Enable chained function calls in C++ expressions.
[binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_VPTR_FIELDNO (type) = -1;
184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
185
186 return type;
187 }
188
189 /* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
191 on the heap. */
192
193 struct type *
194 alloc_type_arch (struct gdbarch *gdbarch)
195 {
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
202 type = XCNEW (struct type);
203 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_VPTR_FIELDNO (type) = -1;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240 }
241
242 /* See gdbtypes.h. */
243
244 struct type *
245 get_target_type (struct type *type)
246 {
247 if (type != NULL)
248 {
249 type = TYPE_TARGET_TYPE (type);
250 if (type != NULL)
251 type = check_typedef (type);
252 }
253
254 return type;
255 }
256
257 /* Alloc a new type instance structure, fill it with some defaults,
258 and point it at OLDTYPE. Allocate the new type instance from the
259 same place as OLDTYPE. */
260
261 static struct type *
262 alloc_type_instance (struct type *oldtype)
263 {
264 struct type *type;
265
266 /* Allocate the structure. */
267
268 if (! TYPE_OBJFILE_OWNED (oldtype))
269 type = XCNEW (struct type);
270 else
271 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
272 struct type);
273
274 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
275
276 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
277
278 return type;
279 }
280
281 /* Clear all remnants of the previous type at TYPE, in preparation for
282 replacing it with something else. Preserve owner information. */
283
284 static void
285 smash_type (struct type *type)
286 {
287 int objfile_owned = TYPE_OBJFILE_OWNED (type);
288 union type_owner owner = TYPE_OWNER (type);
289
290 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
291
292 /* Restore owner information. */
293 TYPE_OBJFILE_OWNED (type) = objfile_owned;
294 TYPE_OWNER (type) = owner;
295
296 /* For now, delete the rings. */
297 TYPE_CHAIN (type) = type;
298
299 /* For now, leave the pointer/reference types alone. */
300 }
301
302 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
303 to a pointer to memory where the pointer type should be stored.
304 If *TYPEPTR is zero, update it to point to the pointer type we return.
305 We allocate new memory if needed. */
306
307 struct type *
308 make_pointer_type (struct type *type, struct type **typeptr)
309 {
310 struct type *ntype; /* New type */
311 struct type *chain;
312
313 ntype = TYPE_POINTER_TYPE (type);
314
315 if (ntype)
316 {
317 if (typeptr == 0)
318 return ntype; /* Don't care about alloc,
319 and have new type. */
320 else if (*typeptr == 0)
321 {
322 *typeptr = ntype; /* Tracking alloc, and have new type. */
323 return ntype;
324 }
325 }
326
327 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
328 {
329 ntype = alloc_type_copy (type);
330 if (typeptr)
331 *typeptr = ntype;
332 }
333 else /* We have storage, but need to reset it. */
334 {
335 ntype = *typeptr;
336 chain = TYPE_CHAIN (ntype);
337 smash_type (ntype);
338 TYPE_CHAIN (ntype) = chain;
339 }
340
341 TYPE_TARGET_TYPE (ntype) = type;
342 TYPE_POINTER_TYPE (type) = ntype;
343
344 /* FIXME! Assumes the machine has only one representation for pointers! */
345
346 TYPE_LENGTH (ntype)
347 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
348 TYPE_CODE (ntype) = TYPE_CODE_PTR;
349
350 /* Mark pointers as unsigned. The target converts between pointers
351 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
352 gdbarch_address_to_pointer. */
353 TYPE_UNSIGNED (ntype) = 1;
354
355 /* Update the length of all the other variants of this type. */
356 chain = TYPE_CHAIN (ntype);
357 while (chain != ntype)
358 {
359 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
360 chain = TYPE_CHAIN (chain);
361 }
362
363 return ntype;
364 }
365
366 /* Given a type TYPE, return a type of pointers to that type.
367 May need to construct such a type if this is the first use. */
368
369 struct type *
370 lookup_pointer_type (struct type *type)
371 {
372 return make_pointer_type (type, (struct type **) 0);
373 }
374
375 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
376 points to a pointer to memory where the reference type should be
377 stored. If *TYPEPTR is zero, update it to point to the reference
378 type we return. We allocate new memory if needed. */
379
380 struct type *
381 make_reference_type (struct type *type, struct type **typeptr)
382 {
383 struct type *ntype; /* New type */
384 struct type *chain;
385
386 ntype = TYPE_REFERENCE_TYPE (type);
387
388 if (ntype)
389 {
390 if (typeptr == 0)
391 return ntype; /* Don't care about alloc,
392 and have new type. */
393 else if (*typeptr == 0)
394 {
395 *typeptr = ntype; /* Tracking alloc, and have new type. */
396 return ntype;
397 }
398 }
399
400 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
401 {
402 ntype = alloc_type_copy (type);
403 if (typeptr)
404 *typeptr = ntype;
405 }
406 else /* We have storage, but need to reset it. */
407 {
408 ntype = *typeptr;
409 chain = TYPE_CHAIN (ntype);
410 smash_type (ntype);
411 TYPE_CHAIN (ntype) = chain;
412 }
413
414 TYPE_TARGET_TYPE (ntype) = type;
415 TYPE_REFERENCE_TYPE (type) = ntype;
416
417 /* FIXME! Assume the machine has only one representation for
418 references, and that it matches the (only) representation for
419 pointers! */
420
421 TYPE_LENGTH (ntype) =
422 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
423 TYPE_CODE (ntype) = TYPE_CODE_REF;
424
425 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
426 TYPE_REFERENCE_TYPE (type) = ntype;
427
428 /* Update the length of all the other variants of this type. */
429 chain = TYPE_CHAIN (ntype);
430 while (chain != ntype)
431 {
432 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
433 chain = TYPE_CHAIN (chain);
434 }
435
436 return ntype;
437 }
438
439 /* Same as above, but caller doesn't care about memory allocation
440 details. */
441
442 struct type *
443 lookup_reference_type (struct type *type)
444 {
445 return make_reference_type (type, (struct type **) 0);
446 }
447
448 /* Lookup a function type that returns type TYPE. TYPEPTR, if
449 nonzero, points to a pointer to memory where the function type
450 should be stored. If *TYPEPTR is zero, update it to point to the
451 function type we return. We allocate new memory if needed. */
452
453 struct type *
454 make_function_type (struct type *type, struct type **typeptr)
455 {
456 struct type *ntype; /* New type */
457
458 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
459 {
460 ntype = alloc_type_copy (type);
461 if (typeptr)
462 *typeptr = ntype;
463 }
464 else /* We have storage, but need to reset it. */
465 {
466 ntype = *typeptr;
467 smash_type (ntype);
468 }
469
470 TYPE_TARGET_TYPE (ntype) = type;
471
472 TYPE_LENGTH (ntype) = 1;
473 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
474
475 INIT_FUNC_SPECIFIC (ntype);
476
477 return ntype;
478 }
479
480 /* Given a type TYPE, return a type of functions that return that type.
481 May need to construct such a type if this is the first use. */
482
483 struct type *
484 lookup_function_type (struct type *type)
485 {
486 return make_function_type (type, (struct type **) 0);
487 }
488
489 /* Given a type TYPE and argument types, return the appropriate
490 function type. If the final type in PARAM_TYPES is NULL, make a
491 varargs function. */
492
493 struct type *
494 lookup_function_type_with_arguments (struct type *type,
495 int nparams,
496 struct type **param_types)
497 {
498 struct type *fn = make_function_type (type, (struct type **) 0);
499 int i;
500
501 if (nparams > 0)
502 {
503 if (param_types[nparams - 1] == NULL)
504 {
505 --nparams;
506 TYPE_VARARGS (fn) = 1;
507 }
508 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
509 == TYPE_CODE_VOID)
510 {
511 --nparams;
512 /* Caller should have ensured this. */
513 gdb_assert (nparams == 0);
514 TYPE_PROTOTYPED (fn) = 1;
515 }
516 }
517
518 TYPE_NFIELDS (fn) = nparams;
519 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
520 for (i = 0; i < nparams; ++i)
521 TYPE_FIELD_TYPE (fn, i) = param_types[i];
522
523 return fn;
524 }
525
526 /* Identify address space identifier by name --
527 return the integer flag defined in gdbtypes.h. */
528
529 int
530 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
531 {
532 int type_flags;
533
534 /* Check for known address space delimiters. */
535 if (!strcmp (space_identifier, "code"))
536 return TYPE_INSTANCE_FLAG_CODE_SPACE;
537 else if (!strcmp (space_identifier, "data"))
538 return TYPE_INSTANCE_FLAG_DATA_SPACE;
539 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
540 && gdbarch_address_class_name_to_type_flags (gdbarch,
541 space_identifier,
542 &type_flags))
543 return type_flags;
544 else
545 error (_("Unknown address space specifier: \"%s\""), space_identifier);
546 }
547
548 /* Identify address space identifier by integer flag as defined in
549 gdbtypes.h -- return the string version of the adress space name. */
550
551 const char *
552 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
553 {
554 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
555 return "code";
556 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
557 return "data";
558 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
559 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
560 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
561 else
562 return NULL;
563 }
564
565 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
566
567 If STORAGE is non-NULL, create the new type instance there.
568 STORAGE must be in the same obstack as TYPE. */
569
570 static struct type *
571 make_qualified_type (struct type *type, int new_flags,
572 struct type *storage)
573 {
574 struct type *ntype;
575
576 ntype = type;
577 do
578 {
579 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
580 return ntype;
581 ntype = TYPE_CHAIN (ntype);
582 }
583 while (ntype != type);
584
585 /* Create a new type instance. */
586 if (storage == NULL)
587 ntype = alloc_type_instance (type);
588 else
589 {
590 /* If STORAGE was provided, it had better be in the same objfile
591 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
592 if one objfile is freed and the other kept, we'd have
593 dangling pointers. */
594 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
595
596 ntype = storage;
597 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
598 TYPE_CHAIN (ntype) = ntype;
599 }
600
601 /* Pointers or references to the original type are not relevant to
602 the new type. */
603 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
604 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
605
606 /* Chain the new qualified type to the old type. */
607 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
608 TYPE_CHAIN (type) = ntype;
609
610 /* Now set the instance flags and return the new type. */
611 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
612
613 /* Set length of new type to that of the original type. */
614 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
615
616 return ntype;
617 }
618
619 /* Make an address-space-delimited variant of a type -- a type that
620 is identical to the one supplied except that it has an address
621 space attribute attached to it (such as "code" or "data").
622
623 The space attributes "code" and "data" are for Harvard
624 architectures. The address space attributes are for architectures
625 which have alternately sized pointers or pointers with alternate
626 representations. */
627
628 struct type *
629 make_type_with_address_space (struct type *type, int space_flag)
630 {
631 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
632 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
633 | TYPE_INSTANCE_FLAG_DATA_SPACE
634 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
635 | space_flag);
636
637 return make_qualified_type (type, new_flags, NULL);
638 }
639
640 /* Make a "c-v" variant of a type -- a type that is identical to the
641 one supplied except that it may have const or volatile attributes
642 CNST is a flag for setting the const attribute
643 VOLTL is a flag for setting the volatile attribute
644 TYPE is the base type whose variant we are creating.
645
646 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
647 storage to hold the new qualified type; *TYPEPTR and TYPE must be
648 in the same objfile. Otherwise, allocate fresh memory for the new
649 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
650 new type we construct. */
651
652 struct type *
653 make_cv_type (int cnst, int voltl,
654 struct type *type,
655 struct type **typeptr)
656 {
657 struct type *ntype; /* New type */
658
659 int new_flags = (TYPE_INSTANCE_FLAGS (type)
660 & ~(TYPE_INSTANCE_FLAG_CONST
661 | TYPE_INSTANCE_FLAG_VOLATILE));
662
663 if (cnst)
664 new_flags |= TYPE_INSTANCE_FLAG_CONST;
665
666 if (voltl)
667 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
668
669 if (typeptr && *typeptr != NULL)
670 {
671 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
672 a C-V variant chain that threads across objfiles: if one
673 objfile gets freed, then the other has a broken C-V chain.
674
675 This code used to try to copy over the main type from TYPE to
676 *TYPEPTR if they were in different objfiles, but that's
677 wrong, too: TYPE may have a field list or member function
678 lists, which refer to types of their own, etc. etc. The
679 whole shebang would need to be copied over recursively; you
680 can't have inter-objfile pointers. The only thing to do is
681 to leave stub types as stub types, and look them up afresh by
682 name each time you encounter them. */
683 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
684 }
685
686 ntype = make_qualified_type (type, new_flags,
687 typeptr ? *typeptr : NULL);
688
689 if (typeptr != NULL)
690 *typeptr = ntype;
691
692 return ntype;
693 }
694
695 /* Make a 'restrict'-qualified version of TYPE. */
696
697 struct type *
698 make_restrict_type (struct type *type)
699 {
700 return make_qualified_type (type,
701 (TYPE_INSTANCE_FLAGS (type)
702 | TYPE_INSTANCE_FLAG_RESTRICT),
703 NULL);
704 }
705
706 /* Replace the contents of ntype with the type *type. This changes the
707 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
708 the changes are propogated to all types in the TYPE_CHAIN.
709
710 In order to build recursive types, it's inevitable that we'll need
711 to update types in place --- but this sort of indiscriminate
712 smashing is ugly, and needs to be replaced with something more
713 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
714 clear if more steps are needed. */
715
716 void
717 replace_type (struct type *ntype, struct type *type)
718 {
719 struct type *chain;
720
721 /* These two types had better be in the same objfile. Otherwise,
722 the assignment of one type's main type structure to the other
723 will produce a type with references to objects (names; field
724 lists; etc.) allocated on an objfile other than its own. */
725 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
726
727 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
728
729 /* The type length is not a part of the main type. Update it for
730 each type on the variant chain. */
731 chain = ntype;
732 do
733 {
734 /* Assert that this element of the chain has no address-class bits
735 set in its flags. Such type variants might have type lengths
736 which are supposed to be different from the non-address-class
737 variants. This assertion shouldn't ever be triggered because
738 symbol readers which do construct address-class variants don't
739 call replace_type(). */
740 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
741
742 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
743 chain = TYPE_CHAIN (chain);
744 }
745 while (ntype != chain);
746
747 /* Assert that the two types have equivalent instance qualifiers.
748 This should be true for at least all of our debug readers. */
749 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
750 }
751
752 /* Implement direct support for MEMBER_TYPE in GNU C++.
753 May need to construct such a type if this is the first use.
754 The TYPE is the type of the member. The DOMAIN is the type
755 of the aggregate that the member belongs to. */
756
757 struct type *
758 lookup_memberptr_type (struct type *type, struct type *domain)
759 {
760 struct type *mtype;
761
762 mtype = alloc_type_copy (type);
763 smash_to_memberptr_type (mtype, domain, type);
764 return mtype;
765 }
766
767 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
768
769 struct type *
770 lookup_methodptr_type (struct type *to_type)
771 {
772 struct type *mtype;
773
774 mtype = alloc_type_copy (to_type);
775 smash_to_methodptr_type (mtype, to_type);
776 return mtype;
777 }
778
779 /* Allocate a stub method whose return type is TYPE. This apparently
780 happens for speed of symbol reading, since parsing out the
781 arguments to the method is cpu-intensive, the way we are doing it.
782 So, we will fill in arguments later. This always returns a fresh
783 type. */
784
785 struct type *
786 allocate_stub_method (struct type *type)
787 {
788 struct type *mtype;
789
790 mtype = alloc_type_copy (type);
791 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
792 TYPE_LENGTH (mtype) = 1;
793 TYPE_STUB (mtype) = 1;
794 TYPE_TARGET_TYPE (mtype) = type;
795 /* _DOMAIN_TYPE (mtype) = unknown yet */
796 return mtype;
797 }
798
799 /* Create a range type with a dynamic range from LOW_BOUND to
800 HIGH_BOUND, inclusive. See create_range_type for further details. */
801
802 struct type *
803 create_range_type (struct type *result_type, struct type *index_type,
804 const struct dynamic_prop *low_bound,
805 const struct dynamic_prop *high_bound)
806 {
807 if (result_type == NULL)
808 result_type = alloc_type_copy (index_type);
809 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
810 TYPE_TARGET_TYPE (result_type) = index_type;
811 if (TYPE_STUB (index_type))
812 TYPE_TARGET_STUB (result_type) = 1;
813 else
814 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
815
816 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
817 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
818 TYPE_RANGE_DATA (result_type)->low = *low_bound;
819 TYPE_RANGE_DATA (result_type)->high = *high_bound;
820
821 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
822 TYPE_UNSIGNED (result_type) = 1;
823
824 /* Ada allows the declaration of range types whose upper bound is
825 less than the lower bound, so checking the lower bound is not
826 enough. Make sure we do not mark a range type whose upper bound
827 is negative as unsigned. */
828 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
829 TYPE_UNSIGNED (result_type) = 0;
830
831 return result_type;
832 }
833
834 /* Create a range type using either a blank type supplied in
835 RESULT_TYPE, or creating a new type, inheriting the objfile from
836 INDEX_TYPE.
837
838 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
839 to HIGH_BOUND, inclusive.
840
841 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
842 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
843
844 struct type *
845 create_static_range_type (struct type *result_type, struct type *index_type,
846 LONGEST low_bound, LONGEST high_bound)
847 {
848 struct dynamic_prop low, high;
849
850 low.kind = PROP_CONST;
851 low.data.const_val = low_bound;
852
853 high.kind = PROP_CONST;
854 high.data.const_val = high_bound;
855
856 result_type = create_range_type (result_type, index_type, &low, &high);
857
858 return result_type;
859 }
860
861 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
862 are static, otherwise returns 0. */
863
864 static int
865 has_static_range (const struct range_bounds *bounds)
866 {
867 return (bounds->low.kind == PROP_CONST
868 && bounds->high.kind == PROP_CONST);
869 }
870
871
872 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
873 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
874 bounds will fit in LONGEST), or -1 otherwise. */
875
876 int
877 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
878 {
879 CHECK_TYPEDEF (type);
880 switch (TYPE_CODE (type))
881 {
882 case TYPE_CODE_RANGE:
883 *lowp = TYPE_LOW_BOUND (type);
884 *highp = TYPE_HIGH_BOUND (type);
885 return 1;
886 case TYPE_CODE_ENUM:
887 if (TYPE_NFIELDS (type) > 0)
888 {
889 /* The enums may not be sorted by value, so search all
890 entries. */
891 int i;
892
893 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
894 for (i = 0; i < TYPE_NFIELDS (type); i++)
895 {
896 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
897 *lowp = TYPE_FIELD_ENUMVAL (type, i);
898 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
899 *highp = TYPE_FIELD_ENUMVAL (type, i);
900 }
901
902 /* Set unsigned indicator if warranted. */
903 if (*lowp >= 0)
904 {
905 TYPE_UNSIGNED (type) = 1;
906 }
907 }
908 else
909 {
910 *lowp = 0;
911 *highp = -1;
912 }
913 return 0;
914 case TYPE_CODE_BOOL:
915 *lowp = 0;
916 *highp = 1;
917 return 0;
918 case TYPE_CODE_INT:
919 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
920 return -1;
921 if (!TYPE_UNSIGNED (type))
922 {
923 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
924 *highp = -*lowp - 1;
925 return 0;
926 }
927 /* ... fall through for unsigned ints ... */
928 case TYPE_CODE_CHAR:
929 *lowp = 0;
930 /* This round-about calculation is to avoid shifting by
931 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
932 if TYPE_LENGTH (type) == sizeof (LONGEST). */
933 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
934 *highp = (*highp - 1) | *highp;
935 return 0;
936 default:
937 return -1;
938 }
939 }
940
941 /* Assuming TYPE is a simple, non-empty array type, compute its upper
942 and lower bound. Save the low bound into LOW_BOUND if not NULL.
943 Save the high bound into HIGH_BOUND if not NULL.
944
945 Return 1 if the operation was successful. Return zero otherwise,
946 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
947
948 We now simply use get_discrete_bounds call to get the values
949 of the low and high bounds.
950 get_discrete_bounds can return three values:
951 1, meaning that index is a range,
952 0, meaning that index is a discrete type,
953 or -1 for failure. */
954
955 int
956 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
957 {
958 struct type *index = TYPE_INDEX_TYPE (type);
959 LONGEST low = 0;
960 LONGEST high = 0;
961 int res;
962
963 if (index == NULL)
964 return 0;
965
966 res = get_discrete_bounds (index, &low, &high);
967 if (res == -1)
968 return 0;
969
970 /* Check if the array bounds are undefined. */
971 if (res == 1
972 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
973 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
974 return 0;
975
976 if (low_bound)
977 *low_bound = low;
978
979 if (high_bound)
980 *high_bound = high;
981
982 return 1;
983 }
984
985 /* Create an array type using either a blank type supplied in
986 RESULT_TYPE, or creating a new type, inheriting the objfile from
987 RANGE_TYPE.
988
989 Elements will be of type ELEMENT_TYPE, the indices will be of type
990 RANGE_TYPE.
991
992 If BIT_STRIDE is not zero, build a packed array type whose element
993 size is BIT_STRIDE. Otherwise, ignore this parameter.
994
995 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
996 sure it is TYPE_CODE_UNDEF before we bash it into an array
997 type? */
998
999 struct type *
1000 create_array_type_with_stride (struct type *result_type,
1001 struct type *element_type,
1002 struct type *range_type,
1003 unsigned int bit_stride)
1004 {
1005 if (result_type == NULL)
1006 result_type = alloc_type_copy (range_type);
1007
1008 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1009 TYPE_TARGET_TYPE (result_type) = element_type;
1010 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1011 {
1012 LONGEST low_bound, high_bound;
1013
1014 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1015 low_bound = high_bound = 0;
1016 CHECK_TYPEDEF (element_type);
1017 /* Be careful when setting the array length. Ada arrays can be
1018 empty arrays with the high_bound being smaller than the low_bound.
1019 In such cases, the array length should be zero. */
1020 if (high_bound < low_bound)
1021 TYPE_LENGTH (result_type) = 0;
1022 else if (bit_stride > 0)
1023 TYPE_LENGTH (result_type) =
1024 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1025 else
1026 TYPE_LENGTH (result_type) =
1027 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1028 }
1029 else
1030 {
1031 /* This type is dynamic and its length needs to be computed
1032 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1033 undefined by setting it to zero. Although we are not expected
1034 to trust TYPE_LENGTH in this case, setting the size to zero
1035 allows us to avoid allocating objects of random sizes in case
1036 we accidently do. */
1037 TYPE_LENGTH (result_type) = 0;
1038 }
1039
1040 TYPE_NFIELDS (result_type) = 1;
1041 TYPE_FIELDS (result_type) =
1042 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1043 TYPE_INDEX_TYPE (result_type) = range_type;
1044 TYPE_VPTR_FIELDNO (result_type) = -1;
1045 if (bit_stride > 0)
1046 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1047
1048 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1049 if (TYPE_LENGTH (result_type) == 0)
1050 TYPE_TARGET_STUB (result_type) = 1;
1051
1052 return result_type;
1053 }
1054
1055 /* Same as create_array_type_with_stride but with no bit_stride
1056 (BIT_STRIDE = 0), thus building an unpacked array. */
1057
1058 struct type *
1059 create_array_type (struct type *result_type,
1060 struct type *element_type,
1061 struct type *range_type)
1062 {
1063 return create_array_type_with_stride (result_type, element_type,
1064 range_type, 0);
1065 }
1066
1067 struct type *
1068 lookup_array_range_type (struct type *element_type,
1069 LONGEST low_bound, LONGEST high_bound)
1070 {
1071 struct gdbarch *gdbarch = get_type_arch (element_type);
1072 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1073 struct type *range_type
1074 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1075
1076 return create_array_type (NULL, element_type, range_type);
1077 }
1078
1079 /* Create a string type using either a blank type supplied in
1080 RESULT_TYPE, or creating a new type. String types are similar
1081 enough to array of char types that we can use create_array_type to
1082 build the basic type and then bash it into a string type.
1083
1084 For fixed length strings, the range type contains 0 as the lower
1085 bound and the length of the string minus one as the upper bound.
1086
1087 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1088 sure it is TYPE_CODE_UNDEF before we bash it into a string
1089 type? */
1090
1091 struct type *
1092 create_string_type (struct type *result_type,
1093 struct type *string_char_type,
1094 struct type *range_type)
1095 {
1096 result_type = create_array_type (result_type,
1097 string_char_type,
1098 range_type);
1099 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1100 return result_type;
1101 }
1102
1103 struct type *
1104 lookup_string_range_type (struct type *string_char_type,
1105 LONGEST low_bound, LONGEST high_bound)
1106 {
1107 struct type *result_type;
1108
1109 result_type = lookup_array_range_type (string_char_type,
1110 low_bound, high_bound);
1111 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1112 return result_type;
1113 }
1114
1115 struct type *
1116 create_set_type (struct type *result_type, struct type *domain_type)
1117 {
1118 if (result_type == NULL)
1119 result_type = alloc_type_copy (domain_type);
1120
1121 TYPE_CODE (result_type) = TYPE_CODE_SET;
1122 TYPE_NFIELDS (result_type) = 1;
1123 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1124
1125 if (!TYPE_STUB (domain_type))
1126 {
1127 LONGEST low_bound, high_bound, bit_length;
1128
1129 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1130 low_bound = high_bound = 0;
1131 bit_length = high_bound - low_bound + 1;
1132 TYPE_LENGTH (result_type)
1133 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1134 if (low_bound >= 0)
1135 TYPE_UNSIGNED (result_type) = 1;
1136 }
1137 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1138
1139 return result_type;
1140 }
1141
1142 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1143 and any array types nested inside it. */
1144
1145 void
1146 make_vector_type (struct type *array_type)
1147 {
1148 struct type *inner_array, *elt_type;
1149 int flags;
1150
1151 /* Find the innermost array type, in case the array is
1152 multi-dimensional. */
1153 inner_array = array_type;
1154 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1155 inner_array = TYPE_TARGET_TYPE (inner_array);
1156
1157 elt_type = TYPE_TARGET_TYPE (inner_array);
1158 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1159 {
1160 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1161 elt_type = make_qualified_type (elt_type, flags, NULL);
1162 TYPE_TARGET_TYPE (inner_array) = elt_type;
1163 }
1164
1165 TYPE_VECTOR (array_type) = 1;
1166 }
1167
1168 struct type *
1169 init_vector_type (struct type *elt_type, int n)
1170 {
1171 struct type *array_type;
1172
1173 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1174 make_vector_type (array_type);
1175 return array_type;
1176 }
1177
1178 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1179 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1180 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1181 TYPE doesn't include the offset (that's the value of the MEMBER
1182 itself), but does include the structure type into which it points
1183 (for some reason).
1184
1185 When "smashing" the type, we preserve the objfile that the old type
1186 pointed to, since we aren't changing where the type is actually
1187 allocated. */
1188
1189 void
1190 smash_to_memberptr_type (struct type *type, struct type *domain,
1191 struct type *to_type)
1192 {
1193 smash_type (type);
1194 TYPE_TARGET_TYPE (type) = to_type;
1195 TYPE_DOMAIN_TYPE (type) = domain;
1196 /* Assume that a data member pointer is the same size as a normal
1197 pointer. */
1198 TYPE_LENGTH (type)
1199 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1200 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1201 }
1202
1203 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1204
1205 When "smashing" the type, we preserve the objfile that the old type
1206 pointed to, since we aren't changing where the type is actually
1207 allocated. */
1208
1209 void
1210 smash_to_methodptr_type (struct type *type, struct type *to_type)
1211 {
1212 smash_type (type);
1213 TYPE_TARGET_TYPE (type) = to_type;
1214 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1215 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1216 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1217 }
1218
1219 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1220 METHOD just means `function that gets an extra "this" argument'.
1221
1222 When "smashing" the type, we preserve the objfile that the old type
1223 pointed to, since we aren't changing where the type is actually
1224 allocated. */
1225
1226 void
1227 smash_to_method_type (struct type *type, struct type *domain,
1228 struct type *to_type, struct field *args,
1229 int nargs, int varargs)
1230 {
1231 smash_type (type);
1232 TYPE_TARGET_TYPE (type) = to_type;
1233 TYPE_DOMAIN_TYPE (type) = domain;
1234 TYPE_FIELDS (type) = args;
1235 TYPE_NFIELDS (type) = nargs;
1236 if (varargs)
1237 TYPE_VARARGS (type) = 1;
1238 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1239 TYPE_CODE (type) = TYPE_CODE_METHOD;
1240 }
1241
1242 /* Return a typename for a struct/union/enum type without "struct ",
1243 "union ", or "enum ". If the type has a NULL name, return NULL. */
1244
1245 const char *
1246 type_name_no_tag (const struct type *type)
1247 {
1248 if (TYPE_TAG_NAME (type) != NULL)
1249 return TYPE_TAG_NAME (type);
1250
1251 /* Is there code which expects this to return the name if there is
1252 no tag name? My guess is that this is mainly used for C++ in
1253 cases where the two will always be the same. */
1254 return TYPE_NAME (type);
1255 }
1256
1257 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1258 Since GCC PR debug/47510 DWARF provides associated information to detect the
1259 anonymous class linkage name from its typedef.
1260
1261 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1262 apply it itself. */
1263
1264 const char *
1265 type_name_no_tag_or_error (struct type *type)
1266 {
1267 struct type *saved_type = type;
1268 const char *name;
1269 struct objfile *objfile;
1270
1271 CHECK_TYPEDEF (type);
1272
1273 name = type_name_no_tag (type);
1274 if (name != NULL)
1275 return name;
1276
1277 name = type_name_no_tag (saved_type);
1278 objfile = TYPE_OBJFILE (saved_type);
1279 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1280 name ? name : "<anonymous>",
1281 objfile ? objfile_name (objfile) : "<arch>");
1282 }
1283
1284 /* Lookup a typedef or primitive type named NAME, visible in lexical
1285 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1286 suitably defined. */
1287
1288 struct type *
1289 lookup_typename (const struct language_defn *language,
1290 struct gdbarch *gdbarch, const char *name,
1291 const struct block *block, int noerr)
1292 {
1293 struct symbol *sym;
1294 struct type *type;
1295
1296 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1297 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1298 return SYMBOL_TYPE (sym);
1299
1300 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1301 if (type)
1302 return type;
1303
1304 if (noerr)
1305 return NULL;
1306 error (_("No type named %s."), name);
1307 }
1308
1309 struct type *
1310 lookup_unsigned_typename (const struct language_defn *language,
1311 struct gdbarch *gdbarch, const char *name)
1312 {
1313 char *uns = alloca (strlen (name) + 10);
1314
1315 strcpy (uns, "unsigned ");
1316 strcpy (uns + 9, name);
1317 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1318 }
1319
1320 struct type *
1321 lookup_signed_typename (const struct language_defn *language,
1322 struct gdbarch *gdbarch, const char *name)
1323 {
1324 struct type *t;
1325 char *uns = alloca (strlen (name) + 8);
1326
1327 strcpy (uns, "signed ");
1328 strcpy (uns + 7, name);
1329 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1330 /* If we don't find "signed FOO" just try again with plain "FOO". */
1331 if (t != NULL)
1332 return t;
1333 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1334 }
1335
1336 /* Lookup a structure type named "struct NAME",
1337 visible in lexical block BLOCK. */
1338
1339 struct type *
1340 lookup_struct (const char *name, const struct block *block)
1341 {
1342 struct symbol *sym;
1343
1344 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1345
1346 if (sym == NULL)
1347 {
1348 error (_("No struct type named %s."), name);
1349 }
1350 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1351 {
1352 error (_("This context has class, union or enum %s, not a struct."),
1353 name);
1354 }
1355 return (SYMBOL_TYPE (sym));
1356 }
1357
1358 /* Lookup a union type named "union NAME",
1359 visible in lexical block BLOCK. */
1360
1361 struct type *
1362 lookup_union (const char *name, const struct block *block)
1363 {
1364 struct symbol *sym;
1365 struct type *t;
1366
1367 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1368
1369 if (sym == NULL)
1370 error (_("No union type named %s."), name);
1371
1372 t = SYMBOL_TYPE (sym);
1373
1374 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1375 return t;
1376
1377 /* If we get here, it's not a union. */
1378 error (_("This context has class, struct or enum %s, not a union."),
1379 name);
1380 }
1381
1382 /* Lookup an enum type named "enum NAME",
1383 visible in lexical block BLOCK. */
1384
1385 struct type *
1386 lookup_enum (const char *name, const struct block *block)
1387 {
1388 struct symbol *sym;
1389
1390 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1391 if (sym == NULL)
1392 {
1393 error (_("No enum type named %s."), name);
1394 }
1395 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1396 {
1397 error (_("This context has class, struct or union %s, not an enum."),
1398 name);
1399 }
1400 return (SYMBOL_TYPE (sym));
1401 }
1402
1403 /* Lookup a template type named "template NAME<TYPE>",
1404 visible in lexical block BLOCK. */
1405
1406 struct type *
1407 lookup_template_type (char *name, struct type *type,
1408 const struct block *block)
1409 {
1410 struct symbol *sym;
1411 char *nam = (char *)
1412 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1413
1414 strcpy (nam, name);
1415 strcat (nam, "<");
1416 strcat (nam, TYPE_NAME (type));
1417 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1418
1419 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1420
1421 if (sym == NULL)
1422 {
1423 error (_("No template type named %s."), name);
1424 }
1425 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1426 {
1427 error (_("This context has class, union or enum %s, not a struct."),
1428 name);
1429 }
1430 return (SYMBOL_TYPE (sym));
1431 }
1432
1433 /* Given a type TYPE, lookup the type of the component of type named
1434 NAME.
1435
1436 TYPE can be either a struct or union, or a pointer or reference to
1437 a struct or union. If it is a pointer or reference, its target
1438 type is automatically used. Thus '.' and '->' are interchangable,
1439 as specified for the definitions of the expression element types
1440 STRUCTOP_STRUCT and STRUCTOP_PTR.
1441
1442 If NOERR is nonzero, return zero if NAME is not suitably defined.
1443 If NAME is the name of a baseclass type, return that type. */
1444
1445 struct type *
1446 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1447 {
1448 int i;
1449 char *typename;
1450
1451 for (;;)
1452 {
1453 CHECK_TYPEDEF (type);
1454 if (TYPE_CODE (type) != TYPE_CODE_PTR
1455 && TYPE_CODE (type) != TYPE_CODE_REF)
1456 break;
1457 type = TYPE_TARGET_TYPE (type);
1458 }
1459
1460 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1461 && TYPE_CODE (type) != TYPE_CODE_UNION)
1462 {
1463 typename = type_to_string (type);
1464 make_cleanup (xfree, typename);
1465 error (_("Type %s is not a structure or union type."), typename);
1466 }
1467
1468 #if 0
1469 /* FIXME: This change put in by Michael seems incorrect for the case
1470 where the structure tag name is the same as the member name.
1471 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1472 foo; } bell;" Disabled by fnf. */
1473 {
1474 char *typename;
1475
1476 typename = type_name_no_tag (type);
1477 if (typename != NULL && strcmp (typename, name) == 0)
1478 return type;
1479 }
1480 #endif
1481
1482 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1483 {
1484 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1485
1486 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1487 {
1488 return TYPE_FIELD_TYPE (type, i);
1489 }
1490 else if (!t_field_name || *t_field_name == '\0')
1491 {
1492 struct type *subtype
1493 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1494
1495 if (subtype != NULL)
1496 return subtype;
1497 }
1498 }
1499
1500 /* OK, it's not in this class. Recursively check the baseclasses. */
1501 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1502 {
1503 struct type *t;
1504
1505 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1506 if (t != NULL)
1507 {
1508 return t;
1509 }
1510 }
1511
1512 if (noerr)
1513 {
1514 return NULL;
1515 }
1516
1517 typename = type_to_string (type);
1518 make_cleanup (xfree, typename);
1519 error (_("Type %s has no component named %s."), typename, name);
1520 }
1521
1522 /* Store in *MAX the largest number representable by unsigned integer type
1523 TYPE. */
1524
1525 void
1526 get_unsigned_type_max (struct type *type, ULONGEST *max)
1527 {
1528 unsigned int n;
1529
1530 CHECK_TYPEDEF (type);
1531 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1532 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1533
1534 /* Written this way to avoid overflow. */
1535 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1536 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1537 }
1538
1539 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1540 signed integer type TYPE. */
1541
1542 void
1543 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1544 {
1545 unsigned int n;
1546
1547 CHECK_TYPEDEF (type);
1548 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1549 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1550
1551 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1552 *min = -((ULONGEST) 1 << (n - 1));
1553 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1554 }
1555
1556 /* Lookup the vptr basetype/fieldno values for TYPE.
1557 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1558 vptr_fieldno. Also, if found and basetype is from the same objfile,
1559 cache the results.
1560 If not found, return -1 and ignore BASETYPEP.
1561 Callers should be aware that in some cases (for example,
1562 the type or one of its baseclasses is a stub type and we are
1563 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1564 this function will not be able to find the
1565 virtual function table pointer, and vptr_fieldno will remain -1 and
1566 vptr_basetype will remain NULL or incomplete. */
1567
1568 int
1569 get_vptr_fieldno (struct type *type, struct type **basetypep)
1570 {
1571 CHECK_TYPEDEF (type);
1572
1573 if (TYPE_VPTR_FIELDNO (type) < 0)
1574 {
1575 int i;
1576
1577 /* We must start at zero in case the first (and only) baseclass
1578 is virtual (and hence we cannot share the table pointer). */
1579 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1580 {
1581 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1582 int fieldno;
1583 struct type *basetype;
1584
1585 fieldno = get_vptr_fieldno (baseclass, &basetype);
1586 if (fieldno >= 0)
1587 {
1588 /* If the type comes from a different objfile we can't cache
1589 it, it may have a different lifetime. PR 2384 */
1590 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1591 {
1592 TYPE_VPTR_FIELDNO (type) = fieldno;
1593 TYPE_VPTR_BASETYPE (type) = basetype;
1594 }
1595 if (basetypep)
1596 *basetypep = basetype;
1597 return fieldno;
1598 }
1599 }
1600
1601 /* Not found. */
1602 return -1;
1603 }
1604 else
1605 {
1606 if (basetypep)
1607 *basetypep = TYPE_VPTR_BASETYPE (type);
1608 return TYPE_VPTR_FIELDNO (type);
1609 }
1610 }
1611
1612 static void
1613 stub_noname_complaint (void)
1614 {
1615 complaint (&symfile_complaints, _("stub type has NULL name"));
1616 }
1617
1618 /* Worker for is_dynamic_type. */
1619
1620 static int
1621 is_dynamic_type_internal (struct type *type, int top_level)
1622 {
1623 type = check_typedef (type);
1624
1625 /* We only want to recognize references at the outermost level. */
1626 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1627 type = check_typedef (TYPE_TARGET_TYPE (type));
1628
1629 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1630 dynamic, even if the type itself is statically defined.
1631 From a user's point of view, this may appear counter-intuitive;
1632 but it makes sense in this context, because the point is to determine
1633 whether any part of the type needs to be resolved before it can
1634 be exploited. */
1635 if (TYPE_DATA_LOCATION (type) != NULL
1636 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1637 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1638 return 1;
1639
1640 switch (TYPE_CODE (type))
1641 {
1642 case TYPE_CODE_RANGE:
1643 return !has_static_range (TYPE_RANGE_DATA (type));
1644
1645 case TYPE_CODE_ARRAY:
1646 {
1647 gdb_assert (TYPE_NFIELDS (type) == 1);
1648
1649 /* The array is dynamic if either the bounds are dynamic,
1650 or the elements it contains have a dynamic contents. */
1651 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1652 return 1;
1653 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1654 }
1655
1656 case TYPE_CODE_STRUCT:
1657 case TYPE_CODE_UNION:
1658 {
1659 int i;
1660
1661 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1662 if (!field_is_static (&TYPE_FIELD (type, i))
1663 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1664 return 1;
1665 }
1666 break;
1667 }
1668
1669 return 0;
1670 }
1671
1672 /* See gdbtypes.h. */
1673
1674 int
1675 is_dynamic_type (struct type *type)
1676 {
1677 return is_dynamic_type_internal (type, 1);
1678 }
1679
1680 static struct type *resolve_dynamic_type_internal (struct type *type,
1681 CORE_ADDR addr,
1682 int top_level);
1683
1684 /* Given a dynamic range type (dyn_range_type) and address,
1685 return a static version of that type. */
1686
1687 static struct type *
1688 resolve_dynamic_range (struct type *dyn_range_type, CORE_ADDR addr)
1689 {
1690 CORE_ADDR value;
1691 struct type *static_range_type;
1692 const struct dynamic_prop *prop;
1693 const struct dwarf2_locexpr_baton *baton;
1694 struct dynamic_prop low_bound, high_bound;
1695
1696 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1697
1698 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1699 if (dwarf2_evaluate_property (prop, addr, &value))
1700 {
1701 low_bound.kind = PROP_CONST;
1702 low_bound.data.const_val = value;
1703 }
1704 else
1705 {
1706 low_bound.kind = PROP_UNDEFINED;
1707 low_bound.data.const_val = 0;
1708 }
1709
1710 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1711 if (dwarf2_evaluate_property (prop, addr, &value))
1712 {
1713 high_bound.kind = PROP_CONST;
1714 high_bound.data.const_val = value;
1715
1716 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1717 high_bound.data.const_val
1718 = low_bound.data.const_val + high_bound.data.const_val - 1;
1719 }
1720 else
1721 {
1722 high_bound.kind = PROP_UNDEFINED;
1723 high_bound.data.const_val = 0;
1724 }
1725
1726 static_range_type = create_range_type (copy_type (dyn_range_type),
1727 TYPE_TARGET_TYPE (dyn_range_type),
1728 &low_bound, &high_bound);
1729 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1730 return static_range_type;
1731 }
1732
1733 /* Resolves dynamic bound values of an array type TYPE to static ones.
1734 ADDRESS might be needed to resolve the subrange bounds, it is the location
1735 of the associated array. */
1736
1737 static struct type *
1738 resolve_dynamic_array (struct type *type, CORE_ADDR addr)
1739 {
1740 CORE_ADDR value;
1741 struct type *elt_type;
1742 struct type *range_type;
1743 struct type *ary_dim;
1744
1745 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1746
1747 elt_type = type;
1748 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1749 range_type = resolve_dynamic_range (range_type, addr);
1750
1751 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1752
1753 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1754 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr);
1755 else
1756 elt_type = TYPE_TARGET_TYPE (type);
1757
1758 return create_array_type (copy_type (type),
1759 elt_type,
1760 range_type);
1761 }
1762
1763 /* Resolve dynamic bounds of members of the union TYPE to static
1764 bounds. */
1765
1766 static struct type *
1767 resolve_dynamic_union (struct type *type, CORE_ADDR addr)
1768 {
1769 struct type *resolved_type;
1770 int i;
1771 unsigned int max_len = 0;
1772
1773 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1774
1775 resolved_type = copy_type (type);
1776 TYPE_FIELDS (resolved_type)
1777 = TYPE_ALLOC (resolved_type,
1778 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1779 memcpy (TYPE_FIELDS (resolved_type),
1780 TYPE_FIELDS (type),
1781 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1782 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1783 {
1784 struct type *t;
1785
1786 if (field_is_static (&TYPE_FIELD (type, i)))
1787 continue;
1788
1789 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1790 addr, 0);
1791 TYPE_FIELD_TYPE (resolved_type, i) = t;
1792 if (TYPE_LENGTH (t) > max_len)
1793 max_len = TYPE_LENGTH (t);
1794 }
1795
1796 TYPE_LENGTH (resolved_type) = max_len;
1797 return resolved_type;
1798 }
1799
1800 /* Resolve dynamic bounds of members of the struct TYPE to static
1801 bounds. */
1802
1803 static struct type *
1804 resolve_dynamic_struct (struct type *type, CORE_ADDR addr)
1805 {
1806 struct type *resolved_type;
1807 int i;
1808 unsigned resolved_type_bit_length = 0;
1809
1810 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1811 gdb_assert (TYPE_NFIELDS (type) > 0);
1812
1813 resolved_type = copy_type (type);
1814 TYPE_FIELDS (resolved_type)
1815 = TYPE_ALLOC (resolved_type,
1816 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1817 memcpy (TYPE_FIELDS (resolved_type),
1818 TYPE_FIELDS (type),
1819 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1820 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1821 {
1822 unsigned new_bit_length;
1823
1824 if (field_is_static (&TYPE_FIELD (type, i)))
1825 continue;
1826
1827 TYPE_FIELD_TYPE (resolved_type, i)
1828 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1829 addr, 0);
1830
1831 /* As we know this field is not a static field, the field's
1832 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1833 this is the case, but only trigger a simple error rather
1834 than an internal error if that fails. While failing
1835 that verification indicates a bug in our code, the error
1836 is not severe enough to suggest to the user he stops
1837 his debugging session because of it. */
1838 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
1839 error (_("Cannot determine struct field location"
1840 " (invalid location kind)"));
1841 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1842 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1843 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1844 else
1845 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
1846 * TARGET_CHAR_BIT);
1847
1848 /* Normally, we would use the position and size of the last field
1849 to determine the size of the enclosing structure. But GCC seems
1850 to be encoding the position of some fields incorrectly when
1851 the struct contains a dynamic field that is not placed last.
1852 So we compute the struct size based on the field that has
1853 the highest position + size - probably the best we can do. */
1854 if (new_bit_length > resolved_type_bit_length)
1855 resolved_type_bit_length = new_bit_length;
1856 }
1857
1858 TYPE_LENGTH (resolved_type)
1859 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1860
1861 return resolved_type;
1862 }
1863
1864 /* Worker for resolved_dynamic_type. */
1865
1866 static struct type *
1867 resolve_dynamic_type_internal (struct type *type, CORE_ADDR addr,
1868 int top_level)
1869 {
1870 struct type *real_type = check_typedef (type);
1871 struct type *resolved_type = type;
1872 const struct dynamic_prop *prop;
1873 CORE_ADDR value;
1874
1875 if (!is_dynamic_type_internal (real_type, top_level))
1876 return type;
1877
1878 switch (TYPE_CODE (type))
1879 {
1880 case TYPE_CODE_TYPEDEF:
1881 resolved_type = copy_type (type);
1882 TYPE_TARGET_TYPE (resolved_type)
1883 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr,
1884 top_level);
1885 break;
1886
1887 case TYPE_CODE_REF:
1888 {
1889 CORE_ADDR target_addr = read_memory_typed_address (addr, type);
1890
1891 resolved_type = copy_type (type);
1892 TYPE_TARGET_TYPE (resolved_type)
1893 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
1894 target_addr, top_level);
1895 break;
1896 }
1897
1898 case TYPE_CODE_ARRAY:
1899 resolved_type = resolve_dynamic_array (type, addr);
1900 break;
1901
1902 case TYPE_CODE_RANGE:
1903 resolved_type = resolve_dynamic_range (type, addr);
1904 break;
1905
1906 case TYPE_CODE_UNION:
1907 resolved_type = resolve_dynamic_union (type, addr);
1908 break;
1909
1910 case TYPE_CODE_STRUCT:
1911 resolved_type = resolve_dynamic_struct (type, addr);
1912 break;
1913 }
1914
1915 /* Resolve data_location attribute. */
1916 prop = TYPE_DATA_LOCATION (resolved_type);
1917 if (dwarf2_evaluate_property (prop, addr, &value))
1918 {
1919 TYPE_DATA_LOCATION_ADDR (resolved_type) = value;
1920 TYPE_DATA_LOCATION_KIND (resolved_type) = PROP_CONST;
1921 }
1922 else
1923 TYPE_DATA_LOCATION (resolved_type) = NULL;
1924
1925 return resolved_type;
1926 }
1927
1928 /* See gdbtypes.h */
1929
1930 struct type *
1931 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1932 {
1933 return resolve_dynamic_type_internal (type, addr, 1);
1934 }
1935
1936 /* Find the real type of TYPE. This function returns the real type,
1937 after removing all layers of typedefs, and completing opaque or stub
1938 types. Completion changes the TYPE argument, but stripping of
1939 typedefs does not.
1940
1941 Instance flags (e.g. const/volatile) are preserved as typedefs are
1942 stripped. If necessary a new qualified form of the underlying type
1943 is created.
1944
1945 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1946 not been computed and we're either in the middle of reading symbols, or
1947 there was no name for the typedef in the debug info.
1948
1949 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1950 QUITs in the symbol reading code can also throw.
1951 Thus this function can throw an exception.
1952
1953 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1954 the target type.
1955
1956 If this is a stubbed struct (i.e. declared as struct foo *), see if
1957 we can find a full definition in some other file. If so, copy this
1958 definition, so we can use it in future. There used to be a comment
1959 (but not any code) that if we don't find a full definition, we'd
1960 set a flag so we don't spend time in the future checking the same
1961 type. That would be a mistake, though--we might load in more
1962 symbols which contain a full definition for the type. */
1963
1964 struct type *
1965 check_typedef (struct type *type)
1966 {
1967 struct type *orig_type = type;
1968 /* While we're removing typedefs, we don't want to lose qualifiers.
1969 E.g., const/volatile. */
1970 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1971
1972 gdb_assert (type);
1973
1974 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1975 {
1976 if (!TYPE_TARGET_TYPE (type))
1977 {
1978 const char *name;
1979 struct symbol *sym;
1980
1981 /* It is dangerous to call lookup_symbol if we are currently
1982 reading a symtab. Infinite recursion is one danger. */
1983 if (currently_reading_symtab)
1984 return make_qualified_type (type, instance_flags, NULL);
1985
1986 name = type_name_no_tag (type);
1987 /* FIXME: shouldn't we separately check the TYPE_NAME and
1988 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1989 VAR_DOMAIN as appropriate? (this code was written before
1990 TYPE_NAME and TYPE_TAG_NAME were separate). */
1991 if (name == NULL)
1992 {
1993 stub_noname_complaint ();
1994 return make_qualified_type (type, instance_flags, NULL);
1995 }
1996 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1997 if (sym)
1998 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1999 else /* TYPE_CODE_UNDEF */
2000 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2001 }
2002 type = TYPE_TARGET_TYPE (type);
2003
2004 /* Preserve the instance flags as we traverse down the typedef chain.
2005
2006 Handling address spaces/classes is nasty, what do we do if there's a
2007 conflict?
2008 E.g., what if an outer typedef marks the type as class_1 and an inner
2009 typedef marks the type as class_2?
2010 This is the wrong place to do such error checking. We leave it to
2011 the code that created the typedef in the first place to flag the
2012 error. We just pick the outer address space (akin to letting the
2013 outer cast in a chain of casting win), instead of assuming
2014 "it can't happen". */
2015 {
2016 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2017 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2018 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2019 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2020
2021 /* Treat code vs data spaces and address classes separately. */
2022 if ((instance_flags & ALL_SPACES) != 0)
2023 new_instance_flags &= ~ALL_SPACES;
2024 if ((instance_flags & ALL_CLASSES) != 0)
2025 new_instance_flags &= ~ALL_CLASSES;
2026
2027 instance_flags |= new_instance_flags;
2028 }
2029 }
2030
2031 /* If this is a struct/class/union with no fields, then check
2032 whether a full definition exists somewhere else. This is for
2033 systems where a type definition with no fields is issued for such
2034 types, instead of identifying them as stub types in the first
2035 place. */
2036
2037 if (TYPE_IS_OPAQUE (type)
2038 && opaque_type_resolution
2039 && !currently_reading_symtab)
2040 {
2041 const char *name = type_name_no_tag (type);
2042 struct type *newtype;
2043
2044 if (name == NULL)
2045 {
2046 stub_noname_complaint ();
2047 return make_qualified_type (type, instance_flags, NULL);
2048 }
2049 newtype = lookup_transparent_type (name);
2050
2051 if (newtype)
2052 {
2053 /* If the resolved type and the stub are in the same
2054 objfile, then replace the stub type with the real deal.
2055 But if they're in separate objfiles, leave the stub
2056 alone; we'll just look up the transparent type every time
2057 we call check_typedef. We can't create pointers between
2058 types allocated to different objfiles, since they may
2059 have different lifetimes. Trying to copy NEWTYPE over to
2060 TYPE's objfile is pointless, too, since you'll have to
2061 move over any other types NEWTYPE refers to, which could
2062 be an unbounded amount of stuff. */
2063 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2064 type = make_qualified_type (newtype,
2065 TYPE_INSTANCE_FLAGS (type),
2066 type);
2067 else
2068 type = newtype;
2069 }
2070 }
2071 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2072 types. */
2073 else if (TYPE_STUB (type) && !currently_reading_symtab)
2074 {
2075 const char *name = type_name_no_tag (type);
2076 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2077 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2078 as appropriate? (this code was written before TYPE_NAME and
2079 TYPE_TAG_NAME were separate). */
2080 struct symbol *sym;
2081
2082 if (name == NULL)
2083 {
2084 stub_noname_complaint ();
2085 return make_qualified_type (type, instance_flags, NULL);
2086 }
2087 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2088 if (sym)
2089 {
2090 /* Same as above for opaque types, we can replace the stub
2091 with the complete type only if they are in the same
2092 objfile. */
2093 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2094 type = make_qualified_type (SYMBOL_TYPE (sym),
2095 TYPE_INSTANCE_FLAGS (type),
2096 type);
2097 else
2098 type = SYMBOL_TYPE (sym);
2099 }
2100 }
2101
2102 if (TYPE_TARGET_STUB (type))
2103 {
2104 struct type *range_type;
2105 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2106
2107 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2108 {
2109 /* Nothing we can do. */
2110 }
2111 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2112 {
2113 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2114 TYPE_TARGET_STUB (type) = 0;
2115 }
2116 }
2117
2118 type = make_qualified_type (type, instance_flags, NULL);
2119
2120 /* Cache TYPE_LENGTH for future use. */
2121 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2122
2123 return type;
2124 }
2125
2126 /* Parse a type expression in the string [P..P+LENGTH). If an error
2127 occurs, silently return a void type. */
2128
2129 static struct type *
2130 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2131 {
2132 struct ui_file *saved_gdb_stderr;
2133 struct type *type = NULL; /* Initialize to keep gcc happy. */
2134 volatile struct gdb_exception except;
2135
2136 /* Suppress error messages. */
2137 saved_gdb_stderr = gdb_stderr;
2138 gdb_stderr = ui_file_new ();
2139
2140 /* Call parse_and_eval_type() without fear of longjmp()s. */
2141 TRY_CATCH (except, RETURN_MASK_ERROR)
2142 {
2143 type = parse_and_eval_type (p, length);
2144 }
2145
2146 if (except.reason < 0)
2147 type = builtin_type (gdbarch)->builtin_void;
2148
2149 /* Stop suppressing error messages. */
2150 ui_file_delete (gdb_stderr);
2151 gdb_stderr = saved_gdb_stderr;
2152
2153 return type;
2154 }
2155
2156 /* Ugly hack to convert method stubs into method types.
2157
2158 He ain't kiddin'. This demangles the name of the method into a
2159 string including argument types, parses out each argument type,
2160 generates a string casting a zero to that type, evaluates the
2161 string, and stuffs the resulting type into an argtype vector!!!
2162 Then it knows the type of the whole function (including argument
2163 types for overloading), which info used to be in the stab's but was
2164 removed to hack back the space required for them. */
2165
2166 static void
2167 check_stub_method (struct type *type, int method_id, int signature_id)
2168 {
2169 struct gdbarch *gdbarch = get_type_arch (type);
2170 struct fn_field *f;
2171 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2172 char *demangled_name = gdb_demangle (mangled_name,
2173 DMGL_PARAMS | DMGL_ANSI);
2174 char *argtypetext, *p;
2175 int depth = 0, argcount = 1;
2176 struct field *argtypes;
2177 struct type *mtype;
2178
2179 /* Make sure we got back a function string that we can use. */
2180 if (demangled_name)
2181 p = strchr (demangled_name, '(');
2182 else
2183 p = NULL;
2184
2185 if (demangled_name == NULL || p == NULL)
2186 error (_("Internal: Cannot demangle mangled name `%s'."),
2187 mangled_name);
2188
2189 /* Now, read in the parameters that define this type. */
2190 p += 1;
2191 argtypetext = p;
2192 while (*p)
2193 {
2194 if (*p == '(' || *p == '<')
2195 {
2196 depth += 1;
2197 }
2198 else if (*p == ')' || *p == '>')
2199 {
2200 depth -= 1;
2201 }
2202 else if (*p == ',' && depth == 0)
2203 {
2204 argcount += 1;
2205 }
2206
2207 p += 1;
2208 }
2209
2210 /* If we read one argument and it was ``void'', don't count it. */
2211 if (strncmp (argtypetext, "(void)", 6) == 0)
2212 argcount -= 1;
2213
2214 /* We need one extra slot, for the THIS pointer. */
2215
2216 argtypes = (struct field *)
2217 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2218 p = argtypetext;
2219
2220 /* Add THIS pointer for non-static methods. */
2221 f = TYPE_FN_FIELDLIST1 (type, method_id);
2222 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2223 argcount = 0;
2224 else
2225 {
2226 argtypes[0].type = lookup_pointer_type (type);
2227 argcount = 1;
2228 }
2229
2230 if (*p != ')') /* () means no args, skip while. */
2231 {
2232 depth = 0;
2233 while (*p)
2234 {
2235 if (depth <= 0 && (*p == ',' || *p == ')'))
2236 {
2237 /* Avoid parsing of ellipsis, they will be handled below.
2238 Also avoid ``void'' as above. */
2239 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2240 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2241 {
2242 argtypes[argcount].type =
2243 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2244 argcount += 1;
2245 }
2246 argtypetext = p + 1;
2247 }
2248
2249 if (*p == '(' || *p == '<')
2250 {
2251 depth += 1;
2252 }
2253 else if (*p == ')' || *p == '>')
2254 {
2255 depth -= 1;
2256 }
2257
2258 p += 1;
2259 }
2260 }
2261
2262 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2263
2264 /* Now update the old "stub" type into a real type. */
2265 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2266 TYPE_DOMAIN_TYPE (mtype) = type;
2267 TYPE_FIELDS (mtype) = argtypes;
2268 TYPE_NFIELDS (mtype) = argcount;
2269 TYPE_STUB (mtype) = 0;
2270 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2271 if (p[-2] == '.')
2272 TYPE_VARARGS (mtype) = 1;
2273
2274 xfree (demangled_name);
2275 }
2276
2277 /* This is the external interface to check_stub_method, above. This
2278 function unstubs all of the signatures for TYPE's METHOD_ID method
2279 name. After calling this function TYPE_FN_FIELD_STUB will be
2280 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2281 correct.
2282
2283 This function unfortunately can not die until stabs do. */
2284
2285 void
2286 check_stub_method_group (struct type *type, int method_id)
2287 {
2288 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2289 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2290 int j, found_stub = 0;
2291
2292 for (j = 0; j < len; j++)
2293 if (TYPE_FN_FIELD_STUB (f, j))
2294 {
2295 found_stub = 1;
2296 check_stub_method (type, method_id, j);
2297 }
2298
2299 /* GNU v3 methods with incorrect names were corrected when we read
2300 in type information, because it was cheaper to do it then. The
2301 only GNU v2 methods with incorrect method names are operators and
2302 destructors; destructors were also corrected when we read in type
2303 information.
2304
2305 Therefore the only thing we need to handle here are v2 operator
2306 names. */
2307 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2308 {
2309 int ret;
2310 char dem_opname[256];
2311
2312 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2313 method_id),
2314 dem_opname, DMGL_ANSI);
2315 if (!ret)
2316 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2317 method_id),
2318 dem_opname, 0);
2319 if (ret)
2320 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2321 }
2322 }
2323
2324 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2325 const struct cplus_struct_type cplus_struct_default = { };
2326
2327 void
2328 allocate_cplus_struct_type (struct type *type)
2329 {
2330 if (HAVE_CPLUS_STRUCT (type))
2331 /* Structure was already allocated. Nothing more to do. */
2332 return;
2333
2334 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2335 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2336 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2337 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2338 }
2339
2340 const struct gnat_aux_type gnat_aux_default =
2341 { NULL };
2342
2343 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2344 and allocate the associated gnat-specific data. The gnat-specific
2345 data is also initialized to gnat_aux_default. */
2346
2347 void
2348 allocate_gnat_aux_type (struct type *type)
2349 {
2350 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2351 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2352 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2353 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2354 }
2355
2356 /* Helper function to initialize the standard scalar types.
2357
2358 If NAME is non-NULL, then it is used to initialize the type name.
2359 Note that NAME is not copied; it is required to have a lifetime at
2360 least as long as OBJFILE. */
2361
2362 struct type *
2363 init_type (enum type_code code, int length, int flags,
2364 const char *name, struct objfile *objfile)
2365 {
2366 struct type *type;
2367
2368 type = alloc_type (objfile);
2369 TYPE_CODE (type) = code;
2370 TYPE_LENGTH (type) = length;
2371
2372 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2373 if (flags & TYPE_FLAG_UNSIGNED)
2374 TYPE_UNSIGNED (type) = 1;
2375 if (flags & TYPE_FLAG_NOSIGN)
2376 TYPE_NOSIGN (type) = 1;
2377 if (flags & TYPE_FLAG_STUB)
2378 TYPE_STUB (type) = 1;
2379 if (flags & TYPE_FLAG_TARGET_STUB)
2380 TYPE_TARGET_STUB (type) = 1;
2381 if (flags & TYPE_FLAG_STATIC)
2382 TYPE_STATIC (type) = 1;
2383 if (flags & TYPE_FLAG_PROTOTYPED)
2384 TYPE_PROTOTYPED (type) = 1;
2385 if (flags & TYPE_FLAG_INCOMPLETE)
2386 TYPE_INCOMPLETE (type) = 1;
2387 if (flags & TYPE_FLAG_VARARGS)
2388 TYPE_VARARGS (type) = 1;
2389 if (flags & TYPE_FLAG_VECTOR)
2390 TYPE_VECTOR (type) = 1;
2391 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2392 TYPE_STUB_SUPPORTED (type) = 1;
2393 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2394 TYPE_FIXED_INSTANCE (type) = 1;
2395 if (flags & TYPE_FLAG_GNU_IFUNC)
2396 TYPE_GNU_IFUNC (type) = 1;
2397
2398 TYPE_NAME (type) = name;
2399
2400 /* C++ fancies. */
2401
2402 if (name && strcmp (name, "char") == 0)
2403 TYPE_NOSIGN (type) = 1;
2404
2405 switch (code)
2406 {
2407 case TYPE_CODE_STRUCT:
2408 case TYPE_CODE_UNION:
2409 case TYPE_CODE_NAMESPACE:
2410 INIT_CPLUS_SPECIFIC (type);
2411 break;
2412 case TYPE_CODE_FLT:
2413 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2414 break;
2415 case TYPE_CODE_FUNC:
2416 INIT_FUNC_SPECIFIC (type);
2417 break;
2418 }
2419 return type;
2420 }
2421 \f
2422 /* Queries on types. */
2423
2424 int
2425 can_dereference (struct type *t)
2426 {
2427 /* FIXME: Should we return true for references as well as
2428 pointers? */
2429 CHECK_TYPEDEF (t);
2430 return
2431 (t != NULL
2432 && TYPE_CODE (t) == TYPE_CODE_PTR
2433 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2434 }
2435
2436 int
2437 is_integral_type (struct type *t)
2438 {
2439 CHECK_TYPEDEF (t);
2440 return
2441 ((t != NULL)
2442 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2443 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2444 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2445 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2446 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2447 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2448 }
2449
2450 /* Return true if TYPE is scalar. */
2451
2452 static int
2453 is_scalar_type (struct type *type)
2454 {
2455 CHECK_TYPEDEF (type);
2456
2457 switch (TYPE_CODE (type))
2458 {
2459 case TYPE_CODE_ARRAY:
2460 case TYPE_CODE_STRUCT:
2461 case TYPE_CODE_UNION:
2462 case TYPE_CODE_SET:
2463 case TYPE_CODE_STRING:
2464 return 0;
2465 default:
2466 return 1;
2467 }
2468 }
2469
2470 /* Return true if T is scalar, or a composite type which in practice has
2471 the memory layout of a scalar type. E.g., an array or struct with only
2472 one scalar element inside it, or a union with only scalar elements. */
2473
2474 int
2475 is_scalar_type_recursive (struct type *t)
2476 {
2477 CHECK_TYPEDEF (t);
2478
2479 if (is_scalar_type (t))
2480 return 1;
2481 /* Are we dealing with an array or string of known dimensions? */
2482 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2483 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2484 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2485 {
2486 LONGEST low_bound, high_bound;
2487 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2488
2489 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2490
2491 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2492 }
2493 /* Are we dealing with a struct with one element? */
2494 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2495 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2496 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2497 {
2498 int i, n = TYPE_NFIELDS (t);
2499
2500 /* If all elements of the union are scalar, then the union is scalar. */
2501 for (i = 0; i < n; i++)
2502 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2503 return 0;
2504
2505 return 1;
2506 }
2507
2508 return 0;
2509 }
2510
2511 /* Return true is T is a class or a union. False otherwise. */
2512
2513 int
2514 class_or_union_p (const struct type *t)
2515 {
2516 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2517 || TYPE_CODE (t) == TYPE_CODE_UNION);
2518 }
2519
2520 /* A helper function which returns true if types A and B represent the
2521 "same" class type. This is true if the types have the same main
2522 type, or the same name. */
2523
2524 int
2525 class_types_same_p (const struct type *a, const struct type *b)
2526 {
2527 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2528 || (TYPE_NAME (a) && TYPE_NAME (b)
2529 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2530 }
2531
2532 /* If BASE is an ancestor of DCLASS return the distance between them.
2533 otherwise return -1;
2534 eg:
2535
2536 class A {};
2537 class B: public A {};
2538 class C: public B {};
2539 class D: C {};
2540
2541 distance_to_ancestor (A, A, 0) = 0
2542 distance_to_ancestor (A, B, 0) = 1
2543 distance_to_ancestor (A, C, 0) = 2
2544 distance_to_ancestor (A, D, 0) = 3
2545
2546 If PUBLIC is 1 then only public ancestors are considered,
2547 and the function returns the distance only if BASE is a public ancestor
2548 of DCLASS.
2549 Eg:
2550
2551 distance_to_ancestor (A, D, 1) = -1. */
2552
2553 static int
2554 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2555 {
2556 int i;
2557 int d;
2558
2559 CHECK_TYPEDEF (base);
2560 CHECK_TYPEDEF (dclass);
2561
2562 if (class_types_same_p (base, dclass))
2563 return 0;
2564
2565 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2566 {
2567 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2568 continue;
2569
2570 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2571 if (d >= 0)
2572 return 1 + d;
2573 }
2574
2575 return -1;
2576 }
2577
2578 /* Check whether BASE is an ancestor or base class or DCLASS
2579 Return 1 if so, and 0 if not.
2580 Note: If BASE and DCLASS are of the same type, this function
2581 will return 1. So for some class A, is_ancestor (A, A) will
2582 return 1. */
2583
2584 int
2585 is_ancestor (struct type *base, struct type *dclass)
2586 {
2587 return distance_to_ancestor (base, dclass, 0) >= 0;
2588 }
2589
2590 /* Like is_ancestor, but only returns true when BASE is a public
2591 ancestor of DCLASS. */
2592
2593 int
2594 is_public_ancestor (struct type *base, struct type *dclass)
2595 {
2596 return distance_to_ancestor (base, dclass, 1) >= 0;
2597 }
2598
2599 /* A helper function for is_unique_ancestor. */
2600
2601 static int
2602 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2603 int *offset,
2604 const gdb_byte *valaddr, int embedded_offset,
2605 CORE_ADDR address, struct value *val)
2606 {
2607 int i, count = 0;
2608
2609 CHECK_TYPEDEF (base);
2610 CHECK_TYPEDEF (dclass);
2611
2612 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2613 {
2614 struct type *iter;
2615 int this_offset;
2616
2617 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2618
2619 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2620 address, val);
2621
2622 if (class_types_same_p (base, iter))
2623 {
2624 /* If this is the first subclass, set *OFFSET and set count
2625 to 1. Otherwise, if this is at the same offset as
2626 previous instances, do nothing. Otherwise, increment
2627 count. */
2628 if (*offset == -1)
2629 {
2630 *offset = this_offset;
2631 count = 1;
2632 }
2633 else if (this_offset == *offset)
2634 {
2635 /* Nothing. */
2636 }
2637 else
2638 ++count;
2639 }
2640 else
2641 count += is_unique_ancestor_worker (base, iter, offset,
2642 valaddr,
2643 embedded_offset + this_offset,
2644 address, val);
2645 }
2646
2647 return count;
2648 }
2649
2650 /* Like is_ancestor, but only returns true if BASE is a unique base
2651 class of the type of VAL. */
2652
2653 int
2654 is_unique_ancestor (struct type *base, struct value *val)
2655 {
2656 int offset = -1;
2657
2658 return is_unique_ancestor_worker (base, value_type (val), &offset,
2659 value_contents_for_printing (val),
2660 value_embedded_offset (val),
2661 value_address (val), val) == 1;
2662 }
2663
2664 \f
2665 /* Overload resolution. */
2666
2667 /* Return the sum of the rank of A with the rank of B. */
2668
2669 struct rank
2670 sum_ranks (struct rank a, struct rank b)
2671 {
2672 struct rank c;
2673 c.rank = a.rank + b.rank;
2674 c.subrank = a.subrank + b.subrank;
2675 return c;
2676 }
2677
2678 /* Compare rank A and B and return:
2679 0 if a = b
2680 1 if a is better than b
2681 -1 if b is better than a. */
2682
2683 int
2684 compare_ranks (struct rank a, struct rank b)
2685 {
2686 if (a.rank == b.rank)
2687 {
2688 if (a.subrank == b.subrank)
2689 return 0;
2690 if (a.subrank < b.subrank)
2691 return 1;
2692 if (a.subrank > b.subrank)
2693 return -1;
2694 }
2695
2696 if (a.rank < b.rank)
2697 return 1;
2698
2699 /* a.rank > b.rank */
2700 return -1;
2701 }
2702
2703 /* Functions for overload resolution begin here. */
2704
2705 /* Compare two badness vectors A and B and return the result.
2706 0 => A and B are identical
2707 1 => A and B are incomparable
2708 2 => A is better than B
2709 3 => A is worse than B */
2710
2711 int
2712 compare_badness (struct badness_vector *a, struct badness_vector *b)
2713 {
2714 int i;
2715 int tmp;
2716 short found_pos = 0; /* any positives in c? */
2717 short found_neg = 0; /* any negatives in c? */
2718
2719 /* differing lengths => incomparable */
2720 if (a->length != b->length)
2721 return 1;
2722
2723 /* Subtract b from a */
2724 for (i = 0; i < a->length; i++)
2725 {
2726 tmp = compare_ranks (b->rank[i], a->rank[i]);
2727 if (tmp > 0)
2728 found_pos = 1;
2729 else if (tmp < 0)
2730 found_neg = 1;
2731 }
2732
2733 if (found_pos)
2734 {
2735 if (found_neg)
2736 return 1; /* incomparable */
2737 else
2738 return 3; /* A > B */
2739 }
2740 else
2741 /* no positives */
2742 {
2743 if (found_neg)
2744 return 2; /* A < B */
2745 else
2746 return 0; /* A == B */
2747 }
2748 }
2749
2750 /* Rank a function by comparing its parameter types (PARMS, length
2751 NPARMS), to the types of an argument list (ARGS, length NARGS).
2752 Return a pointer to a badness vector. This has NARGS + 1
2753 entries. */
2754
2755 struct badness_vector *
2756 rank_function (struct type **parms, int nparms,
2757 struct value **args, int nargs)
2758 {
2759 int i;
2760 struct badness_vector *bv;
2761 int min_len = nparms < nargs ? nparms : nargs;
2762
2763 bv = xmalloc (sizeof (struct badness_vector));
2764 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2765 bv->rank = XNEWVEC (struct rank, nargs + 1);
2766
2767 /* First compare the lengths of the supplied lists.
2768 If there is a mismatch, set it to a high value. */
2769
2770 /* pai/1997-06-03 FIXME: when we have debug info about default
2771 arguments and ellipsis parameter lists, we should consider those
2772 and rank the length-match more finely. */
2773
2774 LENGTH_MATCH (bv) = (nargs != nparms)
2775 ? LENGTH_MISMATCH_BADNESS
2776 : EXACT_MATCH_BADNESS;
2777
2778 /* Now rank all the parameters of the candidate function. */
2779 for (i = 1; i <= min_len; i++)
2780 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2781 args[i - 1]);
2782
2783 /* If more arguments than parameters, add dummy entries. */
2784 for (i = min_len + 1; i <= nargs; i++)
2785 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2786
2787 return bv;
2788 }
2789
2790 /* Compare the names of two integer types, assuming that any sign
2791 qualifiers have been checked already. We do it this way because
2792 there may be an "int" in the name of one of the types. */
2793
2794 static int
2795 integer_types_same_name_p (const char *first, const char *second)
2796 {
2797 int first_p, second_p;
2798
2799 /* If both are shorts, return 1; if neither is a short, keep
2800 checking. */
2801 first_p = (strstr (first, "short") != NULL);
2802 second_p = (strstr (second, "short") != NULL);
2803 if (first_p && second_p)
2804 return 1;
2805 if (first_p || second_p)
2806 return 0;
2807
2808 /* Likewise for long. */
2809 first_p = (strstr (first, "long") != NULL);
2810 second_p = (strstr (second, "long") != NULL);
2811 if (first_p && second_p)
2812 return 1;
2813 if (first_p || second_p)
2814 return 0;
2815
2816 /* Likewise for char. */
2817 first_p = (strstr (first, "char") != NULL);
2818 second_p = (strstr (second, "char") != NULL);
2819 if (first_p && second_p)
2820 return 1;
2821 if (first_p || second_p)
2822 return 0;
2823
2824 /* They must both be ints. */
2825 return 1;
2826 }
2827
2828 /* Compares type A to type B returns 1 if the represent the same type
2829 0 otherwise. */
2830
2831 int
2832 types_equal (struct type *a, struct type *b)
2833 {
2834 /* Identical type pointers. */
2835 /* However, this still doesn't catch all cases of same type for b
2836 and a. The reason is that builtin types are different from
2837 the same ones constructed from the object. */
2838 if (a == b)
2839 return 1;
2840
2841 /* Resolve typedefs */
2842 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2843 a = check_typedef (a);
2844 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2845 b = check_typedef (b);
2846
2847 /* If after resolving typedefs a and b are not of the same type
2848 code then they are not equal. */
2849 if (TYPE_CODE (a) != TYPE_CODE (b))
2850 return 0;
2851
2852 /* If a and b are both pointers types or both reference types then
2853 they are equal of the same type iff the objects they refer to are
2854 of the same type. */
2855 if (TYPE_CODE (a) == TYPE_CODE_PTR
2856 || TYPE_CODE (a) == TYPE_CODE_REF)
2857 return types_equal (TYPE_TARGET_TYPE (a),
2858 TYPE_TARGET_TYPE (b));
2859
2860 /* Well, damnit, if the names are exactly the same, I'll say they
2861 are exactly the same. This happens when we generate method
2862 stubs. The types won't point to the same address, but they
2863 really are the same. */
2864
2865 if (TYPE_NAME (a) && TYPE_NAME (b)
2866 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2867 return 1;
2868
2869 /* Check if identical after resolving typedefs. */
2870 if (a == b)
2871 return 1;
2872
2873 /* Two function types are equal if their argument and return types
2874 are equal. */
2875 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2876 {
2877 int i;
2878
2879 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2880 return 0;
2881
2882 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2883 return 0;
2884
2885 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2886 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2887 return 0;
2888
2889 return 1;
2890 }
2891
2892 return 0;
2893 }
2894 \f
2895 /* Deep comparison of types. */
2896
2897 /* An entry in the type-equality bcache. */
2898
2899 typedef struct type_equality_entry
2900 {
2901 struct type *type1, *type2;
2902 } type_equality_entry_d;
2903
2904 DEF_VEC_O (type_equality_entry_d);
2905
2906 /* A helper function to compare two strings. Returns 1 if they are
2907 the same, 0 otherwise. Handles NULLs properly. */
2908
2909 static int
2910 compare_maybe_null_strings (const char *s, const char *t)
2911 {
2912 if (s == NULL && t != NULL)
2913 return 0;
2914 else if (s != NULL && t == NULL)
2915 return 0;
2916 else if (s == NULL && t== NULL)
2917 return 1;
2918 return strcmp (s, t) == 0;
2919 }
2920
2921 /* A helper function for check_types_worklist that checks two types for
2922 "deep" equality. Returns non-zero if the types are considered the
2923 same, zero otherwise. */
2924
2925 static int
2926 check_types_equal (struct type *type1, struct type *type2,
2927 VEC (type_equality_entry_d) **worklist)
2928 {
2929 CHECK_TYPEDEF (type1);
2930 CHECK_TYPEDEF (type2);
2931
2932 if (type1 == type2)
2933 return 1;
2934
2935 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2936 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2937 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2938 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2939 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2940 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2941 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2942 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2943 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2944 return 0;
2945
2946 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2947 TYPE_TAG_NAME (type2)))
2948 return 0;
2949 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2950 return 0;
2951
2952 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2953 {
2954 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2955 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2956 return 0;
2957 }
2958 else
2959 {
2960 int i;
2961
2962 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2963 {
2964 const struct field *field1 = &TYPE_FIELD (type1, i);
2965 const struct field *field2 = &TYPE_FIELD (type2, i);
2966 struct type_equality_entry entry;
2967
2968 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2969 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2970 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2971 return 0;
2972 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2973 FIELD_NAME (*field2)))
2974 return 0;
2975 switch (FIELD_LOC_KIND (*field1))
2976 {
2977 case FIELD_LOC_KIND_BITPOS:
2978 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2979 return 0;
2980 break;
2981 case FIELD_LOC_KIND_ENUMVAL:
2982 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2983 return 0;
2984 break;
2985 case FIELD_LOC_KIND_PHYSADDR:
2986 if (FIELD_STATIC_PHYSADDR (*field1)
2987 != FIELD_STATIC_PHYSADDR (*field2))
2988 return 0;
2989 break;
2990 case FIELD_LOC_KIND_PHYSNAME:
2991 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2992 FIELD_STATIC_PHYSNAME (*field2)))
2993 return 0;
2994 break;
2995 case FIELD_LOC_KIND_DWARF_BLOCK:
2996 {
2997 struct dwarf2_locexpr_baton *block1, *block2;
2998
2999 block1 = FIELD_DWARF_BLOCK (*field1);
3000 block2 = FIELD_DWARF_BLOCK (*field2);
3001 if (block1->per_cu != block2->per_cu
3002 || block1->size != block2->size
3003 || memcmp (block1->data, block2->data, block1->size) != 0)
3004 return 0;
3005 }
3006 break;
3007 default:
3008 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3009 "%d by check_types_equal"),
3010 FIELD_LOC_KIND (*field1));
3011 }
3012
3013 entry.type1 = FIELD_TYPE (*field1);
3014 entry.type2 = FIELD_TYPE (*field2);
3015 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3016 }
3017 }
3018
3019 if (TYPE_TARGET_TYPE (type1) != NULL)
3020 {
3021 struct type_equality_entry entry;
3022
3023 if (TYPE_TARGET_TYPE (type2) == NULL)
3024 return 0;
3025
3026 entry.type1 = TYPE_TARGET_TYPE (type1);
3027 entry.type2 = TYPE_TARGET_TYPE (type2);
3028 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3029 }
3030 else if (TYPE_TARGET_TYPE (type2) != NULL)
3031 return 0;
3032
3033 return 1;
3034 }
3035
3036 /* Check types on a worklist for equality. Returns zero if any pair
3037 is not equal, non-zero if they are all considered equal. */
3038
3039 static int
3040 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3041 struct bcache *cache)
3042 {
3043 while (!VEC_empty (type_equality_entry_d, *worklist))
3044 {
3045 struct type_equality_entry entry;
3046 int added;
3047
3048 entry = *VEC_last (type_equality_entry_d, *worklist);
3049 VEC_pop (type_equality_entry_d, *worklist);
3050
3051 /* If the type pair has already been visited, we know it is
3052 ok. */
3053 bcache_full (&entry, sizeof (entry), cache, &added);
3054 if (!added)
3055 continue;
3056
3057 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3058 return 0;
3059 }
3060
3061 return 1;
3062 }
3063
3064 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3065 "deep comparison". Otherwise return zero. */
3066
3067 int
3068 types_deeply_equal (struct type *type1, struct type *type2)
3069 {
3070 volatile struct gdb_exception except;
3071 int result = 0;
3072 struct bcache *cache;
3073 VEC (type_equality_entry_d) *worklist = NULL;
3074 struct type_equality_entry entry;
3075
3076 gdb_assert (type1 != NULL && type2 != NULL);
3077
3078 /* Early exit for the simple case. */
3079 if (type1 == type2)
3080 return 1;
3081
3082 cache = bcache_xmalloc (NULL, NULL);
3083
3084 entry.type1 = type1;
3085 entry.type2 = type2;
3086 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3087
3088 TRY_CATCH (except, RETURN_MASK_ALL)
3089 {
3090 result = check_types_worklist (&worklist, cache);
3091 }
3092 /* check_types_worklist calls several nested helper functions,
3093 some of which can raise a GDB Exception, so we just check
3094 and rethrow here. If there is a GDB exception, a comparison
3095 is not capable (or trusted), so exit. */
3096 bcache_xfree (cache);
3097 VEC_free (type_equality_entry_d, worklist);
3098 /* Rethrow if there was a problem. */
3099 if (except.reason < 0)
3100 throw_exception (except);
3101
3102 return result;
3103 }
3104 \f
3105 /* Compare one type (PARM) for compatibility with another (ARG).
3106 * PARM is intended to be the parameter type of a function; and
3107 * ARG is the supplied argument's type. This function tests if
3108 * the latter can be converted to the former.
3109 * VALUE is the argument's value or NULL if none (or called recursively)
3110 *
3111 * Return 0 if they are identical types;
3112 * Otherwise, return an integer which corresponds to how compatible
3113 * PARM is to ARG. The higher the return value, the worse the match.
3114 * Generally the "bad" conversions are all uniformly assigned a 100. */
3115
3116 struct rank
3117 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3118 {
3119 struct rank rank = {0,0};
3120
3121 if (types_equal (parm, arg))
3122 return EXACT_MATCH_BADNESS;
3123
3124 /* Resolve typedefs */
3125 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3126 parm = check_typedef (parm);
3127 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3128 arg = check_typedef (arg);
3129
3130 /* See through references, since we can almost make non-references
3131 references. */
3132 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3133 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3134 REFERENCE_CONVERSION_BADNESS));
3135 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3136 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3137 REFERENCE_CONVERSION_BADNESS));
3138 if (overload_debug)
3139 /* Debugging only. */
3140 fprintf_filtered (gdb_stderr,
3141 "------ Arg is %s [%d], parm is %s [%d]\n",
3142 TYPE_NAME (arg), TYPE_CODE (arg),
3143 TYPE_NAME (parm), TYPE_CODE (parm));
3144
3145 /* x -> y means arg of type x being supplied for parameter of type y. */
3146
3147 switch (TYPE_CODE (parm))
3148 {
3149 case TYPE_CODE_PTR:
3150 switch (TYPE_CODE (arg))
3151 {
3152 case TYPE_CODE_PTR:
3153
3154 /* Allowed pointer conversions are:
3155 (a) pointer to void-pointer conversion. */
3156 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3157 return VOID_PTR_CONVERSION_BADNESS;
3158
3159 /* (b) pointer to ancestor-pointer conversion. */
3160 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3161 TYPE_TARGET_TYPE (arg),
3162 0);
3163 if (rank.subrank >= 0)
3164 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3165
3166 return INCOMPATIBLE_TYPE_BADNESS;
3167 case TYPE_CODE_ARRAY:
3168 if (types_equal (TYPE_TARGET_TYPE (parm),
3169 TYPE_TARGET_TYPE (arg)))
3170 return EXACT_MATCH_BADNESS;
3171 return INCOMPATIBLE_TYPE_BADNESS;
3172 case TYPE_CODE_FUNC:
3173 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3174 case TYPE_CODE_INT:
3175 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3176 {
3177 if (value_as_long (value) == 0)
3178 {
3179 /* Null pointer conversion: allow it to be cast to a pointer.
3180 [4.10.1 of C++ standard draft n3290] */
3181 return NULL_POINTER_CONVERSION_BADNESS;
3182 }
3183 else
3184 {
3185 /* If type checking is disabled, allow the conversion. */
3186 if (!strict_type_checking)
3187 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3188 }
3189 }
3190 /* fall through */
3191 case TYPE_CODE_ENUM:
3192 case TYPE_CODE_FLAGS:
3193 case TYPE_CODE_CHAR:
3194 case TYPE_CODE_RANGE:
3195 case TYPE_CODE_BOOL:
3196 default:
3197 return INCOMPATIBLE_TYPE_BADNESS;
3198 }
3199 case TYPE_CODE_ARRAY:
3200 switch (TYPE_CODE (arg))
3201 {
3202 case TYPE_CODE_PTR:
3203 case TYPE_CODE_ARRAY:
3204 return rank_one_type (TYPE_TARGET_TYPE (parm),
3205 TYPE_TARGET_TYPE (arg), NULL);
3206 default:
3207 return INCOMPATIBLE_TYPE_BADNESS;
3208 }
3209 case TYPE_CODE_FUNC:
3210 switch (TYPE_CODE (arg))
3211 {
3212 case TYPE_CODE_PTR: /* funcptr -> func */
3213 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3214 default:
3215 return INCOMPATIBLE_TYPE_BADNESS;
3216 }
3217 case TYPE_CODE_INT:
3218 switch (TYPE_CODE (arg))
3219 {
3220 case TYPE_CODE_INT:
3221 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3222 {
3223 /* Deal with signed, unsigned, and plain chars and
3224 signed and unsigned ints. */
3225 if (TYPE_NOSIGN (parm))
3226 {
3227 /* This case only for character types. */
3228 if (TYPE_NOSIGN (arg))
3229 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3230 else /* signed/unsigned char -> plain char */
3231 return INTEGER_CONVERSION_BADNESS;
3232 }
3233 else if (TYPE_UNSIGNED (parm))
3234 {
3235 if (TYPE_UNSIGNED (arg))
3236 {
3237 /* unsigned int -> unsigned int, or
3238 unsigned long -> unsigned long */
3239 if (integer_types_same_name_p (TYPE_NAME (parm),
3240 TYPE_NAME (arg)))
3241 return EXACT_MATCH_BADNESS;
3242 else if (integer_types_same_name_p (TYPE_NAME (arg),
3243 "int")
3244 && integer_types_same_name_p (TYPE_NAME (parm),
3245 "long"))
3246 /* unsigned int -> unsigned long */
3247 return INTEGER_PROMOTION_BADNESS;
3248 else
3249 /* unsigned long -> unsigned int */
3250 return INTEGER_CONVERSION_BADNESS;
3251 }
3252 else
3253 {
3254 if (integer_types_same_name_p (TYPE_NAME (arg),
3255 "long")
3256 && integer_types_same_name_p (TYPE_NAME (parm),
3257 "int"))
3258 /* signed long -> unsigned int */
3259 return INTEGER_CONVERSION_BADNESS;
3260 else
3261 /* signed int/long -> unsigned int/long */
3262 return INTEGER_CONVERSION_BADNESS;
3263 }
3264 }
3265 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3266 {
3267 if (integer_types_same_name_p (TYPE_NAME (parm),
3268 TYPE_NAME (arg)))
3269 return EXACT_MATCH_BADNESS;
3270 else if (integer_types_same_name_p (TYPE_NAME (arg),
3271 "int")
3272 && integer_types_same_name_p (TYPE_NAME (parm),
3273 "long"))
3274 return INTEGER_PROMOTION_BADNESS;
3275 else
3276 return INTEGER_CONVERSION_BADNESS;
3277 }
3278 else
3279 return INTEGER_CONVERSION_BADNESS;
3280 }
3281 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3282 return INTEGER_PROMOTION_BADNESS;
3283 else
3284 return INTEGER_CONVERSION_BADNESS;
3285 case TYPE_CODE_ENUM:
3286 case TYPE_CODE_FLAGS:
3287 case TYPE_CODE_CHAR:
3288 case TYPE_CODE_RANGE:
3289 case TYPE_CODE_BOOL:
3290 if (TYPE_DECLARED_CLASS (arg))
3291 return INCOMPATIBLE_TYPE_BADNESS;
3292 return INTEGER_PROMOTION_BADNESS;
3293 case TYPE_CODE_FLT:
3294 return INT_FLOAT_CONVERSION_BADNESS;
3295 case TYPE_CODE_PTR:
3296 return NS_POINTER_CONVERSION_BADNESS;
3297 default:
3298 return INCOMPATIBLE_TYPE_BADNESS;
3299 }
3300 break;
3301 case TYPE_CODE_ENUM:
3302 switch (TYPE_CODE (arg))
3303 {
3304 case TYPE_CODE_INT:
3305 case TYPE_CODE_CHAR:
3306 case TYPE_CODE_RANGE:
3307 case TYPE_CODE_BOOL:
3308 case TYPE_CODE_ENUM:
3309 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3310 return INCOMPATIBLE_TYPE_BADNESS;
3311 return INTEGER_CONVERSION_BADNESS;
3312 case TYPE_CODE_FLT:
3313 return INT_FLOAT_CONVERSION_BADNESS;
3314 default:
3315 return INCOMPATIBLE_TYPE_BADNESS;
3316 }
3317 break;
3318 case TYPE_CODE_CHAR:
3319 switch (TYPE_CODE (arg))
3320 {
3321 case TYPE_CODE_RANGE:
3322 case TYPE_CODE_BOOL:
3323 case TYPE_CODE_ENUM:
3324 if (TYPE_DECLARED_CLASS (arg))
3325 return INCOMPATIBLE_TYPE_BADNESS;
3326 return INTEGER_CONVERSION_BADNESS;
3327 case TYPE_CODE_FLT:
3328 return INT_FLOAT_CONVERSION_BADNESS;
3329 case TYPE_CODE_INT:
3330 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3331 return INTEGER_CONVERSION_BADNESS;
3332 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3333 return INTEGER_PROMOTION_BADNESS;
3334 /* >>> !! else fall through !! <<< */
3335 case TYPE_CODE_CHAR:
3336 /* Deal with signed, unsigned, and plain chars for C++ and
3337 with int cases falling through from previous case. */
3338 if (TYPE_NOSIGN (parm))
3339 {
3340 if (TYPE_NOSIGN (arg))
3341 return EXACT_MATCH_BADNESS;
3342 else
3343 return INTEGER_CONVERSION_BADNESS;
3344 }
3345 else if (TYPE_UNSIGNED (parm))
3346 {
3347 if (TYPE_UNSIGNED (arg))
3348 return EXACT_MATCH_BADNESS;
3349 else
3350 return INTEGER_PROMOTION_BADNESS;
3351 }
3352 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3353 return EXACT_MATCH_BADNESS;
3354 else
3355 return INTEGER_CONVERSION_BADNESS;
3356 default:
3357 return INCOMPATIBLE_TYPE_BADNESS;
3358 }
3359 break;
3360 case TYPE_CODE_RANGE:
3361 switch (TYPE_CODE (arg))
3362 {
3363 case TYPE_CODE_INT:
3364 case TYPE_CODE_CHAR:
3365 case TYPE_CODE_RANGE:
3366 case TYPE_CODE_BOOL:
3367 case TYPE_CODE_ENUM:
3368 return INTEGER_CONVERSION_BADNESS;
3369 case TYPE_CODE_FLT:
3370 return INT_FLOAT_CONVERSION_BADNESS;
3371 default:
3372 return INCOMPATIBLE_TYPE_BADNESS;
3373 }
3374 break;
3375 case TYPE_CODE_BOOL:
3376 switch (TYPE_CODE (arg))
3377 {
3378 /* n3290 draft, section 4.12.1 (conv.bool):
3379
3380 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3381 pointer to member type can be converted to a prvalue of type
3382 bool. A zero value, null pointer value, or null member pointer
3383 value is converted to false; any other value is converted to
3384 true. A prvalue of type std::nullptr_t can be converted to a
3385 prvalue of type bool; the resulting value is false." */
3386 case TYPE_CODE_INT:
3387 case TYPE_CODE_CHAR:
3388 case TYPE_CODE_ENUM:
3389 case TYPE_CODE_FLT:
3390 case TYPE_CODE_MEMBERPTR:
3391 case TYPE_CODE_PTR:
3392 return BOOL_CONVERSION_BADNESS;
3393 case TYPE_CODE_RANGE:
3394 return INCOMPATIBLE_TYPE_BADNESS;
3395 case TYPE_CODE_BOOL:
3396 return EXACT_MATCH_BADNESS;
3397 default:
3398 return INCOMPATIBLE_TYPE_BADNESS;
3399 }
3400 break;
3401 case TYPE_CODE_FLT:
3402 switch (TYPE_CODE (arg))
3403 {
3404 case TYPE_CODE_FLT:
3405 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3406 return FLOAT_PROMOTION_BADNESS;
3407 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3408 return EXACT_MATCH_BADNESS;
3409 else
3410 return FLOAT_CONVERSION_BADNESS;
3411 case TYPE_CODE_INT:
3412 case TYPE_CODE_BOOL:
3413 case TYPE_CODE_ENUM:
3414 case TYPE_CODE_RANGE:
3415 case TYPE_CODE_CHAR:
3416 return INT_FLOAT_CONVERSION_BADNESS;
3417 default:
3418 return INCOMPATIBLE_TYPE_BADNESS;
3419 }
3420 break;
3421 case TYPE_CODE_COMPLEX:
3422 switch (TYPE_CODE (arg))
3423 { /* Strictly not needed for C++, but... */
3424 case TYPE_CODE_FLT:
3425 return FLOAT_PROMOTION_BADNESS;
3426 case TYPE_CODE_COMPLEX:
3427 return EXACT_MATCH_BADNESS;
3428 default:
3429 return INCOMPATIBLE_TYPE_BADNESS;
3430 }
3431 break;
3432 case TYPE_CODE_STRUCT:
3433 switch (TYPE_CODE (arg))
3434 {
3435 case TYPE_CODE_STRUCT:
3436 /* Check for derivation */
3437 rank.subrank = distance_to_ancestor (parm, arg, 0);
3438 if (rank.subrank >= 0)
3439 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3440 /* else fall through */
3441 default:
3442 return INCOMPATIBLE_TYPE_BADNESS;
3443 }
3444 break;
3445 case TYPE_CODE_UNION:
3446 switch (TYPE_CODE (arg))
3447 {
3448 case TYPE_CODE_UNION:
3449 default:
3450 return INCOMPATIBLE_TYPE_BADNESS;
3451 }
3452 break;
3453 case TYPE_CODE_MEMBERPTR:
3454 switch (TYPE_CODE (arg))
3455 {
3456 default:
3457 return INCOMPATIBLE_TYPE_BADNESS;
3458 }
3459 break;
3460 case TYPE_CODE_METHOD:
3461 switch (TYPE_CODE (arg))
3462 {
3463
3464 default:
3465 return INCOMPATIBLE_TYPE_BADNESS;
3466 }
3467 break;
3468 case TYPE_CODE_REF:
3469 switch (TYPE_CODE (arg))
3470 {
3471
3472 default:
3473 return INCOMPATIBLE_TYPE_BADNESS;
3474 }
3475
3476 break;
3477 case TYPE_CODE_SET:
3478 switch (TYPE_CODE (arg))
3479 {
3480 /* Not in C++ */
3481 case TYPE_CODE_SET:
3482 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3483 TYPE_FIELD_TYPE (arg, 0), NULL);
3484 default:
3485 return INCOMPATIBLE_TYPE_BADNESS;
3486 }
3487 break;
3488 case TYPE_CODE_VOID:
3489 default:
3490 return INCOMPATIBLE_TYPE_BADNESS;
3491 } /* switch (TYPE_CODE (arg)) */
3492 }
3493
3494 /* End of functions for overload resolution. */
3495 \f
3496 /* Routines to pretty-print types. */
3497
3498 static void
3499 print_bit_vector (B_TYPE *bits, int nbits)
3500 {
3501 int bitno;
3502
3503 for (bitno = 0; bitno < nbits; bitno++)
3504 {
3505 if ((bitno % 8) == 0)
3506 {
3507 puts_filtered (" ");
3508 }
3509 if (B_TST (bits, bitno))
3510 printf_filtered (("1"));
3511 else
3512 printf_filtered (("0"));
3513 }
3514 }
3515
3516 /* Note the first arg should be the "this" pointer, we may not want to
3517 include it since we may get into a infinitely recursive
3518 situation. */
3519
3520 static void
3521 print_args (struct field *args, int nargs, int spaces)
3522 {
3523 if (args != NULL)
3524 {
3525 int i;
3526
3527 for (i = 0; i < nargs; i++)
3528 {
3529 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3530 args[i].name != NULL ? args[i].name : "<NULL>");
3531 recursive_dump_type (args[i].type, spaces + 2);
3532 }
3533 }
3534 }
3535
3536 int
3537 field_is_static (struct field *f)
3538 {
3539 /* "static" fields are the fields whose location is not relative
3540 to the address of the enclosing struct. It would be nice to
3541 have a dedicated flag that would be set for static fields when
3542 the type is being created. But in practice, checking the field
3543 loc_kind should give us an accurate answer. */
3544 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3545 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3546 }
3547
3548 static void
3549 dump_fn_fieldlists (struct type *type, int spaces)
3550 {
3551 int method_idx;
3552 int overload_idx;
3553 struct fn_field *f;
3554
3555 printfi_filtered (spaces, "fn_fieldlists ");
3556 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3557 printf_filtered ("\n");
3558 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3559 {
3560 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3561 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3562 method_idx,
3563 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3564 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3565 gdb_stdout);
3566 printf_filtered (_(") length %d\n"),
3567 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3568 for (overload_idx = 0;
3569 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3570 overload_idx++)
3571 {
3572 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3573 overload_idx,
3574 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3575 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3576 gdb_stdout);
3577 printf_filtered (")\n");
3578 printfi_filtered (spaces + 8, "type ");
3579 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3580 gdb_stdout);
3581 printf_filtered ("\n");
3582
3583 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3584 spaces + 8 + 2);
3585
3586 printfi_filtered (spaces + 8, "args ");
3587 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3588 gdb_stdout);
3589 printf_filtered ("\n");
3590 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3591 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3592 spaces + 8 + 2);
3593 printfi_filtered (spaces + 8, "fcontext ");
3594 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3595 gdb_stdout);
3596 printf_filtered ("\n");
3597
3598 printfi_filtered (spaces + 8, "is_const %d\n",
3599 TYPE_FN_FIELD_CONST (f, overload_idx));
3600 printfi_filtered (spaces + 8, "is_volatile %d\n",
3601 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3602 printfi_filtered (spaces + 8, "is_private %d\n",
3603 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3604 printfi_filtered (spaces + 8, "is_protected %d\n",
3605 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3606 printfi_filtered (spaces + 8, "is_stub %d\n",
3607 TYPE_FN_FIELD_STUB (f, overload_idx));
3608 printfi_filtered (spaces + 8, "voffset %u\n",
3609 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3610 }
3611 }
3612 }
3613
3614 static void
3615 print_cplus_stuff (struct type *type, int spaces)
3616 {
3617 printfi_filtered (spaces, "n_baseclasses %d\n",
3618 TYPE_N_BASECLASSES (type));
3619 printfi_filtered (spaces, "nfn_fields %d\n",
3620 TYPE_NFN_FIELDS (type));
3621 if (TYPE_N_BASECLASSES (type) > 0)
3622 {
3623 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3624 TYPE_N_BASECLASSES (type));
3625 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3626 gdb_stdout);
3627 printf_filtered (")");
3628
3629 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3630 TYPE_N_BASECLASSES (type));
3631 puts_filtered ("\n");
3632 }
3633 if (TYPE_NFIELDS (type) > 0)
3634 {
3635 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3636 {
3637 printfi_filtered (spaces,
3638 "private_field_bits (%d bits at *",
3639 TYPE_NFIELDS (type));
3640 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3641 gdb_stdout);
3642 printf_filtered (")");
3643 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3644 TYPE_NFIELDS (type));
3645 puts_filtered ("\n");
3646 }
3647 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3648 {
3649 printfi_filtered (spaces,
3650 "protected_field_bits (%d bits at *",
3651 TYPE_NFIELDS (type));
3652 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3653 gdb_stdout);
3654 printf_filtered (")");
3655 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3656 TYPE_NFIELDS (type));
3657 puts_filtered ("\n");
3658 }
3659 }
3660 if (TYPE_NFN_FIELDS (type) > 0)
3661 {
3662 dump_fn_fieldlists (type, spaces);
3663 }
3664 }
3665
3666 /* Print the contents of the TYPE's type_specific union, assuming that
3667 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3668
3669 static void
3670 print_gnat_stuff (struct type *type, int spaces)
3671 {
3672 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3673
3674 recursive_dump_type (descriptive_type, spaces + 2);
3675 }
3676
3677 static struct obstack dont_print_type_obstack;
3678
3679 void
3680 recursive_dump_type (struct type *type, int spaces)
3681 {
3682 int idx;
3683
3684 if (spaces == 0)
3685 obstack_begin (&dont_print_type_obstack, 0);
3686
3687 if (TYPE_NFIELDS (type) > 0
3688 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3689 {
3690 struct type **first_dont_print
3691 = (struct type **) obstack_base (&dont_print_type_obstack);
3692
3693 int i = (struct type **)
3694 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3695
3696 while (--i >= 0)
3697 {
3698 if (type == first_dont_print[i])
3699 {
3700 printfi_filtered (spaces, "type node ");
3701 gdb_print_host_address (type, gdb_stdout);
3702 printf_filtered (_(" <same as already seen type>\n"));
3703 return;
3704 }
3705 }
3706
3707 obstack_ptr_grow (&dont_print_type_obstack, type);
3708 }
3709
3710 printfi_filtered (spaces, "type node ");
3711 gdb_print_host_address (type, gdb_stdout);
3712 printf_filtered ("\n");
3713 printfi_filtered (spaces, "name '%s' (",
3714 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3715 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3716 printf_filtered (")\n");
3717 printfi_filtered (spaces, "tagname '%s' (",
3718 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3719 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3720 printf_filtered (")\n");
3721 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3722 switch (TYPE_CODE (type))
3723 {
3724 case TYPE_CODE_UNDEF:
3725 printf_filtered ("(TYPE_CODE_UNDEF)");
3726 break;
3727 case TYPE_CODE_PTR:
3728 printf_filtered ("(TYPE_CODE_PTR)");
3729 break;
3730 case TYPE_CODE_ARRAY:
3731 printf_filtered ("(TYPE_CODE_ARRAY)");
3732 break;
3733 case TYPE_CODE_STRUCT:
3734 printf_filtered ("(TYPE_CODE_STRUCT)");
3735 break;
3736 case TYPE_CODE_UNION:
3737 printf_filtered ("(TYPE_CODE_UNION)");
3738 break;
3739 case TYPE_CODE_ENUM:
3740 printf_filtered ("(TYPE_CODE_ENUM)");
3741 break;
3742 case TYPE_CODE_FLAGS:
3743 printf_filtered ("(TYPE_CODE_FLAGS)");
3744 break;
3745 case TYPE_CODE_FUNC:
3746 printf_filtered ("(TYPE_CODE_FUNC)");
3747 break;
3748 case TYPE_CODE_INT:
3749 printf_filtered ("(TYPE_CODE_INT)");
3750 break;
3751 case TYPE_CODE_FLT:
3752 printf_filtered ("(TYPE_CODE_FLT)");
3753 break;
3754 case TYPE_CODE_VOID:
3755 printf_filtered ("(TYPE_CODE_VOID)");
3756 break;
3757 case TYPE_CODE_SET:
3758 printf_filtered ("(TYPE_CODE_SET)");
3759 break;
3760 case TYPE_CODE_RANGE:
3761 printf_filtered ("(TYPE_CODE_RANGE)");
3762 break;
3763 case TYPE_CODE_STRING:
3764 printf_filtered ("(TYPE_CODE_STRING)");
3765 break;
3766 case TYPE_CODE_ERROR:
3767 printf_filtered ("(TYPE_CODE_ERROR)");
3768 break;
3769 case TYPE_CODE_MEMBERPTR:
3770 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3771 break;
3772 case TYPE_CODE_METHODPTR:
3773 printf_filtered ("(TYPE_CODE_METHODPTR)");
3774 break;
3775 case TYPE_CODE_METHOD:
3776 printf_filtered ("(TYPE_CODE_METHOD)");
3777 break;
3778 case TYPE_CODE_REF:
3779 printf_filtered ("(TYPE_CODE_REF)");
3780 break;
3781 case TYPE_CODE_CHAR:
3782 printf_filtered ("(TYPE_CODE_CHAR)");
3783 break;
3784 case TYPE_CODE_BOOL:
3785 printf_filtered ("(TYPE_CODE_BOOL)");
3786 break;
3787 case TYPE_CODE_COMPLEX:
3788 printf_filtered ("(TYPE_CODE_COMPLEX)");
3789 break;
3790 case TYPE_CODE_TYPEDEF:
3791 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3792 break;
3793 case TYPE_CODE_NAMESPACE:
3794 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3795 break;
3796 default:
3797 printf_filtered ("(UNKNOWN TYPE CODE)");
3798 break;
3799 }
3800 puts_filtered ("\n");
3801 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3802 if (TYPE_OBJFILE_OWNED (type))
3803 {
3804 printfi_filtered (spaces, "objfile ");
3805 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3806 }
3807 else
3808 {
3809 printfi_filtered (spaces, "gdbarch ");
3810 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3811 }
3812 printf_filtered ("\n");
3813 printfi_filtered (spaces, "target_type ");
3814 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3815 printf_filtered ("\n");
3816 if (TYPE_TARGET_TYPE (type) != NULL)
3817 {
3818 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3819 }
3820 printfi_filtered (spaces, "pointer_type ");
3821 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3822 printf_filtered ("\n");
3823 printfi_filtered (spaces, "reference_type ");
3824 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3825 printf_filtered ("\n");
3826 printfi_filtered (spaces, "type_chain ");
3827 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3828 printf_filtered ("\n");
3829 printfi_filtered (spaces, "instance_flags 0x%x",
3830 TYPE_INSTANCE_FLAGS (type));
3831 if (TYPE_CONST (type))
3832 {
3833 puts_filtered (" TYPE_FLAG_CONST");
3834 }
3835 if (TYPE_VOLATILE (type))
3836 {
3837 puts_filtered (" TYPE_FLAG_VOLATILE");
3838 }
3839 if (TYPE_CODE_SPACE (type))
3840 {
3841 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3842 }
3843 if (TYPE_DATA_SPACE (type))
3844 {
3845 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3846 }
3847 if (TYPE_ADDRESS_CLASS_1 (type))
3848 {
3849 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3850 }
3851 if (TYPE_ADDRESS_CLASS_2 (type))
3852 {
3853 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3854 }
3855 if (TYPE_RESTRICT (type))
3856 {
3857 puts_filtered (" TYPE_FLAG_RESTRICT");
3858 }
3859 puts_filtered ("\n");
3860
3861 printfi_filtered (spaces, "flags");
3862 if (TYPE_UNSIGNED (type))
3863 {
3864 puts_filtered (" TYPE_FLAG_UNSIGNED");
3865 }
3866 if (TYPE_NOSIGN (type))
3867 {
3868 puts_filtered (" TYPE_FLAG_NOSIGN");
3869 }
3870 if (TYPE_STUB (type))
3871 {
3872 puts_filtered (" TYPE_FLAG_STUB");
3873 }
3874 if (TYPE_TARGET_STUB (type))
3875 {
3876 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3877 }
3878 if (TYPE_STATIC (type))
3879 {
3880 puts_filtered (" TYPE_FLAG_STATIC");
3881 }
3882 if (TYPE_PROTOTYPED (type))
3883 {
3884 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3885 }
3886 if (TYPE_INCOMPLETE (type))
3887 {
3888 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3889 }
3890 if (TYPE_VARARGS (type))
3891 {
3892 puts_filtered (" TYPE_FLAG_VARARGS");
3893 }
3894 /* This is used for things like AltiVec registers on ppc. Gcc emits
3895 an attribute for the array type, which tells whether or not we
3896 have a vector, instead of a regular array. */
3897 if (TYPE_VECTOR (type))
3898 {
3899 puts_filtered (" TYPE_FLAG_VECTOR");
3900 }
3901 if (TYPE_FIXED_INSTANCE (type))
3902 {
3903 puts_filtered (" TYPE_FIXED_INSTANCE");
3904 }
3905 if (TYPE_STUB_SUPPORTED (type))
3906 {
3907 puts_filtered (" TYPE_STUB_SUPPORTED");
3908 }
3909 if (TYPE_NOTTEXT (type))
3910 {
3911 puts_filtered (" TYPE_NOTTEXT");
3912 }
3913 puts_filtered ("\n");
3914 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3915 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3916 puts_filtered ("\n");
3917 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3918 {
3919 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3920 printfi_filtered (spaces + 2,
3921 "[%d] enumval %s type ",
3922 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3923 else
3924 printfi_filtered (spaces + 2,
3925 "[%d] bitpos %d bitsize %d type ",
3926 idx, TYPE_FIELD_BITPOS (type, idx),
3927 TYPE_FIELD_BITSIZE (type, idx));
3928 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3929 printf_filtered (" name '%s' (",
3930 TYPE_FIELD_NAME (type, idx) != NULL
3931 ? TYPE_FIELD_NAME (type, idx)
3932 : "<NULL>");
3933 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3934 printf_filtered (")\n");
3935 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3936 {
3937 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3938 }
3939 }
3940 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3941 {
3942 printfi_filtered (spaces, "low %s%s high %s%s\n",
3943 plongest (TYPE_LOW_BOUND (type)),
3944 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3945 plongest (TYPE_HIGH_BOUND (type)),
3946 TYPE_HIGH_BOUND_UNDEFINED (type)
3947 ? " (undefined)" : "");
3948 }
3949 printfi_filtered (spaces, "vptr_basetype ");
3950 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3951 puts_filtered ("\n");
3952 if (TYPE_VPTR_BASETYPE (type) != NULL)
3953 {
3954 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3955 }
3956 printfi_filtered (spaces, "vptr_fieldno %d\n",
3957 TYPE_VPTR_FIELDNO (type));
3958
3959 switch (TYPE_SPECIFIC_FIELD (type))
3960 {
3961 case TYPE_SPECIFIC_CPLUS_STUFF:
3962 printfi_filtered (spaces, "cplus_stuff ");
3963 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3964 gdb_stdout);
3965 puts_filtered ("\n");
3966 print_cplus_stuff (type, spaces);
3967 break;
3968
3969 case TYPE_SPECIFIC_GNAT_STUFF:
3970 printfi_filtered (spaces, "gnat_stuff ");
3971 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3972 puts_filtered ("\n");
3973 print_gnat_stuff (type, spaces);
3974 break;
3975
3976 case TYPE_SPECIFIC_FLOATFORMAT:
3977 printfi_filtered (spaces, "floatformat ");
3978 if (TYPE_FLOATFORMAT (type) == NULL)
3979 puts_filtered ("(null)");
3980 else
3981 {
3982 puts_filtered ("{ ");
3983 if (TYPE_FLOATFORMAT (type)[0] == NULL
3984 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3985 puts_filtered ("(null)");
3986 else
3987 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3988
3989 puts_filtered (", ");
3990 if (TYPE_FLOATFORMAT (type)[1] == NULL
3991 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3992 puts_filtered ("(null)");
3993 else
3994 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3995
3996 puts_filtered (" }");
3997 }
3998 puts_filtered ("\n");
3999 break;
4000
4001 case TYPE_SPECIFIC_FUNC:
4002 printfi_filtered (spaces, "calling_convention %d\n",
4003 TYPE_CALLING_CONVENTION (type));
4004 /* tail_call_list is not printed. */
4005 break;
4006 }
4007
4008 if (spaces == 0)
4009 obstack_free (&dont_print_type_obstack, NULL);
4010 }
4011 \f
4012 /* Trivial helpers for the libiberty hash table, for mapping one
4013 type to another. */
4014
4015 struct type_pair
4016 {
4017 struct type *old, *new;
4018 };
4019
4020 static hashval_t
4021 type_pair_hash (const void *item)
4022 {
4023 const struct type_pair *pair = item;
4024
4025 return htab_hash_pointer (pair->old);
4026 }
4027
4028 static int
4029 type_pair_eq (const void *item_lhs, const void *item_rhs)
4030 {
4031 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
4032
4033 return lhs->old == rhs->old;
4034 }
4035
4036 /* Allocate the hash table used by copy_type_recursive to walk
4037 types without duplicates. We use OBJFILE's obstack, because
4038 OBJFILE is about to be deleted. */
4039
4040 htab_t
4041 create_copied_types_hash (struct objfile *objfile)
4042 {
4043 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4044 NULL, &objfile->objfile_obstack,
4045 hashtab_obstack_allocate,
4046 dummy_obstack_deallocate);
4047 }
4048
4049 /* Recursively copy (deep copy) TYPE, if it is associated with
4050 OBJFILE. Return a new type allocated using malloc, a saved type if
4051 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4052 not associated with OBJFILE. */
4053
4054 struct type *
4055 copy_type_recursive (struct objfile *objfile,
4056 struct type *type,
4057 htab_t copied_types)
4058 {
4059 struct type_pair *stored, pair;
4060 void **slot;
4061 struct type *new_type;
4062
4063 if (! TYPE_OBJFILE_OWNED (type))
4064 return type;
4065
4066 /* This type shouldn't be pointing to any types in other objfiles;
4067 if it did, the type might disappear unexpectedly. */
4068 gdb_assert (TYPE_OBJFILE (type) == objfile);
4069
4070 pair.old = type;
4071 slot = htab_find_slot (copied_types, &pair, INSERT);
4072 if (*slot != NULL)
4073 return ((struct type_pair *) *slot)->new;
4074
4075 new_type = alloc_type_arch (get_type_arch (type));
4076
4077 /* We must add the new type to the hash table immediately, in case
4078 we encounter this type again during a recursive call below. */
4079 stored
4080 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4081 stored->old = type;
4082 stored->new = new_type;
4083 *slot = stored;
4084
4085 /* Copy the common fields of types. For the main type, we simply
4086 copy the entire thing and then update specific fields as needed. */
4087 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4088 TYPE_OBJFILE_OWNED (new_type) = 0;
4089 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4090
4091 if (TYPE_NAME (type))
4092 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4093 if (TYPE_TAG_NAME (type))
4094 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4095
4096 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4097 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4098
4099 /* Copy the fields. */
4100 if (TYPE_NFIELDS (type))
4101 {
4102 int i, nfields;
4103
4104 nfields = TYPE_NFIELDS (type);
4105 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4106 for (i = 0; i < nfields; i++)
4107 {
4108 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4109 TYPE_FIELD_ARTIFICIAL (type, i);
4110 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4111 if (TYPE_FIELD_TYPE (type, i))
4112 TYPE_FIELD_TYPE (new_type, i)
4113 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4114 copied_types);
4115 if (TYPE_FIELD_NAME (type, i))
4116 TYPE_FIELD_NAME (new_type, i) =
4117 xstrdup (TYPE_FIELD_NAME (type, i));
4118 switch (TYPE_FIELD_LOC_KIND (type, i))
4119 {
4120 case FIELD_LOC_KIND_BITPOS:
4121 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4122 TYPE_FIELD_BITPOS (type, i));
4123 break;
4124 case FIELD_LOC_KIND_ENUMVAL:
4125 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4126 TYPE_FIELD_ENUMVAL (type, i));
4127 break;
4128 case FIELD_LOC_KIND_PHYSADDR:
4129 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4130 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4131 break;
4132 case FIELD_LOC_KIND_PHYSNAME:
4133 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4134 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4135 i)));
4136 break;
4137 default:
4138 internal_error (__FILE__, __LINE__,
4139 _("Unexpected type field location kind: %d"),
4140 TYPE_FIELD_LOC_KIND (type, i));
4141 }
4142 }
4143 }
4144
4145 /* For range types, copy the bounds information. */
4146 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4147 {
4148 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4149 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4150 }
4151
4152 /* Copy the data location information. */
4153 if (TYPE_DATA_LOCATION (type) != NULL)
4154 {
4155 TYPE_DATA_LOCATION (new_type)
4156 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4157 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4158 sizeof (struct dynamic_prop));
4159 }
4160
4161 /* Copy pointers to other types. */
4162 if (TYPE_TARGET_TYPE (type))
4163 TYPE_TARGET_TYPE (new_type) =
4164 copy_type_recursive (objfile,
4165 TYPE_TARGET_TYPE (type),
4166 copied_types);
4167 if (TYPE_VPTR_BASETYPE (type))
4168 TYPE_VPTR_BASETYPE (new_type) =
4169 copy_type_recursive (objfile,
4170 TYPE_VPTR_BASETYPE (type),
4171 copied_types);
4172 /* Maybe copy the type_specific bits.
4173
4174 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4175 base classes and methods. There's no fundamental reason why we
4176 can't, but at the moment it is not needed. */
4177
4178 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4179 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4180 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4181 || TYPE_CODE (type) == TYPE_CODE_UNION
4182 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
4183 INIT_CPLUS_SPECIFIC (new_type);
4184
4185 return new_type;
4186 }
4187
4188 /* Make a copy of the given TYPE, except that the pointer & reference
4189 types are not preserved.
4190
4191 This function assumes that the given type has an associated objfile.
4192 This objfile is used to allocate the new type. */
4193
4194 struct type *
4195 copy_type (const struct type *type)
4196 {
4197 struct type *new_type;
4198
4199 gdb_assert (TYPE_OBJFILE_OWNED (type));
4200
4201 new_type = alloc_type_copy (type);
4202 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4203 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4204 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4205 sizeof (struct main_type));
4206 if (TYPE_DATA_LOCATION (type) != NULL)
4207 {
4208 TYPE_DATA_LOCATION (new_type)
4209 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4210 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4211 sizeof (struct dynamic_prop));
4212 }
4213
4214 return new_type;
4215 }
4216 \f
4217 /* Helper functions to initialize architecture-specific types. */
4218
4219 /* Allocate a type structure associated with GDBARCH and set its
4220 CODE, LENGTH, and NAME fields. */
4221
4222 struct type *
4223 arch_type (struct gdbarch *gdbarch,
4224 enum type_code code, int length, char *name)
4225 {
4226 struct type *type;
4227
4228 type = alloc_type_arch (gdbarch);
4229 TYPE_CODE (type) = code;
4230 TYPE_LENGTH (type) = length;
4231
4232 if (name)
4233 TYPE_NAME (type) = xstrdup (name);
4234
4235 return type;
4236 }
4237
4238 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4239 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4240 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4241
4242 struct type *
4243 arch_integer_type (struct gdbarch *gdbarch,
4244 int bit, int unsigned_p, char *name)
4245 {
4246 struct type *t;
4247
4248 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4249 if (unsigned_p)
4250 TYPE_UNSIGNED (t) = 1;
4251 if (name && strcmp (name, "char") == 0)
4252 TYPE_NOSIGN (t) = 1;
4253
4254 return t;
4255 }
4256
4257 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4258 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4259 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4260
4261 struct type *
4262 arch_character_type (struct gdbarch *gdbarch,
4263 int bit, int unsigned_p, char *name)
4264 {
4265 struct type *t;
4266
4267 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4268 if (unsigned_p)
4269 TYPE_UNSIGNED (t) = 1;
4270
4271 return t;
4272 }
4273
4274 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4275 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4276 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4277
4278 struct type *
4279 arch_boolean_type (struct gdbarch *gdbarch,
4280 int bit, int unsigned_p, char *name)
4281 {
4282 struct type *t;
4283
4284 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4285 if (unsigned_p)
4286 TYPE_UNSIGNED (t) = 1;
4287
4288 return t;
4289 }
4290
4291 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4292 BIT is the type size in bits; if BIT equals -1, the size is
4293 determined by the floatformat. NAME is the type name. Set the
4294 TYPE_FLOATFORMAT from FLOATFORMATS. */
4295
4296 struct type *
4297 arch_float_type (struct gdbarch *gdbarch,
4298 int bit, char *name, const struct floatformat **floatformats)
4299 {
4300 struct type *t;
4301
4302 if (bit == -1)
4303 {
4304 gdb_assert (floatformats != NULL);
4305 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4306 bit = floatformats[0]->totalsize;
4307 }
4308 gdb_assert (bit >= 0);
4309
4310 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4311 TYPE_FLOATFORMAT (t) = floatformats;
4312 return t;
4313 }
4314
4315 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4316 NAME is the type name. TARGET_TYPE is the component float type. */
4317
4318 struct type *
4319 arch_complex_type (struct gdbarch *gdbarch,
4320 char *name, struct type *target_type)
4321 {
4322 struct type *t;
4323
4324 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4325 2 * TYPE_LENGTH (target_type), name);
4326 TYPE_TARGET_TYPE (t) = target_type;
4327 return t;
4328 }
4329
4330 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4331 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4332
4333 struct type *
4334 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4335 {
4336 int nfields = length * TARGET_CHAR_BIT;
4337 struct type *type;
4338
4339 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4340 TYPE_UNSIGNED (type) = 1;
4341 TYPE_NFIELDS (type) = nfields;
4342 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4343
4344 return type;
4345 }
4346
4347 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4348 position BITPOS is called NAME. */
4349
4350 void
4351 append_flags_type_flag (struct type *type, int bitpos, char *name)
4352 {
4353 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4354 gdb_assert (bitpos < TYPE_NFIELDS (type));
4355 gdb_assert (bitpos >= 0);
4356
4357 if (name)
4358 {
4359 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4360 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4361 }
4362 else
4363 {
4364 /* Don't show this field to the user. */
4365 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4366 }
4367 }
4368
4369 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4370 specified by CODE) associated with GDBARCH. NAME is the type name. */
4371
4372 struct type *
4373 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4374 {
4375 struct type *t;
4376
4377 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4378 t = arch_type (gdbarch, code, 0, NULL);
4379 TYPE_TAG_NAME (t) = name;
4380 INIT_CPLUS_SPECIFIC (t);
4381 return t;
4382 }
4383
4384 /* Add new field with name NAME and type FIELD to composite type T.
4385 Do not set the field's position or adjust the type's length;
4386 the caller should do so. Return the new field. */
4387
4388 struct field *
4389 append_composite_type_field_raw (struct type *t, char *name,
4390 struct type *field)
4391 {
4392 struct field *f;
4393
4394 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4395 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4396 sizeof (struct field) * TYPE_NFIELDS (t));
4397 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4398 memset (f, 0, sizeof f[0]);
4399 FIELD_TYPE (f[0]) = field;
4400 FIELD_NAME (f[0]) = name;
4401 return f;
4402 }
4403
4404 /* Add new field with name NAME and type FIELD to composite type T.
4405 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4406
4407 void
4408 append_composite_type_field_aligned (struct type *t, char *name,
4409 struct type *field, int alignment)
4410 {
4411 struct field *f = append_composite_type_field_raw (t, name, field);
4412
4413 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4414 {
4415 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4416 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4417 }
4418 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4419 {
4420 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4421 if (TYPE_NFIELDS (t) > 1)
4422 {
4423 SET_FIELD_BITPOS (f[0],
4424 (FIELD_BITPOS (f[-1])
4425 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4426 * TARGET_CHAR_BIT)));
4427
4428 if (alignment)
4429 {
4430 int left;
4431
4432 alignment *= TARGET_CHAR_BIT;
4433 left = FIELD_BITPOS (f[0]) % alignment;
4434
4435 if (left)
4436 {
4437 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4438 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4439 }
4440 }
4441 }
4442 }
4443 }
4444
4445 /* Add new field with name NAME and type FIELD to composite type T. */
4446
4447 void
4448 append_composite_type_field (struct type *t, char *name,
4449 struct type *field)
4450 {
4451 append_composite_type_field_aligned (t, name, field, 0);
4452 }
4453
4454 static struct gdbarch_data *gdbtypes_data;
4455
4456 const struct builtin_type *
4457 builtin_type (struct gdbarch *gdbarch)
4458 {
4459 return gdbarch_data (gdbarch, gdbtypes_data);
4460 }
4461
4462 static void *
4463 gdbtypes_post_init (struct gdbarch *gdbarch)
4464 {
4465 struct builtin_type *builtin_type
4466 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4467
4468 /* Basic types. */
4469 builtin_type->builtin_void
4470 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4471 builtin_type->builtin_char
4472 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4473 !gdbarch_char_signed (gdbarch), "char");
4474 builtin_type->builtin_signed_char
4475 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4476 0, "signed char");
4477 builtin_type->builtin_unsigned_char
4478 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4479 1, "unsigned char");
4480 builtin_type->builtin_short
4481 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4482 0, "short");
4483 builtin_type->builtin_unsigned_short
4484 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4485 1, "unsigned short");
4486 builtin_type->builtin_int
4487 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4488 0, "int");
4489 builtin_type->builtin_unsigned_int
4490 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4491 1, "unsigned int");
4492 builtin_type->builtin_long
4493 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4494 0, "long");
4495 builtin_type->builtin_unsigned_long
4496 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4497 1, "unsigned long");
4498 builtin_type->builtin_long_long
4499 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4500 0, "long long");
4501 builtin_type->builtin_unsigned_long_long
4502 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4503 1, "unsigned long long");
4504 builtin_type->builtin_float
4505 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4506 "float", gdbarch_float_format (gdbarch));
4507 builtin_type->builtin_double
4508 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4509 "double", gdbarch_double_format (gdbarch));
4510 builtin_type->builtin_long_double
4511 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4512 "long double", gdbarch_long_double_format (gdbarch));
4513 builtin_type->builtin_complex
4514 = arch_complex_type (gdbarch, "complex",
4515 builtin_type->builtin_float);
4516 builtin_type->builtin_double_complex
4517 = arch_complex_type (gdbarch, "double complex",
4518 builtin_type->builtin_double);
4519 builtin_type->builtin_string
4520 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4521 builtin_type->builtin_bool
4522 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4523
4524 /* The following three are about decimal floating point types, which
4525 are 32-bits, 64-bits and 128-bits respectively. */
4526 builtin_type->builtin_decfloat
4527 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4528 builtin_type->builtin_decdouble
4529 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4530 builtin_type->builtin_declong
4531 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4532
4533 /* "True" character types. */
4534 builtin_type->builtin_true_char
4535 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4536 builtin_type->builtin_true_unsigned_char
4537 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4538
4539 /* Fixed-size integer types. */
4540 builtin_type->builtin_int0
4541 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4542 builtin_type->builtin_int8
4543 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4544 builtin_type->builtin_uint8
4545 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4546 builtin_type->builtin_int16
4547 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4548 builtin_type->builtin_uint16
4549 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4550 builtin_type->builtin_int32
4551 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4552 builtin_type->builtin_uint32
4553 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4554 builtin_type->builtin_int64
4555 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4556 builtin_type->builtin_uint64
4557 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4558 builtin_type->builtin_int128
4559 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4560 builtin_type->builtin_uint128
4561 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4562 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4563 TYPE_INSTANCE_FLAG_NOTTEXT;
4564 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4565 TYPE_INSTANCE_FLAG_NOTTEXT;
4566
4567 /* Wide character types. */
4568 builtin_type->builtin_char16
4569 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4570 builtin_type->builtin_char32
4571 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4572
4573
4574 /* Default data/code pointer types. */
4575 builtin_type->builtin_data_ptr
4576 = lookup_pointer_type (builtin_type->builtin_void);
4577 builtin_type->builtin_func_ptr
4578 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4579 builtin_type->builtin_func_func
4580 = lookup_function_type (builtin_type->builtin_func_ptr);
4581
4582 /* This type represents a GDB internal function. */
4583 builtin_type->internal_fn
4584 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4585 "<internal function>");
4586
4587 /* This type represents an xmethod. */
4588 builtin_type->xmethod
4589 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4590
4591 return builtin_type;
4592 }
4593
4594 /* This set of objfile-based types is intended to be used by symbol
4595 readers as basic types. */
4596
4597 static const struct objfile_data *objfile_type_data;
4598
4599 const struct objfile_type *
4600 objfile_type (struct objfile *objfile)
4601 {
4602 struct gdbarch *gdbarch;
4603 struct objfile_type *objfile_type
4604 = objfile_data (objfile, objfile_type_data);
4605
4606 if (objfile_type)
4607 return objfile_type;
4608
4609 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4610 1, struct objfile_type);
4611
4612 /* Use the objfile architecture to determine basic type properties. */
4613 gdbarch = get_objfile_arch (objfile);
4614
4615 /* Basic types. */
4616 objfile_type->builtin_void
4617 = init_type (TYPE_CODE_VOID, 1,
4618 0,
4619 "void", objfile);
4620
4621 objfile_type->builtin_char
4622 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4623 (TYPE_FLAG_NOSIGN
4624 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4625 "char", objfile);
4626 objfile_type->builtin_signed_char
4627 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4628 0,
4629 "signed char", objfile);
4630 objfile_type->builtin_unsigned_char
4631 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4632 TYPE_FLAG_UNSIGNED,
4633 "unsigned char", objfile);
4634 objfile_type->builtin_short
4635 = init_type (TYPE_CODE_INT,
4636 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4637 0, "short", objfile);
4638 objfile_type->builtin_unsigned_short
4639 = init_type (TYPE_CODE_INT,
4640 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4641 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4642 objfile_type->builtin_int
4643 = init_type (TYPE_CODE_INT,
4644 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4645 0, "int", objfile);
4646 objfile_type->builtin_unsigned_int
4647 = init_type (TYPE_CODE_INT,
4648 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4649 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4650 objfile_type->builtin_long
4651 = init_type (TYPE_CODE_INT,
4652 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4653 0, "long", objfile);
4654 objfile_type->builtin_unsigned_long
4655 = init_type (TYPE_CODE_INT,
4656 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4657 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4658 objfile_type->builtin_long_long
4659 = init_type (TYPE_CODE_INT,
4660 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4661 0, "long long", objfile);
4662 objfile_type->builtin_unsigned_long_long
4663 = init_type (TYPE_CODE_INT,
4664 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4665 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4666
4667 objfile_type->builtin_float
4668 = init_type (TYPE_CODE_FLT,
4669 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4670 0, "float", objfile);
4671 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4672 = gdbarch_float_format (gdbarch);
4673 objfile_type->builtin_double
4674 = init_type (TYPE_CODE_FLT,
4675 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4676 0, "double", objfile);
4677 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4678 = gdbarch_double_format (gdbarch);
4679 objfile_type->builtin_long_double
4680 = init_type (TYPE_CODE_FLT,
4681 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4682 0, "long double", objfile);
4683 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4684 = gdbarch_long_double_format (gdbarch);
4685
4686 /* This type represents a type that was unrecognized in symbol read-in. */
4687 objfile_type->builtin_error
4688 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4689
4690 /* The following set of types is used for symbols with no
4691 debug information. */
4692 objfile_type->nodebug_text_symbol
4693 = init_type (TYPE_CODE_FUNC, 1, 0,
4694 "<text variable, no debug info>", objfile);
4695 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4696 = objfile_type->builtin_int;
4697 objfile_type->nodebug_text_gnu_ifunc_symbol
4698 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4699 "<text gnu-indirect-function variable, no debug info>",
4700 objfile);
4701 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4702 = objfile_type->nodebug_text_symbol;
4703 objfile_type->nodebug_got_plt_symbol
4704 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4705 "<text from jump slot in .got.plt, no debug info>",
4706 objfile);
4707 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4708 = objfile_type->nodebug_text_symbol;
4709 objfile_type->nodebug_data_symbol
4710 = init_type (TYPE_CODE_INT,
4711 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4712 "<data variable, no debug info>", objfile);
4713 objfile_type->nodebug_unknown_symbol
4714 = init_type (TYPE_CODE_INT, 1, 0,
4715 "<variable (not text or data), no debug info>", objfile);
4716 objfile_type->nodebug_tls_symbol
4717 = init_type (TYPE_CODE_INT,
4718 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4719 "<thread local variable, no debug info>", objfile);
4720
4721 /* NOTE: on some targets, addresses and pointers are not necessarily
4722 the same.
4723
4724 The upshot is:
4725 - gdb's `struct type' always describes the target's
4726 representation.
4727 - gdb's `struct value' objects should always hold values in
4728 target form.
4729 - gdb's CORE_ADDR values are addresses in the unified virtual
4730 address space that the assembler and linker work with. Thus,
4731 since target_read_memory takes a CORE_ADDR as an argument, it
4732 can access any memory on the target, even if the processor has
4733 separate code and data address spaces.
4734
4735 In this context, objfile_type->builtin_core_addr is a bit odd:
4736 it's a target type for a value the target will never see. It's
4737 only used to hold the values of (typeless) linker symbols, which
4738 are indeed in the unified virtual address space. */
4739
4740 objfile_type->builtin_core_addr
4741 = init_type (TYPE_CODE_INT,
4742 gdbarch_addr_bit (gdbarch) / 8,
4743 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4744
4745 set_objfile_data (objfile, objfile_type_data, objfile_type);
4746 return objfile_type;
4747 }
4748
4749 extern initialize_file_ftype _initialize_gdbtypes;
4750
4751 void
4752 _initialize_gdbtypes (void)
4753 {
4754 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4755 objfile_type_data = register_objfile_data ();
4756
4757 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4758 _("Set debugging of C++ overloading."),
4759 _("Show debugging of C++ overloading."),
4760 _("When enabled, ranking of the "
4761 "functions is displayed."),
4762 NULL,
4763 show_overload_debug,
4764 &setdebuglist, &showdebuglist);
4765
4766 /* Add user knob for controlling resolution of opaque types. */
4767 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4768 &opaque_type_resolution,
4769 _("Set resolution of opaque struct/class/union"
4770 " types (if set before loading symbols)."),
4771 _("Show resolution of opaque struct/class/union"
4772 " types (if set before loading symbols)."),
4773 NULL, NULL,
4774 show_opaque_type_resolution,
4775 &setlist, &showlist);
4776
4777 /* Add an option to permit non-strict type checking. */
4778 add_setshow_boolean_cmd ("type", class_support,
4779 &strict_type_checking,
4780 _("Set strict type checking."),
4781 _("Show strict type checking."),
4782 NULL, NULL,
4783 show_strict_type_checking,
4784 &setchecklist, &showchecklist);
4785 }