gdb: convert callback_handler_installed from int to bool
[binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2022 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/gdb-hashtab.h"
50 #include "gdbsupport/gdb_optional.h"
51 #include "gdbsupport/offset-type.h"
52 #include "gdbsupport/enum-flags.h"
53 #include "gdbsupport/underlying.h"
54 #include "gdbsupport/print-utils.h"
55 #include "dwarf2.h"
56 #include "gdbsupport/gdb_obstack.h"
57 #include "gmp-utils.h"
58
59 /* Forward declarations for prototypes. */
60 struct field;
61 struct block;
62 struct value_print_options;
63 struct language_defn;
64 struct dwarf2_per_cu_data;
65 struct dwarf2_per_objfile;
66
67 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
68 are already DWARF-specific. */
69
70 /* * Offset relative to the start of its containing CU (compilation
71 unit). */
72 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
73
74 /* * Offset relative to the start of its .debug_info or .debug_types
75 section. */
76 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
77
78 static inline char *
79 sect_offset_str (sect_offset offset)
80 {
81 return hex_string (to_underlying (offset));
82 }
83
84 /* Some macros for char-based bitfields. */
85
86 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
87 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
88 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
89 #define B_TYPE unsigned char
90 #define B_BYTES(x) ( 1 + ((x)>>3) )
91 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
92
93 /* * Different kinds of data types are distinguished by the `code'
94 field. */
95
96 enum type_code
97 {
98 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
99 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
100 TYPE_CODE_PTR, /**< Pointer type */
101
102 /* * Array type with lower & upper bounds.
103
104 Regardless of the language, GDB represents multidimensional
105 array types the way C does: as arrays of arrays. So an
106 instance of a GDB array type T can always be seen as a series
107 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
108 memory.
109
110 Row-major languages like C lay out multi-dimensional arrays so
111 that incrementing the rightmost index in a subscripting
112 expression results in the smallest change in the address of the
113 element referred to. Column-major languages like Fortran lay
114 them out so that incrementing the leftmost index results in the
115 smallest change.
116
117 This means that, in column-major languages, working our way
118 from type to target type corresponds to working through indices
119 from right to left, not left to right. */
120 TYPE_CODE_ARRAY,
121
122 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
123 TYPE_CODE_UNION, /**< C union or Pascal variant part */
124 TYPE_CODE_ENUM, /**< Enumeration type */
125 TYPE_CODE_FLAGS, /**< Bit flags type */
126 TYPE_CODE_FUNC, /**< Function type */
127 TYPE_CODE_INT, /**< Integer type */
128
129 /* * Floating type. This is *NOT* a complex type. */
130 TYPE_CODE_FLT,
131
132 /* * Void type. The length field specifies the length (probably
133 always one) which is used in pointer arithmetic involving
134 pointers to this type, but actually dereferencing such a
135 pointer is invalid; a void type has no length and no actual
136 representation in memory or registers. A pointer to a void
137 type is a generic pointer. */
138 TYPE_CODE_VOID,
139
140 TYPE_CODE_SET, /**< Pascal sets */
141 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
142
143 /* * A string type which is like an array of character but prints
144 differently. It does not contain a length field as Pascal
145 strings (for many Pascals, anyway) do; if we want to deal with
146 such strings, we should use a new type code. */
147 TYPE_CODE_STRING,
148
149 /* * Unknown type. The length field is valid if we were able to
150 deduce that much about the type, or 0 if we don't even know
151 that. */
152 TYPE_CODE_ERROR,
153
154 /* C++ */
155 TYPE_CODE_METHOD, /**< Method type */
156
157 /* * Pointer-to-member-function type. This describes how to access a
158 particular member function of a class (possibly a virtual
159 member function). The representation may vary between different
160 C++ ABIs. */
161 TYPE_CODE_METHODPTR,
162
163 /* * Pointer-to-member type. This is the offset within a class to
164 some particular data member. The only currently supported
165 representation uses an unbiased offset, with -1 representing
166 NULL; this is used by the Itanium C++ ABI (used by GCC on all
167 platforms). */
168 TYPE_CODE_MEMBERPTR,
169
170 TYPE_CODE_REF, /**< C++ Reference types */
171
172 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
173
174 TYPE_CODE_CHAR, /**< *real* character type */
175
176 /* * Boolean type. 0 is false, 1 is true, and other values are
177 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
178 TYPE_CODE_BOOL,
179
180 /* Fortran */
181 TYPE_CODE_COMPLEX, /**< Complex float */
182
183 TYPE_CODE_TYPEDEF,
184
185 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
186
187 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
188
189 TYPE_CODE_MODULE, /**< Fortran module. */
190
191 /* * Internal function type. */
192 TYPE_CODE_INTERNAL_FUNCTION,
193
194 /* * Methods implemented in extension languages. */
195 TYPE_CODE_XMETHOD,
196
197 /* * Fixed Point type. */
198 TYPE_CODE_FIXED_POINT,
199
200 /* * Fortran namelist is a group of variables or arrays that can be
201 read or written.
202
203 Namelist syntax: NAMELIST / groupname / namelist_items ...
204 NAMELIST statement assign a group name to a collection of variables
205 called as namelist items. The namelist items can be of any data type
206 and can be variables or arrays.
207
208 Compiler emit DW_TAG_namelist for group name and DW_TAG_namelist_item
209 for each of the namelist items. GDB process these namelist dies
210 and print namelist variables during print and ptype commands. */
211 TYPE_CODE_NAMELIST,
212 };
213
214 /* * Some bits for the type's instance_flags word. See the macros
215 below for documentation on each bit. */
216
217 enum type_instance_flag_value : unsigned
218 {
219 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
220 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
221 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
222 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
223 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
224 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
225 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
226 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
227 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
228 };
229
230 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
231
232 /* * Not textual. By default, GDB treats all single byte integers as
233 characters (or elements of strings) unless this flag is set. */
234
235 #define TYPE_NOTTEXT(t) (((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_NOTTEXT)
236
237 /* * Constant type. If this is set, the corresponding type has a
238 const modifier. */
239
240 #define TYPE_CONST(t) ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CONST) != 0)
241
242 /* * Volatile type. If this is set, the corresponding type has a
243 volatile modifier. */
244
245 #define TYPE_VOLATILE(t) \
246 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
247
248 /* * Restrict type. If this is set, the corresponding type has a
249 restrict modifier. */
250
251 #define TYPE_RESTRICT(t) \
252 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
253
254 /* * Atomic type. If this is set, the corresponding type has an
255 _Atomic modifier. */
256
257 #define TYPE_ATOMIC(t) \
258 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
259
260 /* * True if this type represents either an lvalue or lvalue reference type. */
261
262 #define TYPE_IS_REFERENCE(t) \
263 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
264
265 /* * True if this type is allocatable. */
266 #define TYPE_IS_ALLOCATABLE(t) \
267 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
268
269 /* * True if this type has variant parts. */
270 #define TYPE_HAS_VARIANT_PARTS(t) \
271 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
272
273 /* * True if this type has a dynamic length. */
274 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
275 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
276
277 /* * Instruction-space delimited type. This is for Harvard architectures
278 which have separate instruction and data address spaces (and perhaps
279 others).
280
281 GDB usually defines a flat address space that is a superset of the
282 architecture's two (or more) address spaces, but this is an extension
283 of the architecture's model.
284
285 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
286 resides in instruction memory, even if its address (in the extended
287 flat address space) does not reflect this.
288
289 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
290 corresponding type resides in the data memory space, even if
291 this is not indicated by its (flat address space) address.
292
293 If neither flag is set, the default space for functions / methods
294 is instruction space, and for data objects is data memory. */
295
296 #define TYPE_CODE_SPACE(t) \
297 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
298
299 #define TYPE_DATA_SPACE(t) \
300 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
301
302 /* * Address class flags. Some environments provide for pointers
303 whose size is different from that of a normal pointer or address
304 types where the bits are interpreted differently than normal
305 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
306 target specific ways to represent these different types of address
307 classes. */
308
309 #define TYPE_ADDRESS_CLASS_1(t) (((t)->instance_flags ()) \
310 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
311 #define TYPE_ADDRESS_CLASS_2(t) (((t)->instance_flags ()) \
312 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
313 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
314 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
315 #define TYPE_ADDRESS_CLASS_ALL(t) (((t)->instance_flags ()) \
316 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
317
318 /* * Information about a single discriminant. */
319
320 struct discriminant_range
321 {
322 /* * The range of values for the variant. This is an inclusive
323 range. */
324 ULONGEST low, high;
325
326 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
327 is true if this should be an unsigned comparison; false for
328 signed. */
329 bool contains (ULONGEST value, bool is_unsigned) const
330 {
331 if (is_unsigned)
332 return value >= low && value <= high;
333 LONGEST valuel = (LONGEST) value;
334 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
335 }
336 };
337
338 struct variant_part;
339
340 /* * A single variant. A variant has a list of discriminant values.
341 When the discriminator matches one of these, the variant is
342 enabled. Each variant controls zero or more fields; and may also
343 control other variant parts as well. This struct corresponds to
344 DW_TAG_variant in DWARF. */
345
346 struct variant : allocate_on_obstack
347 {
348 /* * The discriminant ranges for this variant. */
349 gdb::array_view<discriminant_range> discriminants;
350
351 /* * The fields controlled by this variant. This is inclusive on
352 the low end and exclusive on the high end. A variant may not
353 control any fields, in which case the two values will be equal.
354 These are indexes into the type's array of fields. */
355 int first_field;
356 int last_field;
357
358 /* * Variant parts controlled by this variant. */
359 gdb::array_view<variant_part> parts;
360
361 /* * Return true if this is the default variant. The default
362 variant can be recognized because it has no associated
363 discriminants. */
364 bool is_default () const
365 {
366 return discriminants.empty ();
367 }
368
369 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
370 if this should be an unsigned comparison; false for signed. */
371 bool matches (ULONGEST value, bool is_unsigned) const;
372 };
373
374 /* * A variant part. Each variant part has an optional discriminant
375 and holds an array of variants. This struct corresponds to
376 DW_TAG_variant_part in DWARF. */
377
378 struct variant_part : allocate_on_obstack
379 {
380 /* * The index of the discriminant field in the outer type. This is
381 an index into the type's array of fields. If this is -1, there
382 is no discriminant, and only the default variant can be
383 considered to be selected. */
384 int discriminant_index;
385
386 /* * True if this discriminant is unsigned; false if signed. This
387 comes from the type of the discriminant. */
388 bool is_unsigned;
389
390 /* * The variants that are controlled by this variant part. Note
391 that these will always be sorted by field number. */
392 gdb::array_view<variant> variants;
393 };
394
395
396 enum dynamic_prop_kind
397 {
398 PROP_UNDEFINED, /* Not defined. */
399 PROP_CONST, /* Constant. */
400 PROP_ADDR_OFFSET, /* Address offset. */
401 PROP_LOCEXPR, /* Location expression. */
402 PROP_LOCLIST, /* Location list. */
403 PROP_VARIANT_PARTS, /* Variant parts. */
404 PROP_TYPE, /* Type. */
405 PROP_VARIABLE_NAME, /* Variable name. */
406 };
407
408 union dynamic_prop_data
409 {
410 /* Storage for constant property. */
411
412 LONGEST const_val;
413
414 /* Storage for dynamic property. */
415
416 void *baton;
417
418 /* Storage of variant parts for a type. A type with variant parts
419 has all its fields "linearized" -- stored in a single field
420 array, just as if they had all been declared that way. The
421 variant parts are attached via a dynamic property, and then are
422 used to control which fields end up in the final type during
423 dynamic type resolution. */
424
425 const gdb::array_view<variant_part> *variant_parts;
426
427 /* Once a variant type is resolved, we may want to be able to go
428 from the resolved type to the original type. In this case we
429 rewrite the property's kind and set this field. */
430
431 struct type *original_type;
432
433 /* Name of a variable to look up; the variable holds the value of
434 this property. */
435
436 const char *variable_name;
437 };
438
439 /* * Used to store a dynamic property. */
440
441 struct dynamic_prop
442 {
443 dynamic_prop_kind kind () const
444 {
445 return m_kind;
446 }
447
448 void set_undefined ()
449 {
450 m_kind = PROP_UNDEFINED;
451 }
452
453 LONGEST const_val () const
454 {
455 gdb_assert (m_kind == PROP_CONST);
456
457 return m_data.const_val;
458 }
459
460 void set_const_val (LONGEST const_val)
461 {
462 m_kind = PROP_CONST;
463 m_data.const_val = const_val;
464 }
465
466 void *baton () const
467 {
468 gdb_assert (m_kind == PROP_LOCEXPR
469 || m_kind == PROP_LOCLIST
470 || m_kind == PROP_ADDR_OFFSET);
471
472 return m_data.baton;
473 }
474
475 void set_locexpr (void *baton)
476 {
477 m_kind = PROP_LOCEXPR;
478 m_data.baton = baton;
479 }
480
481 void set_loclist (void *baton)
482 {
483 m_kind = PROP_LOCLIST;
484 m_data.baton = baton;
485 }
486
487 void set_addr_offset (void *baton)
488 {
489 m_kind = PROP_ADDR_OFFSET;
490 m_data.baton = baton;
491 }
492
493 const gdb::array_view<variant_part> *variant_parts () const
494 {
495 gdb_assert (m_kind == PROP_VARIANT_PARTS);
496
497 return m_data.variant_parts;
498 }
499
500 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
501 {
502 m_kind = PROP_VARIANT_PARTS;
503 m_data.variant_parts = variant_parts;
504 }
505
506 struct type *original_type () const
507 {
508 gdb_assert (m_kind == PROP_TYPE);
509
510 return m_data.original_type;
511 }
512
513 void set_original_type (struct type *original_type)
514 {
515 m_kind = PROP_TYPE;
516 m_data.original_type = original_type;
517 }
518
519 /* Return the name of the variable that holds this property's value.
520 Only valid for PROP_VARIABLE_NAME. */
521 const char *variable_name () const
522 {
523 gdb_assert (m_kind == PROP_VARIABLE_NAME);
524 return m_data.variable_name;
525 }
526
527 /* Set the name of the variable that holds this property's value,
528 and set this property to be of kind PROP_VARIABLE_NAME. */
529 void set_variable_name (const char *name)
530 {
531 m_kind = PROP_VARIABLE_NAME;
532 m_data.variable_name = name;
533 }
534
535 /* Determine which field of the union dynamic_prop.data is used. */
536 enum dynamic_prop_kind m_kind;
537
538 /* Storage for dynamic or static value. */
539 union dynamic_prop_data m_data;
540 };
541
542 /* Compare two dynamic_prop objects for equality. dynamic_prop
543 instances are equal iff they have the same type and storage. */
544 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
545
546 /* Compare two dynamic_prop objects for inequality. */
547 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
548 {
549 return !(l == r);
550 }
551
552 /* * Define a type's dynamic property node kind. */
553 enum dynamic_prop_node_kind
554 {
555 /* A property providing a type's data location.
556 Evaluating this field yields to the location of an object's data. */
557 DYN_PROP_DATA_LOCATION,
558
559 /* A property representing DW_AT_allocated. The presence of this attribute
560 indicates that the object of the type can be allocated/deallocated. */
561 DYN_PROP_ALLOCATED,
562
563 /* A property representing DW_AT_associated. The presence of this attribute
564 indicated that the object of the type can be associated. */
565 DYN_PROP_ASSOCIATED,
566
567 /* A property providing an array's byte stride. */
568 DYN_PROP_BYTE_STRIDE,
569
570 /* A property holding variant parts. */
571 DYN_PROP_VARIANT_PARTS,
572
573 /* A property holding the size of the type. */
574 DYN_PROP_BYTE_SIZE,
575 };
576
577 /* * List for dynamic type attributes. */
578 struct dynamic_prop_list
579 {
580 /* The kind of dynamic prop in this node. */
581 enum dynamic_prop_node_kind prop_kind;
582
583 /* The dynamic property itself. */
584 struct dynamic_prop prop;
585
586 /* A pointer to the next dynamic property. */
587 struct dynamic_prop_list *next;
588 };
589
590 /* * Determine which field of the union main_type.fields[x].loc is
591 used. */
592
593 enum field_loc_kind
594 {
595 FIELD_LOC_KIND_BITPOS, /**< bitpos */
596 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
597 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
598 FIELD_LOC_KIND_PHYSNAME, /**< physname */
599 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
600 };
601
602 /* * A discriminant to determine which field in the
603 main_type.type_specific union is being used, if any.
604
605 For types such as TYPE_CODE_FLT, the use of this
606 discriminant is really redundant, as we know from the type code
607 which field is going to be used. As such, it would be possible to
608 reduce the size of this enum in order to save a bit or two for
609 other fields of struct main_type. But, since we still have extra
610 room , and for the sake of clarity and consistency, we treat all fields
611 of the union the same way. */
612
613 enum type_specific_kind
614 {
615 TYPE_SPECIFIC_NONE,
616 TYPE_SPECIFIC_CPLUS_STUFF,
617 TYPE_SPECIFIC_GNAT_STUFF,
618 TYPE_SPECIFIC_FLOATFORMAT,
619 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
620 TYPE_SPECIFIC_FUNC,
621 TYPE_SPECIFIC_SELF_TYPE,
622 TYPE_SPECIFIC_INT,
623 TYPE_SPECIFIC_FIXED_POINT,
624 };
625
626 union type_owner
627 {
628 struct objfile *objfile;
629 struct gdbarch *gdbarch;
630 };
631
632 union field_location
633 {
634 /* * Position of this field, counting in bits from start of
635 containing structure. For big-endian targets, it is the bit
636 offset to the MSB. For little-endian targets, it is the bit
637 offset to the LSB. */
638
639 LONGEST bitpos;
640
641 /* * Enum value. */
642 LONGEST enumval;
643
644 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
645 physaddr is the location (in the target) of the static
646 field. Otherwise, physname is the mangled label of the
647 static field. */
648
649 CORE_ADDR physaddr;
650 const char *physname;
651
652 /* * The field location can be computed by evaluating the
653 following DWARF block. Its DATA is allocated on
654 objfile_obstack - no CU load is needed to access it. */
655
656 struct dwarf2_locexpr_baton *dwarf_block;
657 };
658
659 struct field
660 {
661 struct type *type () const
662 {
663 return this->m_type;
664 }
665
666 void set_type (struct type *type)
667 {
668 this->m_type = type;
669 }
670
671 const char *name () const
672 {
673 return m_name;
674 }
675
676 void set_name (const char *name)
677 {
678 m_name = name;
679 }
680
681 /* Location getters / setters. */
682
683 field_loc_kind loc_kind () const
684 {
685 return m_loc_kind;
686 }
687
688 LONGEST loc_bitpos () const
689 {
690 gdb_assert (m_loc_kind == FIELD_LOC_KIND_BITPOS);
691 return m_loc.bitpos;
692 }
693
694 void set_loc_bitpos (LONGEST bitpos)
695 {
696 m_loc_kind = FIELD_LOC_KIND_BITPOS;
697 m_loc.bitpos = bitpos;
698 }
699
700 LONGEST loc_enumval () const
701 {
702 gdb_assert (m_loc_kind == FIELD_LOC_KIND_ENUMVAL);
703 return m_loc.enumval;
704 }
705
706 void set_loc_enumval (LONGEST enumval)
707 {
708 m_loc_kind = FIELD_LOC_KIND_ENUMVAL;
709 m_loc.enumval = enumval;
710 }
711
712 CORE_ADDR loc_physaddr () const
713 {
714 gdb_assert (m_loc_kind == FIELD_LOC_KIND_PHYSADDR);
715 return m_loc.physaddr;
716 }
717
718 void set_loc_physaddr (CORE_ADDR physaddr)
719 {
720 m_loc_kind = FIELD_LOC_KIND_PHYSADDR;
721 m_loc.physaddr = physaddr;
722 }
723
724 const char *loc_physname () const
725 {
726 gdb_assert (m_loc_kind == FIELD_LOC_KIND_PHYSNAME);
727 return m_loc.physname;
728 }
729
730 void set_loc_physname (const char *physname)
731 {
732 m_loc_kind = FIELD_LOC_KIND_PHYSNAME;
733 m_loc.physname = physname;
734 }
735
736 dwarf2_locexpr_baton *loc_dwarf_block () const
737 {
738 gdb_assert (m_loc_kind == FIELD_LOC_KIND_DWARF_BLOCK);
739 return m_loc.dwarf_block;
740 }
741
742 void set_loc_dwarf_block (dwarf2_locexpr_baton *dwarf_block)
743 {
744 m_loc_kind = FIELD_LOC_KIND_DWARF_BLOCK;
745 m_loc.dwarf_block = dwarf_block;
746 }
747
748 union field_location m_loc;
749
750 /* * For a function or member type, this is 1 if the argument is
751 marked artificial. Artificial arguments should not be shown
752 to the user. For TYPE_CODE_RANGE it is set if the specific
753 bound is not defined. */
754
755 unsigned int artificial : 1;
756
757 /* * Discriminant for union field_location. */
758
759 ENUM_BITFIELD(field_loc_kind) m_loc_kind : 3;
760
761 /* * Size of this field, in bits, or zero if not packed.
762 If non-zero in an array type, indicates the element size in
763 bits (used only in Ada at the moment).
764 For an unpacked field, the field's type's length
765 says how many bytes the field occupies. */
766
767 unsigned int bitsize : 28;
768
769 /* * In a struct or union type, type of this field.
770 - In a function or member type, type of this argument.
771 - In an array type, the domain-type of the array. */
772
773 struct type *m_type;
774
775 /* * Name of field, value or argument.
776 NULL for range bounds, array domains, and member function
777 arguments. */
778
779 const char *m_name;
780 };
781
782 struct range_bounds
783 {
784 ULONGEST bit_stride () const
785 {
786 if (this->flag_is_byte_stride)
787 return this->stride.const_val () * 8;
788 else
789 return this->stride.const_val ();
790 }
791
792 /* * Low bound of range. */
793
794 struct dynamic_prop low;
795
796 /* * High bound of range. */
797
798 struct dynamic_prop high;
799
800 /* The stride value for this range. This can be stored in bits or bytes
801 based on the value of BYTE_STRIDE_P. It is optional to have a stride
802 value, if this range has no stride value defined then this will be set
803 to the constant zero. */
804
805 struct dynamic_prop stride;
806
807 /* * The bias. Sometimes a range value is biased before storage.
808 The bias is added to the stored bits to form the true value. */
809
810 LONGEST bias;
811
812 /* True if HIGH range bound contains the number of elements in the
813 subrange. This affects how the final high bound is computed. */
814
815 unsigned int flag_upper_bound_is_count : 1;
816
817 /* True if LOW or/and HIGH are resolved into a static bound from
818 a dynamic one. */
819
820 unsigned int flag_bound_evaluated : 1;
821
822 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
823
824 unsigned int flag_is_byte_stride : 1;
825 };
826
827 /* Compare two range_bounds objects for equality. Simply does
828 memberwise comparison. */
829 extern bool operator== (const range_bounds &l, const range_bounds &r);
830
831 /* Compare two range_bounds objects for inequality. */
832 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
833 {
834 return !(l == r);
835 }
836
837 union type_specific
838 {
839 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
840 point to cplus_struct_default, a default static instance of a
841 struct cplus_struct_type. */
842
843 struct cplus_struct_type *cplus_stuff;
844
845 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
846 provides additional information. */
847
848 struct gnat_aux_type *gnat_stuff;
849
850 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
851 floatformat object that describes the floating-point value
852 that resides within the type. */
853
854 const struct floatformat *floatformat;
855
856 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
857
858 struct func_type *func_stuff;
859
860 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
861 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
862 is a member of. */
863
864 struct type *self_type;
865
866 /* * For TYPE_CODE_FIXED_POINT types, the info necessary to decode
867 values of that type. */
868 struct fixed_point_type_info *fixed_point_info;
869
870 /* * An integer-like scalar type may be stored in just part of its
871 enclosing storage bytes. This structure describes this
872 situation. */
873 struct
874 {
875 /* * The bit size of the integer. This can be 0. For integers
876 that fill their storage (the ordinary case), this field holds
877 the byte size times 8. */
878 unsigned short bit_size;
879 /* * The bit offset of the integer. This is ordinarily 0, and can
880 only be non-zero if the bit size is less than the storage
881 size. */
882 unsigned short bit_offset;
883 } int_stuff;
884 };
885
886 /* * Main structure representing a type in GDB.
887
888 This structure is space-critical. Its layout has been tweaked to
889 reduce the space used. */
890
891 struct main_type
892 {
893 /* * Code for kind of type. */
894
895 ENUM_BITFIELD(type_code) code : 8;
896
897 /* * Flags about this type. These fields appear at this location
898 because they packs nicely here. See the TYPE_* macros for
899 documentation about these fields. */
900
901 unsigned int m_flag_unsigned : 1;
902 unsigned int m_flag_nosign : 1;
903 unsigned int m_flag_stub : 1;
904 unsigned int m_flag_target_stub : 1;
905 unsigned int m_flag_prototyped : 1;
906 unsigned int m_flag_varargs : 1;
907 unsigned int m_flag_vector : 1;
908 unsigned int m_flag_stub_supported : 1;
909 unsigned int m_flag_gnu_ifunc : 1;
910 unsigned int m_flag_fixed_instance : 1;
911 unsigned int m_flag_objfile_owned : 1;
912 unsigned int m_flag_endianity_not_default : 1;
913
914 /* * True if this type was declared with "class" rather than
915 "struct". */
916
917 unsigned int m_flag_declared_class : 1;
918
919 /* * True if this is an enum type with disjoint values. This
920 affects how the enum is printed. */
921
922 unsigned int m_flag_flag_enum : 1;
923
924 /* * A discriminant telling us which field of the type_specific
925 union is being used for this type, if any. */
926
927 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
928
929 /* * Number of fields described for this type. This field appears
930 at this location because it packs nicely here. */
931
932 short nfields;
933
934 /* * Name of this type, or NULL if none.
935
936 This is used for printing only. For looking up a name, look for
937 a symbol in the VAR_DOMAIN. This is generally allocated in the
938 objfile's obstack. However coffread.c uses malloc. */
939
940 const char *name;
941
942 /* * Every type is now associated with a particular objfile, and the
943 type is allocated on the objfile_obstack for that objfile. One
944 problem however, is that there are times when gdb allocates new
945 types while it is not in the process of reading symbols from a
946 particular objfile. Fortunately, these happen when the type
947 being created is a derived type of an existing type, such as in
948 lookup_pointer_type(). So we can just allocate the new type
949 using the same objfile as the existing type, but to do this we
950 need a backpointer to the objfile from the existing type. Yes
951 this is somewhat ugly, but without major overhaul of the internal
952 type system, it can't be avoided for now. */
953
954 union type_owner m_owner;
955
956 /* * For a pointer type, describes the type of object pointed to.
957 - For an array type, describes the type of the elements.
958 - For a function or method type, describes the type of the return value.
959 - For a range type, describes the type of the full range.
960 - For a complex type, describes the type of each coordinate.
961 - For a special record or union type encoding a dynamic-sized type
962 in GNAT, a memoized pointer to a corresponding static version of
963 the type.
964 - Unused otherwise. */
965
966 struct type *target_type;
967
968 /* * For structure and union types, a description of each field.
969 For set and pascal array types, there is one "field",
970 whose type is the domain type of the set or array.
971 For range types, there are two "fields",
972 the minimum and maximum values (both inclusive).
973 For enum types, each possible value is described by one "field".
974 For a function or method type, a "field" for each parameter.
975 For C++ classes, there is one field for each base class (if it is
976 a derived class) plus one field for each class data member. Member
977 functions are recorded elsewhere.
978
979 Using a pointer to a separate array of fields
980 allows all types to have the same size, which is useful
981 because we can allocate the space for a type before
982 we know what to put in it. */
983
984 union
985 {
986 struct field *fields;
987
988 /* * Union member used for range types. */
989
990 struct range_bounds *bounds;
991
992 /* If this is a scalar type, then this is its corresponding
993 complex type. */
994 struct type *complex_type;
995
996 } flds_bnds;
997
998 /* * Slot to point to additional language-specific fields of this
999 type. */
1000
1001 union type_specific type_specific;
1002
1003 /* * Contains all dynamic type properties. */
1004 struct dynamic_prop_list *dyn_prop_list;
1005 };
1006
1007 /* * Number of bits allocated for alignment. */
1008
1009 #define TYPE_ALIGN_BITS 8
1010
1011 /* * A ``struct type'' describes a particular instance of a type, with
1012 some particular qualification. */
1013
1014 struct type
1015 {
1016 /* Get the type code of this type.
1017
1018 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
1019 type, you need to do `check_typedef (type)->code ()`. */
1020 type_code code () const
1021 {
1022 return this->main_type->code;
1023 }
1024
1025 /* Set the type code of this type. */
1026 void set_code (type_code code)
1027 {
1028 this->main_type->code = code;
1029 }
1030
1031 /* Get the name of this type. */
1032 const char *name () const
1033 {
1034 return this->main_type->name;
1035 }
1036
1037 /* Set the name of this type. */
1038 void set_name (const char *name)
1039 {
1040 this->main_type->name = name;
1041 }
1042
1043 /* Get the number of fields of this type. */
1044 int num_fields () const
1045 {
1046 return this->main_type->nfields;
1047 }
1048
1049 /* Set the number of fields of this type. */
1050 void set_num_fields (int num_fields)
1051 {
1052 this->main_type->nfields = num_fields;
1053 }
1054
1055 /* Get the fields array of this type. */
1056 struct field *fields () const
1057 {
1058 return this->main_type->flds_bnds.fields;
1059 }
1060
1061 /* Get the field at index IDX. */
1062 struct field &field (int idx) const
1063 {
1064 gdb_assert (idx >= 0 && idx < num_fields ());
1065 return this->fields ()[idx];
1066 }
1067
1068 /* Set the fields array of this type. */
1069 void set_fields (struct field *fields)
1070 {
1071 this->main_type->flds_bnds.fields = fields;
1072 }
1073
1074 type *index_type () const
1075 {
1076 return this->field (0).type ();
1077 }
1078
1079 void set_index_type (type *index_type)
1080 {
1081 this->field (0).set_type (index_type);
1082 }
1083
1084 /* Return the instance flags converted to the correct type. */
1085 const type_instance_flags instance_flags () const
1086 {
1087 return (enum type_instance_flag_value) this->m_instance_flags;
1088 }
1089
1090 /* Set the instance flags. */
1091 void set_instance_flags (type_instance_flags flags)
1092 {
1093 this->m_instance_flags = flags;
1094 }
1095
1096 /* Get the bounds bounds of this type. The type must be a range type. */
1097 range_bounds *bounds () const
1098 {
1099 switch (this->code ())
1100 {
1101 case TYPE_CODE_RANGE:
1102 return this->main_type->flds_bnds.bounds;
1103
1104 case TYPE_CODE_ARRAY:
1105 case TYPE_CODE_STRING:
1106 return this->index_type ()->bounds ();
1107
1108 default:
1109 gdb_assert_not_reached
1110 ("type::bounds called on type with invalid code");
1111 }
1112 }
1113
1114 /* Set the bounds of this type. The type must be a range type. */
1115 void set_bounds (range_bounds *bounds)
1116 {
1117 gdb_assert (this->code () == TYPE_CODE_RANGE);
1118
1119 this->main_type->flds_bnds.bounds = bounds;
1120 }
1121
1122 ULONGEST bit_stride () const
1123 {
1124 if (this->code () == TYPE_CODE_ARRAY && this->field (0).bitsize != 0)
1125 return this->field (0).bitsize;
1126 return this->bounds ()->bit_stride ();
1127 }
1128
1129 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1130 the type is signed (unless TYPE_NOSIGN is set). */
1131
1132 bool is_unsigned () const
1133 {
1134 return this->main_type->m_flag_unsigned;
1135 }
1136
1137 void set_is_unsigned (bool is_unsigned)
1138 {
1139 this->main_type->m_flag_unsigned = is_unsigned;
1140 }
1141
1142 /* No sign for this type. In C++, "char", "signed char", and
1143 "unsigned char" are distinct types; so we need an extra flag to
1144 indicate the absence of a sign! */
1145
1146 bool has_no_signedness () const
1147 {
1148 return this->main_type->m_flag_nosign;
1149 }
1150
1151 void set_has_no_signedness (bool has_no_signedness)
1152 {
1153 this->main_type->m_flag_nosign = has_no_signedness;
1154 }
1155
1156 /* This appears in a type's flags word if it is a stub type (e.g.,
1157 if someone referenced a type that wasn't defined in a source file
1158 via (struct sir_not_appearing_in_this_film *)). */
1159
1160 bool is_stub () const
1161 {
1162 return this->main_type->m_flag_stub;
1163 }
1164
1165 void set_is_stub (bool is_stub)
1166 {
1167 this->main_type->m_flag_stub = is_stub;
1168 }
1169
1170 /* The target type of this type is a stub type, and this type needs
1171 to be updated if it gets un-stubbed in check_typedef. Used for
1172 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1173 based on the TYPE_LENGTH of the target type. Also, set for
1174 TYPE_CODE_TYPEDEF. */
1175
1176 bool target_is_stub () const
1177 {
1178 return this->main_type->m_flag_target_stub;
1179 }
1180
1181 void set_target_is_stub (bool target_is_stub)
1182 {
1183 this->main_type->m_flag_target_stub = target_is_stub;
1184 }
1185
1186 /* This is a function type which appears to have a prototype. We
1187 need this for function calls in order to tell us if it's necessary
1188 to coerce the args, or to just do the standard conversions. This
1189 is used with a short field. */
1190
1191 bool is_prototyped () const
1192 {
1193 return this->main_type->m_flag_prototyped;
1194 }
1195
1196 void set_is_prototyped (bool is_prototyped)
1197 {
1198 this->main_type->m_flag_prototyped = is_prototyped;
1199 }
1200
1201 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1202 to functions. */
1203
1204 bool has_varargs () const
1205 {
1206 return this->main_type->m_flag_varargs;
1207 }
1208
1209 void set_has_varargs (bool has_varargs)
1210 {
1211 this->main_type->m_flag_varargs = has_varargs;
1212 }
1213
1214 /* Identify a vector type. Gcc is handling this by adding an extra
1215 attribute to the array type. We slurp that in as a new flag of a
1216 type. This is used only in dwarf2read.c. */
1217
1218 bool is_vector () const
1219 {
1220 return this->main_type->m_flag_vector;
1221 }
1222
1223 void set_is_vector (bool is_vector)
1224 {
1225 this->main_type->m_flag_vector = is_vector;
1226 }
1227
1228 /* This debug target supports TYPE_STUB(t). In the unsupported case
1229 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1230 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1231 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1232
1233 bool stub_is_supported () const
1234 {
1235 return this->main_type->m_flag_stub_supported;
1236 }
1237
1238 void set_stub_is_supported (bool stub_is_supported)
1239 {
1240 this->main_type->m_flag_stub_supported = stub_is_supported;
1241 }
1242
1243 /* Used only for TYPE_CODE_FUNC where it specifies the real function
1244 address is returned by this function call. TYPE_TARGET_TYPE
1245 determines the final returned function type to be presented to
1246 user. */
1247
1248 bool is_gnu_ifunc () const
1249 {
1250 return this->main_type->m_flag_gnu_ifunc;
1251 }
1252
1253 void set_is_gnu_ifunc (bool is_gnu_ifunc)
1254 {
1255 this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1256 }
1257
1258 /* The debugging formats (especially STABS) do not contain enough
1259 information to represent all Ada types---especially those whose
1260 size depends on dynamic quantities. Therefore, the GNAT Ada
1261 compiler includes extra information in the form of additional type
1262 definitions connected by naming conventions. This flag indicates
1263 that the type is an ordinary (unencoded) GDB type that has been
1264 created from the necessary run-time information, and does not need
1265 further interpretation. Optionally marks ordinary, fixed-size GDB
1266 type. */
1267
1268 bool is_fixed_instance () const
1269 {
1270 return this->main_type->m_flag_fixed_instance;
1271 }
1272
1273 void set_is_fixed_instance (bool is_fixed_instance)
1274 {
1275 this->main_type->m_flag_fixed_instance = is_fixed_instance;
1276 }
1277
1278 /* A compiler may supply dwarf instrumentation that indicates the desired
1279 endian interpretation of the variable differs from the native endian
1280 representation. */
1281
1282 bool endianity_is_not_default () const
1283 {
1284 return this->main_type->m_flag_endianity_not_default;
1285 }
1286
1287 void set_endianity_is_not_default (bool endianity_is_not_default)
1288 {
1289 this->main_type->m_flag_endianity_not_default = endianity_is_not_default;
1290 }
1291
1292
1293 /* True if this type was declared using the "class" keyword. This is
1294 only valid for C++ structure and enum types. If false, a structure
1295 was declared as a "struct"; if true it was declared "class". For
1296 enum types, this is true when "enum class" or "enum struct" was
1297 used to declare the type. */
1298
1299 bool is_declared_class () const
1300 {
1301 return this->main_type->m_flag_declared_class;
1302 }
1303
1304 void set_is_declared_class (bool is_declared_class) const
1305 {
1306 this->main_type->m_flag_declared_class = is_declared_class;
1307 }
1308
1309 /* True if this type is a "flag" enum. A flag enum is one where all
1310 the values are pairwise disjoint when "and"ed together. This
1311 affects how enum values are printed. */
1312
1313 bool is_flag_enum () const
1314 {
1315 return this->main_type->m_flag_flag_enum;
1316 }
1317
1318 void set_is_flag_enum (bool is_flag_enum)
1319 {
1320 this->main_type->m_flag_flag_enum = is_flag_enum;
1321 }
1322
1323 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return a reference
1324 to this type's fixed_point_info. */
1325
1326 struct fixed_point_type_info &fixed_point_info () const
1327 {
1328 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1329 gdb_assert (this->main_type->type_specific.fixed_point_info != nullptr);
1330
1331 return *this->main_type->type_specific.fixed_point_info;
1332 }
1333
1334 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, set this type's
1335 fixed_point_info to INFO. */
1336
1337 void set_fixed_point_info (struct fixed_point_type_info *info) const
1338 {
1339 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1340
1341 this->main_type->type_specific.fixed_point_info = info;
1342 }
1343
1344 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its base type.
1345
1346 In other words, this returns the type after having peeled all
1347 intermediate type layers (such as TYPE_CODE_RANGE, for instance).
1348 The TYPE_CODE of the type returned is guaranteed to be
1349 a TYPE_CODE_FIXED_POINT. */
1350
1351 struct type *fixed_point_type_base_type ();
1352
1353 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its scaling
1354 factor. */
1355
1356 const gdb_mpq &fixed_point_scaling_factor ();
1357
1358 /* * Return the dynamic property of the requested KIND from this type's
1359 list of dynamic properties. */
1360 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1361
1362 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1363 property to this type.
1364
1365 This function assumes that this type is objfile-owned. */
1366 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1367
1368 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1369 void remove_dyn_prop (dynamic_prop_node_kind kind);
1370
1371 /* Return true if this type is owned by an objfile. Return false if it is
1372 owned by an architecture. */
1373 bool is_objfile_owned () const
1374 {
1375 return this->main_type->m_flag_objfile_owned;
1376 }
1377
1378 /* Set the owner of the type to be OBJFILE. */
1379 void set_owner (objfile *objfile)
1380 {
1381 gdb_assert (objfile != nullptr);
1382
1383 this->main_type->m_owner.objfile = objfile;
1384 this->main_type->m_flag_objfile_owned = true;
1385 }
1386
1387 /* Set the owner of the type to be ARCH. */
1388 void set_owner (gdbarch *arch)
1389 {
1390 gdb_assert (arch != nullptr);
1391
1392 this->main_type->m_owner.gdbarch = arch;
1393 this->main_type->m_flag_objfile_owned = false;
1394 }
1395
1396 /* Return the objfile owner of this type.
1397
1398 Return nullptr if this type is not objfile-owned. */
1399 struct objfile *objfile_owner () const
1400 {
1401 if (!this->is_objfile_owned ())
1402 return nullptr;
1403
1404 return this->main_type->m_owner.objfile;
1405 }
1406
1407 /* Return the gdbarch owner of this type.
1408
1409 Return nullptr if this type is not gdbarch-owned. */
1410 gdbarch *arch_owner () const
1411 {
1412 if (this->is_objfile_owned ())
1413 return nullptr;
1414
1415 return this->main_type->m_owner.gdbarch;
1416 }
1417
1418 /* Return the type's architecture. For types owned by an
1419 architecture, that architecture is returned. For types owned by an
1420 objfile, that objfile's architecture is returned.
1421
1422 The return value is always non-nullptr. */
1423 gdbarch *arch () const;
1424
1425 /* * Return true if this is an integer type whose logical (bit) size
1426 differs from its storage size; false otherwise. Always return
1427 false for non-integer (i.e., non-TYPE_SPECIFIC_INT) types. */
1428 bool bit_size_differs_p () const
1429 {
1430 return (main_type->type_specific_field == TYPE_SPECIFIC_INT
1431 && main_type->type_specific.int_stuff.bit_size != 8 * length);
1432 }
1433
1434 /* * Return the logical (bit) size for this integer type. Only
1435 valid for integer (TYPE_SPECIFIC_INT) types. */
1436 unsigned short bit_size () const
1437 {
1438 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1439 return main_type->type_specific.int_stuff.bit_size;
1440 }
1441
1442 /* * Return the bit offset for this integer type. Only valid for
1443 integer (TYPE_SPECIFIC_INT) types. */
1444 unsigned short bit_offset () const
1445 {
1446 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1447 return main_type->type_specific.int_stuff.bit_offset;
1448 }
1449
1450 /* Return true if this is a pointer or reference type. */
1451 bool is_pointer_or_reference () const
1452 {
1453 return this->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (this);
1454 }
1455
1456 /* * Type that is a pointer to this type.
1457 NULL if no such pointer-to type is known yet.
1458 The debugger may add the address of such a type
1459 if it has to construct one later. */
1460
1461 struct type *pointer_type;
1462
1463 /* * C++: also need a reference type. */
1464
1465 struct type *reference_type;
1466
1467 /* * A C++ rvalue reference type added in C++11. */
1468
1469 struct type *rvalue_reference_type;
1470
1471 /* * Variant chain. This points to a type that differs from this
1472 one only in qualifiers and length. Currently, the possible
1473 qualifiers are const, volatile, code-space, data-space, and
1474 address class. The length may differ only when one of the
1475 address class flags are set. The variants are linked in a
1476 circular ring and share MAIN_TYPE. */
1477
1478 struct type *chain;
1479
1480 /* * The alignment for this type. Zero means that the alignment was
1481 not specified in the debug info. Note that this is stored in a
1482 funny way: as the log base 2 (plus 1) of the alignment; so a
1483 value of 1 means the alignment is 1, and a value of 9 means the
1484 alignment is 256. */
1485
1486 unsigned align_log2 : TYPE_ALIGN_BITS;
1487
1488 /* * Flags specific to this instance of the type, indicating where
1489 on the ring we are.
1490
1491 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1492 binary or-ed with the target type, with a special case for
1493 address class and space class. For example if this typedef does
1494 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1495 instance flags are completely inherited from the target type. No
1496 qualifiers can be cleared by the typedef. See also
1497 check_typedef. */
1498 unsigned m_instance_flags : 9;
1499
1500 /* * Length of storage for a value of this type. The value is the
1501 expression in host bytes of what sizeof(type) would return. This
1502 size includes padding. For example, an i386 extended-precision
1503 floating point value really only occupies ten bytes, but most
1504 ABI's declare its size to be 12 bytes, to preserve alignment.
1505 A `struct type' representing such a floating-point type would
1506 have a `length' value of 12, even though the last two bytes are
1507 unused.
1508
1509 Since this field is expressed in host bytes, its value is appropriate
1510 to pass to memcpy and such (it is assumed that GDB itself always runs
1511 on an 8-bits addressable architecture). However, when using it for
1512 target address arithmetic (e.g. adding it to a target address), the
1513 type_length_units function should be used in order to get the length
1514 expressed in target addressable memory units. */
1515
1516 ULONGEST length;
1517
1518 /* * Core type, shared by a group of qualified types. */
1519
1520 struct main_type *main_type;
1521 };
1522
1523 struct fn_fieldlist
1524 {
1525
1526 /* * The overloaded name.
1527 This is generally allocated in the objfile's obstack.
1528 However stabsread.c sometimes uses malloc. */
1529
1530 const char *name;
1531
1532 /* * The number of methods with this name. */
1533
1534 int length;
1535
1536 /* * The list of methods. */
1537
1538 struct fn_field *fn_fields;
1539 };
1540
1541
1542
1543 struct fn_field
1544 {
1545 /* * If is_stub is clear, this is the mangled name which we can look
1546 up to find the address of the method (FIXME: it would be cleaner
1547 to have a pointer to the struct symbol here instead).
1548
1549 If is_stub is set, this is the portion of the mangled name which
1550 specifies the arguments. For example, "ii", if there are two int
1551 arguments, or "" if there are no arguments. See gdb_mangle_name
1552 for the conversion from this format to the one used if is_stub is
1553 clear. */
1554
1555 const char *physname;
1556
1557 /* * The function type for the method.
1558
1559 (This comment used to say "The return value of the method", but
1560 that's wrong. The function type is expected here, i.e. something
1561 with TYPE_CODE_METHOD, and *not* the return-value type). */
1562
1563 struct type *type;
1564
1565 /* * For virtual functions. First baseclass that defines this
1566 virtual function. */
1567
1568 struct type *fcontext;
1569
1570 /* Attributes. */
1571
1572 unsigned int is_const:1;
1573 unsigned int is_volatile:1;
1574 unsigned int is_private:1;
1575 unsigned int is_protected:1;
1576 unsigned int is_artificial:1;
1577
1578 /* * A stub method only has some fields valid (but they are enough
1579 to reconstruct the rest of the fields). */
1580
1581 unsigned int is_stub:1;
1582
1583 /* * True if this function is a constructor, false otherwise. */
1584
1585 unsigned int is_constructor : 1;
1586
1587 /* * True if this function is deleted, false otherwise. */
1588
1589 unsigned int is_deleted : 1;
1590
1591 /* * DW_AT_defaulted attribute for this function. The value is one
1592 of the DW_DEFAULTED constants. */
1593
1594 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1595
1596 /* * Unused. */
1597
1598 unsigned int dummy:6;
1599
1600 /* * Index into that baseclass's virtual function table, minus 2;
1601 else if static: VOFFSET_STATIC; else: 0. */
1602
1603 unsigned int voffset:16;
1604
1605 #define VOFFSET_STATIC 1
1606
1607 };
1608
1609 struct decl_field
1610 {
1611 /* * Unqualified name to be prefixed by owning class qualified
1612 name. */
1613
1614 const char *name;
1615
1616 /* * Type this typedef named NAME represents. */
1617
1618 struct type *type;
1619
1620 /* * True if this field was declared protected, false otherwise. */
1621 unsigned int is_protected : 1;
1622
1623 /* * True if this field was declared private, false otherwise. */
1624 unsigned int is_private : 1;
1625 };
1626
1627 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1628 TYPE_CODE_UNION nodes. */
1629
1630 struct cplus_struct_type
1631 {
1632 /* * Number of base classes this type derives from. The
1633 baseclasses are stored in the first N_BASECLASSES fields
1634 (i.e. the `fields' field of the struct type). The only fields
1635 of struct field that are used are: type, name, loc.bitpos. */
1636
1637 short n_baseclasses;
1638
1639 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1640 All access to this field must be through TYPE_VPTR_FIELDNO as one
1641 thing it does is check whether the field has been initialized.
1642 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1643 which for portability reasons doesn't initialize this field.
1644 TYPE_VPTR_FIELDNO returns -1 for this case.
1645
1646 If -1, we were unable to find the virtual function table pointer in
1647 initial symbol reading, and get_vptr_fieldno should be called to find
1648 it if possible. get_vptr_fieldno will update this field if possible.
1649 Otherwise the value is left at -1.
1650
1651 Unused if this type does not have virtual functions. */
1652
1653 short vptr_fieldno;
1654
1655 /* * Number of methods with unique names. All overloaded methods
1656 with the same name count only once. */
1657
1658 short nfn_fields;
1659
1660 /* * Number of template arguments. */
1661
1662 unsigned short n_template_arguments;
1663
1664 /* * One if this struct is a dynamic class, as defined by the
1665 Itanium C++ ABI: if it requires a virtual table pointer,
1666 because it or any of its base classes have one or more virtual
1667 member functions or virtual base classes. Minus one if not
1668 dynamic. Zero if not yet computed. */
1669
1670 int is_dynamic : 2;
1671
1672 /* * The calling convention for this type, fetched from the
1673 DW_AT_calling_convention attribute. The value is one of the
1674 DW_CC constants. */
1675
1676 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1677
1678 /* * The base class which defined the virtual function table pointer. */
1679
1680 struct type *vptr_basetype;
1681
1682 /* * For derived classes, the number of base classes is given by
1683 n_baseclasses and virtual_field_bits is a bit vector containing
1684 one bit per base class. If the base class is virtual, the
1685 corresponding bit will be set.
1686 I.E, given:
1687
1688 class A{};
1689 class B{};
1690 class C : public B, public virtual A {};
1691
1692 B is a baseclass of C; A is a virtual baseclass for C.
1693 This is a C++ 2.0 language feature. */
1694
1695 B_TYPE *virtual_field_bits;
1696
1697 /* * For classes with private fields, the number of fields is
1698 given by nfields and private_field_bits is a bit vector
1699 containing one bit per field.
1700
1701 If the field is private, the corresponding bit will be set. */
1702
1703 B_TYPE *private_field_bits;
1704
1705 /* * For classes with protected fields, the number of fields is
1706 given by nfields and protected_field_bits is a bit vector
1707 containing one bit per field.
1708
1709 If the field is private, the corresponding bit will be set. */
1710
1711 B_TYPE *protected_field_bits;
1712
1713 /* * For classes with fields to be ignored, either this is
1714 optimized out or this field has length 0. */
1715
1716 B_TYPE *ignore_field_bits;
1717
1718 /* * For classes, structures, and unions, a description of each
1719 field, which consists of an overloaded name, followed by the
1720 types of arguments that the method expects, and then the name
1721 after it has been renamed to make it distinct.
1722
1723 fn_fieldlists points to an array of nfn_fields of these. */
1724
1725 struct fn_fieldlist *fn_fieldlists;
1726
1727 /* * typedefs defined inside this class. typedef_field points to
1728 an array of typedef_field_count elements. */
1729
1730 struct decl_field *typedef_field;
1731
1732 unsigned typedef_field_count;
1733
1734 /* * The nested types defined by this type. nested_types points to
1735 an array of nested_types_count elements. */
1736
1737 struct decl_field *nested_types;
1738
1739 unsigned nested_types_count;
1740
1741 /* * The template arguments. This is an array with
1742 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1743 classes. */
1744
1745 struct symbol **template_arguments;
1746 };
1747
1748 /* * Struct used to store conversion rankings. */
1749
1750 struct rank
1751 {
1752 short rank;
1753
1754 /* * When two conversions are of the same type and therefore have
1755 the same rank, subrank is used to differentiate the two.
1756
1757 Eg: Two derived-class-pointer to base-class-pointer conversions
1758 would both have base pointer conversion rank, but the
1759 conversion with the shorter distance to the ancestor is
1760 preferable. 'subrank' would be used to reflect that. */
1761
1762 short subrank;
1763 };
1764
1765 /* * Used for ranking a function for overload resolution. */
1766
1767 typedef std::vector<rank> badness_vector;
1768
1769 /* * GNAT Ada-specific information for various Ada types. */
1770
1771 struct gnat_aux_type
1772 {
1773 /* * Parallel type used to encode information about dynamic types
1774 used in Ada (such as variant records, variable-size array,
1775 etc). */
1776 struct type* descriptive_type;
1777 };
1778
1779 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1780
1781 struct func_type
1782 {
1783 /* * The calling convention for targets supporting multiple ABIs.
1784 Right now this is only fetched from the Dwarf-2
1785 DW_AT_calling_convention attribute. The value is one of the
1786 DW_CC constants. */
1787
1788 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1789
1790 /* * Whether this function normally returns to its caller. It is
1791 set from the DW_AT_noreturn attribute if set on the
1792 DW_TAG_subprogram. */
1793
1794 unsigned int is_noreturn : 1;
1795
1796 /* * Only those DW_TAG_call_site's in this function that have
1797 DW_AT_call_tail_call set are linked in this list. Function
1798 without its tail call list complete
1799 (DW_AT_call_all_tail_calls or its superset
1800 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1801 DW_TAG_call_site's exist in such function. */
1802
1803 struct call_site *tail_call_list;
1804
1805 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1806 contains the method. */
1807
1808 struct type *self_type;
1809 };
1810
1811 /* struct call_site_parameter can be referenced in callees by several ways. */
1812
1813 enum call_site_parameter_kind
1814 {
1815 /* * Use field call_site_parameter.u.dwarf_reg. */
1816 CALL_SITE_PARAMETER_DWARF_REG,
1817
1818 /* * Use field call_site_parameter.u.fb_offset. */
1819 CALL_SITE_PARAMETER_FB_OFFSET,
1820
1821 /* * Use field call_site_parameter.u.param_offset. */
1822 CALL_SITE_PARAMETER_PARAM_OFFSET
1823 };
1824
1825 struct call_site_target
1826 {
1827 field_loc_kind loc_kind () const
1828 {
1829 return m_loc_kind;
1830 }
1831
1832 CORE_ADDR loc_physaddr () const
1833 {
1834 gdb_assert (m_loc_kind == FIELD_LOC_KIND_PHYSADDR);
1835 return m_loc.physaddr;
1836 }
1837
1838 void set_loc_physaddr (CORE_ADDR physaddr)
1839 {
1840 m_loc_kind = FIELD_LOC_KIND_PHYSADDR;
1841 m_loc.physaddr = physaddr;
1842 }
1843
1844 const char *loc_physname () const
1845 {
1846 gdb_assert (m_loc_kind == FIELD_LOC_KIND_PHYSNAME);
1847 return m_loc.physname;
1848 }
1849
1850 void set_loc_physname (const char *physname)
1851 {
1852 m_loc_kind = FIELD_LOC_KIND_PHYSNAME;
1853 m_loc.physname = physname;
1854 }
1855
1856 dwarf2_locexpr_baton *loc_dwarf_block () const
1857 {
1858 gdb_assert (m_loc_kind == FIELD_LOC_KIND_DWARF_BLOCK);
1859 return m_loc.dwarf_block;
1860 }
1861
1862 void set_loc_dwarf_block (dwarf2_locexpr_baton *dwarf_block)
1863 {
1864 m_loc_kind = FIELD_LOC_KIND_DWARF_BLOCK;
1865 m_loc.dwarf_block = dwarf_block;
1866 }
1867
1868 union field_location m_loc;
1869
1870 /* * Discriminant for union field_location. */
1871
1872 ENUM_BITFIELD(field_loc_kind) m_loc_kind : 3;
1873 };
1874
1875 union call_site_parameter_u
1876 {
1877 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1878 as DWARF register number, for register passed
1879 parameters. */
1880
1881 int dwarf_reg;
1882
1883 /* * Offset from the callee's frame base, for stack passed
1884 parameters. This equals offset from the caller's stack
1885 pointer. */
1886
1887 CORE_ADDR fb_offset;
1888
1889 /* * Offset relative to the start of this PER_CU to
1890 DW_TAG_formal_parameter which is referenced by both
1891 caller and the callee. */
1892
1893 cu_offset param_cu_off;
1894 };
1895
1896 struct call_site_parameter
1897 {
1898 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1899
1900 union call_site_parameter_u u;
1901
1902 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1903
1904 const gdb_byte *value;
1905 size_t value_size;
1906
1907 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1908 It may be NULL if not provided by DWARF. */
1909
1910 const gdb_byte *data_value;
1911 size_t data_value_size;
1912 };
1913
1914 /* * A place where a function gets called from, represented by
1915 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1916
1917 struct call_site
1918 {
1919 call_site (CORE_ADDR pc, dwarf2_per_cu_data *per_cu,
1920 dwarf2_per_objfile *per_objfile)
1921 : per_cu (per_cu), per_objfile (per_objfile), m_unrelocated_pc (pc)
1922 {}
1923
1924 static int
1925 eq (const call_site *a, const call_site *b)
1926 {
1927 return a->m_unrelocated_pc == b->m_unrelocated_pc;
1928 }
1929
1930 static hashval_t
1931 hash (const call_site *a)
1932 {
1933 return a->m_unrelocated_pc;
1934 }
1935
1936 static int
1937 eq (const void *a, const void *b)
1938 {
1939 return eq ((const call_site *)a, (const call_site *)b);
1940 }
1941
1942 static hashval_t
1943 hash (const void *a)
1944 {
1945 return hash ((const call_site *)a);
1946 }
1947
1948 /* Return the address of the first instruction after this call. */
1949
1950 CORE_ADDR pc () const;
1951
1952 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1953
1954 struct call_site *tail_call_next = nullptr;
1955
1956 /* * Describe DW_AT_call_target. Missing attribute uses
1957 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1958
1959 struct call_site_target target {};
1960
1961 /* * Size of the PARAMETER array. */
1962
1963 unsigned parameter_count = 0;
1964
1965 /* * CU of the function where the call is located. It gets used
1966 for DWARF blocks execution in the parameter array below. */
1967
1968 dwarf2_per_cu_data *const per_cu = nullptr;
1969
1970 /* objfile of the function where the call is located. */
1971
1972 dwarf2_per_objfile *const per_objfile = nullptr;
1973
1974 private:
1975 /* Unrelocated address of the first instruction after this call. */
1976 const CORE_ADDR m_unrelocated_pc;
1977
1978 public:
1979 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1980
1981 struct call_site_parameter parameter[];
1982 };
1983
1984 /* The type-specific info for TYPE_CODE_FIXED_POINT types. */
1985
1986 struct fixed_point_type_info
1987 {
1988 /* The fixed point type's scaling factor. */
1989 gdb_mpq scaling_factor;
1990 };
1991
1992 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1993 static structure. */
1994
1995 extern const struct cplus_struct_type cplus_struct_default;
1996
1997 extern void allocate_cplus_struct_type (struct type *);
1998
1999 #define INIT_CPLUS_SPECIFIC(type) \
2000 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
2001 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
2002 &cplus_struct_default)
2003
2004 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
2005
2006 #define HAVE_CPLUS_STRUCT(type) \
2007 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
2008 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
2009
2010 #define INIT_NONE_SPECIFIC(type) \
2011 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
2012 TYPE_MAIN_TYPE (type)->type_specific = {})
2013
2014 extern const struct gnat_aux_type gnat_aux_default;
2015
2016 extern void allocate_gnat_aux_type (struct type *);
2017
2018 #define INIT_GNAT_SPECIFIC(type) \
2019 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
2020 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
2021 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
2022 /* * A macro that returns non-zero if the type-specific data should be
2023 read as "gnat-stuff". */
2024 #define HAVE_GNAT_AUX_INFO(type) \
2025 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
2026
2027 /* * True if TYPE is known to be an Ada type of some kind. */
2028 #define ADA_TYPE_P(type) \
2029 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
2030 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
2031 && (type)->is_fixed_instance ()))
2032
2033 #define INIT_FUNC_SPECIFIC(type) \
2034 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
2035 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
2036 TYPE_ZALLOC (type, \
2037 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
2038
2039 /* "struct fixed_point_type_info" has a field that has a destructor.
2040 See allocate_fixed_point_type_info to understand how this is
2041 handled. */
2042 #define INIT_FIXED_POINT_SPECIFIC(type) \
2043 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FIXED_POINT, \
2044 allocate_fixed_point_type_info (type))
2045
2046 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
2047 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
2048 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
2049 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
2050 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
2051 #define TYPE_CHAIN(thistype) (thistype)->chain
2052 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
2053 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
2054 so you only have to call check_typedef once. Since allocate_value
2055 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
2056 #define TYPE_LENGTH(thistype) (thistype)->length
2057
2058 /* * Return the alignment of the type in target addressable memory
2059 units, or 0 if no alignment was specified. */
2060 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
2061
2062 /* * Return the alignment of the type in target addressable memory
2063 units, or 0 if no alignment was specified. */
2064 extern unsigned type_raw_align (struct type *);
2065
2066 /* * Return the alignment of the type in target addressable memory
2067 units. Return 0 if the alignment cannot be determined; but note
2068 that this makes an effort to compute the alignment even it it was
2069 not specified in the debug info. */
2070 extern unsigned type_align (struct type *);
2071
2072 /* * Set the alignment of the type. The alignment must be a power of
2073 2. Returns false if the given value does not fit in the available
2074 space in struct type. */
2075 extern bool set_type_align (struct type *, ULONGEST);
2076
2077 /* Property accessors for the type data location. */
2078 #define TYPE_DATA_LOCATION(thistype) \
2079 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
2080 #define TYPE_DATA_LOCATION_BATON(thistype) \
2081 TYPE_DATA_LOCATION (thistype)->data.baton
2082 #define TYPE_DATA_LOCATION_ADDR(thistype) \
2083 (TYPE_DATA_LOCATION (thistype)->const_val ())
2084 #define TYPE_DATA_LOCATION_KIND(thistype) \
2085 (TYPE_DATA_LOCATION (thistype)->kind ())
2086 #define TYPE_DYNAMIC_LENGTH(thistype) \
2087 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
2088
2089 /* Property accessors for the type allocated/associated. */
2090 #define TYPE_ALLOCATED_PROP(thistype) \
2091 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
2092 #define TYPE_ASSOCIATED_PROP(thistype) \
2093 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
2094
2095 /* C++ */
2096
2097 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
2098 /* Do not call this, use TYPE_SELF_TYPE. */
2099 extern struct type *internal_type_self_type (struct type *);
2100 extern void set_type_self_type (struct type *, struct type *);
2101
2102 extern int internal_type_vptr_fieldno (struct type *);
2103 extern void set_type_vptr_fieldno (struct type *, int);
2104 extern struct type *internal_type_vptr_basetype (struct type *);
2105 extern void set_type_vptr_basetype (struct type *, struct type *);
2106 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
2107 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
2108
2109 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
2110 #define TYPE_SPECIFIC_FIELD(thistype) \
2111 TYPE_MAIN_TYPE(thistype)->type_specific_field
2112 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
2113 where we're trying to print an Ada array using the C language.
2114 In that case, there is no "cplus_stuff", but the C language assumes
2115 that there is. What we do, in that case, is pretend that there is
2116 an implicit one which is the default cplus stuff. */
2117 #define TYPE_CPLUS_SPECIFIC(thistype) \
2118 (!HAVE_CPLUS_STRUCT(thistype) \
2119 ? (struct cplus_struct_type*)&cplus_struct_default \
2120 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
2121 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
2122 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
2123 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
2124 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
2125 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
2126 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
2127 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
2128 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
2129 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
2130 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
2131 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
2132 #define TYPE_BASECLASS_NAME(thistype,index) (thistype->field (index).name ())
2133 #define TYPE_BASECLASS_BITPOS(thistype,index) (thistype->field (index).loc_bitpos ())
2134 #define BASETYPE_VIA_PUBLIC(thistype, index) \
2135 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
2136 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
2137
2138 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
2139 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
2140 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
2141
2142 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
2143 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
2144
2145 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
2146 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
2147 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
2148
2149 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
2150 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
2151 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
2152 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
2153 #define TYPE_FIELD_IGNORE_BITS(thistype) \
2154 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
2155 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
2156 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
2157 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
2158 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
2159 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
2160 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
2161 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
2162 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
2163 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
2164 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
2165 #define TYPE_FIELD_PRIVATE(thistype, n) \
2166 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
2167 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
2168 #define TYPE_FIELD_PROTECTED(thistype, n) \
2169 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
2170 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
2171 #define TYPE_FIELD_IGNORE(thistype, n) \
2172 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
2173 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
2174 #define TYPE_FIELD_VIRTUAL(thistype, n) \
2175 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
2176 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
2177
2178 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
2179 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
2180 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
2181 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
2182 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
2183
2184 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
2185 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
2186 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
2187 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
2188 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
2189 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
2190
2191 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
2192 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
2193 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
2194 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
2195 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
2196 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
2197 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
2198 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
2199 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
2200 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
2201 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
2202 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
2203 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
2204 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
2205 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
2206 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
2207 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
2208
2209 /* Accessors for typedefs defined by a class. */
2210 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
2211 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
2212 #define TYPE_TYPEDEF_FIELD(thistype, n) \
2213 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
2214 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
2215 TYPE_TYPEDEF_FIELD (thistype, n).name
2216 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
2217 TYPE_TYPEDEF_FIELD (thistype, n).type
2218 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
2219 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
2220 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
2221 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
2222 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
2223 TYPE_TYPEDEF_FIELD (thistype, n).is_private
2224
2225 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
2226 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
2227 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
2228 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
2229 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
2230 TYPE_NESTED_TYPES_FIELD (thistype, n).name
2231 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
2232 TYPE_NESTED_TYPES_FIELD (thistype, n).type
2233 #define TYPE_NESTED_TYPES_COUNT(thistype) \
2234 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
2235 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
2236 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
2237 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
2238 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
2239
2240 #define TYPE_IS_OPAQUE(thistype) \
2241 ((((thistype)->code () == TYPE_CODE_STRUCT) \
2242 || ((thistype)->code () == TYPE_CODE_UNION)) \
2243 && ((thistype)->num_fields () == 0) \
2244 && (!HAVE_CPLUS_STRUCT (thistype) \
2245 || TYPE_NFN_FIELDS (thistype) == 0) \
2246 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
2247
2248 /* * A helper macro that returns the name of a type or "unnamed type"
2249 if the type has no name. */
2250
2251 #define TYPE_SAFE_NAME(type) \
2252 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
2253
2254 /* * A helper macro that returns the name of an error type. If the
2255 type has a name, it is used; otherwise, a default is used. */
2256
2257 #define TYPE_ERROR_NAME(type) \
2258 (type->name () ? type->name () : _("<error type>"))
2259
2260 /* Given TYPE, return its floatformat. */
2261 const struct floatformat *floatformat_from_type (const struct type *type);
2262
2263 struct builtin_type
2264 {
2265 /* Integral types. */
2266
2267 /* Implicit size/sign (based on the architecture's ABI). */
2268 struct type *builtin_void;
2269 struct type *builtin_char;
2270 struct type *builtin_short;
2271 struct type *builtin_int;
2272 struct type *builtin_long;
2273 struct type *builtin_signed_char;
2274 struct type *builtin_unsigned_char;
2275 struct type *builtin_unsigned_short;
2276 struct type *builtin_unsigned_int;
2277 struct type *builtin_unsigned_long;
2278 struct type *builtin_bfloat16;
2279 struct type *builtin_half;
2280 struct type *builtin_float;
2281 struct type *builtin_double;
2282 struct type *builtin_long_double;
2283 struct type *builtin_complex;
2284 struct type *builtin_double_complex;
2285 struct type *builtin_string;
2286 struct type *builtin_bool;
2287 struct type *builtin_long_long;
2288 struct type *builtin_unsigned_long_long;
2289 struct type *builtin_decfloat;
2290 struct type *builtin_decdouble;
2291 struct type *builtin_declong;
2292
2293 /* "True" character types.
2294 We use these for the '/c' print format, because c_char is just a
2295 one-byte integral type, which languages less laid back than C
2296 will print as ... well, a one-byte integral type. */
2297 struct type *builtin_true_char;
2298 struct type *builtin_true_unsigned_char;
2299
2300 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
2301 is for when an architecture needs to describe a register that has
2302 no size. */
2303 struct type *builtin_int0;
2304 struct type *builtin_int8;
2305 struct type *builtin_uint8;
2306 struct type *builtin_int16;
2307 struct type *builtin_uint16;
2308 struct type *builtin_int24;
2309 struct type *builtin_uint24;
2310 struct type *builtin_int32;
2311 struct type *builtin_uint32;
2312 struct type *builtin_int64;
2313 struct type *builtin_uint64;
2314 struct type *builtin_int128;
2315 struct type *builtin_uint128;
2316
2317 /* Wide character types. */
2318 struct type *builtin_char16;
2319 struct type *builtin_char32;
2320 struct type *builtin_wchar;
2321
2322 /* Pointer types. */
2323
2324 /* * `pointer to data' type. Some target platforms use an implicitly
2325 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
2326 struct type *builtin_data_ptr;
2327
2328 /* * `pointer to function (returning void)' type. Harvard
2329 architectures mean that ABI function and code pointers are not
2330 interconvertible. Similarly, since ANSI, C standards have
2331 explicitly said that pointers to functions and pointers to data
2332 are not interconvertible --- that is, you can't cast a function
2333 pointer to void * and back, and expect to get the same value.
2334 However, all function pointer types are interconvertible, so void
2335 (*) () can server as a generic function pointer. */
2336
2337 struct type *builtin_func_ptr;
2338
2339 /* * `function returning pointer to function (returning void)' type.
2340 The final void return type is not significant for it. */
2341
2342 struct type *builtin_func_func;
2343
2344 /* Special-purpose types. */
2345
2346 /* * This type is used to represent a GDB internal function. */
2347
2348 struct type *internal_fn;
2349
2350 /* * This type is used to represent an xmethod. */
2351 struct type *xmethod;
2352 };
2353
2354 /* * Return the type table for the specified architecture. */
2355
2356 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2357
2358 /* * Per-objfile types used by symbol readers. */
2359
2360 struct objfile_type
2361 {
2362 /* Basic types based on the objfile architecture. */
2363 struct type *builtin_void;
2364 struct type *builtin_char;
2365 struct type *builtin_short;
2366 struct type *builtin_int;
2367 struct type *builtin_long;
2368 struct type *builtin_long_long;
2369 struct type *builtin_signed_char;
2370 struct type *builtin_unsigned_char;
2371 struct type *builtin_unsigned_short;
2372 struct type *builtin_unsigned_int;
2373 struct type *builtin_unsigned_long;
2374 struct type *builtin_unsigned_long_long;
2375 struct type *builtin_half;
2376 struct type *builtin_float;
2377 struct type *builtin_double;
2378 struct type *builtin_long_double;
2379
2380 /* * This type is used to represent symbol addresses. */
2381 struct type *builtin_core_addr;
2382
2383 /* * This type represents a type that was unrecognized in symbol
2384 read-in. */
2385 struct type *builtin_error;
2386
2387 /* * Types used for symbols with no debug information. */
2388 struct type *nodebug_text_symbol;
2389 struct type *nodebug_text_gnu_ifunc_symbol;
2390 struct type *nodebug_got_plt_symbol;
2391 struct type *nodebug_data_symbol;
2392 struct type *nodebug_unknown_symbol;
2393 struct type *nodebug_tls_symbol;
2394 };
2395
2396 /* * Return the type table for the specified objfile. */
2397
2398 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2399
2400 /* Explicit floating-point formats. See "floatformat.h". */
2401 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2402 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2403 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2404 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2405 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2406 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2407 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2408 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2409 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2410 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2411 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2412 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2413 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2414
2415 /* Allocate space for storing data associated with a particular
2416 type. We ensure that the space is allocated using the same
2417 mechanism that was used to allocate the space for the type
2418 structure itself. I.e. if the type is on an objfile's
2419 objfile_obstack, then the space for data associated with that type
2420 will also be allocated on the objfile_obstack. If the type is
2421 associated with a gdbarch, then the space for data associated with that
2422 type will also be allocated on the gdbarch_obstack.
2423
2424 If a type is not associated with neither an objfile or a gdbarch then
2425 you should not use this macro to allocate space for data, instead you
2426 should call xmalloc directly, and ensure the memory is correctly freed
2427 when it is no longer needed. */
2428
2429 #define TYPE_ALLOC(t,size) \
2430 (obstack_alloc (((t)->is_objfile_owned () \
2431 ? &((t)->objfile_owner ()->objfile_obstack) \
2432 : gdbarch_obstack ((t)->arch_owner ())), \
2433 size))
2434
2435
2436 /* See comment on TYPE_ALLOC. */
2437
2438 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2439
2440 /* Use alloc_type to allocate a type owned by an objfile. Use
2441 alloc_type_arch to allocate a type owned by an architecture. Use
2442 alloc_type_copy to allocate a type with the same owner as a
2443 pre-existing template type, no matter whether objfile or
2444 gdbarch. */
2445 extern struct type *alloc_type (struct objfile *);
2446 extern struct type *alloc_type_arch (struct gdbarch *);
2447 extern struct type *alloc_type_copy (const struct type *);
2448
2449 /* * This returns the target type (or NULL) of TYPE, also skipping
2450 past typedefs. */
2451
2452 extern struct type *get_target_type (struct type *type);
2453
2454 /* Return the equivalent of TYPE_LENGTH, but in number of target
2455 addressable memory units of the associated gdbarch instead of bytes. */
2456
2457 extern unsigned int type_length_units (struct type *type);
2458
2459 /* * Helper function to construct objfile-owned types. */
2460
2461 extern struct type *init_type (struct objfile *, enum type_code, int,
2462 const char *);
2463 extern struct type *init_integer_type (struct objfile *, int, int,
2464 const char *);
2465 extern struct type *init_character_type (struct objfile *, int, int,
2466 const char *);
2467 extern struct type *init_boolean_type (struct objfile *, int, int,
2468 const char *);
2469 extern struct type *init_float_type (struct objfile *, int, const char *,
2470 const struct floatformat **,
2471 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2472 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2473 extern bool can_create_complex_type (struct type *);
2474 extern struct type *init_complex_type (const char *, struct type *);
2475 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2476 struct type *);
2477 extern struct type *init_fixed_point_type (struct objfile *, int, int,
2478 const char *);
2479
2480 /* Helper functions to construct architecture-owned types. */
2481 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2482 const char *);
2483 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2484 const char *);
2485 extern struct type *arch_character_type (struct gdbarch *, int, int,
2486 const char *);
2487 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2488 const char *);
2489 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2490 const struct floatformat **);
2491 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2492 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2493 struct type *);
2494
2495 /* Helper functions to construct a struct or record type. An
2496 initially empty type is created using arch_composite_type().
2497 Fields are then added using append_composite_type_field*(). A union
2498 type has its size set to the largest field. A struct type has each
2499 field packed against the previous. */
2500
2501 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2502 const char *name, enum type_code code);
2503 extern void append_composite_type_field (struct type *t, const char *name,
2504 struct type *field);
2505 extern void append_composite_type_field_aligned (struct type *t,
2506 const char *name,
2507 struct type *field,
2508 int alignment);
2509 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2510 struct type *field);
2511
2512 /* Helper functions to construct a bit flags type. An initially empty
2513 type is created using arch_flag_type(). Flags are then added using
2514 append_flag_type_field() and append_flag_type_flag(). */
2515 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2516 const char *name, int bit);
2517 extern void append_flags_type_field (struct type *type,
2518 int start_bitpos, int nr_bits,
2519 struct type *field_type, const char *name);
2520 extern void append_flags_type_flag (struct type *type, int bitpos,
2521 const char *name);
2522
2523 extern void make_vector_type (struct type *array_type);
2524 extern struct type *init_vector_type (struct type *elt_type, int n);
2525
2526 extern struct type *lookup_reference_type (struct type *, enum type_code);
2527 extern struct type *lookup_lvalue_reference_type (struct type *);
2528 extern struct type *lookup_rvalue_reference_type (struct type *);
2529
2530
2531 extern struct type *make_reference_type (struct type *, struct type **,
2532 enum type_code);
2533
2534 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2535
2536 extern struct type *make_restrict_type (struct type *);
2537
2538 extern struct type *make_unqualified_type (struct type *);
2539
2540 extern struct type *make_atomic_type (struct type *);
2541
2542 extern void replace_type (struct type *, struct type *);
2543
2544 extern type_instance_flags address_space_name_to_type_instance_flags
2545 (struct gdbarch *, const char *);
2546
2547 extern const char *address_space_type_instance_flags_to_name
2548 (struct gdbarch *, type_instance_flags);
2549
2550 extern struct type *make_type_with_address_space
2551 (struct type *type, type_instance_flags space_identifier);
2552
2553 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2554
2555 extern struct type *lookup_methodptr_type (struct type *);
2556
2557 extern void smash_to_method_type (struct type *type, struct type *self_type,
2558 struct type *to_type, struct field *args,
2559 int nargs, int varargs);
2560
2561 extern void smash_to_memberptr_type (struct type *, struct type *,
2562 struct type *);
2563
2564 extern void smash_to_methodptr_type (struct type *, struct type *);
2565
2566 extern struct type *allocate_stub_method (struct type *);
2567
2568 extern const char *type_name_or_error (struct type *type);
2569
2570 struct struct_elt
2571 {
2572 /* The field of the element, or NULL if no element was found. */
2573 struct field *field;
2574
2575 /* The bit offset of the element in the parent structure. */
2576 LONGEST offset;
2577 };
2578
2579 /* Given a type TYPE, lookup the field and offset of the component named
2580 NAME.
2581
2582 TYPE can be either a struct or union, or a pointer or reference to
2583 a struct or union. If it is a pointer or reference, its target
2584 type is automatically used. Thus '.' and '->' are interchangable,
2585 as specified for the definitions of the expression element types
2586 STRUCTOP_STRUCT and STRUCTOP_PTR.
2587
2588 If NOERR is nonzero, the returned structure will have field set to
2589 NULL if there is no component named NAME.
2590
2591 If the component NAME is a field in an anonymous substructure of
2592 TYPE, the returned offset is a "global" offset relative to TYPE
2593 rather than an offset within the substructure. */
2594
2595 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2596
2597 /* Given a type TYPE, lookup the type of the component named NAME.
2598
2599 TYPE can be either a struct or union, or a pointer or reference to
2600 a struct or union. If it is a pointer or reference, its target
2601 type is automatically used. Thus '.' and '->' are interchangable,
2602 as specified for the definitions of the expression element types
2603 STRUCTOP_STRUCT and STRUCTOP_PTR.
2604
2605 If NOERR is nonzero, return NULL if there is no component named
2606 NAME. */
2607
2608 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2609
2610 extern struct type *make_pointer_type (struct type *, struct type **);
2611
2612 extern struct type *lookup_pointer_type (struct type *);
2613
2614 extern struct type *make_function_type (struct type *, struct type **);
2615
2616 extern struct type *lookup_function_type (struct type *);
2617
2618 extern struct type *lookup_function_type_with_arguments (struct type *,
2619 int,
2620 struct type **);
2621
2622 extern struct type *create_static_range_type (struct type *, struct type *,
2623 LONGEST, LONGEST);
2624
2625
2626 extern struct type *create_array_type_with_stride
2627 (struct type *, struct type *, struct type *,
2628 struct dynamic_prop *, unsigned int);
2629
2630 extern struct type *create_range_type (struct type *, struct type *,
2631 const struct dynamic_prop *,
2632 const struct dynamic_prop *,
2633 LONGEST);
2634
2635 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2636 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2637 stride. */
2638
2639 extern struct type * create_range_type_with_stride
2640 (struct type *result_type, struct type *index_type,
2641 const struct dynamic_prop *low_bound,
2642 const struct dynamic_prop *high_bound, LONGEST bias,
2643 const struct dynamic_prop *stride, bool byte_stride_p);
2644
2645 extern struct type *create_array_type (struct type *, struct type *,
2646 struct type *);
2647
2648 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2649
2650 extern struct type *create_string_type (struct type *, struct type *,
2651 struct type *);
2652 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2653
2654 extern struct type *create_set_type (struct type *, struct type *);
2655
2656 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2657 const char *);
2658
2659 extern struct type *lookup_signed_typename (const struct language_defn *,
2660 const char *);
2661
2662 extern ULONGEST get_unsigned_type_max (struct type *);
2663
2664 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2665
2666 extern CORE_ADDR get_pointer_type_max (struct type *);
2667
2668 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2669 ADDR specifies the location of the variable the type is bound to.
2670 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2671 static properties is returned.
2672
2673 For an array type, if the element type is dynamic, then that will
2674 not be resolved. This is done because each individual element may
2675 have a different type when resolved (depending on the contents of
2676 memory). In this situation, 'is_dynamic_type' will still return
2677 true for the return value of this function. */
2678 extern struct type *resolve_dynamic_type
2679 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2680 CORE_ADDR addr);
2681
2682 /* * Predicate if the type has dynamic values, which are not resolved yet.
2683 See the caveat in 'resolve_dynamic_type' to understand a scenario
2684 where an apparently-resolved type may still be considered
2685 "dynamic". */
2686 extern int is_dynamic_type (struct type *type);
2687
2688 extern struct type *check_typedef (struct type *);
2689
2690 extern void check_stub_method_group (struct type *, int);
2691
2692 extern char *gdb_mangle_name (struct type *, int, int);
2693
2694 extern struct type *lookup_typename (const struct language_defn *,
2695 const char *, const struct block *, int);
2696
2697 extern struct type *lookup_template_type (const char *, struct type *,
2698 const struct block *);
2699
2700 extern int get_vptr_fieldno (struct type *, struct type **);
2701
2702 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
2703 TYPE.
2704
2705 Return true if the two bounds are available, false otherwise. */
2706
2707 extern bool get_discrete_bounds (struct type *type, LONGEST *lowp,
2708 LONGEST *highp);
2709
2710 /* If TYPE's low bound is a known constant, return it, else return nullopt. */
2711
2712 extern gdb::optional<LONGEST> get_discrete_low_bound (struct type *type);
2713
2714 /* If TYPE's high bound is a known constant, return it, else return nullopt. */
2715
2716 extern gdb::optional<LONGEST> get_discrete_high_bound (struct type *type);
2717
2718 /* Assuming TYPE is a simple, non-empty array type, compute its upper
2719 and lower bound. Save the low bound into LOW_BOUND if not NULL.
2720 Save the high bound into HIGH_BOUND if not NULL.
2721
2722 Return true if the operation was successful. Return false otherwise,
2723 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
2724
2725 extern bool get_array_bounds (struct type *type, LONGEST *low_bound,
2726 LONGEST *high_bound);
2727
2728 extern gdb::optional<LONGEST> discrete_position (struct type *type,
2729 LONGEST val);
2730
2731 extern int class_types_same_p (const struct type *, const struct type *);
2732
2733 extern int is_ancestor (struct type *, struct type *);
2734
2735 extern int is_public_ancestor (struct type *, struct type *);
2736
2737 extern int is_unique_ancestor (struct type *, struct value *);
2738
2739 /* Overload resolution */
2740
2741 /* * Badness if parameter list length doesn't match arg list length. */
2742 extern const struct rank LENGTH_MISMATCH_BADNESS;
2743
2744 /* * Dummy badness value for nonexistent parameter positions. */
2745 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2746 /* * Badness if no conversion among types. */
2747 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2748
2749 /* * Badness of an exact match. */
2750 extern const struct rank EXACT_MATCH_BADNESS;
2751
2752 /* * Badness of integral promotion. */
2753 extern const struct rank INTEGER_PROMOTION_BADNESS;
2754 /* * Badness of floating promotion. */
2755 extern const struct rank FLOAT_PROMOTION_BADNESS;
2756 /* * Badness of converting a derived class pointer
2757 to a base class pointer. */
2758 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2759 /* * Badness of integral conversion. */
2760 extern const struct rank INTEGER_CONVERSION_BADNESS;
2761 /* * Badness of floating conversion. */
2762 extern const struct rank FLOAT_CONVERSION_BADNESS;
2763 /* * Badness of integer<->floating conversions. */
2764 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2765 /* * Badness of conversion of pointer to void pointer. */
2766 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2767 /* * Badness of conversion to boolean. */
2768 extern const struct rank BOOL_CONVERSION_BADNESS;
2769 /* * Badness of converting derived to base class. */
2770 extern const struct rank BASE_CONVERSION_BADNESS;
2771 /* * Badness of converting from non-reference to reference. Subrank
2772 is the type of reference conversion being done. */
2773 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2774 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2775 /* * Conversion to rvalue reference. */
2776 #define REFERENCE_CONVERSION_RVALUE 1
2777 /* * Conversion to const lvalue reference. */
2778 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2779
2780 /* * Badness of converting integer 0 to NULL pointer. */
2781 extern const struct rank NULL_POINTER_CONVERSION;
2782 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2783 being done. */
2784 extern const struct rank CV_CONVERSION_BADNESS;
2785 #define CV_CONVERSION_CONST 1
2786 #define CV_CONVERSION_VOLATILE 2
2787
2788 /* Non-standard conversions allowed by the debugger */
2789
2790 /* * Converting a pointer to an int is usually OK. */
2791 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2792
2793 /* * Badness of converting a (non-zero) integer constant
2794 to a pointer. */
2795 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2796
2797 extern struct rank sum_ranks (struct rank a, struct rank b);
2798 extern int compare_ranks (struct rank a, struct rank b);
2799
2800 extern int compare_badness (const badness_vector &,
2801 const badness_vector &);
2802
2803 extern badness_vector rank_function (gdb::array_view<type *> parms,
2804 gdb::array_view<value *> args);
2805
2806 extern struct rank rank_one_type (struct type *, struct type *,
2807 struct value *);
2808
2809 extern void recursive_dump_type (struct type *, int);
2810
2811 extern int field_is_static (struct field *);
2812
2813 /* printcmd.c */
2814
2815 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2816 const struct value_print_options *,
2817 int, struct ui_file *);
2818
2819 extern int can_dereference (struct type *);
2820
2821 extern int is_integral_type (struct type *);
2822
2823 extern int is_floating_type (struct type *);
2824
2825 extern int is_scalar_type (struct type *type);
2826
2827 extern int is_scalar_type_recursive (struct type *);
2828
2829 extern int class_or_union_p (const struct type *);
2830
2831 extern void maintenance_print_type (const char *, int);
2832
2833 extern htab_up create_copied_types_hash (struct objfile *objfile);
2834
2835 extern struct type *copy_type_recursive (struct objfile *objfile,
2836 struct type *type,
2837 htab_t copied_types);
2838
2839 extern struct type *copy_type (const struct type *type);
2840
2841 extern bool types_equal (struct type *, struct type *);
2842
2843 extern bool types_deeply_equal (struct type *, struct type *);
2844
2845 extern int type_not_allocated (const struct type *type);
2846
2847 extern int type_not_associated (const struct type *type);
2848
2849 /* Return True if TYPE is a TYPE_CODE_FIXED_POINT or if TYPE is
2850 a range type whose base type is a TYPE_CODE_FIXED_POINT. */
2851 extern bool is_fixed_point_type (struct type *type);
2852
2853 /* Allocate a fixed-point type info for TYPE. This should only be
2854 called by INIT_FIXED_POINT_SPECIFIC. */
2855 extern void allocate_fixed_point_type_info (struct type *type);
2856
2857 /* * When the type includes explicit byte ordering, return that.
2858 Otherwise, the byte ordering from gdbarch_byte_order for
2859 the type's arch is returned. */
2860
2861 extern enum bfd_endian type_byte_order (const struct type *type);
2862
2863 /* A flag to enable printing of debugging information of C++
2864 overloading. */
2865
2866 extern unsigned int overload_debug;
2867
2868 /* Return whether the function type represented by TYPE is marked as unsafe
2869 to call by the debugger.
2870
2871 This usually indicates that the function does not follow the target's
2872 standard calling convention.
2873
2874 The TYPE argument must be of code TYPE_CODE_FUNC or TYPE_CODE_METHOD. */
2875
2876 extern bool is_nocall_function (const struct type *type);
2877
2878 #endif /* GDBTYPES_H */