vla: support for DW_AT_count
[binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include "bfd.h"
25 #include "symtab.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "language.h"
31 #include "target.h"
32 #include "value.h"
33 #include "demangle.h"
34 #include "complaints.h"
35 #include "gdbcmd.h"
36 #include "cp-abi.h"
37 #include "gdb_assert.h"
38 #include "hashtab.h"
39 #include "exceptions.h"
40 #include "cp-support.h"
41 #include "bcache.h"
42 #include "dwarf2loc.h"
43 #include "gdbcore.h"
44
45 /* Initialize BADNESS constants. */
46
47 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
48
49 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
50 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
51
52 const struct rank EXACT_MATCH_BADNESS = {0,0};
53
54 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
55 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
56 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
57 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62 const struct rank BASE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
65 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
66 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
67
68 /* Floatformat pairs. */
69 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ieee_half_big,
71 &floatformat_ieee_half_little
72 };
73 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ieee_single_big,
75 &floatformat_ieee_single_little
76 };
77 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ieee_double_big,
79 &floatformat_ieee_double_little
80 };
81 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_ieee_double_big,
83 &floatformat_ieee_double_littlebyte_bigword
84 };
85 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_i387_ext,
87 &floatformat_i387_ext
88 };
89 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_m68881_ext,
91 &floatformat_m68881_ext
92 };
93 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
94 &floatformat_arm_ext_big,
95 &floatformat_arm_ext_littlebyte_bigword
96 };
97 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
98 &floatformat_ia64_spill_big,
99 &floatformat_ia64_spill_little
100 };
101 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
102 &floatformat_ia64_quad_big,
103 &floatformat_ia64_quad_little
104 };
105 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
106 &floatformat_vax_f,
107 &floatformat_vax_f
108 };
109 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
110 &floatformat_vax_d,
111 &floatformat_vax_d
112 };
113 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
114 &floatformat_ibm_long_double_big,
115 &floatformat_ibm_long_double_little
116 };
117
118 /* Should opaque types be resolved? */
119
120 static int opaque_type_resolution = 1;
121
122 /* A flag to enable printing of debugging information of C++
123 overloading. */
124
125 unsigned int overload_debug = 0;
126
127 /* A flag to enable strict type checking. */
128
129 static int strict_type_checking = 1;
130
131 /* A function to show whether opaque types are resolved. */
132
133 static void
134 show_opaque_type_resolution (struct ui_file *file, int from_tty,
135 struct cmd_list_element *c,
136 const char *value)
137 {
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
140 value);
141 }
142
143 /* A function to show whether C++ overload debugging is enabled. */
144
145 static void
146 show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148 {
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
151 }
152
153 /* A function to show the status of strict type checking. */
154
155 static void
156 show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160 }
161
162 \f
163 /* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
166
167 struct type *
168 alloc_type (struct objfile *objfile)
169 {
170 struct type *type;
171
172 gdb_assert (objfile != NULL);
173
174 /* Alloc the structure and start off with all fields zeroed. */
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
179
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
182
183 /* Initialize the fields that might not be zero. */
184
185 TYPE_CODE (type) = TYPE_CODE_UNDEF;
186 TYPE_VPTR_FIELDNO (type) = -1;
187 TYPE_CHAIN (type) = type; /* Chain back to itself. */
188
189 return type;
190 }
191
192 /* Allocate a new GDBARCH-associated type structure and fill it
193 with some defaults. Space for the type structure is allocated
194 on the heap. */
195
196 struct type *
197 alloc_type_arch (struct gdbarch *gdbarch)
198 {
199 struct type *type;
200
201 gdb_assert (gdbarch != NULL);
202
203 /* Alloc the structure and start off with all fields zeroed. */
204
205 type = XCNEW (struct type);
206 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
207
208 TYPE_OBJFILE_OWNED (type) = 0;
209 TYPE_OWNER (type).gdbarch = gdbarch;
210
211 /* Initialize the fields that might not be zero. */
212
213 TYPE_CODE (type) = TYPE_CODE_UNDEF;
214 TYPE_VPTR_FIELDNO (type) = -1;
215 TYPE_CHAIN (type) = type; /* Chain back to itself. */
216
217 return type;
218 }
219
220 /* If TYPE is objfile-associated, allocate a new type structure
221 associated with the same objfile. If TYPE is gdbarch-associated,
222 allocate a new type structure associated with the same gdbarch. */
223
224 struct type *
225 alloc_type_copy (const struct type *type)
226 {
227 if (TYPE_OBJFILE_OWNED (type))
228 return alloc_type (TYPE_OWNER (type).objfile);
229 else
230 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
231 }
232
233 /* If TYPE is gdbarch-associated, return that architecture.
234 If TYPE is objfile-associated, return that objfile's architecture. */
235
236 struct gdbarch *
237 get_type_arch (const struct type *type)
238 {
239 if (TYPE_OBJFILE_OWNED (type))
240 return get_objfile_arch (TYPE_OWNER (type).objfile);
241 else
242 return TYPE_OWNER (type).gdbarch;
243 }
244
245 /* See gdbtypes.h. */
246
247 struct type *
248 get_target_type (struct type *type)
249 {
250 if (type != NULL)
251 {
252 type = TYPE_TARGET_TYPE (type);
253 if (type != NULL)
254 type = check_typedef (type);
255 }
256
257 return type;
258 }
259
260 /* Alloc a new type instance structure, fill it with some defaults,
261 and point it at OLDTYPE. Allocate the new type instance from the
262 same place as OLDTYPE. */
263
264 static struct type *
265 alloc_type_instance (struct type *oldtype)
266 {
267 struct type *type;
268
269 /* Allocate the structure. */
270
271 if (! TYPE_OBJFILE_OWNED (oldtype))
272 type = XCNEW (struct type);
273 else
274 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
275 struct type);
276
277 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
278
279 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
280
281 return type;
282 }
283
284 /* Clear all remnants of the previous type at TYPE, in preparation for
285 replacing it with something else. Preserve owner information. */
286
287 static void
288 smash_type (struct type *type)
289 {
290 int objfile_owned = TYPE_OBJFILE_OWNED (type);
291 union type_owner owner = TYPE_OWNER (type);
292
293 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
294
295 /* Restore owner information. */
296 TYPE_OBJFILE_OWNED (type) = objfile_owned;
297 TYPE_OWNER (type) = owner;
298
299 /* For now, delete the rings. */
300 TYPE_CHAIN (type) = type;
301
302 /* For now, leave the pointer/reference types alone. */
303 }
304
305 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
306 to a pointer to memory where the pointer type should be stored.
307 If *TYPEPTR is zero, update it to point to the pointer type we return.
308 We allocate new memory if needed. */
309
310 struct type *
311 make_pointer_type (struct type *type, struct type **typeptr)
312 {
313 struct type *ntype; /* New type */
314 struct type *chain;
315
316 ntype = TYPE_POINTER_TYPE (type);
317
318 if (ntype)
319 {
320 if (typeptr == 0)
321 return ntype; /* Don't care about alloc,
322 and have new type. */
323 else if (*typeptr == 0)
324 {
325 *typeptr = ntype; /* Tracking alloc, and have new type. */
326 return ntype;
327 }
328 }
329
330 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
331 {
332 ntype = alloc_type_copy (type);
333 if (typeptr)
334 *typeptr = ntype;
335 }
336 else /* We have storage, but need to reset it. */
337 {
338 ntype = *typeptr;
339 chain = TYPE_CHAIN (ntype);
340 smash_type (ntype);
341 TYPE_CHAIN (ntype) = chain;
342 }
343
344 TYPE_TARGET_TYPE (ntype) = type;
345 TYPE_POINTER_TYPE (type) = ntype;
346
347 /* FIXME! Assumes the machine has only one representation for pointers! */
348
349 TYPE_LENGTH (ntype)
350 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
351 TYPE_CODE (ntype) = TYPE_CODE_PTR;
352
353 /* Mark pointers as unsigned. The target converts between pointers
354 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
355 gdbarch_address_to_pointer. */
356 TYPE_UNSIGNED (ntype) = 1;
357
358 /* Update the length of all the other variants of this type. */
359 chain = TYPE_CHAIN (ntype);
360 while (chain != ntype)
361 {
362 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
363 chain = TYPE_CHAIN (chain);
364 }
365
366 return ntype;
367 }
368
369 /* Given a type TYPE, return a type of pointers to that type.
370 May need to construct such a type if this is the first use. */
371
372 struct type *
373 lookup_pointer_type (struct type *type)
374 {
375 return make_pointer_type (type, (struct type **) 0);
376 }
377
378 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
379 points to a pointer to memory where the reference type should be
380 stored. If *TYPEPTR is zero, update it to point to the reference
381 type we return. We allocate new memory if needed. */
382
383 struct type *
384 make_reference_type (struct type *type, struct type **typeptr)
385 {
386 struct type *ntype; /* New type */
387 struct type *chain;
388
389 ntype = TYPE_REFERENCE_TYPE (type);
390
391 if (ntype)
392 {
393 if (typeptr == 0)
394 return ntype; /* Don't care about alloc,
395 and have new type. */
396 else if (*typeptr == 0)
397 {
398 *typeptr = ntype; /* Tracking alloc, and have new type. */
399 return ntype;
400 }
401 }
402
403 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
404 {
405 ntype = alloc_type_copy (type);
406 if (typeptr)
407 *typeptr = ntype;
408 }
409 else /* We have storage, but need to reset it. */
410 {
411 ntype = *typeptr;
412 chain = TYPE_CHAIN (ntype);
413 smash_type (ntype);
414 TYPE_CHAIN (ntype) = chain;
415 }
416
417 TYPE_TARGET_TYPE (ntype) = type;
418 TYPE_REFERENCE_TYPE (type) = ntype;
419
420 /* FIXME! Assume the machine has only one representation for
421 references, and that it matches the (only) representation for
422 pointers! */
423
424 TYPE_LENGTH (ntype) =
425 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
426 TYPE_CODE (ntype) = TYPE_CODE_REF;
427
428 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
429 TYPE_REFERENCE_TYPE (type) = ntype;
430
431 /* Update the length of all the other variants of this type. */
432 chain = TYPE_CHAIN (ntype);
433 while (chain != ntype)
434 {
435 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
436 chain = TYPE_CHAIN (chain);
437 }
438
439 return ntype;
440 }
441
442 /* Same as above, but caller doesn't care about memory allocation
443 details. */
444
445 struct type *
446 lookup_reference_type (struct type *type)
447 {
448 return make_reference_type (type, (struct type **) 0);
449 }
450
451 /* Lookup a function type that returns type TYPE. TYPEPTR, if
452 nonzero, points to a pointer to memory where the function type
453 should be stored. If *TYPEPTR is zero, update it to point to the
454 function type we return. We allocate new memory if needed. */
455
456 struct type *
457 make_function_type (struct type *type, struct type **typeptr)
458 {
459 struct type *ntype; /* New type */
460
461 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
462 {
463 ntype = alloc_type_copy (type);
464 if (typeptr)
465 *typeptr = ntype;
466 }
467 else /* We have storage, but need to reset it. */
468 {
469 ntype = *typeptr;
470 smash_type (ntype);
471 }
472
473 TYPE_TARGET_TYPE (ntype) = type;
474
475 TYPE_LENGTH (ntype) = 1;
476 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
477
478 INIT_FUNC_SPECIFIC (ntype);
479
480 return ntype;
481 }
482
483 /* Given a type TYPE, return a type of functions that return that type.
484 May need to construct such a type if this is the first use. */
485
486 struct type *
487 lookup_function_type (struct type *type)
488 {
489 return make_function_type (type, (struct type **) 0);
490 }
491
492 /* Given a type TYPE and argument types, return the appropriate
493 function type. If the final type in PARAM_TYPES is NULL, make a
494 varargs function. */
495
496 struct type *
497 lookup_function_type_with_arguments (struct type *type,
498 int nparams,
499 struct type **param_types)
500 {
501 struct type *fn = make_function_type (type, (struct type **) 0);
502 int i;
503
504 if (nparams > 0)
505 {
506 if (param_types[nparams - 1] == NULL)
507 {
508 --nparams;
509 TYPE_VARARGS (fn) = 1;
510 }
511 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
512 == TYPE_CODE_VOID)
513 {
514 --nparams;
515 /* Caller should have ensured this. */
516 gdb_assert (nparams == 0);
517 TYPE_PROTOTYPED (fn) = 1;
518 }
519 }
520
521 TYPE_NFIELDS (fn) = nparams;
522 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
523 for (i = 0; i < nparams; ++i)
524 TYPE_FIELD_TYPE (fn, i) = param_types[i];
525
526 return fn;
527 }
528
529 /* Identify address space identifier by name --
530 return the integer flag defined in gdbtypes.h. */
531
532 int
533 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
534 {
535 int type_flags;
536
537 /* Check for known address space delimiters. */
538 if (!strcmp (space_identifier, "code"))
539 return TYPE_INSTANCE_FLAG_CODE_SPACE;
540 else if (!strcmp (space_identifier, "data"))
541 return TYPE_INSTANCE_FLAG_DATA_SPACE;
542 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
543 && gdbarch_address_class_name_to_type_flags (gdbarch,
544 space_identifier,
545 &type_flags))
546 return type_flags;
547 else
548 error (_("Unknown address space specifier: \"%s\""), space_identifier);
549 }
550
551 /* Identify address space identifier by integer flag as defined in
552 gdbtypes.h -- return the string version of the adress space name. */
553
554 const char *
555 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
556 {
557 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
558 return "code";
559 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
560 return "data";
561 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
562 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
563 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
564 else
565 return NULL;
566 }
567
568 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
569
570 If STORAGE is non-NULL, create the new type instance there.
571 STORAGE must be in the same obstack as TYPE. */
572
573 static struct type *
574 make_qualified_type (struct type *type, int new_flags,
575 struct type *storage)
576 {
577 struct type *ntype;
578
579 ntype = type;
580 do
581 {
582 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
583 return ntype;
584 ntype = TYPE_CHAIN (ntype);
585 }
586 while (ntype != type);
587
588 /* Create a new type instance. */
589 if (storage == NULL)
590 ntype = alloc_type_instance (type);
591 else
592 {
593 /* If STORAGE was provided, it had better be in the same objfile
594 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
595 if one objfile is freed and the other kept, we'd have
596 dangling pointers. */
597 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
598
599 ntype = storage;
600 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
601 TYPE_CHAIN (ntype) = ntype;
602 }
603
604 /* Pointers or references to the original type are not relevant to
605 the new type. */
606 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
607 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
608
609 /* Chain the new qualified type to the old type. */
610 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
611 TYPE_CHAIN (type) = ntype;
612
613 /* Now set the instance flags and return the new type. */
614 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
615
616 /* Set length of new type to that of the original type. */
617 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
618
619 return ntype;
620 }
621
622 /* Make an address-space-delimited variant of a type -- a type that
623 is identical to the one supplied except that it has an address
624 space attribute attached to it (such as "code" or "data").
625
626 The space attributes "code" and "data" are for Harvard
627 architectures. The address space attributes are for architectures
628 which have alternately sized pointers or pointers with alternate
629 representations. */
630
631 struct type *
632 make_type_with_address_space (struct type *type, int space_flag)
633 {
634 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
635 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
636 | TYPE_INSTANCE_FLAG_DATA_SPACE
637 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
638 | space_flag);
639
640 return make_qualified_type (type, new_flags, NULL);
641 }
642
643 /* Make a "c-v" variant of a type -- a type that is identical to the
644 one supplied except that it may have const or volatile attributes
645 CNST is a flag for setting the const attribute
646 VOLTL is a flag for setting the volatile attribute
647 TYPE is the base type whose variant we are creating.
648
649 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
650 storage to hold the new qualified type; *TYPEPTR and TYPE must be
651 in the same objfile. Otherwise, allocate fresh memory for the new
652 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
653 new type we construct. */
654
655 struct type *
656 make_cv_type (int cnst, int voltl,
657 struct type *type,
658 struct type **typeptr)
659 {
660 struct type *ntype; /* New type */
661
662 int new_flags = (TYPE_INSTANCE_FLAGS (type)
663 & ~(TYPE_INSTANCE_FLAG_CONST
664 | TYPE_INSTANCE_FLAG_VOLATILE));
665
666 if (cnst)
667 new_flags |= TYPE_INSTANCE_FLAG_CONST;
668
669 if (voltl)
670 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
671
672 if (typeptr && *typeptr != NULL)
673 {
674 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
675 a C-V variant chain that threads across objfiles: if one
676 objfile gets freed, then the other has a broken C-V chain.
677
678 This code used to try to copy over the main type from TYPE to
679 *TYPEPTR if they were in different objfiles, but that's
680 wrong, too: TYPE may have a field list or member function
681 lists, which refer to types of their own, etc. etc. The
682 whole shebang would need to be copied over recursively; you
683 can't have inter-objfile pointers. The only thing to do is
684 to leave stub types as stub types, and look them up afresh by
685 name each time you encounter them. */
686 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
687 }
688
689 ntype = make_qualified_type (type, new_flags,
690 typeptr ? *typeptr : NULL);
691
692 if (typeptr != NULL)
693 *typeptr = ntype;
694
695 return ntype;
696 }
697
698 /* Make a 'restrict'-qualified version of TYPE. */
699
700 struct type *
701 make_restrict_type (struct type *type)
702 {
703 return make_qualified_type (type,
704 (TYPE_INSTANCE_FLAGS (type)
705 | TYPE_INSTANCE_FLAG_RESTRICT),
706 NULL);
707 }
708
709 /* Replace the contents of ntype with the type *type. This changes the
710 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
711 the changes are propogated to all types in the TYPE_CHAIN.
712
713 In order to build recursive types, it's inevitable that we'll need
714 to update types in place --- but this sort of indiscriminate
715 smashing is ugly, and needs to be replaced with something more
716 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
717 clear if more steps are needed. */
718
719 void
720 replace_type (struct type *ntype, struct type *type)
721 {
722 struct type *chain;
723
724 /* These two types had better be in the same objfile. Otherwise,
725 the assignment of one type's main type structure to the other
726 will produce a type with references to objects (names; field
727 lists; etc.) allocated on an objfile other than its own. */
728 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
729
730 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
731
732 /* The type length is not a part of the main type. Update it for
733 each type on the variant chain. */
734 chain = ntype;
735 do
736 {
737 /* Assert that this element of the chain has no address-class bits
738 set in its flags. Such type variants might have type lengths
739 which are supposed to be different from the non-address-class
740 variants. This assertion shouldn't ever be triggered because
741 symbol readers which do construct address-class variants don't
742 call replace_type(). */
743 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
744
745 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
746 chain = TYPE_CHAIN (chain);
747 }
748 while (ntype != chain);
749
750 /* Assert that the two types have equivalent instance qualifiers.
751 This should be true for at least all of our debug readers. */
752 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
753 }
754
755 /* Implement direct support for MEMBER_TYPE in GNU C++.
756 May need to construct such a type if this is the first use.
757 The TYPE is the type of the member. The DOMAIN is the type
758 of the aggregate that the member belongs to. */
759
760 struct type *
761 lookup_memberptr_type (struct type *type, struct type *domain)
762 {
763 struct type *mtype;
764
765 mtype = alloc_type_copy (type);
766 smash_to_memberptr_type (mtype, domain, type);
767 return mtype;
768 }
769
770 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
771
772 struct type *
773 lookup_methodptr_type (struct type *to_type)
774 {
775 struct type *mtype;
776
777 mtype = alloc_type_copy (to_type);
778 smash_to_methodptr_type (mtype, to_type);
779 return mtype;
780 }
781
782 /* Allocate a stub method whose return type is TYPE. This apparently
783 happens for speed of symbol reading, since parsing out the
784 arguments to the method is cpu-intensive, the way we are doing it.
785 So, we will fill in arguments later. This always returns a fresh
786 type. */
787
788 struct type *
789 allocate_stub_method (struct type *type)
790 {
791 struct type *mtype;
792
793 mtype = alloc_type_copy (type);
794 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
795 TYPE_LENGTH (mtype) = 1;
796 TYPE_STUB (mtype) = 1;
797 TYPE_TARGET_TYPE (mtype) = type;
798 /* _DOMAIN_TYPE (mtype) = unknown yet */
799 return mtype;
800 }
801
802 /* Create a range type with a dynamic range from LOW_BOUND to
803 HIGH_BOUND, inclusive. See create_range_type for further details. */
804
805 struct type *
806 create_range_type (struct type *result_type, struct type *index_type,
807 const struct dynamic_prop *low_bound,
808 const struct dynamic_prop *high_bound)
809 {
810 if (result_type == NULL)
811 result_type = alloc_type_copy (index_type);
812 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
813 TYPE_TARGET_TYPE (result_type) = index_type;
814 if (TYPE_STUB (index_type))
815 TYPE_TARGET_STUB (result_type) = 1;
816 else
817 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
818
819 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
820 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
821 TYPE_RANGE_DATA (result_type)->low = *low_bound;
822 TYPE_RANGE_DATA (result_type)->high = *high_bound;
823
824 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
825 TYPE_UNSIGNED (result_type) = 1;
826
827 return result_type;
828 }
829
830 /* Create a range type using either a blank type supplied in
831 RESULT_TYPE, or creating a new type, inheriting the objfile from
832 INDEX_TYPE.
833
834 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
835 to HIGH_BOUND, inclusive.
836
837 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
838 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
839
840 struct type *
841 create_static_range_type (struct type *result_type, struct type *index_type,
842 LONGEST low_bound, LONGEST high_bound)
843 {
844 struct dynamic_prop low, high;
845
846 low.kind = PROP_CONST;
847 low.data.const_val = low_bound;
848
849 high.kind = PROP_CONST;
850 high.data.const_val = high_bound;
851
852 result_type = create_range_type (result_type, index_type, &low, &high);
853
854 return result_type;
855 }
856
857 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
858 are static, otherwise returns 0. */
859
860 static int
861 has_static_range (const struct range_bounds *bounds)
862 {
863 return (bounds->low.kind == PROP_CONST
864 && bounds->high.kind == PROP_CONST);
865 }
866
867
868 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
869 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
870 bounds will fit in LONGEST), or -1 otherwise. */
871
872 int
873 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
874 {
875 CHECK_TYPEDEF (type);
876 switch (TYPE_CODE (type))
877 {
878 case TYPE_CODE_RANGE:
879 *lowp = TYPE_LOW_BOUND (type);
880 *highp = TYPE_HIGH_BOUND (type);
881 return 1;
882 case TYPE_CODE_ENUM:
883 if (TYPE_NFIELDS (type) > 0)
884 {
885 /* The enums may not be sorted by value, so search all
886 entries. */
887 int i;
888
889 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
890 for (i = 0; i < TYPE_NFIELDS (type); i++)
891 {
892 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
893 *lowp = TYPE_FIELD_ENUMVAL (type, i);
894 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
895 *highp = TYPE_FIELD_ENUMVAL (type, i);
896 }
897
898 /* Set unsigned indicator if warranted. */
899 if (*lowp >= 0)
900 {
901 TYPE_UNSIGNED (type) = 1;
902 }
903 }
904 else
905 {
906 *lowp = 0;
907 *highp = -1;
908 }
909 return 0;
910 case TYPE_CODE_BOOL:
911 *lowp = 0;
912 *highp = 1;
913 return 0;
914 case TYPE_CODE_INT:
915 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
916 return -1;
917 if (!TYPE_UNSIGNED (type))
918 {
919 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
920 *highp = -*lowp - 1;
921 return 0;
922 }
923 /* ... fall through for unsigned ints ... */
924 case TYPE_CODE_CHAR:
925 *lowp = 0;
926 /* This round-about calculation is to avoid shifting by
927 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
928 if TYPE_LENGTH (type) == sizeof (LONGEST). */
929 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
930 *highp = (*highp - 1) | *highp;
931 return 0;
932 default:
933 return -1;
934 }
935 }
936
937 /* Assuming TYPE is a simple, non-empty array type, compute its upper
938 and lower bound. Save the low bound into LOW_BOUND if not NULL.
939 Save the high bound into HIGH_BOUND if not NULL.
940
941 Return 1 if the operation was successful. Return zero otherwise,
942 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
943
944 We now simply use get_discrete_bounds call to get the values
945 of the low and high bounds.
946 get_discrete_bounds can return three values:
947 1, meaning that index is a range,
948 0, meaning that index is a discrete type,
949 or -1 for failure. */
950
951 int
952 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
953 {
954 struct type *index = TYPE_INDEX_TYPE (type);
955 LONGEST low = 0;
956 LONGEST high = 0;
957 int res;
958
959 if (index == NULL)
960 return 0;
961
962 res = get_discrete_bounds (index, &low, &high);
963 if (res == -1)
964 return 0;
965
966 /* Check if the array bounds are undefined. */
967 if (res == 1
968 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
969 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
970 return 0;
971
972 if (low_bound)
973 *low_bound = low;
974
975 if (high_bound)
976 *high_bound = high;
977
978 return 1;
979 }
980
981 /* Create an array type using either a blank type supplied in
982 RESULT_TYPE, or creating a new type, inheriting the objfile from
983 RANGE_TYPE.
984
985 Elements will be of type ELEMENT_TYPE, the indices will be of type
986 RANGE_TYPE.
987
988 If BIT_STRIDE is not zero, build a packed array type whose element
989 size is BIT_STRIDE. Otherwise, ignore this parameter.
990
991 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
992 sure it is TYPE_CODE_UNDEF before we bash it into an array
993 type? */
994
995 struct type *
996 create_array_type_with_stride (struct type *result_type,
997 struct type *element_type,
998 struct type *range_type,
999 unsigned int bit_stride)
1000 {
1001 if (result_type == NULL)
1002 result_type = alloc_type_copy (range_type);
1003
1004 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1005 TYPE_TARGET_TYPE (result_type) = element_type;
1006 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1007 {
1008 LONGEST low_bound, high_bound;
1009
1010 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1011 low_bound = high_bound = 0;
1012 CHECK_TYPEDEF (element_type);
1013 /* Be careful when setting the array length. Ada arrays can be
1014 empty arrays with the high_bound being smaller than the low_bound.
1015 In such cases, the array length should be zero. */
1016 if (high_bound < low_bound)
1017 TYPE_LENGTH (result_type) = 0;
1018 else if (bit_stride > 0)
1019 TYPE_LENGTH (result_type) =
1020 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1021 else
1022 TYPE_LENGTH (result_type) =
1023 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1024 }
1025 else
1026 {
1027 /* This type is dynamic and its length needs to be computed
1028 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1029 undefined by setting it to zero. Although we are not expected
1030 to trust TYPE_LENGTH in this case, setting the size to zero
1031 allows us to avoid allocating objects of random sizes in case
1032 we accidently do. */
1033 TYPE_LENGTH (result_type) = 0;
1034 }
1035
1036 TYPE_NFIELDS (result_type) = 1;
1037 TYPE_FIELDS (result_type) =
1038 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1039 TYPE_INDEX_TYPE (result_type) = range_type;
1040 TYPE_VPTR_FIELDNO (result_type) = -1;
1041 if (bit_stride > 0)
1042 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1043
1044 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1045 if (TYPE_LENGTH (result_type) == 0)
1046 TYPE_TARGET_STUB (result_type) = 1;
1047
1048 return result_type;
1049 }
1050
1051 /* Same as create_array_type_with_stride but with no bit_stride
1052 (BIT_STRIDE = 0), thus building an unpacked array. */
1053
1054 struct type *
1055 create_array_type (struct type *result_type,
1056 struct type *element_type,
1057 struct type *range_type)
1058 {
1059 return create_array_type_with_stride (result_type, element_type,
1060 range_type, 0);
1061 }
1062
1063 struct type *
1064 lookup_array_range_type (struct type *element_type,
1065 LONGEST low_bound, LONGEST high_bound)
1066 {
1067 struct gdbarch *gdbarch = get_type_arch (element_type);
1068 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1069 struct type *range_type
1070 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1071
1072 return create_array_type (NULL, element_type, range_type);
1073 }
1074
1075 /* Create a string type using either a blank type supplied in
1076 RESULT_TYPE, or creating a new type. String types are similar
1077 enough to array of char types that we can use create_array_type to
1078 build the basic type and then bash it into a string type.
1079
1080 For fixed length strings, the range type contains 0 as the lower
1081 bound and the length of the string minus one as the upper bound.
1082
1083 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1084 sure it is TYPE_CODE_UNDEF before we bash it into a string
1085 type? */
1086
1087 struct type *
1088 create_string_type (struct type *result_type,
1089 struct type *string_char_type,
1090 struct type *range_type)
1091 {
1092 result_type = create_array_type (result_type,
1093 string_char_type,
1094 range_type);
1095 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1096 return result_type;
1097 }
1098
1099 struct type *
1100 lookup_string_range_type (struct type *string_char_type,
1101 LONGEST low_bound, LONGEST high_bound)
1102 {
1103 struct type *result_type;
1104
1105 result_type = lookup_array_range_type (string_char_type,
1106 low_bound, high_bound);
1107 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1108 return result_type;
1109 }
1110
1111 struct type *
1112 create_set_type (struct type *result_type, struct type *domain_type)
1113 {
1114 if (result_type == NULL)
1115 result_type = alloc_type_copy (domain_type);
1116
1117 TYPE_CODE (result_type) = TYPE_CODE_SET;
1118 TYPE_NFIELDS (result_type) = 1;
1119 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1120
1121 if (!TYPE_STUB (domain_type))
1122 {
1123 LONGEST low_bound, high_bound, bit_length;
1124
1125 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1126 low_bound = high_bound = 0;
1127 bit_length = high_bound - low_bound + 1;
1128 TYPE_LENGTH (result_type)
1129 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1130 if (low_bound >= 0)
1131 TYPE_UNSIGNED (result_type) = 1;
1132 }
1133 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1134
1135 return result_type;
1136 }
1137
1138 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1139 and any array types nested inside it. */
1140
1141 void
1142 make_vector_type (struct type *array_type)
1143 {
1144 struct type *inner_array, *elt_type;
1145 int flags;
1146
1147 /* Find the innermost array type, in case the array is
1148 multi-dimensional. */
1149 inner_array = array_type;
1150 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1151 inner_array = TYPE_TARGET_TYPE (inner_array);
1152
1153 elt_type = TYPE_TARGET_TYPE (inner_array);
1154 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1155 {
1156 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1157 elt_type = make_qualified_type (elt_type, flags, NULL);
1158 TYPE_TARGET_TYPE (inner_array) = elt_type;
1159 }
1160
1161 TYPE_VECTOR (array_type) = 1;
1162 }
1163
1164 struct type *
1165 init_vector_type (struct type *elt_type, int n)
1166 {
1167 struct type *array_type;
1168
1169 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1170 make_vector_type (array_type);
1171 return array_type;
1172 }
1173
1174 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1175 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1176 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1177 TYPE doesn't include the offset (that's the value of the MEMBER
1178 itself), but does include the structure type into which it points
1179 (for some reason).
1180
1181 When "smashing" the type, we preserve the objfile that the old type
1182 pointed to, since we aren't changing where the type is actually
1183 allocated. */
1184
1185 void
1186 smash_to_memberptr_type (struct type *type, struct type *domain,
1187 struct type *to_type)
1188 {
1189 smash_type (type);
1190 TYPE_TARGET_TYPE (type) = to_type;
1191 TYPE_DOMAIN_TYPE (type) = domain;
1192 /* Assume that a data member pointer is the same size as a normal
1193 pointer. */
1194 TYPE_LENGTH (type)
1195 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1196 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1197 }
1198
1199 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1200
1201 When "smashing" the type, we preserve the objfile that the old type
1202 pointed to, since we aren't changing where the type is actually
1203 allocated. */
1204
1205 void
1206 smash_to_methodptr_type (struct type *type, struct type *to_type)
1207 {
1208 smash_type (type);
1209 TYPE_TARGET_TYPE (type) = to_type;
1210 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1211 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1212 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1213 }
1214
1215 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1216 METHOD just means `function that gets an extra "this" argument'.
1217
1218 When "smashing" the type, we preserve the objfile that the old type
1219 pointed to, since we aren't changing where the type is actually
1220 allocated. */
1221
1222 void
1223 smash_to_method_type (struct type *type, struct type *domain,
1224 struct type *to_type, struct field *args,
1225 int nargs, int varargs)
1226 {
1227 smash_type (type);
1228 TYPE_TARGET_TYPE (type) = to_type;
1229 TYPE_DOMAIN_TYPE (type) = domain;
1230 TYPE_FIELDS (type) = args;
1231 TYPE_NFIELDS (type) = nargs;
1232 if (varargs)
1233 TYPE_VARARGS (type) = 1;
1234 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1235 TYPE_CODE (type) = TYPE_CODE_METHOD;
1236 }
1237
1238 /* Return a typename for a struct/union/enum type without "struct ",
1239 "union ", or "enum ". If the type has a NULL name, return NULL. */
1240
1241 const char *
1242 type_name_no_tag (const struct type *type)
1243 {
1244 if (TYPE_TAG_NAME (type) != NULL)
1245 return TYPE_TAG_NAME (type);
1246
1247 /* Is there code which expects this to return the name if there is
1248 no tag name? My guess is that this is mainly used for C++ in
1249 cases where the two will always be the same. */
1250 return TYPE_NAME (type);
1251 }
1252
1253 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1254 Since GCC PR debug/47510 DWARF provides associated information to detect the
1255 anonymous class linkage name from its typedef.
1256
1257 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1258 apply it itself. */
1259
1260 const char *
1261 type_name_no_tag_or_error (struct type *type)
1262 {
1263 struct type *saved_type = type;
1264 const char *name;
1265 struct objfile *objfile;
1266
1267 CHECK_TYPEDEF (type);
1268
1269 name = type_name_no_tag (type);
1270 if (name != NULL)
1271 return name;
1272
1273 name = type_name_no_tag (saved_type);
1274 objfile = TYPE_OBJFILE (saved_type);
1275 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1276 name ? name : "<anonymous>",
1277 objfile ? objfile_name (objfile) : "<arch>");
1278 }
1279
1280 /* Lookup a typedef or primitive type named NAME, visible in lexical
1281 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1282 suitably defined. */
1283
1284 struct type *
1285 lookup_typename (const struct language_defn *language,
1286 struct gdbarch *gdbarch, const char *name,
1287 const struct block *block, int noerr)
1288 {
1289 struct symbol *sym;
1290 struct type *type;
1291
1292 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1293 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1294 return SYMBOL_TYPE (sym);
1295
1296 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1297 if (type)
1298 return type;
1299
1300 if (noerr)
1301 return NULL;
1302 error (_("No type named %s."), name);
1303 }
1304
1305 struct type *
1306 lookup_unsigned_typename (const struct language_defn *language,
1307 struct gdbarch *gdbarch, const char *name)
1308 {
1309 char *uns = alloca (strlen (name) + 10);
1310
1311 strcpy (uns, "unsigned ");
1312 strcpy (uns + 9, name);
1313 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1314 }
1315
1316 struct type *
1317 lookup_signed_typename (const struct language_defn *language,
1318 struct gdbarch *gdbarch, const char *name)
1319 {
1320 struct type *t;
1321 char *uns = alloca (strlen (name) + 8);
1322
1323 strcpy (uns, "signed ");
1324 strcpy (uns + 7, name);
1325 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1326 /* If we don't find "signed FOO" just try again with plain "FOO". */
1327 if (t != NULL)
1328 return t;
1329 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1330 }
1331
1332 /* Lookup a structure type named "struct NAME",
1333 visible in lexical block BLOCK. */
1334
1335 struct type *
1336 lookup_struct (const char *name, const struct block *block)
1337 {
1338 struct symbol *sym;
1339
1340 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1341
1342 if (sym == NULL)
1343 {
1344 error (_("No struct type named %s."), name);
1345 }
1346 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1347 {
1348 error (_("This context has class, union or enum %s, not a struct."),
1349 name);
1350 }
1351 return (SYMBOL_TYPE (sym));
1352 }
1353
1354 /* Lookup a union type named "union NAME",
1355 visible in lexical block BLOCK. */
1356
1357 struct type *
1358 lookup_union (const char *name, const struct block *block)
1359 {
1360 struct symbol *sym;
1361 struct type *t;
1362
1363 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1364
1365 if (sym == NULL)
1366 error (_("No union type named %s."), name);
1367
1368 t = SYMBOL_TYPE (sym);
1369
1370 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1371 return t;
1372
1373 /* If we get here, it's not a union. */
1374 error (_("This context has class, struct or enum %s, not a union."),
1375 name);
1376 }
1377
1378 /* Lookup an enum type named "enum NAME",
1379 visible in lexical block BLOCK. */
1380
1381 struct type *
1382 lookup_enum (const char *name, const struct block *block)
1383 {
1384 struct symbol *sym;
1385
1386 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1387 if (sym == NULL)
1388 {
1389 error (_("No enum type named %s."), name);
1390 }
1391 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1392 {
1393 error (_("This context has class, struct or union %s, not an enum."),
1394 name);
1395 }
1396 return (SYMBOL_TYPE (sym));
1397 }
1398
1399 /* Lookup a template type named "template NAME<TYPE>",
1400 visible in lexical block BLOCK. */
1401
1402 struct type *
1403 lookup_template_type (char *name, struct type *type,
1404 const struct block *block)
1405 {
1406 struct symbol *sym;
1407 char *nam = (char *)
1408 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1409
1410 strcpy (nam, name);
1411 strcat (nam, "<");
1412 strcat (nam, TYPE_NAME (type));
1413 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1414
1415 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1416
1417 if (sym == NULL)
1418 {
1419 error (_("No template type named %s."), name);
1420 }
1421 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1422 {
1423 error (_("This context has class, union or enum %s, not a struct."),
1424 name);
1425 }
1426 return (SYMBOL_TYPE (sym));
1427 }
1428
1429 /* Given a type TYPE, lookup the type of the component of type named
1430 NAME.
1431
1432 TYPE can be either a struct or union, or a pointer or reference to
1433 a struct or union. If it is a pointer or reference, its target
1434 type is automatically used. Thus '.' and '->' are interchangable,
1435 as specified for the definitions of the expression element types
1436 STRUCTOP_STRUCT and STRUCTOP_PTR.
1437
1438 If NOERR is nonzero, return zero if NAME is not suitably defined.
1439 If NAME is the name of a baseclass type, return that type. */
1440
1441 struct type *
1442 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1443 {
1444 int i;
1445 char *typename;
1446
1447 for (;;)
1448 {
1449 CHECK_TYPEDEF (type);
1450 if (TYPE_CODE (type) != TYPE_CODE_PTR
1451 && TYPE_CODE (type) != TYPE_CODE_REF)
1452 break;
1453 type = TYPE_TARGET_TYPE (type);
1454 }
1455
1456 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1457 && TYPE_CODE (type) != TYPE_CODE_UNION)
1458 {
1459 typename = type_to_string (type);
1460 make_cleanup (xfree, typename);
1461 error (_("Type %s is not a structure or union type."), typename);
1462 }
1463
1464 #if 0
1465 /* FIXME: This change put in by Michael seems incorrect for the case
1466 where the structure tag name is the same as the member name.
1467 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1468 foo; } bell;" Disabled by fnf. */
1469 {
1470 char *typename;
1471
1472 typename = type_name_no_tag (type);
1473 if (typename != NULL && strcmp (typename, name) == 0)
1474 return type;
1475 }
1476 #endif
1477
1478 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1479 {
1480 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1481
1482 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1483 {
1484 return TYPE_FIELD_TYPE (type, i);
1485 }
1486 else if (!t_field_name || *t_field_name == '\0')
1487 {
1488 struct type *subtype
1489 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1490
1491 if (subtype != NULL)
1492 return subtype;
1493 }
1494 }
1495
1496 /* OK, it's not in this class. Recursively check the baseclasses. */
1497 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1498 {
1499 struct type *t;
1500
1501 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1502 if (t != NULL)
1503 {
1504 return t;
1505 }
1506 }
1507
1508 if (noerr)
1509 {
1510 return NULL;
1511 }
1512
1513 typename = type_to_string (type);
1514 make_cleanup (xfree, typename);
1515 error (_("Type %s has no component named %s."), typename, name);
1516 }
1517
1518 /* Store in *MAX the largest number representable by unsigned integer type
1519 TYPE. */
1520
1521 void
1522 get_unsigned_type_max (struct type *type, ULONGEST *max)
1523 {
1524 unsigned int n;
1525
1526 CHECK_TYPEDEF (type);
1527 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1528 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1529
1530 /* Written this way to avoid overflow. */
1531 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1532 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1533 }
1534
1535 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1536 signed integer type TYPE. */
1537
1538 void
1539 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1540 {
1541 unsigned int n;
1542
1543 CHECK_TYPEDEF (type);
1544 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1545 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1546
1547 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1548 *min = -((ULONGEST) 1 << (n - 1));
1549 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1550 }
1551
1552 /* Lookup the vptr basetype/fieldno values for TYPE.
1553 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1554 vptr_fieldno. Also, if found and basetype is from the same objfile,
1555 cache the results.
1556 If not found, return -1 and ignore BASETYPEP.
1557 Callers should be aware that in some cases (for example,
1558 the type or one of its baseclasses is a stub type and we are
1559 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1560 this function will not be able to find the
1561 virtual function table pointer, and vptr_fieldno will remain -1 and
1562 vptr_basetype will remain NULL or incomplete. */
1563
1564 int
1565 get_vptr_fieldno (struct type *type, struct type **basetypep)
1566 {
1567 CHECK_TYPEDEF (type);
1568
1569 if (TYPE_VPTR_FIELDNO (type) < 0)
1570 {
1571 int i;
1572
1573 /* We must start at zero in case the first (and only) baseclass
1574 is virtual (and hence we cannot share the table pointer). */
1575 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1576 {
1577 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1578 int fieldno;
1579 struct type *basetype;
1580
1581 fieldno = get_vptr_fieldno (baseclass, &basetype);
1582 if (fieldno >= 0)
1583 {
1584 /* If the type comes from a different objfile we can't cache
1585 it, it may have a different lifetime. PR 2384 */
1586 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1587 {
1588 TYPE_VPTR_FIELDNO (type) = fieldno;
1589 TYPE_VPTR_BASETYPE (type) = basetype;
1590 }
1591 if (basetypep)
1592 *basetypep = basetype;
1593 return fieldno;
1594 }
1595 }
1596
1597 /* Not found. */
1598 return -1;
1599 }
1600 else
1601 {
1602 if (basetypep)
1603 *basetypep = TYPE_VPTR_BASETYPE (type);
1604 return TYPE_VPTR_FIELDNO (type);
1605 }
1606 }
1607
1608 static void
1609 stub_noname_complaint (void)
1610 {
1611 complaint (&symfile_complaints, _("stub type has NULL name"));
1612 }
1613
1614 /* See gdbtypes.h. */
1615
1616 int
1617 is_dynamic_type (struct type *type)
1618 {
1619 type = check_typedef (type);
1620
1621 if (TYPE_CODE (type) == TYPE_CODE_REF)
1622 type = check_typedef (TYPE_TARGET_TYPE (type));
1623
1624 switch (TYPE_CODE (type))
1625 {
1626 case TYPE_CODE_ARRAY:
1627 {
1628 const struct type *range_type;
1629
1630 gdb_assert (TYPE_NFIELDS (type) == 1);
1631 range_type = TYPE_INDEX_TYPE (type);
1632 if (!has_static_range (TYPE_RANGE_DATA (range_type)))
1633 return 1;
1634 else
1635 return is_dynamic_type (TYPE_TARGET_TYPE (type));
1636 break;
1637 }
1638 default:
1639 return 0;
1640 break;
1641 }
1642 }
1643
1644 /* Resolves dynamic bound values of an array type TYPE to static ones.
1645 ADDRESS might be needed to resolve the subrange bounds, it is the location
1646 of the associated array. */
1647
1648 static struct type *
1649 resolve_dynamic_bounds (struct type *type, CORE_ADDR addr)
1650 {
1651 CORE_ADDR value;
1652 struct type *elt_type;
1653 struct type *range_type;
1654 struct type *ary_dim;
1655 const struct dynamic_prop *prop;
1656 const struct dwarf2_locexpr_baton *baton;
1657 struct dynamic_prop low_bound, high_bound;
1658
1659 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1660 {
1661 struct type *copy = copy_type (type);
1662
1663 TYPE_TARGET_TYPE (copy)
1664 = resolve_dynamic_bounds (TYPE_TARGET_TYPE (type), addr);
1665
1666 return copy;
1667 }
1668
1669 if (TYPE_CODE (type) == TYPE_CODE_REF)
1670 {
1671 struct type *copy = copy_type (type);
1672 CORE_ADDR target_addr = read_memory_typed_address (addr, type);
1673
1674 TYPE_TARGET_TYPE (copy)
1675 = resolve_dynamic_bounds (TYPE_TARGET_TYPE (type), target_addr);
1676 return copy;
1677 }
1678
1679 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1680
1681 elt_type = type;
1682 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1683
1684 prop = &TYPE_RANGE_DATA (range_type)->low;
1685 if (dwarf2_evaluate_property (prop, addr, &value))
1686 {
1687 low_bound.kind = PROP_CONST;
1688 low_bound.data.const_val = value;
1689 }
1690 else
1691 {
1692 low_bound.kind = PROP_UNDEFINED;
1693 low_bound.data.const_val = 0;
1694 }
1695
1696 prop = &TYPE_RANGE_DATA (range_type)->high;
1697 if (dwarf2_evaluate_property (prop, addr, &value))
1698 {
1699 high_bound.kind = PROP_CONST;
1700 high_bound.data.const_val = value;
1701
1702 if (TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count)
1703 high_bound.data.const_val
1704 = low_bound.data.const_val + high_bound.data.const_val - 1;
1705 }
1706 else
1707 {
1708 high_bound.kind = PROP_UNDEFINED;
1709 high_bound.data.const_val = 0;
1710 }
1711
1712 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1713
1714 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1715 elt_type = resolve_dynamic_bounds (TYPE_TARGET_TYPE (type), addr);
1716 else
1717 elt_type = TYPE_TARGET_TYPE (type);
1718
1719 range_type = create_range_type (NULL,
1720 TYPE_TARGET_TYPE (range_type),
1721 &low_bound, &high_bound);
1722 return create_array_type (copy_type (type),
1723 elt_type,
1724 range_type);
1725 }
1726
1727 /* See gdbtypes.h */
1728
1729 struct type *
1730 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1731 {
1732 struct type *real_type = check_typedef (type);
1733 struct type *resolved_type;
1734
1735 if (!is_dynamic_type (real_type))
1736 return type;
1737
1738 resolved_type = resolve_dynamic_bounds (type, addr);
1739
1740 return resolved_type;
1741 }
1742
1743 /* Find the real type of TYPE. This function returns the real type,
1744 after removing all layers of typedefs, and completing opaque or stub
1745 types. Completion changes the TYPE argument, but stripping of
1746 typedefs does not.
1747
1748 Instance flags (e.g. const/volatile) are preserved as typedefs are
1749 stripped. If necessary a new qualified form of the underlying type
1750 is created.
1751
1752 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1753 not been computed and we're either in the middle of reading symbols, or
1754 there was no name for the typedef in the debug info.
1755
1756 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1757 QUITs in the symbol reading code can also throw.
1758 Thus this function can throw an exception.
1759
1760 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1761 the target type.
1762
1763 If this is a stubbed struct (i.e. declared as struct foo *), see if
1764 we can find a full definition in some other file. If so, copy this
1765 definition, so we can use it in future. There used to be a comment
1766 (but not any code) that if we don't find a full definition, we'd
1767 set a flag so we don't spend time in the future checking the same
1768 type. That would be a mistake, though--we might load in more
1769 symbols which contain a full definition for the type. */
1770
1771 struct type *
1772 check_typedef (struct type *type)
1773 {
1774 struct type *orig_type = type;
1775 /* While we're removing typedefs, we don't want to lose qualifiers.
1776 E.g., const/volatile. */
1777 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1778
1779 gdb_assert (type);
1780
1781 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1782 {
1783 if (!TYPE_TARGET_TYPE (type))
1784 {
1785 const char *name;
1786 struct symbol *sym;
1787
1788 /* It is dangerous to call lookup_symbol if we are currently
1789 reading a symtab. Infinite recursion is one danger. */
1790 if (currently_reading_symtab)
1791 return make_qualified_type (type, instance_flags, NULL);
1792
1793 name = type_name_no_tag (type);
1794 /* FIXME: shouldn't we separately check the TYPE_NAME and
1795 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1796 VAR_DOMAIN as appropriate? (this code was written before
1797 TYPE_NAME and TYPE_TAG_NAME were separate). */
1798 if (name == NULL)
1799 {
1800 stub_noname_complaint ();
1801 return make_qualified_type (type, instance_flags, NULL);
1802 }
1803 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1804 if (sym)
1805 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1806 else /* TYPE_CODE_UNDEF */
1807 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1808 }
1809 type = TYPE_TARGET_TYPE (type);
1810
1811 /* Preserve the instance flags as we traverse down the typedef chain.
1812
1813 Handling address spaces/classes is nasty, what do we do if there's a
1814 conflict?
1815 E.g., what if an outer typedef marks the type as class_1 and an inner
1816 typedef marks the type as class_2?
1817 This is the wrong place to do such error checking. We leave it to
1818 the code that created the typedef in the first place to flag the
1819 error. We just pick the outer address space (akin to letting the
1820 outer cast in a chain of casting win), instead of assuming
1821 "it can't happen". */
1822 {
1823 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1824 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1825 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1826 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1827
1828 /* Treat code vs data spaces and address classes separately. */
1829 if ((instance_flags & ALL_SPACES) != 0)
1830 new_instance_flags &= ~ALL_SPACES;
1831 if ((instance_flags & ALL_CLASSES) != 0)
1832 new_instance_flags &= ~ALL_CLASSES;
1833
1834 instance_flags |= new_instance_flags;
1835 }
1836 }
1837
1838 /* If this is a struct/class/union with no fields, then check
1839 whether a full definition exists somewhere else. This is for
1840 systems where a type definition with no fields is issued for such
1841 types, instead of identifying them as stub types in the first
1842 place. */
1843
1844 if (TYPE_IS_OPAQUE (type)
1845 && opaque_type_resolution
1846 && !currently_reading_symtab)
1847 {
1848 const char *name = type_name_no_tag (type);
1849 struct type *newtype;
1850
1851 if (name == NULL)
1852 {
1853 stub_noname_complaint ();
1854 return make_qualified_type (type, instance_flags, NULL);
1855 }
1856 newtype = lookup_transparent_type (name);
1857
1858 if (newtype)
1859 {
1860 /* If the resolved type and the stub are in the same
1861 objfile, then replace the stub type with the real deal.
1862 But if they're in separate objfiles, leave the stub
1863 alone; we'll just look up the transparent type every time
1864 we call check_typedef. We can't create pointers between
1865 types allocated to different objfiles, since they may
1866 have different lifetimes. Trying to copy NEWTYPE over to
1867 TYPE's objfile is pointless, too, since you'll have to
1868 move over any other types NEWTYPE refers to, which could
1869 be an unbounded amount of stuff. */
1870 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1871 type = make_qualified_type (newtype,
1872 TYPE_INSTANCE_FLAGS (type),
1873 type);
1874 else
1875 type = newtype;
1876 }
1877 }
1878 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1879 types. */
1880 else if (TYPE_STUB (type) && !currently_reading_symtab)
1881 {
1882 const char *name = type_name_no_tag (type);
1883 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1884 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1885 as appropriate? (this code was written before TYPE_NAME and
1886 TYPE_TAG_NAME were separate). */
1887 struct symbol *sym;
1888
1889 if (name == NULL)
1890 {
1891 stub_noname_complaint ();
1892 return make_qualified_type (type, instance_flags, NULL);
1893 }
1894 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1895 if (sym)
1896 {
1897 /* Same as above for opaque types, we can replace the stub
1898 with the complete type only if they are in the same
1899 objfile. */
1900 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1901 type = make_qualified_type (SYMBOL_TYPE (sym),
1902 TYPE_INSTANCE_FLAGS (type),
1903 type);
1904 else
1905 type = SYMBOL_TYPE (sym);
1906 }
1907 }
1908
1909 if (TYPE_TARGET_STUB (type))
1910 {
1911 struct type *range_type;
1912 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1913
1914 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1915 {
1916 /* Nothing we can do. */
1917 }
1918 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1919 {
1920 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1921 TYPE_TARGET_STUB (type) = 0;
1922 }
1923 }
1924
1925 type = make_qualified_type (type, instance_flags, NULL);
1926
1927 /* Cache TYPE_LENGTH for future use. */
1928 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1929
1930 return type;
1931 }
1932
1933 /* Parse a type expression in the string [P..P+LENGTH). If an error
1934 occurs, silently return a void type. */
1935
1936 static struct type *
1937 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1938 {
1939 struct ui_file *saved_gdb_stderr;
1940 struct type *type = NULL; /* Initialize to keep gcc happy. */
1941 volatile struct gdb_exception except;
1942
1943 /* Suppress error messages. */
1944 saved_gdb_stderr = gdb_stderr;
1945 gdb_stderr = ui_file_new ();
1946
1947 /* Call parse_and_eval_type() without fear of longjmp()s. */
1948 TRY_CATCH (except, RETURN_MASK_ERROR)
1949 {
1950 type = parse_and_eval_type (p, length);
1951 }
1952
1953 if (except.reason < 0)
1954 type = builtin_type (gdbarch)->builtin_void;
1955
1956 /* Stop suppressing error messages. */
1957 ui_file_delete (gdb_stderr);
1958 gdb_stderr = saved_gdb_stderr;
1959
1960 return type;
1961 }
1962
1963 /* Ugly hack to convert method stubs into method types.
1964
1965 He ain't kiddin'. This demangles the name of the method into a
1966 string including argument types, parses out each argument type,
1967 generates a string casting a zero to that type, evaluates the
1968 string, and stuffs the resulting type into an argtype vector!!!
1969 Then it knows the type of the whole function (including argument
1970 types for overloading), which info used to be in the stab's but was
1971 removed to hack back the space required for them. */
1972
1973 static void
1974 check_stub_method (struct type *type, int method_id, int signature_id)
1975 {
1976 struct gdbarch *gdbarch = get_type_arch (type);
1977 struct fn_field *f;
1978 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1979 char *demangled_name = gdb_demangle (mangled_name,
1980 DMGL_PARAMS | DMGL_ANSI);
1981 char *argtypetext, *p;
1982 int depth = 0, argcount = 1;
1983 struct field *argtypes;
1984 struct type *mtype;
1985
1986 /* Make sure we got back a function string that we can use. */
1987 if (demangled_name)
1988 p = strchr (demangled_name, '(');
1989 else
1990 p = NULL;
1991
1992 if (demangled_name == NULL || p == NULL)
1993 error (_("Internal: Cannot demangle mangled name `%s'."),
1994 mangled_name);
1995
1996 /* Now, read in the parameters that define this type. */
1997 p += 1;
1998 argtypetext = p;
1999 while (*p)
2000 {
2001 if (*p == '(' || *p == '<')
2002 {
2003 depth += 1;
2004 }
2005 else if (*p == ')' || *p == '>')
2006 {
2007 depth -= 1;
2008 }
2009 else if (*p == ',' && depth == 0)
2010 {
2011 argcount += 1;
2012 }
2013
2014 p += 1;
2015 }
2016
2017 /* If we read one argument and it was ``void'', don't count it. */
2018 if (strncmp (argtypetext, "(void)", 6) == 0)
2019 argcount -= 1;
2020
2021 /* We need one extra slot, for the THIS pointer. */
2022
2023 argtypes = (struct field *)
2024 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2025 p = argtypetext;
2026
2027 /* Add THIS pointer for non-static methods. */
2028 f = TYPE_FN_FIELDLIST1 (type, method_id);
2029 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2030 argcount = 0;
2031 else
2032 {
2033 argtypes[0].type = lookup_pointer_type (type);
2034 argcount = 1;
2035 }
2036
2037 if (*p != ')') /* () means no args, skip while. */
2038 {
2039 depth = 0;
2040 while (*p)
2041 {
2042 if (depth <= 0 && (*p == ',' || *p == ')'))
2043 {
2044 /* Avoid parsing of ellipsis, they will be handled below.
2045 Also avoid ``void'' as above. */
2046 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2047 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2048 {
2049 argtypes[argcount].type =
2050 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2051 argcount += 1;
2052 }
2053 argtypetext = p + 1;
2054 }
2055
2056 if (*p == '(' || *p == '<')
2057 {
2058 depth += 1;
2059 }
2060 else if (*p == ')' || *p == '>')
2061 {
2062 depth -= 1;
2063 }
2064
2065 p += 1;
2066 }
2067 }
2068
2069 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2070
2071 /* Now update the old "stub" type into a real type. */
2072 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2073 TYPE_DOMAIN_TYPE (mtype) = type;
2074 TYPE_FIELDS (mtype) = argtypes;
2075 TYPE_NFIELDS (mtype) = argcount;
2076 TYPE_STUB (mtype) = 0;
2077 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2078 if (p[-2] == '.')
2079 TYPE_VARARGS (mtype) = 1;
2080
2081 xfree (demangled_name);
2082 }
2083
2084 /* This is the external interface to check_stub_method, above. This
2085 function unstubs all of the signatures for TYPE's METHOD_ID method
2086 name. After calling this function TYPE_FN_FIELD_STUB will be
2087 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2088 correct.
2089
2090 This function unfortunately can not die until stabs do. */
2091
2092 void
2093 check_stub_method_group (struct type *type, int method_id)
2094 {
2095 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2096 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2097 int j, found_stub = 0;
2098
2099 for (j = 0; j < len; j++)
2100 if (TYPE_FN_FIELD_STUB (f, j))
2101 {
2102 found_stub = 1;
2103 check_stub_method (type, method_id, j);
2104 }
2105
2106 /* GNU v3 methods with incorrect names were corrected when we read
2107 in type information, because it was cheaper to do it then. The
2108 only GNU v2 methods with incorrect method names are operators and
2109 destructors; destructors were also corrected when we read in type
2110 information.
2111
2112 Therefore the only thing we need to handle here are v2 operator
2113 names. */
2114 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2115 {
2116 int ret;
2117 char dem_opname[256];
2118
2119 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2120 method_id),
2121 dem_opname, DMGL_ANSI);
2122 if (!ret)
2123 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2124 method_id),
2125 dem_opname, 0);
2126 if (ret)
2127 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2128 }
2129 }
2130
2131 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2132 const struct cplus_struct_type cplus_struct_default = { };
2133
2134 void
2135 allocate_cplus_struct_type (struct type *type)
2136 {
2137 if (HAVE_CPLUS_STRUCT (type))
2138 /* Structure was already allocated. Nothing more to do. */
2139 return;
2140
2141 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2142 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2143 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2144 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2145 }
2146
2147 const struct gnat_aux_type gnat_aux_default =
2148 { NULL };
2149
2150 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2151 and allocate the associated gnat-specific data. The gnat-specific
2152 data is also initialized to gnat_aux_default. */
2153
2154 void
2155 allocate_gnat_aux_type (struct type *type)
2156 {
2157 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2158 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2159 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2160 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2161 }
2162
2163 /* Helper function to initialize the standard scalar types.
2164
2165 If NAME is non-NULL, then it is used to initialize the type name.
2166 Note that NAME is not copied; it is required to have a lifetime at
2167 least as long as OBJFILE. */
2168
2169 struct type *
2170 init_type (enum type_code code, int length, int flags,
2171 const char *name, struct objfile *objfile)
2172 {
2173 struct type *type;
2174
2175 type = alloc_type (objfile);
2176 TYPE_CODE (type) = code;
2177 TYPE_LENGTH (type) = length;
2178
2179 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2180 if (flags & TYPE_FLAG_UNSIGNED)
2181 TYPE_UNSIGNED (type) = 1;
2182 if (flags & TYPE_FLAG_NOSIGN)
2183 TYPE_NOSIGN (type) = 1;
2184 if (flags & TYPE_FLAG_STUB)
2185 TYPE_STUB (type) = 1;
2186 if (flags & TYPE_FLAG_TARGET_STUB)
2187 TYPE_TARGET_STUB (type) = 1;
2188 if (flags & TYPE_FLAG_STATIC)
2189 TYPE_STATIC (type) = 1;
2190 if (flags & TYPE_FLAG_PROTOTYPED)
2191 TYPE_PROTOTYPED (type) = 1;
2192 if (flags & TYPE_FLAG_INCOMPLETE)
2193 TYPE_INCOMPLETE (type) = 1;
2194 if (flags & TYPE_FLAG_VARARGS)
2195 TYPE_VARARGS (type) = 1;
2196 if (flags & TYPE_FLAG_VECTOR)
2197 TYPE_VECTOR (type) = 1;
2198 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2199 TYPE_STUB_SUPPORTED (type) = 1;
2200 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2201 TYPE_FIXED_INSTANCE (type) = 1;
2202 if (flags & TYPE_FLAG_GNU_IFUNC)
2203 TYPE_GNU_IFUNC (type) = 1;
2204
2205 TYPE_NAME (type) = name;
2206
2207 /* C++ fancies. */
2208
2209 if (name && strcmp (name, "char") == 0)
2210 TYPE_NOSIGN (type) = 1;
2211
2212 switch (code)
2213 {
2214 case TYPE_CODE_STRUCT:
2215 case TYPE_CODE_UNION:
2216 case TYPE_CODE_NAMESPACE:
2217 INIT_CPLUS_SPECIFIC (type);
2218 break;
2219 case TYPE_CODE_FLT:
2220 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2221 break;
2222 case TYPE_CODE_FUNC:
2223 INIT_FUNC_SPECIFIC (type);
2224 break;
2225 }
2226 return type;
2227 }
2228 \f
2229 /* Queries on types. */
2230
2231 int
2232 can_dereference (struct type *t)
2233 {
2234 /* FIXME: Should we return true for references as well as
2235 pointers? */
2236 CHECK_TYPEDEF (t);
2237 return
2238 (t != NULL
2239 && TYPE_CODE (t) == TYPE_CODE_PTR
2240 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2241 }
2242
2243 int
2244 is_integral_type (struct type *t)
2245 {
2246 CHECK_TYPEDEF (t);
2247 return
2248 ((t != NULL)
2249 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2250 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2251 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2252 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2253 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2254 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2255 }
2256
2257 /* Return true if TYPE is scalar. */
2258
2259 static int
2260 is_scalar_type (struct type *type)
2261 {
2262 CHECK_TYPEDEF (type);
2263
2264 switch (TYPE_CODE (type))
2265 {
2266 case TYPE_CODE_ARRAY:
2267 case TYPE_CODE_STRUCT:
2268 case TYPE_CODE_UNION:
2269 case TYPE_CODE_SET:
2270 case TYPE_CODE_STRING:
2271 return 0;
2272 default:
2273 return 1;
2274 }
2275 }
2276
2277 /* Return true if T is scalar, or a composite type which in practice has
2278 the memory layout of a scalar type. E.g., an array or struct with only
2279 one scalar element inside it, or a union with only scalar elements. */
2280
2281 int
2282 is_scalar_type_recursive (struct type *t)
2283 {
2284 CHECK_TYPEDEF (t);
2285
2286 if (is_scalar_type (t))
2287 return 1;
2288 /* Are we dealing with an array or string of known dimensions? */
2289 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2290 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2291 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2292 {
2293 LONGEST low_bound, high_bound;
2294 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2295
2296 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2297
2298 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2299 }
2300 /* Are we dealing with a struct with one element? */
2301 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2302 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2303 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2304 {
2305 int i, n = TYPE_NFIELDS (t);
2306
2307 /* If all elements of the union are scalar, then the union is scalar. */
2308 for (i = 0; i < n; i++)
2309 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2310 return 0;
2311
2312 return 1;
2313 }
2314
2315 return 0;
2316 }
2317
2318 /* A helper function which returns true if types A and B represent the
2319 "same" class type. This is true if the types have the same main
2320 type, or the same name. */
2321
2322 int
2323 class_types_same_p (const struct type *a, const struct type *b)
2324 {
2325 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2326 || (TYPE_NAME (a) && TYPE_NAME (b)
2327 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2328 }
2329
2330 /* If BASE is an ancestor of DCLASS return the distance between them.
2331 otherwise return -1;
2332 eg:
2333
2334 class A {};
2335 class B: public A {};
2336 class C: public B {};
2337 class D: C {};
2338
2339 distance_to_ancestor (A, A, 0) = 0
2340 distance_to_ancestor (A, B, 0) = 1
2341 distance_to_ancestor (A, C, 0) = 2
2342 distance_to_ancestor (A, D, 0) = 3
2343
2344 If PUBLIC is 1 then only public ancestors are considered,
2345 and the function returns the distance only if BASE is a public ancestor
2346 of DCLASS.
2347 Eg:
2348
2349 distance_to_ancestor (A, D, 1) = -1. */
2350
2351 static int
2352 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2353 {
2354 int i;
2355 int d;
2356
2357 CHECK_TYPEDEF (base);
2358 CHECK_TYPEDEF (dclass);
2359
2360 if (class_types_same_p (base, dclass))
2361 return 0;
2362
2363 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2364 {
2365 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2366 continue;
2367
2368 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2369 if (d >= 0)
2370 return 1 + d;
2371 }
2372
2373 return -1;
2374 }
2375
2376 /* Check whether BASE is an ancestor or base class or DCLASS
2377 Return 1 if so, and 0 if not.
2378 Note: If BASE and DCLASS are of the same type, this function
2379 will return 1. So for some class A, is_ancestor (A, A) will
2380 return 1. */
2381
2382 int
2383 is_ancestor (struct type *base, struct type *dclass)
2384 {
2385 return distance_to_ancestor (base, dclass, 0) >= 0;
2386 }
2387
2388 /* Like is_ancestor, but only returns true when BASE is a public
2389 ancestor of DCLASS. */
2390
2391 int
2392 is_public_ancestor (struct type *base, struct type *dclass)
2393 {
2394 return distance_to_ancestor (base, dclass, 1) >= 0;
2395 }
2396
2397 /* A helper function for is_unique_ancestor. */
2398
2399 static int
2400 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2401 int *offset,
2402 const gdb_byte *valaddr, int embedded_offset,
2403 CORE_ADDR address, struct value *val)
2404 {
2405 int i, count = 0;
2406
2407 CHECK_TYPEDEF (base);
2408 CHECK_TYPEDEF (dclass);
2409
2410 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2411 {
2412 struct type *iter;
2413 int this_offset;
2414
2415 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2416
2417 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2418 address, val);
2419
2420 if (class_types_same_p (base, iter))
2421 {
2422 /* If this is the first subclass, set *OFFSET and set count
2423 to 1. Otherwise, if this is at the same offset as
2424 previous instances, do nothing. Otherwise, increment
2425 count. */
2426 if (*offset == -1)
2427 {
2428 *offset = this_offset;
2429 count = 1;
2430 }
2431 else if (this_offset == *offset)
2432 {
2433 /* Nothing. */
2434 }
2435 else
2436 ++count;
2437 }
2438 else
2439 count += is_unique_ancestor_worker (base, iter, offset,
2440 valaddr,
2441 embedded_offset + this_offset,
2442 address, val);
2443 }
2444
2445 return count;
2446 }
2447
2448 /* Like is_ancestor, but only returns true if BASE is a unique base
2449 class of the type of VAL. */
2450
2451 int
2452 is_unique_ancestor (struct type *base, struct value *val)
2453 {
2454 int offset = -1;
2455
2456 return is_unique_ancestor_worker (base, value_type (val), &offset,
2457 value_contents_for_printing (val),
2458 value_embedded_offset (val),
2459 value_address (val), val) == 1;
2460 }
2461
2462 \f
2463 /* Overload resolution. */
2464
2465 /* Return the sum of the rank of A with the rank of B. */
2466
2467 struct rank
2468 sum_ranks (struct rank a, struct rank b)
2469 {
2470 struct rank c;
2471 c.rank = a.rank + b.rank;
2472 c.subrank = a.subrank + b.subrank;
2473 return c;
2474 }
2475
2476 /* Compare rank A and B and return:
2477 0 if a = b
2478 1 if a is better than b
2479 -1 if b is better than a. */
2480
2481 int
2482 compare_ranks (struct rank a, struct rank b)
2483 {
2484 if (a.rank == b.rank)
2485 {
2486 if (a.subrank == b.subrank)
2487 return 0;
2488 if (a.subrank < b.subrank)
2489 return 1;
2490 if (a.subrank > b.subrank)
2491 return -1;
2492 }
2493
2494 if (a.rank < b.rank)
2495 return 1;
2496
2497 /* a.rank > b.rank */
2498 return -1;
2499 }
2500
2501 /* Functions for overload resolution begin here. */
2502
2503 /* Compare two badness vectors A and B and return the result.
2504 0 => A and B are identical
2505 1 => A and B are incomparable
2506 2 => A is better than B
2507 3 => A is worse than B */
2508
2509 int
2510 compare_badness (struct badness_vector *a, struct badness_vector *b)
2511 {
2512 int i;
2513 int tmp;
2514 short found_pos = 0; /* any positives in c? */
2515 short found_neg = 0; /* any negatives in c? */
2516
2517 /* differing lengths => incomparable */
2518 if (a->length != b->length)
2519 return 1;
2520
2521 /* Subtract b from a */
2522 for (i = 0; i < a->length; i++)
2523 {
2524 tmp = compare_ranks (b->rank[i], a->rank[i]);
2525 if (tmp > 0)
2526 found_pos = 1;
2527 else if (tmp < 0)
2528 found_neg = 1;
2529 }
2530
2531 if (found_pos)
2532 {
2533 if (found_neg)
2534 return 1; /* incomparable */
2535 else
2536 return 3; /* A > B */
2537 }
2538 else
2539 /* no positives */
2540 {
2541 if (found_neg)
2542 return 2; /* A < B */
2543 else
2544 return 0; /* A == B */
2545 }
2546 }
2547
2548 /* Rank a function by comparing its parameter types (PARMS, length
2549 NPARMS), to the types of an argument list (ARGS, length NARGS).
2550 Return a pointer to a badness vector. This has NARGS + 1
2551 entries. */
2552
2553 struct badness_vector *
2554 rank_function (struct type **parms, int nparms,
2555 struct value **args, int nargs)
2556 {
2557 int i;
2558 struct badness_vector *bv;
2559 int min_len = nparms < nargs ? nparms : nargs;
2560
2561 bv = xmalloc (sizeof (struct badness_vector));
2562 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2563 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2564
2565 /* First compare the lengths of the supplied lists.
2566 If there is a mismatch, set it to a high value. */
2567
2568 /* pai/1997-06-03 FIXME: when we have debug info about default
2569 arguments and ellipsis parameter lists, we should consider those
2570 and rank the length-match more finely. */
2571
2572 LENGTH_MATCH (bv) = (nargs != nparms)
2573 ? LENGTH_MISMATCH_BADNESS
2574 : EXACT_MATCH_BADNESS;
2575
2576 /* Now rank all the parameters of the candidate function. */
2577 for (i = 1; i <= min_len; i++)
2578 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2579 args[i - 1]);
2580
2581 /* If more arguments than parameters, add dummy entries. */
2582 for (i = min_len + 1; i <= nargs; i++)
2583 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2584
2585 return bv;
2586 }
2587
2588 /* Compare the names of two integer types, assuming that any sign
2589 qualifiers have been checked already. We do it this way because
2590 there may be an "int" in the name of one of the types. */
2591
2592 static int
2593 integer_types_same_name_p (const char *first, const char *second)
2594 {
2595 int first_p, second_p;
2596
2597 /* If both are shorts, return 1; if neither is a short, keep
2598 checking. */
2599 first_p = (strstr (first, "short") != NULL);
2600 second_p = (strstr (second, "short") != NULL);
2601 if (first_p && second_p)
2602 return 1;
2603 if (first_p || second_p)
2604 return 0;
2605
2606 /* Likewise for long. */
2607 first_p = (strstr (first, "long") != NULL);
2608 second_p = (strstr (second, "long") != NULL);
2609 if (first_p && second_p)
2610 return 1;
2611 if (first_p || second_p)
2612 return 0;
2613
2614 /* Likewise for char. */
2615 first_p = (strstr (first, "char") != NULL);
2616 second_p = (strstr (second, "char") != NULL);
2617 if (first_p && second_p)
2618 return 1;
2619 if (first_p || second_p)
2620 return 0;
2621
2622 /* They must both be ints. */
2623 return 1;
2624 }
2625
2626 /* Compares type A to type B returns 1 if the represent the same type
2627 0 otherwise. */
2628
2629 int
2630 types_equal (struct type *a, struct type *b)
2631 {
2632 /* Identical type pointers. */
2633 /* However, this still doesn't catch all cases of same type for b
2634 and a. The reason is that builtin types are different from
2635 the same ones constructed from the object. */
2636 if (a == b)
2637 return 1;
2638
2639 /* Resolve typedefs */
2640 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2641 a = check_typedef (a);
2642 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2643 b = check_typedef (b);
2644
2645 /* If after resolving typedefs a and b are not of the same type
2646 code then they are not equal. */
2647 if (TYPE_CODE (a) != TYPE_CODE (b))
2648 return 0;
2649
2650 /* If a and b are both pointers types or both reference types then
2651 they are equal of the same type iff the objects they refer to are
2652 of the same type. */
2653 if (TYPE_CODE (a) == TYPE_CODE_PTR
2654 || TYPE_CODE (a) == TYPE_CODE_REF)
2655 return types_equal (TYPE_TARGET_TYPE (a),
2656 TYPE_TARGET_TYPE (b));
2657
2658 /* Well, damnit, if the names are exactly the same, I'll say they
2659 are exactly the same. This happens when we generate method
2660 stubs. The types won't point to the same address, but they
2661 really are the same. */
2662
2663 if (TYPE_NAME (a) && TYPE_NAME (b)
2664 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2665 return 1;
2666
2667 /* Check if identical after resolving typedefs. */
2668 if (a == b)
2669 return 1;
2670
2671 /* Two function types are equal if their argument and return types
2672 are equal. */
2673 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2674 {
2675 int i;
2676
2677 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2678 return 0;
2679
2680 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2681 return 0;
2682
2683 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2684 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2685 return 0;
2686
2687 return 1;
2688 }
2689
2690 return 0;
2691 }
2692 \f
2693 /* Deep comparison of types. */
2694
2695 /* An entry in the type-equality bcache. */
2696
2697 typedef struct type_equality_entry
2698 {
2699 struct type *type1, *type2;
2700 } type_equality_entry_d;
2701
2702 DEF_VEC_O (type_equality_entry_d);
2703
2704 /* A helper function to compare two strings. Returns 1 if they are
2705 the same, 0 otherwise. Handles NULLs properly. */
2706
2707 static int
2708 compare_maybe_null_strings (const char *s, const char *t)
2709 {
2710 if (s == NULL && t != NULL)
2711 return 0;
2712 else if (s != NULL && t == NULL)
2713 return 0;
2714 else if (s == NULL && t== NULL)
2715 return 1;
2716 return strcmp (s, t) == 0;
2717 }
2718
2719 /* A helper function for check_types_worklist that checks two types for
2720 "deep" equality. Returns non-zero if the types are considered the
2721 same, zero otherwise. */
2722
2723 static int
2724 check_types_equal (struct type *type1, struct type *type2,
2725 VEC (type_equality_entry_d) **worklist)
2726 {
2727 CHECK_TYPEDEF (type1);
2728 CHECK_TYPEDEF (type2);
2729
2730 if (type1 == type2)
2731 return 1;
2732
2733 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2734 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2735 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2736 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2737 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2738 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2739 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2740 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2741 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2742 return 0;
2743
2744 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2745 TYPE_TAG_NAME (type2)))
2746 return 0;
2747 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2748 return 0;
2749
2750 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2751 {
2752 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2753 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2754 return 0;
2755 }
2756 else
2757 {
2758 int i;
2759
2760 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2761 {
2762 const struct field *field1 = &TYPE_FIELD (type1, i);
2763 const struct field *field2 = &TYPE_FIELD (type2, i);
2764 struct type_equality_entry entry;
2765
2766 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2767 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2768 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2769 return 0;
2770 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2771 FIELD_NAME (*field2)))
2772 return 0;
2773 switch (FIELD_LOC_KIND (*field1))
2774 {
2775 case FIELD_LOC_KIND_BITPOS:
2776 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2777 return 0;
2778 break;
2779 case FIELD_LOC_KIND_ENUMVAL:
2780 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2781 return 0;
2782 break;
2783 case FIELD_LOC_KIND_PHYSADDR:
2784 if (FIELD_STATIC_PHYSADDR (*field1)
2785 != FIELD_STATIC_PHYSADDR (*field2))
2786 return 0;
2787 break;
2788 case FIELD_LOC_KIND_PHYSNAME:
2789 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2790 FIELD_STATIC_PHYSNAME (*field2)))
2791 return 0;
2792 break;
2793 case FIELD_LOC_KIND_DWARF_BLOCK:
2794 {
2795 struct dwarf2_locexpr_baton *block1, *block2;
2796
2797 block1 = FIELD_DWARF_BLOCK (*field1);
2798 block2 = FIELD_DWARF_BLOCK (*field2);
2799 if (block1->per_cu != block2->per_cu
2800 || block1->size != block2->size
2801 || memcmp (block1->data, block2->data, block1->size) != 0)
2802 return 0;
2803 }
2804 break;
2805 default:
2806 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
2807 "%d by check_types_equal"),
2808 FIELD_LOC_KIND (*field1));
2809 }
2810
2811 entry.type1 = FIELD_TYPE (*field1);
2812 entry.type2 = FIELD_TYPE (*field2);
2813 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2814 }
2815 }
2816
2817 if (TYPE_TARGET_TYPE (type1) != NULL)
2818 {
2819 struct type_equality_entry entry;
2820
2821 if (TYPE_TARGET_TYPE (type2) == NULL)
2822 return 0;
2823
2824 entry.type1 = TYPE_TARGET_TYPE (type1);
2825 entry.type2 = TYPE_TARGET_TYPE (type2);
2826 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2827 }
2828 else if (TYPE_TARGET_TYPE (type2) != NULL)
2829 return 0;
2830
2831 return 1;
2832 }
2833
2834 /* Check types on a worklist for equality. Returns zero if any pair
2835 is not equal, non-zero if they are all considered equal. */
2836
2837 static int
2838 check_types_worklist (VEC (type_equality_entry_d) **worklist,
2839 struct bcache *cache)
2840 {
2841 while (!VEC_empty (type_equality_entry_d, *worklist))
2842 {
2843 struct type_equality_entry entry;
2844 int added;
2845
2846 entry = *VEC_last (type_equality_entry_d, *worklist);
2847 VEC_pop (type_equality_entry_d, *worklist);
2848
2849 /* If the type pair has already been visited, we know it is
2850 ok. */
2851 bcache_full (&entry, sizeof (entry), cache, &added);
2852 if (!added)
2853 continue;
2854
2855 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
2856 return 0;
2857 }
2858
2859 return 1;
2860 }
2861
2862 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
2863 "deep comparison". Otherwise return zero. */
2864
2865 int
2866 types_deeply_equal (struct type *type1, struct type *type2)
2867 {
2868 volatile struct gdb_exception except;
2869 int result = 0;
2870 struct bcache *cache;
2871 VEC (type_equality_entry_d) *worklist = NULL;
2872 struct type_equality_entry entry;
2873
2874 gdb_assert (type1 != NULL && type2 != NULL);
2875
2876 /* Early exit for the simple case. */
2877 if (type1 == type2)
2878 return 1;
2879
2880 cache = bcache_xmalloc (NULL, NULL);
2881
2882 entry.type1 = type1;
2883 entry.type2 = type2;
2884 VEC_safe_push (type_equality_entry_d, worklist, &entry);
2885
2886 TRY_CATCH (except, RETURN_MASK_ALL)
2887 {
2888 result = check_types_worklist (&worklist, cache);
2889 }
2890 /* check_types_worklist calls several nested helper functions,
2891 some of which can raise a GDB Exception, so we just check
2892 and rethrow here. If there is a GDB exception, a comparison
2893 is not capable (or trusted), so exit. */
2894 bcache_xfree (cache);
2895 VEC_free (type_equality_entry_d, worklist);
2896 /* Rethrow if there was a problem. */
2897 if (except.reason < 0)
2898 throw_exception (except);
2899
2900 return result;
2901 }
2902 \f
2903 /* Compare one type (PARM) for compatibility with another (ARG).
2904 * PARM is intended to be the parameter type of a function; and
2905 * ARG is the supplied argument's type. This function tests if
2906 * the latter can be converted to the former.
2907 * VALUE is the argument's value or NULL if none (or called recursively)
2908 *
2909 * Return 0 if they are identical types;
2910 * Otherwise, return an integer which corresponds to how compatible
2911 * PARM is to ARG. The higher the return value, the worse the match.
2912 * Generally the "bad" conversions are all uniformly assigned a 100. */
2913
2914 struct rank
2915 rank_one_type (struct type *parm, struct type *arg, struct value *value)
2916 {
2917 struct rank rank = {0,0};
2918
2919 if (types_equal (parm, arg))
2920 return EXACT_MATCH_BADNESS;
2921
2922 /* Resolve typedefs */
2923 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2924 parm = check_typedef (parm);
2925 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2926 arg = check_typedef (arg);
2927
2928 /* See through references, since we can almost make non-references
2929 references. */
2930 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2931 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
2932 REFERENCE_CONVERSION_BADNESS));
2933 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2934 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
2935 REFERENCE_CONVERSION_BADNESS));
2936 if (overload_debug)
2937 /* Debugging only. */
2938 fprintf_filtered (gdb_stderr,
2939 "------ Arg is %s [%d], parm is %s [%d]\n",
2940 TYPE_NAME (arg), TYPE_CODE (arg),
2941 TYPE_NAME (parm), TYPE_CODE (parm));
2942
2943 /* x -> y means arg of type x being supplied for parameter of type y. */
2944
2945 switch (TYPE_CODE (parm))
2946 {
2947 case TYPE_CODE_PTR:
2948 switch (TYPE_CODE (arg))
2949 {
2950 case TYPE_CODE_PTR:
2951
2952 /* Allowed pointer conversions are:
2953 (a) pointer to void-pointer conversion. */
2954 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2955 return VOID_PTR_CONVERSION_BADNESS;
2956
2957 /* (b) pointer to ancestor-pointer conversion. */
2958 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2959 TYPE_TARGET_TYPE (arg),
2960 0);
2961 if (rank.subrank >= 0)
2962 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2963
2964 return INCOMPATIBLE_TYPE_BADNESS;
2965 case TYPE_CODE_ARRAY:
2966 if (types_equal (TYPE_TARGET_TYPE (parm),
2967 TYPE_TARGET_TYPE (arg)))
2968 return EXACT_MATCH_BADNESS;
2969 return INCOMPATIBLE_TYPE_BADNESS;
2970 case TYPE_CODE_FUNC:
2971 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
2972 case TYPE_CODE_INT:
2973 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
2974 {
2975 if (value_as_long (value) == 0)
2976 {
2977 /* Null pointer conversion: allow it to be cast to a pointer.
2978 [4.10.1 of C++ standard draft n3290] */
2979 return NULL_POINTER_CONVERSION_BADNESS;
2980 }
2981 else
2982 {
2983 /* If type checking is disabled, allow the conversion. */
2984 if (!strict_type_checking)
2985 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
2986 }
2987 }
2988 /* fall through */
2989 case TYPE_CODE_ENUM:
2990 case TYPE_CODE_FLAGS:
2991 case TYPE_CODE_CHAR:
2992 case TYPE_CODE_RANGE:
2993 case TYPE_CODE_BOOL:
2994 default:
2995 return INCOMPATIBLE_TYPE_BADNESS;
2996 }
2997 case TYPE_CODE_ARRAY:
2998 switch (TYPE_CODE (arg))
2999 {
3000 case TYPE_CODE_PTR:
3001 case TYPE_CODE_ARRAY:
3002 return rank_one_type (TYPE_TARGET_TYPE (parm),
3003 TYPE_TARGET_TYPE (arg), NULL);
3004 default:
3005 return INCOMPATIBLE_TYPE_BADNESS;
3006 }
3007 case TYPE_CODE_FUNC:
3008 switch (TYPE_CODE (arg))
3009 {
3010 case TYPE_CODE_PTR: /* funcptr -> func */
3011 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3012 default:
3013 return INCOMPATIBLE_TYPE_BADNESS;
3014 }
3015 case TYPE_CODE_INT:
3016 switch (TYPE_CODE (arg))
3017 {
3018 case TYPE_CODE_INT:
3019 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3020 {
3021 /* Deal with signed, unsigned, and plain chars and
3022 signed and unsigned ints. */
3023 if (TYPE_NOSIGN (parm))
3024 {
3025 /* This case only for character types. */
3026 if (TYPE_NOSIGN (arg))
3027 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3028 else /* signed/unsigned char -> plain char */
3029 return INTEGER_CONVERSION_BADNESS;
3030 }
3031 else if (TYPE_UNSIGNED (parm))
3032 {
3033 if (TYPE_UNSIGNED (arg))
3034 {
3035 /* unsigned int -> unsigned int, or
3036 unsigned long -> unsigned long */
3037 if (integer_types_same_name_p (TYPE_NAME (parm),
3038 TYPE_NAME (arg)))
3039 return EXACT_MATCH_BADNESS;
3040 else if (integer_types_same_name_p (TYPE_NAME (arg),
3041 "int")
3042 && integer_types_same_name_p (TYPE_NAME (parm),
3043 "long"))
3044 /* unsigned int -> unsigned long */
3045 return INTEGER_PROMOTION_BADNESS;
3046 else
3047 /* unsigned long -> unsigned int */
3048 return INTEGER_CONVERSION_BADNESS;
3049 }
3050 else
3051 {
3052 if (integer_types_same_name_p (TYPE_NAME (arg),
3053 "long")
3054 && integer_types_same_name_p (TYPE_NAME (parm),
3055 "int"))
3056 /* signed long -> unsigned int */
3057 return INTEGER_CONVERSION_BADNESS;
3058 else
3059 /* signed int/long -> unsigned int/long */
3060 return INTEGER_CONVERSION_BADNESS;
3061 }
3062 }
3063 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3064 {
3065 if (integer_types_same_name_p (TYPE_NAME (parm),
3066 TYPE_NAME (arg)))
3067 return EXACT_MATCH_BADNESS;
3068 else if (integer_types_same_name_p (TYPE_NAME (arg),
3069 "int")
3070 && integer_types_same_name_p (TYPE_NAME (parm),
3071 "long"))
3072 return INTEGER_PROMOTION_BADNESS;
3073 else
3074 return INTEGER_CONVERSION_BADNESS;
3075 }
3076 else
3077 return INTEGER_CONVERSION_BADNESS;
3078 }
3079 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3080 return INTEGER_PROMOTION_BADNESS;
3081 else
3082 return INTEGER_CONVERSION_BADNESS;
3083 case TYPE_CODE_ENUM:
3084 case TYPE_CODE_FLAGS:
3085 case TYPE_CODE_CHAR:
3086 case TYPE_CODE_RANGE:
3087 case TYPE_CODE_BOOL:
3088 return INTEGER_PROMOTION_BADNESS;
3089 case TYPE_CODE_FLT:
3090 return INT_FLOAT_CONVERSION_BADNESS;
3091 case TYPE_CODE_PTR:
3092 return NS_POINTER_CONVERSION_BADNESS;
3093 default:
3094 return INCOMPATIBLE_TYPE_BADNESS;
3095 }
3096 break;
3097 case TYPE_CODE_ENUM:
3098 switch (TYPE_CODE (arg))
3099 {
3100 case TYPE_CODE_INT:
3101 case TYPE_CODE_CHAR:
3102 case TYPE_CODE_RANGE:
3103 case TYPE_CODE_BOOL:
3104 case TYPE_CODE_ENUM:
3105 return INTEGER_CONVERSION_BADNESS;
3106 case TYPE_CODE_FLT:
3107 return INT_FLOAT_CONVERSION_BADNESS;
3108 default:
3109 return INCOMPATIBLE_TYPE_BADNESS;
3110 }
3111 break;
3112 case TYPE_CODE_CHAR:
3113 switch (TYPE_CODE (arg))
3114 {
3115 case TYPE_CODE_RANGE:
3116 case TYPE_CODE_BOOL:
3117 case TYPE_CODE_ENUM:
3118 return INTEGER_CONVERSION_BADNESS;
3119 case TYPE_CODE_FLT:
3120 return INT_FLOAT_CONVERSION_BADNESS;
3121 case TYPE_CODE_INT:
3122 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3123 return INTEGER_CONVERSION_BADNESS;
3124 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3125 return INTEGER_PROMOTION_BADNESS;
3126 /* >>> !! else fall through !! <<< */
3127 case TYPE_CODE_CHAR:
3128 /* Deal with signed, unsigned, and plain chars for C++ and
3129 with int cases falling through from previous case. */
3130 if (TYPE_NOSIGN (parm))
3131 {
3132 if (TYPE_NOSIGN (arg))
3133 return EXACT_MATCH_BADNESS;
3134 else
3135 return INTEGER_CONVERSION_BADNESS;
3136 }
3137 else if (TYPE_UNSIGNED (parm))
3138 {
3139 if (TYPE_UNSIGNED (arg))
3140 return EXACT_MATCH_BADNESS;
3141 else
3142 return INTEGER_PROMOTION_BADNESS;
3143 }
3144 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3145 return EXACT_MATCH_BADNESS;
3146 else
3147 return INTEGER_CONVERSION_BADNESS;
3148 default:
3149 return INCOMPATIBLE_TYPE_BADNESS;
3150 }
3151 break;
3152 case TYPE_CODE_RANGE:
3153 switch (TYPE_CODE (arg))
3154 {
3155 case TYPE_CODE_INT:
3156 case TYPE_CODE_CHAR:
3157 case TYPE_CODE_RANGE:
3158 case TYPE_CODE_BOOL:
3159 case TYPE_CODE_ENUM:
3160 return INTEGER_CONVERSION_BADNESS;
3161 case TYPE_CODE_FLT:
3162 return INT_FLOAT_CONVERSION_BADNESS;
3163 default:
3164 return INCOMPATIBLE_TYPE_BADNESS;
3165 }
3166 break;
3167 case TYPE_CODE_BOOL:
3168 switch (TYPE_CODE (arg))
3169 {
3170 /* n3290 draft, section 4.12.1 (conv.bool):
3171
3172 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3173 pointer to member type can be converted to a prvalue of type
3174 bool. A zero value, null pointer value, or null member pointer
3175 value is converted to false; any other value is converted to
3176 true. A prvalue of type std::nullptr_t can be converted to a
3177 prvalue of type bool; the resulting value is false." */
3178 case TYPE_CODE_INT:
3179 case TYPE_CODE_CHAR:
3180 case TYPE_CODE_ENUM:
3181 case TYPE_CODE_FLT:
3182 case TYPE_CODE_MEMBERPTR:
3183 case TYPE_CODE_PTR:
3184 return BOOL_CONVERSION_BADNESS;
3185 case TYPE_CODE_RANGE:
3186 return INCOMPATIBLE_TYPE_BADNESS;
3187 case TYPE_CODE_BOOL:
3188 return EXACT_MATCH_BADNESS;
3189 default:
3190 return INCOMPATIBLE_TYPE_BADNESS;
3191 }
3192 break;
3193 case TYPE_CODE_FLT:
3194 switch (TYPE_CODE (arg))
3195 {
3196 case TYPE_CODE_FLT:
3197 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3198 return FLOAT_PROMOTION_BADNESS;
3199 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3200 return EXACT_MATCH_BADNESS;
3201 else
3202 return FLOAT_CONVERSION_BADNESS;
3203 case TYPE_CODE_INT:
3204 case TYPE_CODE_BOOL:
3205 case TYPE_CODE_ENUM:
3206 case TYPE_CODE_RANGE:
3207 case TYPE_CODE_CHAR:
3208 return INT_FLOAT_CONVERSION_BADNESS;
3209 default:
3210 return INCOMPATIBLE_TYPE_BADNESS;
3211 }
3212 break;
3213 case TYPE_CODE_COMPLEX:
3214 switch (TYPE_CODE (arg))
3215 { /* Strictly not needed for C++, but... */
3216 case TYPE_CODE_FLT:
3217 return FLOAT_PROMOTION_BADNESS;
3218 case TYPE_CODE_COMPLEX:
3219 return EXACT_MATCH_BADNESS;
3220 default:
3221 return INCOMPATIBLE_TYPE_BADNESS;
3222 }
3223 break;
3224 case TYPE_CODE_STRUCT:
3225 /* currently same as TYPE_CODE_CLASS. */
3226 switch (TYPE_CODE (arg))
3227 {
3228 case TYPE_CODE_STRUCT:
3229 /* Check for derivation */
3230 rank.subrank = distance_to_ancestor (parm, arg, 0);
3231 if (rank.subrank >= 0)
3232 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3233 /* else fall through */
3234 default:
3235 return INCOMPATIBLE_TYPE_BADNESS;
3236 }
3237 break;
3238 case TYPE_CODE_UNION:
3239 switch (TYPE_CODE (arg))
3240 {
3241 case TYPE_CODE_UNION:
3242 default:
3243 return INCOMPATIBLE_TYPE_BADNESS;
3244 }
3245 break;
3246 case TYPE_CODE_MEMBERPTR:
3247 switch (TYPE_CODE (arg))
3248 {
3249 default:
3250 return INCOMPATIBLE_TYPE_BADNESS;
3251 }
3252 break;
3253 case TYPE_CODE_METHOD:
3254 switch (TYPE_CODE (arg))
3255 {
3256
3257 default:
3258 return INCOMPATIBLE_TYPE_BADNESS;
3259 }
3260 break;
3261 case TYPE_CODE_REF:
3262 switch (TYPE_CODE (arg))
3263 {
3264
3265 default:
3266 return INCOMPATIBLE_TYPE_BADNESS;
3267 }
3268
3269 break;
3270 case TYPE_CODE_SET:
3271 switch (TYPE_CODE (arg))
3272 {
3273 /* Not in C++ */
3274 case TYPE_CODE_SET:
3275 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3276 TYPE_FIELD_TYPE (arg, 0), NULL);
3277 default:
3278 return INCOMPATIBLE_TYPE_BADNESS;
3279 }
3280 break;
3281 case TYPE_CODE_VOID:
3282 default:
3283 return INCOMPATIBLE_TYPE_BADNESS;
3284 } /* switch (TYPE_CODE (arg)) */
3285 }
3286
3287 /* End of functions for overload resolution. */
3288 \f
3289 /* Routines to pretty-print types. */
3290
3291 static void
3292 print_bit_vector (B_TYPE *bits, int nbits)
3293 {
3294 int bitno;
3295
3296 for (bitno = 0; bitno < nbits; bitno++)
3297 {
3298 if ((bitno % 8) == 0)
3299 {
3300 puts_filtered (" ");
3301 }
3302 if (B_TST (bits, bitno))
3303 printf_filtered (("1"));
3304 else
3305 printf_filtered (("0"));
3306 }
3307 }
3308
3309 /* Note the first arg should be the "this" pointer, we may not want to
3310 include it since we may get into a infinitely recursive
3311 situation. */
3312
3313 static void
3314 print_arg_types (struct field *args, int nargs, int spaces)
3315 {
3316 if (args != NULL)
3317 {
3318 int i;
3319
3320 for (i = 0; i < nargs; i++)
3321 recursive_dump_type (args[i].type, spaces + 2);
3322 }
3323 }
3324
3325 int
3326 field_is_static (struct field *f)
3327 {
3328 /* "static" fields are the fields whose location is not relative
3329 to the address of the enclosing struct. It would be nice to
3330 have a dedicated flag that would be set for static fields when
3331 the type is being created. But in practice, checking the field
3332 loc_kind should give us an accurate answer. */
3333 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3334 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3335 }
3336
3337 static void
3338 dump_fn_fieldlists (struct type *type, int spaces)
3339 {
3340 int method_idx;
3341 int overload_idx;
3342 struct fn_field *f;
3343
3344 printfi_filtered (spaces, "fn_fieldlists ");
3345 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3346 printf_filtered ("\n");
3347 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3348 {
3349 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3350 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3351 method_idx,
3352 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3353 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3354 gdb_stdout);
3355 printf_filtered (_(") length %d\n"),
3356 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3357 for (overload_idx = 0;
3358 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3359 overload_idx++)
3360 {
3361 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3362 overload_idx,
3363 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3364 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3365 gdb_stdout);
3366 printf_filtered (")\n");
3367 printfi_filtered (spaces + 8, "type ");
3368 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3369 gdb_stdout);
3370 printf_filtered ("\n");
3371
3372 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3373 spaces + 8 + 2);
3374
3375 printfi_filtered (spaces + 8, "args ");
3376 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3377 gdb_stdout);
3378 printf_filtered ("\n");
3379
3380 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
3381 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
3382 overload_idx)),
3383 spaces);
3384 printfi_filtered (spaces + 8, "fcontext ");
3385 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3386 gdb_stdout);
3387 printf_filtered ("\n");
3388
3389 printfi_filtered (spaces + 8, "is_const %d\n",
3390 TYPE_FN_FIELD_CONST (f, overload_idx));
3391 printfi_filtered (spaces + 8, "is_volatile %d\n",
3392 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3393 printfi_filtered (spaces + 8, "is_private %d\n",
3394 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3395 printfi_filtered (spaces + 8, "is_protected %d\n",
3396 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3397 printfi_filtered (spaces + 8, "is_stub %d\n",
3398 TYPE_FN_FIELD_STUB (f, overload_idx));
3399 printfi_filtered (spaces + 8, "voffset %u\n",
3400 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3401 }
3402 }
3403 }
3404
3405 static void
3406 print_cplus_stuff (struct type *type, int spaces)
3407 {
3408 printfi_filtered (spaces, "n_baseclasses %d\n",
3409 TYPE_N_BASECLASSES (type));
3410 printfi_filtered (spaces, "nfn_fields %d\n",
3411 TYPE_NFN_FIELDS (type));
3412 if (TYPE_N_BASECLASSES (type) > 0)
3413 {
3414 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3415 TYPE_N_BASECLASSES (type));
3416 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3417 gdb_stdout);
3418 printf_filtered (")");
3419
3420 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3421 TYPE_N_BASECLASSES (type));
3422 puts_filtered ("\n");
3423 }
3424 if (TYPE_NFIELDS (type) > 0)
3425 {
3426 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3427 {
3428 printfi_filtered (spaces,
3429 "private_field_bits (%d bits at *",
3430 TYPE_NFIELDS (type));
3431 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3432 gdb_stdout);
3433 printf_filtered (")");
3434 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3435 TYPE_NFIELDS (type));
3436 puts_filtered ("\n");
3437 }
3438 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3439 {
3440 printfi_filtered (spaces,
3441 "protected_field_bits (%d bits at *",
3442 TYPE_NFIELDS (type));
3443 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3444 gdb_stdout);
3445 printf_filtered (")");
3446 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3447 TYPE_NFIELDS (type));
3448 puts_filtered ("\n");
3449 }
3450 }
3451 if (TYPE_NFN_FIELDS (type) > 0)
3452 {
3453 dump_fn_fieldlists (type, spaces);
3454 }
3455 }
3456
3457 /* Print the contents of the TYPE's type_specific union, assuming that
3458 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3459
3460 static void
3461 print_gnat_stuff (struct type *type, int spaces)
3462 {
3463 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3464
3465 recursive_dump_type (descriptive_type, spaces + 2);
3466 }
3467
3468 static struct obstack dont_print_type_obstack;
3469
3470 void
3471 recursive_dump_type (struct type *type, int spaces)
3472 {
3473 int idx;
3474
3475 if (spaces == 0)
3476 obstack_begin (&dont_print_type_obstack, 0);
3477
3478 if (TYPE_NFIELDS (type) > 0
3479 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3480 {
3481 struct type **first_dont_print
3482 = (struct type **) obstack_base (&dont_print_type_obstack);
3483
3484 int i = (struct type **)
3485 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3486
3487 while (--i >= 0)
3488 {
3489 if (type == first_dont_print[i])
3490 {
3491 printfi_filtered (spaces, "type node ");
3492 gdb_print_host_address (type, gdb_stdout);
3493 printf_filtered (_(" <same as already seen type>\n"));
3494 return;
3495 }
3496 }
3497
3498 obstack_ptr_grow (&dont_print_type_obstack, type);
3499 }
3500
3501 printfi_filtered (spaces, "type node ");
3502 gdb_print_host_address (type, gdb_stdout);
3503 printf_filtered ("\n");
3504 printfi_filtered (spaces, "name '%s' (",
3505 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3506 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3507 printf_filtered (")\n");
3508 printfi_filtered (spaces, "tagname '%s' (",
3509 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3510 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3511 printf_filtered (")\n");
3512 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3513 switch (TYPE_CODE (type))
3514 {
3515 case TYPE_CODE_UNDEF:
3516 printf_filtered ("(TYPE_CODE_UNDEF)");
3517 break;
3518 case TYPE_CODE_PTR:
3519 printf_filtered ("(TYPE_CODE_PTR)");
3520 break;
3521 case TYPE_CODE_ARRAY:
3522 printf_filtered ("(TYPE_CODE_ARRAY)");
3523 break;
3524 case TYPE_CODE_STRUCT:
3525 printf_filtered ("(TYPE_CODE_STRUCT)");
3526 break;
3527 case TYPE_CODE_UNION:
3528 printf_filtered ("(TYPE_CODE_UNION)");
3529 break;
3530 case TYPE_CODE_ENUM:
3531 printf_filtered ("(TYPE_CODE_ENUM)");
3532 break;
3533 case TYPE_CODE_FLAGS:
3534 printf_filtered ("(TYPE_CODE_FLAGS)");
3535 break;
3536 case TYPE_CODE_FUNC:
3537 printf_filtered ("(TYPE_CODE_FUNC)");
3538 break;
3539 case TYPE_CODE_INT:
3540 printf_filtered ("(TYPE_CODE_INT)");
3541 break;
3542 case TYPE_CODE_FLT:
3543 printf_filtered ("(TYPE_CODE_FLT)");
3544 break;
3545 case TYPE_CODE_VOID:
3546 printf_filtered ("(TYPE_CODE_VOID)");
3547 break;
3548 case TYPE_CODE_SET:
3549 printf_filtered ("(TYPE_CODE_SET)");
3550 break;
3551 case TYPE_CODE_RANGE:
3552 printf_filtered ("(TYPE_CODE_RANGE)");
3553 break;
3554 case TYPE_CODE_STRING:
3555 printf_filtered ("(TYPE_CODE_STRING)");
3556 break;
3557 case TYPE_CODE_ERROR:
3558 printf_filtered ("(TYPE_CODE_ERROR)");
3559 break;
3560 case TYPE_CODE_MEMBERPTR:
3561 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3562 break;
3563 case TYPE_CODE_METHODPTR:
3564 printf_filtered ("(TYPE_CODE_METHODPTR)");
3565 break;
3566 case TYPE_CODE_METHOD:
3567 printf_filtered ("(TYPE_CODE_METHOD)");
3568 break;
3569 case TYPE_CODE_REF:
3570 printf_filtered ("(TYPE_CODE_REF)");
3571 break;
3572 case TYPE_CODE_CHAR:
3573 printf_filtered ("(TYPE_CODE_CHAR)");
3574 break;
3575 case TYPE_CODE_BOOL:
3576 printf_filtered ("(TYPE_CODE_BOOL)");
3577 break;
3578 case TYPE_CODE_COMPLEX:
3579 printf_filtered ("(TYPE_CODE_COMPLEX)");
3580 break;
3581 case TYPE_CODE_TYPEDEF:
3582 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3583 break;
3584 case TYPE_CODE_NAMESPACE:
3585 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3586 break;
3587 default:
3588 printf_filtered ("(UNKNOWN TYPE CODE)");
3589 break;
3590 }
3591 puts_filtered ("\n");
3592 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3593 if (TYPE_OBJFILE_OWNED (type))
3594 {
3595 printfi_filtered (spaces, "objfile ");
3596 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3597 }
3598 else
3599 {
3600 printfi_filtered (spaces, "gdbarch ");
3601 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3602 }
3603 printf_filtered ("\n");
3604 printfi_filtered (spaces, "target_type ");
3605 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3606 printf_filtered ("\n");
3607 if (TYPE_TARGET_TYPE (type) != NULL)
3608 {
3609 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3610 }
3611 printfi_filtered (spaces, "pointer_type ");
3612 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3613 printf_filtered ("\n");
3614 printfi_filtered (spaces, "reference_type ");
3615 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3616 printf_filtered ("\n");
3617 printfi_filtered (spaces, "type_chain ");
3618 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3619 printf_filtered ("\n");
3620 printfi_filtered (spaces, "instance_flags 0x%x",
3621 TYPE_INSTANCE_FLAGS (type));
3622 if (TYPE_CONST (type))
3623 {
3624 puts_filtered (" TYPE_FLAG_CONST");
3625 }
3626 if (TYPE_VOLATILE (type))
3627 {
3628 puts_filtered (" TYPE_FLAG_VOLATILE");
3629 }
3630 if (TYPE_CODE_SPACE (type))
3631 {
3632 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3633 }
3634 if (TYPE_DATA_SPACE (type))
3635 {
3636 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3637 }
3638 if (TYPE_ADDRESS_CLASS_1 (type))
3639 {
3640 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3641 }
3642 if (TYPE_ADDRESS_CLASS_2 (type))
3643 {
3644 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3645 }
3646 if (TYPE_RESTRICT (type))
3647 {
3648 puts_filtered (" TYPE_FLAG_RESTRICT");
3649 }
3650 puts_filtered ("\n");
3651
3652 printfi_filtered (spaces, "flags");
3653 if (TYPE_UNSIGNED (type))
3654 {
3655 puts_filtered (" TYPE_FLAG_UNSIGNED");
3656 }
3657 if (TYPE_NOSIGN (type))
3658 {
3659 puts_filtered (" TYPE_FLAG_NOSIGN");
3660 }
3661 if (TYPE_STUB (type))
3662 {
3663 puts_filtered (" TYPE_FLAG_STUB");
3664 }
3665 if (TYPE_TARGET_STUB (type))
3666 {
3667 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3668 }
3669 if (TYPE_STATIC (type))
3670 {
3671 puts_filtered (" TYPE_FLAG_STATIC");
3672 }
3673 if (TYPE_PROTOTYPED (type))
3674 {
3675 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3676 }
3677 if (TYPE_INCOMPLETE (type))
3678 {
3679 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3680 }
3681 if (TYPE_VARARGS (type))
3682 {
3683 puts_filtered (" TYPE_FLAG_VARARGS");
3684 }
3685 /* This is used for things like AltiVec registers on ppc. Gcc emits
3686 an attribute for the array type, which tells whether or not we
3687 have a vector, instead of a regular array. */
3688 if (TYPE_VECTOR (type))
3689 {
3690 puts_filtered (" TYPE_FLAG_VECTOR");
3691 }
3692 if (TYPE_FIXED_INSTANCE (type))
3693 {
3694 puts_filtered (" TYPE_FIXED_INSTANCE");
3695 }
3696 if (TYPE_STUB_SUPPORTED (type))
3697 {
3698 puts_filtered (" TYPE_STUB_SUPPORTED");
3699 }
3700 if (TYPE_NOTTEXT (type))
3701 {
3702 puts_filtered (" TYPE_NOTTEXT");
3703 }
3704 puts_filtered ("\n");
3705 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3706 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3707 puts_filtered ("\n");
3708 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3709 {
3710 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3711 printfi_filtered (spaces + 2,
3712 "[%d] enumval %s type ",
3713 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3714 else
3715 printfi_filtered (spaces + 2,
3716 "[%d] bitpos %d bitsize %d type ",
3717 idx, TYPE_FIELD_BITPOS (type, idx),
3718 TYPE_FIELD_BITSIZE (type, idx));
3719 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3720 printf_filtered (" name '%s' (",
3721 TYPE_FIELD_NAME (type, idx) != NULL
3722 ? TYPE_FIELD_NAME (type, idx)
3723 : "<NULL>");
3724 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3725 printf_filtered (")\n");
3726 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3727 {
3728 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3729 }
3730 }
3731 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3732 {
3733 printfi_filtered (spaces, "low %s%s high %s%s\n",
3734 plongest (TYPE_LOW_BOUND (type)),
3735 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3736 plongest (TYPE_HIGH_BOUND (type)),
3737 TYPE_HIGH_BOUND_UNDEFINED (type)
3738 ? " (undefined)" : "");
3739 }
3740 printfi_filtered (spaces, "vptr_basetype ");
3741 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3742 puts_filtered ("\n");
3743 if (TYPE_VPTR_BASETYPE (type) != NULL)
3744 {
3745 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3746 }
3747 printfi_filtered (spaces, "vptr_fieldno %d\n",
3748 TYPE_VPTR_FIELDNO (type));
3749
3750 switch (TYPE_SPECIFIC_FIELD (type))
3751 {
3752 case TYPE_SPECIFIC_CPLUS_STUFF:
3753 printfi_filtered (spaces, "cplus_stuff ");
3754 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3755 gdb_stdout);
3756 puts_filtered ("\n");
3757 print_cplus_stuff (type, spaces);
3758 break;
3759
3760 case TYPE_SPECIFIC_GNAT_STUFF:
3761 printfi_filtered (spaces, "gnat_stuff ");
3762 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3763 puts_filtered ("\n");
3764 print_gnat_stuff (type, spaces);
3765 break;
3766
3767 case TYPE_SPECIFIC_FLOATFORMAT:
3768 printfi_filtered (spaces, "floatformat ");
3769 if (TYPE_FLOATFORMAT (type) == NULL)
3770 puts_filtered ("(null)");
3771 else
3772 {
3773 puts_filtered ("{ ");
3774 if (TYPE_FLOATFORMAT (type)[0] == NULL
3775 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3776 puts_filtered ("(null)");
3777 else
3778 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3779
3780 puts_filtered (", ");
3781 if (TYPE_FLOATFORMAT (type)[1] == NULL
3782 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3783 puts_filtered ("(null)");
3784 else
3785 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3786
3787 puts_filtered (" }");
3788 }
3789 puts_filtered ("\n");
3790 break;
3791
3792 case TYPE_SPECIFIC_FUNC:
3793 printfi_filtered (spaces, "calling_convention %d\n",
3794 TYPE_CALLING_CONVENTION (type));
3795 /* tail_call_list is not printed. */
3796 break;
3797 }
3798
3799 if (spaces == 0)
3800 obstack_free (&dont_print_type_obstack, NULL);
3801 }
3802 \f
3803 /* Trivial helpers for the libiberty hash table, for mapping one
3804 type to another. */
3805
3806 struct type_pair
3807 {
3808 struct type *old, *new;
3809 };
3810
3811 static hashval_t
3812 type_pair_hash (const void *item)
3813 {
3814 const struct type_pair *pair = item;
3815
3816 return htab_hash_pointer (pair->old);
3817 }
3818
3819 static int
3820 type_pair_eq (const void *item_lhs, const void *item_rhs)
3821 {
3822 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3823
3824 return lhs->old == rhs->old;
3825 }
3826
3827 /* Allocate the hash table used by copy_type_recursive to walk
3828 types without duplicates. We use OBJFILE's obstack, because
3829 OBJFILE is about to be deleted. */
3830
3831 htab_t
3832 create_copied_types_hash (struct objfile *objfile)
3833 {
3834 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3835 NULL, &objfile->objfile_obstack,
3836 hashtab_obstack_allocate,
3837 dummy_obstack_deallocate);
3838 }
3839
3840 /* Recursively copy (deep copy) TYPE, if it is associated with
3841 OBJFILE. Return a new type allocated using malloc, a saved type if
3842 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3843 not associated with OBJFILE. */
3844
3845 struct type *
3846 copy_type_recursive (struct objfile *objfile,
3847 struct type *type,
3848 htab_t copied_types)
3849 {
3850 struct type_pair *stored, pair;
3851 void **slot;
3852 struct type *new_type;
3853
3854 if (! TYPE_OBJFILE_OWNED (type))
3855 return type;
3856
3857 /* This type shouldn't be pointing to any types in other objfiles;
3858 if it did, the type might disappear unexpectedly. */
3859 gdb_assert (TYPE_OBJFILE (type) == objfile);
3860
3861 pair.old = type;
3862 slot = htab_find_slot (copied_types, &pair, INSERT);
3863 if (*slot != NULL)
3864 return ((struct type_pair *) *slot)->new;
3865
3866 new_type = alloc_type_arch (get_type_arch (type));
3867
3868 /* We must add the new type to the hash table immediately, in case
3869 we encounter this type again during a recursive call below. */
3870 stored
3871 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3872 stored->old = type;
3873 stored->new = new_type;
3874 *slot = stored;
3875
3876 /* Copy the common fields of types. For the main type, we simply
3877 copy the entire thing and then update specific fields as needed. */
3878 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3879 TYPE_OBJFILE_OWNED (new_type) = 0;
3880 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3881
3882 if (TYPE_NAME (type))
3883 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3884 if (TYPE_TAG_NAME (type))
3885 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3886
3887 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3888 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3889
3890 /* Copy the fields. */
3891 if (TYPE_NFIELDS (type))
3892 {
3893 int i, nfields;
3894
3895 nfields = TYPE_NFIELDS (type);
3896 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
3897 for (i = 0; i < nfields; i++)
3898 {
3899 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3900 TYPE_FIELD_ARTIFICIAL (type, i);
3901 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3902 if (TYPE_FIELD_TYPE (type, i))
3903 TYPE_FIELD_TYPE (new_type, i)
3904 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3905 copied_types);
3906 if (TYPE_FIELD_NAME (type, i))
3907 TYPE_FIELD_NAME (new_type, i) =
3908 xstrdup (TYPE_FIELD_NAME (type, i));
3909 switch (TYPE_FIELD_LOC_KIND (type, i))
3910 {
3911 case FIELD_LOC_KIND_BITPOS:
3912 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3913 TYPE_FIELD_BITPOS (type, i));
3914 break;
3915 case FIELD_LOC_KIND_ENUMVAL:
3916 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3917 TYPE_FIELD_ENUMVAL (type, i));
3918 break;
3919 case FIELD_LOC_KIND_PHYSADDR:
3920 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3921 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3922 break;
3923 case FIELD_LOC_KIND_PHYSNAME:
3924 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3925 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3926 i)));
3927 break;
3928 default:
3929 internal_error (__FILE__, __LINE__,
3930 _("Unexpected type field location kind: %d"),
3931 TYPE_FIELD_LOC_KIND (type, i));
3932 }
3933 }
3934 }
3935
3936 /* For range types, copy the bounds information. */
3937 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3938 {
3939 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3940 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3941 }
3942
3943 /* Copy pointers to other types. */
3944 if (TYPE_TARGET_TYPE (type))
3945 TYPE_TARGET_TYPE (new_type) =
3946 copy_type_recursive (objfile,
3947 TYPE_TARGET_TYPE (type),
3948 copied_types);
3949 if (TYPE_VPTR_BASETYPE (type))
3950 TYPE_VPTR_BASETYPE (new_type) =
3951 copy_type_recursive (objfile,
3952 TYPE_VPTR_BASETYPE (type),
3953 copied_types);
3954 /* Maybe copy the type_specific bits.
3955
3956 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3957 base classes and methods. There's no fundamental reason why we
3958 can't, but at the moment it is not needed. */
3959
3960 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3961 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3962 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3963 || TYPE_CODE (type) == TYPE_CODE_UNION
3964 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3965 INIT_CPLUS_SPECIFIC (new_type);
3966
3967 return new_type;
3968 }
3969
3970 /* Make a copy of the given TYPE, except that the pointer & reference
3971 types are not preserved.
3972
3973 This function assumes that the given type has an associated objfile.
3974 This objfile is used to allocate the new type. */
3975
3976 struct type *
3977 copy_type (const struct type *type)
3978 {
3979 struct type *new_type;
3980
3981 gdb_assert (TYPE_OBJFILE_OWNED (type));
3982
3983 new_type = alloc_type_copy (type);
3984 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3985 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3986 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3987 sizeof (struct main_type));
3988
3989 return new_type;
3990 }
3991 \f
3992 /* Helper functions to initialize architecture-specific types. */
3993
3994 /* Allocate a type structure associated with GDBARCH and set its
3995 CODE, LENGTH, and NAME fields. */
3996
3997 struct type *
3998 arch_type (struct gdbarch *gdbarch,
3999 enum type_code code, int length, char *name)
4000 {
4001 struct type *type;
4002
4003 type = alloc_type_arch (gdbarch);
4004 TYPE_CODE (type) = code;
4005 TYPE_LENGTH (type) = length;
4006
4007 if (name)
4008 TYPE_NAME (type) = xstrdup (name);
4009
4010 return type;
4011 }
4012
4013 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4014 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4015 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4016
4017 struct type *
4018 arch_integer_type (struct gdbarch *gdbarch,
4019 int bit, int unsigned_p, char *name)
4020 {
4021 struct type *t;
4022
4023 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4024 if (unsigned_p)
4025 TYPE_UNSIGNED (t) = 1;
4026 if (name && strcmp (name, "char") == 0)
4027 TYPE_NOSIGN (t) = 1;
4028
4029 return t;
4030 }
4031
4032 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4033 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4034 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4035
4036 struct type *
4037 arch_character_type (struct gdbarch *gdbarch,
4038 int bit, int unsigned_p, char *name)
4039 {
4040 struct type *t;
4041
4042 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4043 if (unsigned_p)
4044 TYPE_UNSIGNED (t) = 1;
4045
4046 return t;
4047 }
4048
4049 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4050 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4051 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4052
4053 struct type *
4054 arch_boolean_type (struct gdbarch *gdbarch,
4055 int bit, int unsigned_p, char *name)
4056 {
4057 struct type *t;
4058
4059 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4060 if (unsigned_p)
4061 TYPE_UNSIGNED (t) = 1;
4062
4063 return t;
4064 }
4065
4066 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4067 BIT is the type size in bits; if BIT equals -1, the size is
4068 determined by the floatformat. NAME is the type name. Set the
4069 TYPE_FLOATFORMAT from FLOATFORMATS. */
4070
4071 struct type *
4072 arch_float_type (struct gdbarch *gdbarch,
4073 int bit, char *name, const struct floatformat **floatformats)
4074 {
4075 struct type *t;
4076
4077 if (bit == -1)
4078 {
4079 gdb_assert (floatformats != NULL);
4080 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4081 bit = floatformats[0]->totalsize;
4082 }
4083 gdb_assert (bit >= 0);
4084
4085 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4086 TYPE_FLOATFORMAT (t) = floatformats;
4087 return t;
4088 }
4089
4090 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4091 NAME is the type name. TARGET_TYPE is the component float type. */
4092
4093 struct type *
4094 arch_complex_type (struct gdbarch *gdbarch,
4095 char *name, struct type *target_type)
4096 {
4097 struct type *t;
4098
4099 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4100 2 * TYPE_LENGTH (target_type), name);
4101 TYPE_TARGET_TYPE (t) = target_type;
4102 return t;
4103 }
4104
4105 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4106 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4107
4108 struct type *
4109 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4110 {
4111 int nfields = length * TARGET_CHAR_BIT;
4112 struct type *type;
4113
4114 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4115 TYPE_UNSIGNED (type) = 1;
4116 TYPE_NFIELDS (type) = nfields;
4117 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4118
4119 return type;
4120 }
4121
4122 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4123 position BITPOS is called NAME. */
4124
4125 void
4126 append_flags_type_flag (struct type *type, int bitpos, char *name)
4127 {
4128 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4129 gdb_assert (bitpos < TYPE_NFIELDS (type));
4130 gdb_assert (bitpos >= 0);
4131
4132 if (name)
4133 {
4134 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4135 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4136 }
4137 else
4138 {
4139 /* Don't show this field to the user. */
4140 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4141 }
4142 }
4143
4144 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4145 specified by CODE) associated with GDBARCH. NAME is the type name. */
4146
4147 struct type *
4148 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4149 {
4150 struct type *t;
4151
4152 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4153 t = arch_type (gdbarch, code, 0, NULL);
4154 TYPE_TAG_NAME (t) = name;
4155 INIT_CPLUS_SPECIFIC (t);
4156 return t;
4157 }
4158
4159 /* Add new field with name NAME and type FIELD to composite type T.
4160 Do not set the field's position or adjust the type's length;
4161 the caller should do so. Return the new field. */
4162
4163 struct field *
4164 append_composite_type_field_raw (struct type *t, char *name,
4165 struct type *field)
4166 {
4167 struct field *f;
4168
4169 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4170 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4171 sizeof (struct field) * TYPE_NFIELDS (t));
4172 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4173 memset (f, 0, sizeof f[0]);
4174 FIELD_TYPE (f[0]) = field;
4175 FIELD_NAME (f[0]) = name;
4176 return f;
4177 }
4178
4179 /* Add new field with name NAME and type FIELD to composite type T.
4180 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4181
4182 void
4183 append_composite_type_field_aligned (struct type *t, char *name,
4184 struct type *field, int alignment)
4185 {
4186 struct field *f = append_composite_type_field_raw (t, name, field);
4187
4188 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4189 {
4190 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4191 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4192 }
4193 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4194 {
4195 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4196 if (TYPE_NFIELDS (t) > 1)
4197 {
4198 SET_FIELD_BITPOS (f[0],
4199 (FIELD_BITPOS (f[-1])
4200 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4201 * TARGET_CHAR_BIT)));
4202
4203 if (alignment)
4204 {
4205 int left;
4206
4207 alignment *= TARGET_CHAR_BIT;
4208 left = FIELD_BITPOS (f[0]) % alignment;
4209
4210 if (left)
4211 {
4212 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4213 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4214 }
4215 }
4216 }
4217 }
4218 }
4219
4220 /* Add new field with name NAME and type FIELD to composite type T. */
4221
4222 void
4223 append_composite_type_field (struct type *t, char *name,
4224 struct type *field)
4225 {
4226 append_composite_type_field_aligned (t, name, field, 0);
4227 }
4228
4229 static struct gdbarch_data *gdbtypes_data;
4230
4231 const struct builtin_type *
4232 builtin_type (struct gdbarch *gdbarch)
4233 {
4234 return gdbarch_data (gdbarch, gdbtypes_data);
4235 }
4236
4237 static void *
4238 gdbtypes_post_init (struct gdbarch *gdbarch)
4239 {
4240 struct builtin_type *builtin_type
4241 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4242
4243 /* Basic types. */
4244 builtin_type->builtin_void
4245 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4246 builtin_type->builtin_char
4247 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4248 !gdbarch_char_signed (gdbarch), "char");
4249 builtin_type->builtin_signed_char
4250 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4251 0, "signed char");
4252 builtin_type->builtin_unsigned_char
4253 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4254 1, "unsigned char");
4255 builtin_type->builtin_short
4256 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4257 0, "short");
4258 builtin_type->builtin_unsigned_short
4259 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4260 1, "unsigned short");
4261 builtin_type->builtin_int
4262 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4263 0, "int");
4264 builtin_type->builtin_unsigned_int
4265 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4266 1, "unsigned int");
4267 builtin_type->builtin_long
4268 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4269 0, "long");
4270 builtin_type->builtin_unsigned_long
4271 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4272 1, "unsigned long");
4273 builtin_type->builtin_long_long
4274 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4275 0, "long long");
4276 builtin_type->builtin_unsigned_long_long
4277 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4278 1, "unsigned long long");
4279 builtin_type->builtin_float
4280 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4281 "float", gdbarch_float_format (gdbarch));
4282 builtin_type->builtin_double
4283 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4284 "double", gdbarch_double_format (gdbarch));
4285 builtin_type->builtin_long_double
4286 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4287 "long double", gdbarch_long_double_format (gdbarch));
4288 builtin_type->builtin_complex
4289 = arch_complex_type (gdbarch, "complex",
4290 builtin_type->builtin_float);
4291 builtin_type->builtin_double_complex
4292 = arch_complex_type (gdbarch, "double complex",
4293 builtin_type->builtin_double);
4294 builtin_type->builtin_string
4295 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4296 builtin_type->builtin_bool
4297 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4298
4299 /* The following three are about decimal floating point types, which
4300 are 32-bits, 64-bits and 128-bits respectively. */
4301 builtin_type->builtin_decfloat
4302 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4303 builtin_type->builtin_decdouble
4304 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4305 builtin_type->builtin_declong
4306 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4307
4308 /* "True" character types. */
4309 builtin_type->builtin_true_char
4310 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4311 builtin_type->builtin_true_unsigned_char
4312 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4313
4314 /* Fixed-size integer types. */
4315 builtin_type->builtin_int0
4316 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4317 builtin_type->builtin_int8
4318 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4319 builtin_type->builtin_uint8
4320 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4321 builtin_type->builtin_int16
4322 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4323 builtin_type->builtin_uint16
4324 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4325 builtin_type->builtin_int32
4326 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4327 builtin_type->builtin_uint32
4328 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4329 builtin_type->builtin_int64
4330 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4331 builtin_type->builtin_uint64
4332 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4333 builtin_type->builtin_int128
4334 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4335 builtin_type->builtin_uint128
4336 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4337 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4338 TYPE_INSTANCE_FLAG_NOTTEXT;
4339 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4340 TYPE_INSTANCE_FLAG_NOTTEXT;
4341
4342 /* Wide character types. */
4343 builtin_type->builtin_char16
4344 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4345 builtin_type->builtin_char32
4346 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4347
4348
4349 /* Default data/code pointer types. */
4350 builtin_type->builtin_data_ptr
4351 = lookup_pointer_type (builtin_type->builtin_void);
4352 builtin_type->builtin_func_ptr
4353 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4354 builtin_type->builtin_func_func
4355 = lookup_function_type (builtin_type->builtin_func_ptr);
4356
4357 /* This type represents a GDB internal function. */
4358 builtin_type->internal_fn
4359 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4360 "<internal function>");
4361
4362 return builtin_type;
4363 }
4364
4365 /* This set of objfile-based types is intended to be used by symbol
4366 readers as basic types. */
4367
4368 static const struct objfile_data *objfile_type_data;
4369
4370 const struct objfile_type *
4371 objfile_type (struct objfile *objfile)
4372 {
4373 struct gdbarch *gdbarch;
4374 struct objfile_type *objfile_type
4375 = objfile_data (objfile, objfile_type_data);
4376
4377 if (objfile_type)
4378 return objfile_type;
4379
4380 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4381 1, struct objfile_type);
4382
4383 /* Use the objfile architecture to determine basic type properties. */
4384 gdbarch = get_objfile_arch (objfile);
4385
4386 /* Basic types. */
4387 objfile_type->builtin_void
4388 = init_type (TYPE_CODE_VOID, 1,
4389 0,
4390 "void", objfile);
4391
4392 objfile_type->builtin_char
4393 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4394 (TYPE_FLAG_NOSIGN
4395 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4396 "char", objfile);
4397 objfile_type->builtin_signed_char
4398 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4399 0,
4400 "signed char", objfile);
4401 objfile_type->builtin_unsigned_char
4402 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4403 TYPE_FLAG_UNSIGNED,
4404 "unsigned char", objfile);
4405 objfile_type->builtin_short
4406 = init_type (TYPE_CODE_INT,
4407 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4408 0, "short", objfile);
4409 objfile_type->builtin_unsigned_short
4410 = init_type (TYPE_CODE_INT,
4411 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4412 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4413 objfile_type->builtin_int
4414 = init_type (TYPE_CODE_INT,
4415 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4416 0, "int", objfile);
4417 objfile_type->builtin_unsigned_int
4418 = init_type (TYPE_CODE_INT,
4419 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4420 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4421 objfile_type->builtin_long
4422 = init_type (TYPE_CODE_INT,
4423 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4424 0, "long", objfile);
4425 objfile_type->builtin_unsigned_long
4426 = init_type (TYPE_CODE_INT,
4427 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4428 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4429 objfile_type->builtin_long_long
4430 = init_type (TYPE_CODE_INT,
4431 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4432 0, "long long", objfile);
4433 objfile_type->builtin_unsigned_long_long
4434 = init_type (TYPE_CODE_INT,
4435 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4436 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4437
4438 objfile_type->builtin_float
4439 = init_type (TYPE_CODE_FLT,
4440 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4441 0, "float", objfile);
4442 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4443 = gdbarch_float_format (gdbarch);
4444 objfile_type->builtin_double
4445 = init_type (TYPE_CODE_FLT,
4446 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4447 0, "double", objfile);
4448 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4449 = gdbarch_double_format (gdbarch);
4450 objfile_type->builtin_long_double
4451 = init_type (TYPE_CODE_FLT,
4452 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4453 0, "long double", objfile);
4454 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4455 = gdbarch_long_double_format (gdbarch);
4456
4457 /* This type represents a type that was unrecognized in symbol read-in. */
4458 objfile_type->builtin_error
4459 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4460
4461 /* The following set of types is used for symbols with no
4462 debug information. */
4463 objfile_type->nodebug_text_symbol
4464 = init_type (TYPE_CODE_FUNC, 1, 0,
4465 "<text variable, no debug info>", objfile);
4466 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4467 = objfile_type->builtin_int;
4468 objfile_type->nodebug_text_gnu_ifunc_symbol
4469 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4470 "<text gnu-indirect-function variable, no debug info>",
4471 objfile);
4472 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4473 = objfile_type->nodebug_text_symbol;
4474 objfile_type->nodebug_got_plt_symbol
4475 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4476 "<text from jump slot in .got.plt, no debug info>",
4477 objfile);
4478 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4479 = objfile_type->nodebug_text_symbol;
4480 objfile_type->nodebug_data_symbol
4481 = init_type (TYPE_CODE_INT,
4482 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4483 "<data variable, no debug info>", objfile);
4484 objfile_type->nodebug_unknown_symbol
4485 = init_type (TYPE_CODE_INT, 1, 0,
4486 "<variable (not text or data), no debug info>", objfile);
4487 objfile_type->nodebug_tls_symbol
4488 = init_type (TYPE_CODE_INT,
4489 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4490 "<thread local variable, no debug info>", objfile);
4491
4492 /* NOTE: on some targets, addresses and pointers are not necessarily
4493 the same.
4494
4495 The upshot is:
4496 - gdb's `struct type' always describes the target's
4497 representation.
4498 - gdb's `struct value' objects should always hold values in
4499 target form.
4500 - gdb's CORE_ADDR values are addresses in the unified virtual
4501 address space that the assembler and linker work with. Thus,
4502 since target_read_memory takes a CORE_ADDR as an argument, it
4503 can access any memory on the target, even if the processor has
4504 separate code and data address spaces.
4505
4506 In this context, objfile_type->builtin_core_addr is a bit odd:
4507 it's a target type for a value the target will never see. It's
4508 only used to hold the values of (typeless) linker symbols, which
4509 are indeed in the unified virtual address space. */
4510
4511 objfile_type->builtin_core_addr
4512 = init_type (TYPE_CODE_INT,
4513 gdbarch_addr_bit (gdbarch) / 8,
4514 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4515
4516 set_objfile_data (objfile, objfile_type_data, objfile_type);
4517 return objfile_type;
4518 }
4519
4520 extern initialize_file_ftype _initialize_gdbtypes;
4521
4522 void
4523 _initialize_gdbtypes (void)
4524 {
4525 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4526 objfile_type_data = register_objfile_data ();
4527
4528 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4529 _("Set debugging of C++ overloading."),
4530 _("Show debugging of C++ overloading."),
4531 _("When enabled, ranking of the "
4532 "functions is displayed."),
4533 NULL,
4534 show_overload_debug,
4535 &setdebuglist, &showdebuglist);
4536
4537 /* Add user knob for controlling resolution of opaque types. */
4538 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4539 &opaque_type_resolution,
4540 _("Set resolution of opaque struct/class/union"
4541 " types (if set before loading symbols)."),
4542 _("Show resolution of opaque struct/class/union"
4543 " types (if set before loading symbols)."),
4544 NULL, NULL,
4545 show_opaque_type_resolution,
4546 &setlist, &showlist);
4547
4548 /* Add an option to permit non-strict type checking. */
4549 add_setshow_boolean_cmd ("type", class_support,
4550 &strict_type_checking,
4551 _("Set strict type checking."),
4552 _("Show strict type checking."),
4553 NULL, NULL,
4554 show_strict_type_checking,
4555 &setchecklist, &showchecklist);
4556 }