYPE_NAME (a) && TYPE_NAME (b)
3538 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3539 return true;
3540
3541 /* Check if identical after resolving typedefs. */
3542 if (a == b)
3543 return true;
3544
3545 /* Two function types are equal if their argument and return types
3546 are equal. */
3547 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3548 {
3549 int i;
3550
3551 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3552 return false;
3553
3554 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3555 return false;
3556
3557 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3558 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3559 return false;
3560
3561 return true;
3562 }
3563
3564 return false;
3565 }
3566 \f
3567 /* Deep comparison of types. */
3568
3569 /* An entry in the type-equality bcache. */
3570
3571 struct type_equality_entry
3572 {
3573 type_equality_entry (struct type *t1, struct type *t2)
3574 : type1 (t1),
3575 type2 (t2)
3576 {
3577 }
3578
3579 struct type *type1, *type2;
3580 };
3581
3582 /* A helper function to compare two strings. Returns true if they are
3583 the same, false otherwise. Handles NULLs properly. */
3584
3585 static bool
3586 compare_maybe_null_strings (const char *s, const char *t)
3587 {
3588 if (s == NULL || t == NULL)
3589 return s == t;
3590 return strcmp (s, t) == 0;
3591 }
3592
3593 /* A helper function for check_types_worklist that checks two types for
3594 "deep" equality. Returns true if the types are considered the
3595 same, false otherwise. */
3596
3597 static bool
3598 check_types_equal (struct type *type1, struct type *type2,
3599 std::vector<type_equality_entry> *worklist)
3600 {
3601 type1 = check_typedef (type1);
3602 type2 = check_typedef (type2);
3603
3604 if (type1 == type2)
3605 return true;
3606
3607 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3608 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3609 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3610 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3611 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3612 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3613 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3614 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3615 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3616 return false;
3617
3618 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3619 return false;
3620 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3621 return false;
3622
3623 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3624 {
3625 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3626 return false;
3627 }
3628 else
3629 {
3630 int i;
3631
3632 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3633 {
3634 const struct field *field1 = &TYPE_FIELD (type1, i);
3635 const struct field *field2 = &TYPE_FIELD (type2, i);
3636
3637 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3638 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3639 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3640 return false;
3641 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3642 FIELD_NAME (*field2)))
3643 return false;
3644 switch (FIELD_LOC_KIND (*field1))
3645 {
3646 case FIELD_LOC_KIND_BITPOS:
3647 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3648 return false;
3649 break;
3650 case FIELD_LOC_KIND_ENUMVAL:
3651 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3652 return false;
3653 break;
3654 case FIELD_LOC_KIND_PHYSADDR:
3655 if (FIELD_STATIC_PHYSADDR (*field1)
3656 != FIELD_STATIC_PHYSADDR (*field2))
3657 return false;
3658 break;
3659 case FIELD_LOC_KIND_PHYSNAME:
3660 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3661 FIELD_STATIC_PHYSNAME (*field2)))
3662 return false;
3663 break;
3664 case FIELD_LOC_KIND_DWARF_BLOCK:
3665 {
3666 struct dwarf2_locexpr_baton *block1, *block2;
3667
3668 block1 = FIELD_DWARF_BLOCK (*field1);
3669 block2 = FIELD_DWARF_BLOCK (*field2);
3670 if (block1->per_cu != block2->per_cu
3671 || block1->size != block2->size
3672 || memcmp (block1->data, block2->data, block1->size) != 0)
3673 return false;
3674 }
3675 break;
3676 default:
3677 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3678 "%d by check_types_equal"),
3679 FIELD_LOC_KIND (*field1));
3680 }
3681
3682 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
3683 }
3684 }
3685
3686 if (TYPE_TARGET_TYPE (type1) != NULL)
3687 {
3688 if (TYPE_TARGET_TYPE (type2) == NULL)
3689 return false;
3690
3691 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3692 TYPE_TARGET_TYPE (type2));
3693 }
3694 else if (TYPE_TARGET_TYPE (type2) != NULL)
3695 return false;
3696
3697 return true;
3698 }
3699
3700 /* Check types on a worklist for equality. Returns false if any pair
3701 is not equal, true if they are all considered equal. */
3702
3703 static bool
3704 check_types_worklist (std::vector<type_equality_entry> *worklist,
3705 struct bcache *cache)
3706 {
3707 while (!worklist->empty ())
3708 {
3709 int added;
3710
3711 struct type_equality_entry entry = std::move (worklist->back ());
3712 worklist->pop_back ();
3713
3714 /* If the type pair has already been visited, we know it is
3715 ok. */
3716 cache->insert (&entry, sizeof (entry), &added);
3717 if (!added)
3718 continue;
3719
3720 if (!check_types_equal (entry.type1, entry.type2, worklist))
3721 return false;
3722 }
3723
3724 return true;
3725 }
3726
3727 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3728 "deep comparison". Otherwise return false. */
3729
3730 bool
3731 types_deeply_equal (struct type *type1, struct type *type2)
3732 {
3733 std::vector<type_equality_entry> worklist;
3734
3735 gdb_assert (type1 != NULL && type2 != NULL);
3736
3737 /* Early exit for the simple case. */
3738 if (type1 == type2)
3739 return true;
3740
3741 struct bcache cache (nullptr, nullptr);
3742 worklist.emplace_back (type1, type2);
3743 return check_types_worklist (&worklist, &cache);
3744 }
3745
3746 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3747 Otherwise return one. */
3748
3749 int
3750 type_not_allocated (const struct type *type)
3751 {
3752 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3753
3754 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3755 && !TYPE_DYN_PROP_ADDR (prop));
3756 }
3757
3758 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3759 Otherwise return one. */
3760
3761 int
3762 type_not_associated (const struct type *type)
3763 {
3764 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3765
3766 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3767 && !TYPE_DYN_PROP_ADDR (prop));
3768 }
3769
3770 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3771
3772 static struct rank
3773 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3774 {
3775 struct rank rank = {0,0};
3776
3777 switch (TYPE_CODE (arg))
3778 {
3779 case TYPE_CODE_PTR:
3780
3781 /* Allowed pointer conversions are:
3782 (a) pointer to void-pointer conversion. */
3783 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3784 return VOID_PTR_CONVERSION_BADNESS;
3785
3786 /* (b) pointer to ancestor-pointer conversion. */
3787 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3788 TYPE_TARGET_TYPE (arg),
3789 0);
3790 if (rank.subrank >= 0)
3791 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3792
3793 return INCOMPATIBLE_TYPE_BADNESS;
3794 case TYPE_CODE_ARRAY:
3795 {
3796 struct type *t1 = TYPE_TARGET_TYPE (parm);
3797 struct type *t2 = TYPE_TARGET_TYPE (arg);
3798
3799 if (types_equal (t1, t2))
3800 {
3801 /* Make sure they are CV equal. */
3802 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3803 rank.subrank |= CV_CONVERSION_CONST;
3804 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3805 rank.subrank |= CV_CONVERSION_VOLATILE;
3806 if (rank.subrank != 0)
3807 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3808 return EXACT_MATCH_BADNESS;
3809 }
3810 return INCOMPATIBLE_TYPE_BADNESS;
3811 }
3812 case TYPE_CODE_FUNC:
3813 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3814 case TYPE_CODE_INT:
3815 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3816 {
3817 if (value_as_long (value) == 0)
3818 {
3819 /* Null pointer conversion: allow it to be cast to a pointer.
3820 [4.10.1 of C++ standard draft n3290] */
3821 return NULL_POINTER_CONVERSION_BADNESS;
3822 }
3823 else
3824 {
3825 /* If type checking is disabled, allow the conversion. */
3826 if (!strict_type_checking)
3827 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3828 }
3829 }
3830 /* fall through */
3831 case TYPE_CODE_ENUM:
3832 case TYPE_CODE_FLAGS:
3833 case TYPE_CODE_CHAR:
3834 case TYPE_CODE_RANGE:
3835 case TYPE_CODE_BOOL:
3836 default:
3837 return INCOMPATIBLE_TYPE_BADNESS;
3838 }
3839 }
3840
3841 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3842
3843 static struct rank
3844 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3845 {
3846 switch (TYPE_CODE (arg))
3847 {
3848 case TYPE_CODE_PTR:
3849 case TYPE_CODE_ARRAY:
3850 return rank_one_type (TYPE_TARGET_TYPE (parm),
3851 TYPE_TARGET_TYPE (arg), NULL);
3852 default:
3853 return INCOMPATIBLE_TYPE_BADNESS;
3854 }
3855 }
3856
3857 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3858
3859 static struct rank
3860 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3861 {
3862 switch (TYPE_CODE (arg))
3863 {
3864 case TYPE_CODE_PTR: /* funcptr -> func */
3865 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3866 default:
3867 return INCOMPATIBLE_TYPE_BADNESS;
3868 }
3869 }
3870
3871 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3872
3873 static struct rank
3874 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3875 {
3876 switch (TYPE_CODE (arg))
3877 {
3878 case TYPE_CODE_INT:
3879 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3880 {
3881 /* Deal with signed, unsigned, and plain chars and
3882 signed and unsigned ints. */
3883 if (TYPE_NOSIGN (parm))
3884 {
3885 /* This case only for character types. */
3886 if (TYPE_NOSIGN (arg))
3887 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3888 else /* signed/unsigned char -> plain char */
3889 return INTEGER_CONVERSION_BADNESS;
3890 }
3891 else if (TYPE_UNSIGNED (parm))
3892 {
3893 if (TYPE_UNSIGNED (arg))
3894 {
3895 /* unsigned int -> unsigned int, or
3896 unsigned long -> unsigned long */
3897 if (integer_types_same_name_p (TYPE_NAME (parm),
3898 TYPE_NAME (arg)))
3899 return EXACT_MATCH_BADNESS;
3900 else if (integer_types_same_name_p (TYPE_NAME (arg),
3901 "int")
3902 && integer_types_same_name_p (TYPE_NAME (parm),
3903 "long"))
3904 /* unsigned int -> unsigned long */
3905 return INTEGER_PROMOTION_BADNESS;
3906 else
3907 /* unsigned long -> unsigned int */
3908 return INTEGER_CONVERSION_BADNESS;
3909 }
3910 else
3911 {
3912 if (integer_types_same_name_p (TYPE_NAME (arg),
3913 "long")
3914 && integer_types_same_name_p (TYPE_NAME (parm),
3915 "int"))
3916 /* signed long -> unsigned int */
3917 return INTEGER_CONVERSION_BADNESS;
3918 else
3919 /* signed int/long -> unsigned int/long */
3920 return INTEGER_CONVERSION_BADNESS;
3921 }
3922 }
3923 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3924 {
3925 if (integer_types_same_name_p (TYPE_NAME (parm),
3926 TYPE_NAME (arg)))
3927 return EXACT_MATCH_BADNESS;
3928 else if (integer_types_same_name_p (TYPE_NAME (arg),
3929 "int")
3930 && integer_types_same_name_p (TYPE_NAME (parm),
3931 "long"))
3932 return INTEGER_PROMOTION_BADNESS;
3933 else
3934 return INTEGER_CONVERSION_BADNESS;
3935 }
3936 else
3937 return INTEGER_CONVERSION_BADNESS;
3938 }
3939 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3940 return INTEGER_PROMOTION_BADNESS;
3941 else
3942 return INTEGER_CONVERSION_BADNESS;
3943 case TYPE_CODE_ENUM:
3944 case TYPE_CODE_FLAGS:
3945 case TYPE_CODE_CHAR:
3946 case TYPE_CODE_RANGE:
3947 case TYPE_CODE_BOOL:
3948 if (TYPE_DECLARED_CLASS (arg))
3949 return INCOMPATIBLE_TYPE_BADNESS;
3950 return INTEGER_PROMOTION_BADNESS;
3951 case TYPE_CODE_FLT:
3952 return INT_FLOAT_CONVERSION_BADNESS;
3953 case TYPE_CODE_PTR:
3954 return NS_POINTER_CONVERSION_BADNESS;
3955 default:
3956 return INCOMPATIBLE_TYPE_BADNESS;
3957 }
3958 }
3959
3960 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
3961
3962 static struct rank
3963 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
3964 {
3965 switch (TYPE_CODE (arg))
3966 {
3967 case TYPE_CODE_INT:
3968 case TYPE_CODE_CHAR:
3969 case TYPE_CODE_RANGE:
3970 case TYPE_CODE_BOOL:
3971 case TYPE_CODE_ENUM:
3972 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3973 return INCOMPATIBLE_TYPE_BADNESS;
3974 return INTEGER_CONVERSION_BADNESS;
3975 case TYPE_CODE_FLT:
3976 return INT_FLOAT_CONVERSION_BADNESS;
3977 default:
3978 return INCOMPATIBLE_TYPE_BADNESS;
3979 }
3980 }
3981
3982 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
3983
3984 static struct rank
3985 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
3986 {
3987 switch (TYPE_CODE (arg))
3988 {
3989 case TYPE_CODE_RANGE:
3990 case TYPE_CODE_BOOL:
3991 case TYPE_CODE_ENUM:
3992 if (TYPE_DECLARED_CLASS (arg))
3993 return INCOMPATIBLE_TYPE_BADNESS;
3994 return INTEGER_CONVERSION_BADNESS;
3995 case TYPE_CODE_FLT:
3996 return INT_FLOAT_CONVERSION_BADNESS;
3997 case TYPE_CODE_INT:
3998 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3999 return INTEGER_CONVERSION_BADNESS;
4000 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4001 return INTEGER_PROMOTION_BADNESS;
4002 /* fall through */
4003 case TYPE_CODE_CHAR:
4004 /* Deal with signed, unsigned, and plain chars for C++ and
4005 with int cases falling through from previous case. */
4006 if (TYPE_NOSIGN (parm))
4007 {
4008 if (TYPE_NOSIGN (arg))
4009 return EXACT_MATCH_BADNESS;
4010 else
4011 return INTEGER_CONVERSION_BADNESS;
4012 }
4013 else if (TYPE_UNSIGNED (parm))
4014 {
4015 if (TYPE_UNSIGNED (arg))
4016 return EXACT_MATCH_BADNESS;
4017 else
4018 return INTEGER_PROMOTION_BADNESS;
4019 }
4020 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4021 return EXACT_MATCH_BADNESS;
4022 else
4023 return INTEGER_CONVERSION_BADNESS;
4024 default:
4025 return INCOMPATIBLE_TYPE_BADNESS;
4026 }
4027 }
4028
4029 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4030
4031 static struct rank
4032 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4033 {
4034 switch (TYPE_CODE (arg))
4035 {
4036 case TYPE_CODE_INT:
4037 case TYPE_CODE_CHAR:
4038 case TYPE_CODE_RANGE:
4039 case TYPE_CODE_BOOL:
4040 case TYPE_CODE_ENUM:
4041 return INTEGER_CONVERSION_BADNESS;
4042 case TYPE_CODE_FLT:
4043 return INT_FLOAT_CONVERSION_BADNESS;
4044 default:
4045 return INCOMPATIBLE_TYPE_BADNESS;
4046 }
4047 }
4048
4049 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4050
4051 static struct rank
4052 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4053 {
4054 switch (TYPE_CODE (arg))
4055 {
4056 /* n3290 draft, section 4.12.1 (conv.bool):
4057
4058 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4059 pointer to member type can be converted to a prvalue of type
4060 bool. A zero value, null pointer value, or null member pointer
4061 value is converted to false; any other value is converted to
4062 true. A prvalue of type std::nullptr_t can be converted to a
4063 prvalue of type bool; the resulting value is false." */
4064 case TYPE_CODE_INT:
4065 case TYPE_CODE_CHAR:
4066 case TYPE_CODE_ENUM:
4067 case TYPE_CODE_FLT:
4068 case TYPE_CODE_MEMBERPTR:
4069 case TYPE_CODE_PTR:
4070 return BOOL_CONVERSION_BADNESS;
4071 case TYPE_CODE_RANGE:
4072 return INCOMPATIBLE_TYPE_BADNESS;
4073 case TYPE_CODE_BOOL:
4074 return EXACT_MATCH_BADNESS;
4075 default:
4076 return INCOMPATIBLE_TYPE_BADNESS;
4077 }
4078 }
4079
4080 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4081
4082 static struct rank
4083 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4084 {
4085 switch (TYPE_CODE (arg))
4086 {
4087 case TYPE_CODE_FLT:
4088 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4089 return FLOAT_PROMOTION_BADNESS;
4090 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4091 return EXACT_MATCH_BADNESS;
4092 else
4093 return FLOAT_CONVERSION_BADNESS;
4094 case TYPE_CODE_INT:
4095 case TYPE_CODE_BOOL:
4096 case TYPE_CODE_ENUM:
4097 case TYPE_CODE_RANGE:
4098 case TYPE_CODE_CHAR:
4099 return INT_FLOAT_CONVERSION_BADNESS;
4100 default:
4101 return INCOMPATIBLE_TYPE_BADNESS;
4102 }
4103 }
4104
4105 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4106
4107 static struct rank
4108 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4109 {
4110 switch (TYPE_CODE (arg))
4111 { /* Strictly not needed for C++, but... */
4112 case TYPE_CODE_FLT:
4113 return FLOAT_PROMOTION_BADNESS;
4114 case TYPE_CODE_COMPLEX:
4115 return EXACT_MATCH_BADNESS;
4116 default:
4117 return INCOMPATIBLE_TYPE_BADNESS;
4118 }
4119 }
4120
4121 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4122
4123 static struct rank
4124 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4125 {
4126 struct rank rank = {0, 0};
4127
4128 switch (TYPE_CODE (arg))
4129 {
4130 case TYPE_CODE_STRUCT:
4131 /* Check for derivation */
4132 rank.subrank = distance_to_ancestor (parm, arg, 0);
4133 if (rank.subrank >= 0)
4134 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4135 /* fall through */
4136 default:
4137 return INCOMPATIBLE_TYPE_BADNESS;
4138 }
4139 }
4140
4141 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4142
4143 static struct rank
4144 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4145 {
4146 switch (TYPE_CODE (arg))
4147 {
4148 /* Not in C++ */
4149 case TYPE_CODE_SET:
4150 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4151 TYPE_FIELD_TYPE (arg, 0), NULL);
4152 default:
4153 return INCOMPATIBLE_TYPE_BADNESS;
4154 }
4155 }
4156
4157 /* Compare one type (PARM) for compatibility with another (ARG).
4158 * PARM is intended to be the parameter type of a function; and
4159 * ARG is the supplied argument's type. This function tests if
4160 * the latter can be converted to the former.
4161 * VALUE is the argument's value or NULL if none (or called recursively)
4162 *
4163 * Return 0 if they are identical types;
4164 * Otherwise, return an integer which corresponds to how compatible
4165 * PARM is to ARG. The higher the return value, the worse the match.
4166 * Generally the "bad" conversions are all uniformly assigned a 100. */
4167
4168 struct rank
4169 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4170 {
4171 struct rank rank = {0,0};
4172
4173 /* Resolve typedefs */
4174 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4175 parm = check_typedef (parm);
4176 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4177 arg = check_typedef (arg);
4178
4179 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4180 {
4181 if (VALUE_LVAL (value) == not_lval)
4182 {
4183 /* Rvalues should preferably bind to rvalue references or const
4184 lvalue references. */
4185 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4186 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4187 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4188 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4189 else
4190 return INCOMPATIBLE_TYPE_BADNESS;
4191 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4192 }
4193 else
4194 {
4195 /* Lvalues should prefer lvalue overloads. */
4196 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4197 {
4198 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4199 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4200 }
4201 }
4202 }
4203
4204 if (types_equal (parm, arg))
4205 {
4206 struct type *t1 = parm;
4207 struct type *t2 = arg;
4208
4209 /* For pointers and references, compare target type. */
4210 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4211 {
4212 t1 = TYPE_TARGET_TYPE (parm);
4213 t2 = TYPE_TARGET_TYPE (arg);
4214 }
4215
4216 /* Make sure they are CV equal, too. */
4217 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4218 rank.subrank |= CV_CONVERSION_CONST;
4219 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4220 rank.subrank |= CV_CONVERSION_VOLATILE;
4221 if (rank.subrank != 0)
4222 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4223 return EXACT_MATCH_BADNESS;
4224 }
4225
4226 /* See through references, since we can almost make non-references
4227 references. */
4228
4229 if (TYPE_IS_REFERENCE (arg))
4230 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4231 REFERENCE_CONVERSION_BADNESS));
4232 if (TYPE_IS_REFERENCE (parm))
4233 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4234 REFERENCE_CONVERSION_BADNESS));
4235 if (overload_debug)
4236 /* Debugging only. */
4237 fprintf_filtered (gdb_stderr,
4238 "------ Arg is %s [%d], parm is %s [%d]\n",
4239 TYPE_NAME (arg), TYPE_CODE (arg),
4240 TYPE_NAME (parm), TYPE_CODE (parm));
4241
4242 /* x -> y means arg of type x being supplied for parameter of type y. */
4243
4244 switch (TYPE_CODE (parm))
4245 {
4246 case TYPE_CODE_PTR:
4247 return rank_one_type_parm_ptr (parm, arg, value);
4248 case TYPE_CODE_ARRAY:
4249 return rank_one_type_parm_array (parm, arg, value);
4250 case TYPE_CODE_FUNC:
4251 return rank_one_type_parm_func (parm, arg, value);
4252 case TYPE_CODE_INT:
4253 return rank_one_type_parm_int (parm, arg, value);
4254 case TYPE_CODE_ENUM:
4255 return rank_one_type_parm_enum (parm, arg, value);
4256 case TYPE_CODE_CHAR:
4257 return rank_one_type_parm_char (parm, arg, value);
4258 case TYPE_CODE_RANGE:
4259 return rank_one_type_parm_range (parm, arg, value);
4260 case TYPE_CODE_BOOL:
4261 return rank_one_type_parm_bool (parm, arg, value);
4262 case TYPE_CODE_FLT:
4263 return rank_one_type_parm_float (parm, arg, value);
4264 case TYPE_CODE_COMPLEX:
4265 return rank_one_type_parm_complex (parm, arg, value);
4266 case TYPE_CODE_STRUCT:
4267 return rank_one_type_parm_struct (parm, arg, value);
4268 case TYPE_CODE_SET:
4269 return rank_one_type_parm_set (parm, arg, value);
4270 default:
4271 return INCOMPATIBLE_TYPE_BADNESS;
4272 } /* switch (TYPE_CODE (arg)) */
4273 }
4274
4275 /* End of functions for overload resolution. */
4276 \f
4277 /* Routines to pretty-print types. */
4278
4279 static void
4280 print_bit_vector (B_TYPE *bits, int nbits)
4281 {
4282 int bitno;
4283
4284 for (bitno = 0; bitno < nbits; bitno++)
4285 {
4286 if ((bitno % 8) == 0)
4287 {
4288 puts_filtered (" ");
4289 }
4290 if (B_TST (bits, bitno))
4291 printf_filtered (("1"));
4292 else
4293 printf_filtered (("0"));
4294 }
4295 }
4296
4297 /* Note the first arg should be the "this" pointer, we may not want to
4298 include it since we may get into a infinitely recursive
4299 situation. */
4300
4301 static void
4302 print_args (struct field *args, int nargs, int spaces)
4303 {
4304 if (args != NULL)
4305 {
4306 int i;
4307
4308 for (i = 0; i < nargs; i++)
4309 {
4310 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4311 args[i].name != NULL ? args[i].name : "<NULL>");
4312 recursive_dump_type (args[i].type, spaces + 2);
4313 }
4314 }
4315 }
4316
4317 int
4318 field_is_static (struct field *f)
4319 {
4320 /* "static" fields are the fields whose location is not relative
4321 to the address of the enclosing struct. It would be nice to
4322 have a dedicated flag that would be set for static fields when
4323 the type is being created. But in practice, checking the field
4324 loc_kind should give us an accurate answer. */
4325 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4326 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4327 }
4328
4329 static void
4330 dump_fn_fieldlists (struct type *type, int spaces)
4331 {
4332 int method_idx;
4333 int overload_idx;
4334 struct fn_field *f;
4335
4336 printfi_filtered (spaces, "fn_fieldlists ");
4337 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4338 printf_filtered ("\n");
4339 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4340 {
4341 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4342 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4343 method_idx,
4344 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4345 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4346 gdb_stdout);
4347 printf_filtered (_(") length %d\n"),
4348 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4349 for (overload_idx = 0;
4350 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4351 overload_idx++)
4352 {
4353 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4354 overload_idx,
4355 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4356 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4357 gdb_stdout);
4358 printf_filtered (")\n");
4359 printfi_filtered (spaces + 8, "type ");
4360 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4361 gdb_stdout);
4362 printf_filtered ("\n");
4363
4364 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4365 spaces + 8 + 2);
4366
4367 printfi_filtered (spaces + 8, "args ");
4368 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4369 gdb_stdout);
4370 printf_filtered ("\n");
4371 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4372 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4373 spaces + 8 + 2);
4374 printfi_filtered (spaces + 8, "fcontext ");
4375 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4376 gdb_stdout);
4377 printf_filtered ("\n");
4378
4379 printfi_filtered (spaces + 8, "is_const %d\n",
4380 TYPE_FN_FIELD_CONST (f, overload_idx));
4381 printfi_filtered (spaces + 8, "is_volatile %d\n",
4382 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4383 printfi_filtered (spaces + 8, "is_private %d\n",
4384 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4385 printfi_filtered (spaces + 8, "is_protected %d\n",
4386 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4387 printfi_filtered (spaces + 8, "is_stub %d\n",
4388 TYPE_FN_FIELD_STUB (f, overload_idx));
4389 printfi_filtered (spaces + 8, "voffset %u\n",
4390 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4391 }
4392 }
4393 }
4394
4395 static void
4396 print_cplus_stuff (struct type *type, int spaces)
4397 {
4398 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4399 printfi_filtered (spaces, "vptr_basetype ");
4400 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4401 puts_filtered ("\n");
4402 if (TYPE_VPTR_BASETYPE (type) != NULL)
4403 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4404
4405 printfi_filtered (spaces, "n_baseclasses %d\n",
4406 TYPE_N_BASECLASSES (type));
4407 printfi_filtered (spaces, "nfn_fields %d\n",
4408 TYPE_NFN_FIELDS (type));
4409 if (TYPE_N_BASECLASSES (type) > 0)
4410 {
4411 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4412 TYPE_N_BASECLASSES (type));
4413 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4414 gdb_stdout);
4415 printf_filtered (")");
4416
4417 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4418 TYPE_N_BASECLASSES (type));
4419 puts_filtered ("\n");
4420 }
4421 if (TYPE_NFIELDS (type) > 0)
4422 {
4423 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4424 {
4425 printfi_filtered (spaces,
4426 "private_field_bits (%d bits at *",
4427 TYPE_NFIELDS (type));
4428 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4429 gdb_stdout);
4430 printf_filtered (")");
4431 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4432 TYPE_NFIELDS (type));
4433 puts_filtered ("\n");
4434 }
4435 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4436 {
4437 printfi_filtered (spaces,
4438 "protected_field_bits (%d bits at *",
4439 TYPE_NFIELDS (type));
4440 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4441 gdb_stdout);
4442 printf_filtered (")");
4443 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4444 TYPE_NFIELDS (type));
4445 puts_filtered ("\n");
4446 }
4447 }
4448 if (TYPE_NFN_FIELDS (type) > 0)
4449 {
4450 dump_fn_fieldlists (type, spaces);
4451 }
4452 }
4453
4454 /* Print the contents of the TYPE's type_specific union, assuming that
4455 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4456
4457 static void
4458 print_gnat_stuff (struct type *type, int spaces)
4459 {
4460 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4461
4462 if (descriptive_type == NULL)
4463 printfi_filtered (spaces + 2, "no descriptive type\n");
4464 else
4465 {
4466 printfi_filtered (spaces + 2, "descriptive type\n");
4467 recursive_dump_type (descriptive_type, spaces + 4);
4468 }
4469 }
4470
4471 static struct obstack dont_print_type_obstack;
4472
4473 void
4474 recursive_dump_type (struct type *type, int spaces)
4475 {
4476 int idx;
4477
4478 if (spaces == 0)
4479 obstack_begin (&dont_print_type_obstack, 0);
4480
4481 if (TYPE_NFIELDS (type) > 0
4482 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4483 {
4484 struct type **first_dont_print
4485 = (struct type **) obstack_base (&dont_print_type_obstack);
4486
4487 int i = (struct type **)
4488 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4489
4490 while (--i >= 0)
4491 {
4492 if (type == first_dont_print[i])
4493 {
4494 printfi_filtered (spaces, "type node ");
4495 gdb_print_host_address (type, gdb_stdout);
4496 printf_filtered (_(" <same as already seen type>\n"));
4497 return;
4498 }
4499 }
4500
4501 obstack_ptr_grow (&dont_print_type_obstack, type);
4502 }
4503
4504 printfi_filtered (spaces, "type node ");
4505 gdb_print_host_address (type, gdb_stdout);
4506 printf_filtered ("\n");
4507 printfi_filtered (spaces, "name '%s' (",
4508 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4509 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4510 printf_filtered (")\n");
4511 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4512 switch (TYPE_CODE (type))
4513 {
4514 case TYPE_CODE_UNDEF:
4515 printf_filtered ("(TYPE_CODE_UNDEF)");
4516 break;
4517 case TYPE_CODE_PTR:
4518 printf_filtered ("(TYPE_CODE_PTR)");
4519 break;
4520 case TYPE_CODE_ARRAY:
4521 printf_filtered ("(TYPE_CODE_ARRAY)");
4522 break;
4523 case TYPE_CODE_STRUCT:
4524 printf_filtered ("(TYPE_CODE_STRUCT)");
4525 break;
4526 case TYPE_CODE_UNION:
4527 printf_filtered ("(TYPE_CODE_UNION)");
4528 break;
4529 case TYPE_CODE_ENUM:
4530 printf_filtered ("(TYPE_CODE_ENUM)");
4531 break;
4532 case TYPE_CODE_FLAGS:
4533 printf_filtered ("(TYPE_CODE_FLAGS)");
4534 break;
4535 case TYPE_CODE_FUNC:
4536 printf_filtered ("(TYPE_CODE_FUNC)");
4537 break;
4538 case TYPE_CODE_INT:
4539 printf_filtered ("(TYPE_CODE_INT)");
4540 break;
4541 case TYPE_CODE_FLT:
4542 printf_filtered ("(TYPE_CODE_FLT)");
4543 break;
4544 case TYPE_CODE_VOID:
4545 printf_filtered ("(TYPE_CODE_VOID)");
4546 break;
4547 case TYPE_CODE_SET:
4548 printf_filtered ("(TYPE_CODE_SET)");
4549 break;
4550 case TYPE_CODE_RANGE:
4551 printf_filtered ("(TYPE_CODE_RANGE)");
4552 break;
4553 case TYPE_CODE_STRING:
4554 printf_filtered ("(TYPE_CODE_STRING)");
4555 break;
4556 case TYPE_CODE_ERROR:
4557 printf_filtered ("(TYPE_CODE_ERROR)");
4558 break;
4559 case TYPE_CODE_MEMBERPTR:
4560 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4561 break;
4562 case TYPE_CODE_METHODPTR:
4563 printf_filtered ("(TYPE_CODE_METHODPTR)");
4564 break;
4565 case TYPE_CODE_METHOD:
4566 printf_filtered ("(TYPE_CODE_METHOD)");
4567 break;
4568 case TYPE_CODE_REF:
4569 printf_filtered ("(TYPE_CODE_REF)");
4570 break;
4571 case TYPE_CODE_CHAR:
4572 printf_filtered ("(TYPE_CODE_CHAR)");
4573 break;
4574 case TYPE_CODE_BOOL:
4575 printf_filtered ("(TYPE_CODE_BOOL)");
4576 break;
4577 case TYPE_CODE_COMPLEX:
4578 printf_filtered ("(TYPE_CODE_COMPLEX)");
4579 break;
4580 case TYPE_CODE_TYPEDEF:
4581 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4582 break;
4583 case TYPE_CODE_NAMESPACE:
4584 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4585 break;
4586 default:
4587 printf_filtered ("(UNKNOWN TYPE CODE)");
4588 break;
4589 }
4590 puts_filtered ("\n");
4591 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
4592 if (TYPE_OBJFILE_OWNED (type))
4593 {
4594 printfi_filtered (spaces, "objfile ");
4595 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4596 }
4597 else
4598 {
4599 printfi_filtered (spaces, "gdbarch ");
4600 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4601 }
4602 printf_filtered ("\n");
4603 printfi_filtered (spaces, "target_type ");
4604 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4605 printf_filtered ("\n");
4606 if (TYPE_TARGET_TYPE (type) != NULL)
4607 {
4608 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4609 }
4610 printfi_filtered (spaces, "pointer_type ");
4611 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4612 printf_filtered ("\n");
4613 printfi_filtered (spaces, "reference_type ");
4614 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4615 printf_filtered ("\n");
4616 printfi_filtered (spaces, "type_chain ");
4617 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4618 printf_filtered ("\n");
4619 printfi_filtered (spaces, "instance_flags 0x%x",
4620 TYPE_INSTANCE_FLAGS (type));
4621 if (TYPE_CONST (type))
4622 {
4623 puts_filtered (" TYPE_CONST");
4624 }
4625 if (TYPE_VOLATILE (type))
4626 {
4627 puts_filtered (" TYPE_VOLATILE");
4628 }
4629 if (TYPE_CODE_SPACE (type))
4630 {
4631 puts_filtered (" TYPE_CODE_SPACE");
4632 }
4633 if (TYPE_DATA_SPACE (type))
4634 {
4635 puts_filtered (" TYPE_DATA_SPACE");
4636 }
4637 if (TYPE_ADDRESS_CLASS_1 (type))
4638 {
4639 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4640 }
4641 if (TYPE_ADDRESS_CLASS_2 (type))
4642 {
4643 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4644 }
4645 if (TYPE_RESTRICT (type))
4646 {
4647 puts_filtered (" TYPE_RESTRICT");
4648 }
4649 if (TYPE_ATOMIC (type))
4650 {
4651 puts_filtered (" TYPE_ATOMIC");
4652 }
4653 puts_filtered ("\n");
4654
4655 printfi_filtered (spaces, "flags");
4656 if (TYPE_UNSIGNED (type))
4657 {
4658 puts_filtered (" TYPE_UNSIGNED");
4659 }
4660 if (TYPE_NOSIGN (type))
4661 {
4662 puts_filtered (" TYPE_NOSIGN");
4663 }
4664 if (TYPE_STUB (type))
4665 {
4666 puts_filtered (" TYPE_STUB");
4667 }
4668 if (TYPE_TARGET_STUB (type))
4669 {
4670 puts_filtered (" TYPE_TARGET_STUB");
4671 }
4672 if (TYPE_PROTOTYPED (type))
4673 {
4674 puts_filtered (" TYPE_PROTOTYPED");
4675 }
4676 if (TYPE_INCOMPLETE (type))
4677 {
4678 puts_filtered (" TYPE_INCOMPLETE");
4679 }
4680 if (TYPE_VARARGS (type))
4681 {
4682 puts_filtered (" TYPE_VARARGS");
4683 }
4684 /* This is used for things like AltiVec registers on ppc. Gcc emits
4685 an attribute for the array type, which tells whether or not we
4686 have a vector, instead of a regular array. */
4687 if (TYPE_VECTOR (type))
4688 {
4689 puts_filtered (" TYPE_VECTOR");
4690 }
4691 if (TYPE_FIXED_INSTANCE (type))
4692 {
4693 puts_filtered (" TYPE_FIXED_INSTANCE");
4694 }
4695 if (TYPE_STUB_SUPPORTED (type))
4696 {
4697 puts_filtered (" TYPE_STUB_SUPPORTED");
4698 }
4699 if (TYPE_NOTTEXT (type))
4700 {
4701 puts_filtered (" TYPE_NOTTEXT");
4702 }
4703 puts_filtered ("\n");
4704 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4705 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4706 puts_filtered ("\n");
4707 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4708 {
4709 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4710 printfi_filtered (spaces + 2,
4711 "[%d] enumval %s type ",
4712 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4713 else
4714 printfi_filtered (spaces + 2,
4715 "[%d] bitpos %s bitsize %d type ",
4716 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4717 TYPE_FIELD_BITSIZE (type, idx));
4718 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4719 printf_filtered (" name '%s' (",
4720 TYPE_FIELD_NAME (type, idx) != NULL
4721 ? TYPE_FIELD_NAME (type, idx)
4722 : "<NULL>");
4723 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4724 printf_filtered (")\n");
4725 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4726 {
4727 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4728 }
4729 }
4730 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4731 {
4732 printfi_filtered (spaces, "low %s%s high %s%s\n",
4733 plongest (TYPE_LOW_BOUND (type)),
4734 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4735 plongest (TYPE_HIGH_BOUND (type)),
4736 TYPE_HIGH_BOUND_UNDEFINED (type)
4737 ? " (undefined)" : "");
4738 }
4739
4740 switch (TYPE_SPECIFIC_FIELD (type))
4741 {
4742 case TYPE_SPECIFIC_CPLUS_STUFF:
4743 printfi_filtered (spaces, "cplus_stuff ");
4744 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4745 gdb_stdout);
4746 puts_filtered ("\n");
4747 print_cplus_stuff (type, spaces);
4748 break;
4749
4750 case TYPE_SPECIFIC_GNAT_STUFF:
4751 printfi_filtered (spaces, "gnat_stuff ");
4752 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4753 puts_filtered ("\n");
4754 print_gnat_stuff (type, spaces);
4755 break;
4756
4757 case TYPE_SPECIFIC_FLOATFORMAT:
4758 printfi_filtered (spaces, "floatformat ");
4759 if (TYPE_FLOATFORMAT (type) == NULL
4760 || TYPE_FLOATFORMAT (type)->name == NULL)
4761 puts_filtered ("(null)");
4762 else
4763 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4764 puts_filtered ("\n");
4765 break;
4766
4767 case TYPE_SPECIFIC_FUNC:
4768 printfi_filtered (spaces, "calling_convention %d\n",
4769 TYPE_CALLING_CONVENTION (type));
4770 /* tail_call_list is not printed. */
4771 break;
4772
4773 case TYPE_SPECIFIC_SELF_TYPE:
4774 printfi_filtered (spaces, "self_type ");
4775 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4776 puts_filtered ("\n");
4777 break;
4778 }
4779
4780 if (spaces == 0)
4781 obstack_free (&dont_print_type_obstack, NULL);
4782 }
4783 \f
4784 /* Trivial helpers for the libiberty hash table, for mapping one
4785 type to another. */
4786
4787 struct type_pair : public allocate_on_obstack
4788 {
4789 type_pair (struct type *old_, struct type *newobj_)
4790 : old (old_), newobj (newobj_)
4791 {}
4792
4793 struct type * const old, * const newobj;
4794 };
4795
4796 static hashval_t
4797 type_pair_hash (const void *item)
4798 {
4799 const struct type_pair *pair = (const struct type_pair *) item;
4800
4801 return htab_hash_pointer (pair->old);
4802 }
4803
4804 static int
4805 type_pair_eq (const void *item_lhs, const void *item_rhs)
4806 {
4807 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4808 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4809
4810 return lhs->old == rhs->old;
4811 }
4812
4813 /* Allocate the hash table used by copy_type_recursive to walk
4814 types without duplicates. We use OBJFILE's obstack, because
4815 OBJFILE is about to be deleted. */
4816
4817 htab_t
4818 create_copied_types_hash (struct objfile *objfile)
4819 {
4820 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4821 NULL, &objfile->objfile_obstack,
4822 hashtab_obstack_allocate,
4823 dummy_obstack_deallocate);
4824 }
4825
4826 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4827
4828 static struct dynamic_prop_list *
4829 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4830 struct dynamic_prop_list *list)
4831 {
4832 struct dynamic_prop_list *copy = list;
4833 struct dynamic_prop_list **node_ptr = &copy;
4834
4835 while (*node_ptr != NULL)
4836 {
4837 struct dynamic_prop_list *node_copy;
4838
4839 node_copy = ((struct dynamic_prop_list *)
4840 obstack_copy (objfile_obstack, *node_ptr,
4841 sizeof (struct dynamic_prop_list)));
4842 node_copy->prop = (*node_ptr)->prop;
4843 *node_ptr = node_copy;
4844
4845 node_ptr = &node_copy->next;
4846 }
4847
4848 return copy;
4849 }
4850
4851 /* Recursively copy (deep copy) TYPE, if it is associated with
4852 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4853 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4854 it is not associated with OBJFILE. */
4855
4856 struct type *
4857 copy_type_recursive (struct objfile *objfile,
4858 struct type *type,
4859 htab_t copied_types)
4860 {
4861 void **slot;
4862 struct type *new_type;
4863
4864 if (! TYPE_OBJFILE_OWNED (type))
4865 return type;
4866
4867 /* This type shouldn't be pointing to any types in other objfiles;
4868 if it did, the type might disappear unexpectedly. */
4869 gdb_assert (TYPE_OBJFILE (type) == objfile);
4870
4871 struct type_pair pair (type, nullptr);
4872
4873 slot = htab_find_slot (copied_types, &pair, INSERT);
4874 if (*slot != NULL)
4875 return ((struct type_pair *) *slot)->newobj;
4876
4877 new_type = alloc_type_arch (get_type_arch (type));
4878
4879 /* We must add the new type to the hash table immediately, in case
4880 we encounter this type again during a recursive call below. */
4881 struct type_pair *stored
4882 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4883
4884 *slot = stored;
4885
4886 /* Copy the common fields of types. For the main type, we simply
4887 copy the entire thing and then update specific fields as needed. */
4888 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4889 TYPE_OBJFILE_OWNED (new_type) = 0;
4890 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4891
4892 if (TYPE_NAME (type))
4893 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4894
4895 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4896 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4897
4898 /* Copy the fields. */
4899 if (TYPE_NFIELDS (type))
4900 {
4901 int i, nfields;
4902
4903 nfields = TYPE_NFIELDS (type);
4904 TYPE_FIELDS (new_type) = (struct field *)
4905 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
4906 for (i = 0; i < nfields; i++)
4907 {
4908 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4909 TYPE_FIELD_ARTIFICIAL (type, i);
4910 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4911 if (TYPE_FIELD_TYPE (type, i))
4912 TYPE_FIELD_TYPE (new_type, i)
4913 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4914 copied_types);
4915 if (TYPE_FIELD_NAME (type, i))
4916 TYPE_FIELD_NAME (new_type, i) =
4917 xstrdup (TYPE_FIELD_NAME (type, i));
4918 switch (TYPE_FIELD_LOC_KIND (type, i))
4919 {
4920 case FIELD_LOC_KIND_BITPOS:
4921 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4922 TYPE_FIELD_BITPOS (type, i));
4923 break;
4924 case FIELD_LOC_KIND_ENUMVAL:
4925 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4926 TYPE_FIELD_ENUMVAL (type, i));
4927 break;
4928 case FIELD_LOC_KIND_PHYSADDR:
4929 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4930 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4931 break;
4932 case FIELD_LOC_KIND_PHYSNAME:
4933 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4934 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4935 i)));
4936 break;
4937 default:
4938 internal_error (__FILE__, __LINE__,
4939 _("Unexpected type field location kind: %d"),
4940 TYPE_FIELD_LOC_KIND (type, i));
4941 }
4942 }
4943 }
4944
4945 /* For range types, copy the bounds information. */
4946 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4947 {
4948 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
4949 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
4950 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4951 }
4952
4953 if (TYPE_DYN_PROP_LIST (type) != NULL)
4954 TYPE_DYN_PROP_LIST (new_type)
4955 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4956 TYPE_DYN_PROP_LIST (type));
4957
4958
4959 /* Copy pointers to other types. */
4960 if (TYPE_TARGET_TYPE (type))
4961 TYPE_TARGET_TYPE (new_type) =
4962 copy_type_recursive (objfile,
4963 TYPE_TARGET_TYPE (type),
4964 copied_types);
4965
4966 /* Maybe copy the type_specific bits.
4967
4968 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4969 base classes and methods. There's no fundamental reason why we
4970 can't, but at the moment it is not needed. */
4971
4972 switch (TYPE_SPECIFIC_FIELD (type))
4973 {
4974 case TYPE_SPECIFIC_NONE:
4975 break;
4976 case TYPE_SPECIFIC_FUNC:
4977 INIT_FUNC_SPECIFIC (new_type);
4978 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4979 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4980 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4981 break;
4982 case TYPE_SPECIFIC_FLOATFORMAT:
4983 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4984 break;
4985 case TYPE_SPECIFIC_CPLUS_STUFF:
4986 INIT_CPLUS_SPECIFIC (new_type);
4987 break;
4988 case TYPE_SPECIFIC_GNAT_STUFF:
4989 INIT_GNAT_SPECIFIC (new_type);
4990 break;
4991 case TYPE_SPECIFIC_SELF_TYPE:
4992 set_type_self_type (new_type,
4993 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4994 copied_types));
4995 break;
4996 default:
4997 gdb_assert_not_reached ("bad type_specific_kind");
4998 }
4999
5000 return new_type;
5001 }
5002
5003 /* Make a copy of the given TYPE, except that the pointer & reference
5004 types are not preserved.
5005
5006 This function assumes that the given type has an associated objfile.
5007 This objfile is used to allocate the new type. */
5008
5009 struct type *
5010 copy_type (const struct type *type)
5011 {
5012 struct type *new_type;
5013
5014 gdb_assert (TYPE_OBJFILE_OWNED (type));
5015
5016 new_type = alloc_type_copy (type);
5017 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5018 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5019 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5020 sizeof (struct main_type));
5021 if (TYPE_DYN_PROP_LIST (type) != NULL)
5022 TYPE_DYN_PROP_LIST (new_type)
5023 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5024 TYPE_DYN_PROP_LIST (type));
5025
5026 return new_type;
5027 }
5028 \f
5029 /* Helper functions to initialize architecture-specific types. */
5030
5031 /* Allocate a type structure associated with GDBARCH and set its
5032 CODE, LENGTH, and NAME fields. */
5033
5034 struct type *
5035 arch_type (struct gdbarch *gdbarch,
5036 enum type_code code, int bit, const char *name)
5037 {
5038 struct type *type;
5039
5040 type = alloc_type_arch (gdbarch);
5041 set_type_code (type, code);
5042 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5043 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5044
5045 if (name)
5046 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5047
5048 return type;
5049 }
5050
5051 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5052 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5053 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5054
5055 struct type *
5056 arch_integer_type (struct gdbarch *gdbarch,
5057 int bit, int unsigned_p, const char *name)
5058 {
5059 struct type *t;
5060
5061 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5062 if (unsigned_p)
5063 TYPE_UNSIGNED (t) = 1;
5064
5065 return t;
5066 }
5067
5068 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5069 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5070 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5071
5072 struct type *
5073 arch_character_type (struct gdbarch *gdbarch,
5074 int bit, int unsigned_p, const char *name)
5075 {
5076 struct type *t;
5077
5078 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5079 if (unsigned_p)
5080 TYPE_UNSIGNED (t) = 1;
5081
5082 return t;
5083 }
5084
5085 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5086 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5087 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5088
5089 struct type *
5090 arch_boolean_type (struct gdbarch *gdbarch,
5091 int bit, int unsigned_p, const char *name)
5092 {
5093 struct type *t;
5094
5095 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5096 if (unsigned_p)
5097 TYPE_UNSIGNED (t) = 1;
5098
5099 return t;
5100 }
5101
5102 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5103 BIT is the type size in bits; if BIT equals -1, the size is
5104 determined by the floatformat. NAME is the type name. Set the
5105 TYPE_FLOATFORMAT from FLOATFORMATS. */
5106
5107 struct type *
5108 arch_float_type (struct gdbarch *gdbarch,
5109 int bit, const char *name,
5110 const struct floatformat **floatformats)
5111 {
5112 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5113 struct type *t;
5114
5115 bit = verify_floatformat (bit, fmt);
5116 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5117 TYPE_FLOATFORMAT (t) = fmt;
5118
5119 return t;
5120 }
5121
5122 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5123 BIT is the type size in bits. NAME is the type name. */
5124
5125 struct type *
5126 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5127 {
5128 struct type *t;
5129
5130 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5131 return t;
5132 }
5133
5134 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5135 NAME is the type name. TARGET_TYPE is the component float type. */
5136
5137 struct type *
5138 arch_complex_type (struct gdbarch *gdbarch,
5139 const char *name, struct type *target_type)
5140 {
5141 struct type *t;
5142
5143 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5144 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5145 TYPE_TARGET_TYPE (t) = target_type;
5146 return t;
5147 }
5148
5149 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5150 BIT is the pointer type size in bits. NAME is the type name.
5151 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5152 TYPE_UNSIGNED flag. */
5153
5154 struct type *
5155 arch_pointer_type (struct gdbarch *gdbarch,
5156 int bit, const char *name, struct type *target_type)
5157 {
5158 struct type *t;
5159
5160 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5161 TYPE_TARGET_TYPE (t) = target_type;
5162 TYPE_UNSIGNED (t) = 1;
5163 return t;
5164 }
5165
5166 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5167 NAME is the type name. BIT is the size of the flag word in bits. */
5168
5169 struct type *
5170 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5171 {
5172 struct type *type;
5173
5174 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5175 TYPE_UNSIGNED (type) = 1;
5176 TYPE_NFIELDS (type) = 0;
5177 /* Pre-allocate enough space assuming every field is one bit. */
5178 TYPE_FIELDS (type)
5179 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5180
5181 return type;
5182 }
5183
5184 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5185 position BITPOS is called NAME. Pass NAME as "" for fields that
5186 should not be printed. */
5187
5188 void
5189 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5190 struct type *field_type, const char *name)
5191 {
5192 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5193 int field_nr = TYPE_NFIELDS (type);
5194
5195 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5196 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5197 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5198 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5199 gdb_assert (name != NULL);
5200
5201 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5202 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5203 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5204 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5205 ++TYPE_NFIELDS (type);
5206 }
5207
5208 /* Special version of append_flags_type_field to add a flag field.
5209 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5210 position BITPOS is called NAME. */
5211
5212 void
5213 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5214 {
5215 struct gdbarch *gdbarch = get_type_arch (type);
5216
5217 append_flags_type_field (type, bitpos, 1,
5218 builtin_type (gdbarch)->builtin_bool,
5219 name);
5220 }
5221
5222 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5223 specified by CODE) associated with GDBARCH. NAME is the type name. */
5224
5225 struct type *
5226 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5227 enum type_code code)
5228 {
5229 struct type *t;
5230
5231 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5232 t = arch_type (gdbarch, code, 0, NULL);
5233 TYPE_NAME (t) = name;
5234 INIT_CPLUS_SPECIFIC (t);
5235 return t;
5236 }
5237
5238 /* Add new field with name NAME and type FIELD to composite type T.
5239 Do not set the field's position or adjust the type's length;
5240 the caller should do so. Return the new field. */
5241
5242 struct field *
5243 append_composite_type_field_raw (struct type *t, const char *name,
5244 struct type *field)
5245 {
5246 struct field *f;
5247
5248 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5249 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5250 TYPE_NFIELDS (t));
5251 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5252 memset (f, 0, sizeof f[0]);
5253 FIELD_TYPE (f[0]) = field;
5254 FIELD_NAME (f[0]) = name;
5255 return f;
5256 }
5257
5258 /* Add new field with name NAME and type FIELD to composite type T.
5259 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5260
5261 void
5262 append_composite_type_field_aligned (struct type *t, const char *name,
5263 struct type *field, int alignment)
5264 {
5265 struct field *f = append_composite_type_field_raw (t, name, field);
5266
5267 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5268 {
5269 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5270 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5271 }
5272 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5273 {
5274 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5275 if (TYPE_NFIELDS (t) > 1)
5276 {
5277 SET_FIELD_BITPOS (f[0],
5278 (FIELD_BITPOS (f[-1])
5279 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5280 * TARGET_CHAR_BIT)));
5281
5282 if (alignment)
5283 {
5284 int left;
5285
5286 alignment *= TARGET_CHAR_BIT;
5287 left = FIELD_BITPOS (f[0]) % alignment;
5288
5289 if (left)
5290 {
5291 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5292 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5293 }
5294 }
5295 }
5296 }
5297 }
5298
5299 /* Add new field with name NAME and type FIELD to composite type T. */
5300
5301 void
5302 append_composite_type_field (struct type *t, const char *name,
5303 struct type *field)
5304 {
5305 append_composite_type_field_aligned (t, name, field, 0);
5306 }
5307
5308 static struct gdbarch_data *gdbtypes_data;
5309
5310 const struct builtin_type *
5311 builtin_type (struct gdbarch *gdbarch)
5312 {
5313 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5314 }
5315
5316 static void *
5317 gdbtypes_post_init (struct gdbarch *gdbarch)
5318 {
5319 struct builtin_type *builtin_type
5320 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5321
5322 /* Basic types. */
5323 builtin_type->builtin_void
5324 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5325 builtin_type->builtin_char
5326 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5327 !gdbarch_char_signed (gdbarch), "char");
5328 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5329 builtin_type->builtin_signed_char
5330 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5331 0, "signed char");
5332 builtin_type->builtin_unsigned_char
5333 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5334 1, "unsigned char");
5335 builtin_type->builtin_short
5336 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5337 0, "short");
5338 builtin_type->builtin_unsigned_short
5339 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5340 1, "unsigned short");
5341 builtin_type->builtin_int
5342 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5343 0, "int");
5344 builtin_type->builtin_unsigned_int
5345 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5346 1, "unsigned int");
5347 builtin_type->builtin_long
5348 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5349 0, "long");
5350 builtin_type->builtin_unsigned_long
5351 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5352 1, "unsigned long");
5353 builtin_type->builtin_long_long
5354 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5355 0, "long long");
5356 builtin_type->builtin_unsigned_long_long
5357 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5358 1, "unsigned long long");
5359 builtin_type->builtin_half
5360 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5361 "half", gdbarch_half_format (gdbarch));
5362 builtin_type->builtin_float
5363 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5364 "float", gdbarch_float_format (gdbarch));
5365 builtin_type->builtin_double
5366 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5367 "double", gdbarch_double_format (gdbarch));
5368 builtin_type->builtin_long_double
5369 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5370 "long double", gdbarch_long_double_format (gdbarch));
5371 builtin_type->builtin_complex
5372 = arch_complex_type (gdbarch, "complex",
5373 builtin_type->builtin_float);
5374 builtin_type->builtin_double_complex
5375 = arch_complex_type (gdbarch, "double complex",
5376 builtin_type->builtin_double);
5377 builtin_type->builtin_string
5378 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5379 builtin_type->builtin_bool
5380 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5381
5382 /* The following three are about decimal floating point types, which
5383 are 32-bits, 64-bits and 128-bits respectively. */
5384 builtin_type->builtin_decfloat
5385 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5386 builtin_type->builtin_decdouble
5387 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5388 builtin_type->builtin_declong
5389 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5390
5391 /* "True" character types. */
5392 builtin_type->builtin_true_char
5393 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5394 builtin_type->builtin_true_unsigned_char
5395 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5396
5397 /* Fixed-size integer types. */
5398 builtin_type->builtin_int0
5399 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5400 builtin_type->builtin_int8
5401 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5402 builtin_type->builtin_uint8
5403 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5404 builtin_type->builtin_int16
5405 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5406 builtin_type->builtin_uint16
5407 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5408 builtin_type->builtin_int24
5409 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5410 builtin_type->builtin_uint24
5411 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5412 builtin_type->builtin_int32
5413 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5414 builtin_type->builtin_uint32
5415 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5416 builtin_type->builtin_int64
5417 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5418 builtin_type->builtin_uint64
5419 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5420 builtin_type->builtin_int128
5421 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5422 builtin_type->builtin_uint128
5423 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5424 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5425 TYPE_INSTANCE_FLAG_NOTTEXT;
5426 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5427 TYPE_INSTANCE_FLAG_NOTTEXT;
5428
5429 /* Wide character types. */
5430 builtin_type->builtin_char16
5431 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5432 builtin_type->builtin_char32
5433 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5434 builtin_type->builtin_wchar
5435 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5436 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5437
5438 /* Default data/code pointer types. */
5439 builtin_type->builtin_data_ptr
5440 = lookup_pointer_type (builtin_type->builtin_void);
5441 builtin_type->builtin_func_ptr
5442 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5443 builtin_type->builtin_func_func
5444 = lookup_function_type (builtin_type->builtin_func_ptr);
5445
5446 /* This type represents a GDB internal function. */
5447 builtin_type->internal_fn
5448 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5449 "<internal function>");
5450
5451 /* This type represents an xmethod. */
5452 builtin_type->xmethod
5453 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5454
5455 return builtin_type;
5456 }
5457
5458 /* This set of objfile-based types is intended to be used by symbol
5459 readers as basic types. */
5460
5461 static const struct objfile_key<struct objfile_type,
5462 gdb::noop_deleter<struct objfile_type>>
5463 objfile_type_data;
5464
5465 const struct objfile_type *
5466 objfile_type (struct objfile *objfile)
5467 {
5468 struct gdbarch *gdbarch;
5469 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5470
5471 if (objfile_type)
5472 return objfile_type;
5473
5474 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5475 1, struct objfile_type);
5476
5477 /* Use the objfile architecture to determine basic type properties. */
5478 gdbarch = get_objfile_arch (objfile);
5479
5480 /* Basic types. */
5481 objfile_type->builtin_void
5482 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5483 objfile_type->builtin_char
5484 = init_integer_type (objfile, TARGET_CHAR_BIT,
5485 !gdbarch_char_signed (gdbarch), "char");
5486 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5487 objfile_type->builtin_signed_char
5488 = init_integer_type (objfile, TARGET_CHAR_BIT,
5489 0, "signed char");
5490 objfile_type->builtin_unsigned_char
5491 = init_integer_type (objfile, TARGET_CHAR_BIT,
5492 1, "unsigned char");
5493 objfile_type->builtin_short
5494 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5495 0, "short");
5496 objfile_type->builtin_unsigned_short
5497 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5498 1, "unsigned short");
5499 objfile_type->builtin_int
5500 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5501 0, "int");
5502 objfile_type->builtin_unsigned_int
5503 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5504 1, "unsigned int");
5505 objfile_type->builtin_long
5506 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5507 0, "long");
5508 objfile_type->builtin_unsigned_long
5509 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5510 1, "unsigned long");
5511 objfile_type->builtin_long_long
5512 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5513 0, "long long");
5514 objfile_type->builtin_unsigned_long_long
5515 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5516 1, "unsigned long long");
5517 objfile_type->builtin_float
5518 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5519 "float", gdbarch_float_format (gdbarch));
5520 objfile_type->builtin_double
5521 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5522 "double", gdbarch_double_format (gdbarch));
5523 objfile_type->builtin_long_double
5524 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5525 "long double", gdbarch_long_double_format (gdbarch));
5526
5527 /* This type represents a type that was unrecognized in symbol read-in. */
5528 objfile_type->builtin_error
5529 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5530
5531 /* The following set of types is used for symbols with no
5532 debug information. */
5533 objfile_type->nodebug_text_symbol
5534 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5535 "<text variable, no debug info>");
5536 objfile_type->nodebug_text_gnu_ifunc_symbol
5537 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5538 "<text gnu-indirect-function variable, no debug info>");
5539 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5540 objfile_type->nodebug_got_plt_symbol
5541 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5542 "<text from jump slot in .got.plt, no debug info>",
5543 objfile_type->nodebug_text_symbol);
5544 objfile_type->nodebug_data_symbol
5545 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5546 objfile_type->nodebug_unknown_symbol
5547 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5548 objfile_type->nodebug_tls_symbol
5549 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5550
5551 /* NOTE: on some targets, addresses and pointers are not necessarily
5552 the same.
5553
5554 The upshot is:
5555 - gdb's `struct type' always describes the target's
5556 representation.
5557 - gdb's `struct value' objects should always hold values in
5558 target form.
5559 - gdb's CORE_ADDR values are addresses in the unified virtual
5560 address space that the assembler and linker work with. Thus,
5561 since target_read_memory takes a CORE_ADDR as an argument, it
5562 can access any memory on the target, even if the processor has
5563 separate code and data address spaces.
5564
5565 In this context, objfile_type->builtin_core_addr is a bit odd:
5566 it's a target type for a value the target will never see. It's
5567 only used to hold the values of (typeless) linker symbols, which
5568 are indeed in the unified virtual address space. */
5569
5570 objfile_type->builtin_core_addr
5571 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5572 "__CORE_ADDR");
5573
5574 objfile_type_data.set (objfile, objfile_type);
5575 return objfile_type;
5576 }
5577
5578 void
5579 _initialize_gdbtypes (void)
5580 {
5581 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5582
5583 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5584 _("Set debugging of C++ overloading."),
5585 _("Show debugging of C++ overloading."),
5586 _("When enabled, ranking of the "
5587 "functions is displayed."),
5588 NULL,
5589 show_overload_debug,
5590 &setdebuglist, &showdebuglist);
5591
5592 /* Add user knob for controlling resolution of opaque types. */
5593 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5594 &opaque_type_resolution,
5595 _("Set resolution of opaque struct/class/union"
5596 " types (if set before loading symbols)."),
5597 _("Show resolution of opaque struct/class/union"
5598 " types (if set before loading symbols)."),
5599 NULL, NULL,
5600 show_opaque_type_resolution,
5601 &setlist, &showlist);
5602
5603 /* Add an option to permit non-strict type checking. */
5604 add_setshow_boolean_cmd ("type", class_support,
5605 &strict_type_checking,
5606 _("Set strict type checking."),
5607 _("Show strict type checking."),
5608 NULL, NULL,
5609 show_strict_type_checking,
5610 &setchecklist, &showchecklist);
5611 }