gdb: Update my email address in MAINTAINERS
[binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2022 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/gdb-hashtab.h"
50 #include "gdbsupport/gdb_optional.h"
51 #include "gdbsupport/offset-type.h"
52 #include "gdbsupport/enum-flags.h"
53 #include "gdbsupport/underlying.h"
54 #include "gdbsupport/print-utils.h"
55 #include "gdbsupport/function-view.h"
56 #include "dwarf2.h"
57 #include "gdbsupport/gdb_obstack.h"
58 #include "gmp-utils.h"
59 #include "frame-info.h"
60
61 /* Forward declarations for prototypes. */
62 struct field;
63 struct block;
64 struct value_print_options;
65 struct language_defn;
66 struct dwarf2_per_cu_data;
67 struct dwarf2_per_objfile;
68
69 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
70 are already DWARF-specific. */
71
72 /* * Offset relative to the start of its containing CU (compilation
73 unit). */
74 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
75
76 /* * Offset relative to the start of its .debug_info or .debug_types
77 section. */
78 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
79
80 static inline char *
81 sect_offset_str (sect_offset offset)
82 {
83 return hex_string (to_underlying (offset));
84 }
85
86 /* Some macros for char-based bitfields. */
87
88 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
89 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
90 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
91 #define B_TYPE unsigned char
92 #define B_BYTES(x) ( 1 + ((x)>>3) )
93 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
94
95 /* * Different kinds of data types are distinguished by the `code'
96 field. */
97
98 enum type_code
99 {
100 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
101
102 #define OP(X) X,
103 #include "type-codes.def"
104 #undef OP
105
106 };
107
108 /* * Some bits for the type's instance_flags word. See the macros
109 below for documentation on each bit. */
110
111 enum type_instance_flag_value : unsigned
112 {
113 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
114 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
115 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
116 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
117 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
118 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
119 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
120 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
121 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
122 };
123
124 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
125
126 /* * Not textual. By default, GDB treats all single byte integers as
127 characters (or elements of strings) unless this flag is set. */
128
129 #define TYPE_NOTTEXT(t) (((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_NOTTEXT)
130
131 /* * Constant type. If this is set, the corresponding type has a
132 const modifier. */
133
134 #define TYPE_CONST(t) ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CONST) != 0)
135
136 /* * Volatile type. If this is set, the corresponding type has a
137 volatile modifier. */
138
139 #define TYPE_VOLATILE(t) \
140 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
141
142 /* * Restrict type. If this is set, the corresponding type has a
143 restrict modifier. */
144
145 #define TYPE_RESTRICT(t) \
146 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
147
148 /* * Atomic type. If this is set, the corresponding type has an
149 _Atomic modifier. */
150
151 #define TYPE_ATOMIC(t) \
152 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
153
154 /* * True if this type represents either an lvalue or lvalue reference type. */
155
156 #define TYPE_IS_REFERENCE(t) \
157 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
158
159 /* * True if this type is allocatable. */
160 #define TYPE_IS_ALLOCATABLE(t) \
161 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
162
163 /* * True if this type has variant parts. */
164 #define TYPE_HAS_VARIANT_PARTS(t) \
165 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
166
167 /* * True if this type has a dynamic length. */
168 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
169 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
170
171 /* * Instruction-space delimited type. This is for Harvard architectures
172 which have separate instruction and data address spaces (and perhaps
173 others).
174
175 GDB usually defines a flat address space that is a superset of the
176 architecture's two (or more) address spaces, but this is an extension
177 of the architecture's model.
178
179 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
180 resides in instruction memory, even if its address (in the extended
181 flat address space) does not reflect this.
182
183 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
184 corresponding type resides in the data memory space, even if
185 this is not indicated by its (flat address space) address.
186
187 If neither flag is set, the default space for functions / methods
188 is instruction space, and for data objects is data memory. */
189
190 #define TYPE_CODE_SPACE(t) \
191 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
192
193 #define TYPE_DATA_SPACE(t) \
194 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
195
196 /* * Address class flags. Some environments provide for pointers
197 whose size is different from that of a normal pointer or address
198 types where the bits are interpreted differently than normal
199 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
200 target specific ways to represent these different types of address
201 classes. */
202
203 #define TYPE_ADDRESS_CLASS_1(t) (((t)->instance_flags ()) \
204 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
205 #define TYPE_ADDRESS_CLASS_2(t) (((t)->instance_flags ()) \
206 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
207 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
208 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
209 #define TYPE_ADDRESS_CLASS_ALL(t) (((t)->instance_flags ()) \
210 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
211
212 /* * Information about a single discriminant. */
213
214 struct discriminant_range
215 {
216 /* * The range of values for the variant. This is an inclusive
217 range. */
218 ULONGEST low, high;
219
220 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
221 is true if this should be an unsigned comparison; false for
222 signed. */
223 bool contains (ULONGEST value, bool is_unsigned) const
224 {
225 if (is_unsigned)
226 return value >= low && value <= high;
227 LONGEST valuel = (LONGEST) value;
228 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
229 }
230 };
231
232 struct variant_part;
233
234 /* * A single variant. A variant has a list of discriminant values.
235 When the discriminator matches one of these, the variant is
236 enabled. Each variant controls zero or more fields; and may also
237 control other variant parts as well. This struct corresponds to
238 DW_TAG_variant in DWARF. */
239
240 struct variant : allocate_on_obstack
241 {
242 /* * The discriminant ranges for this variant. */
243 gdb::array_view<discriminant_range> discriminants;
244
245 /* * The fields controlled by this variant. This is inclusive on
246 the low end and exclusive on the high end. A variant may not
247 control any fields, in which case the two values will be equal.
248 These are indexes into the type's array of fields. */
249 int first_field;
250 int last_field;
251
252 /* * Variant parts controlled by this variant. */
253 gdb::array_view<variant_part> parts;
254
255 /* * Return true if this is the default variant. The default
256 variant can be recognized because it has no associated
257 discriminants. */
258 bool is_default () const
259 {
260 return discriminants.empty ();
261 }
262
263 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
264 if this should be an unsigned comparison; false for signed. */
265 bool matches (ULONGEST value, bool is_unsigned) const;
266 };
267
268 /* * A variant part. Each variant part has an optional discriminant
269 and holds an array of variants. This struct corresponds to
270 DW_TAG_variant_part in DWARF. */
271
272 struct variant_part : allocate_on_obstack
273 {
274 /* * The index of the discriminant field in the outer type. This is
275 an index into the type's array of fields. If this is -1, there
276 is no discriminant, and only the default variant can be
277 considered to be selected. */
278 int discriminant_index;
279
280 /* * True if this discriminant is unsigned; false if signed. This
281 comes from the type of the discriminant. */
282 bool is_unsigned;
283
284 /* * The variants that are controlled by this variant part. Note
285 that these will always be sorted by field number. */
286 gdb::array_view<variant> variants;
287 };
288
289
290 enum dynamic_prop_kind
291 {
292 PROP_UNDEFINED, /* Not defined. */
293 PROP_CONST, /* Constant. */
294 PROP_ADDR_OFFSET, /* Address offset. */
295 PROP_LOCEXPR, /* Location expression. */
296 PROP_LOCLIST, /* Location list. */
297 PROP_VARIANT_PARTS, /* Variant parts. */
298 PROP_TYPE, /* Type. */
299 PROP_VARIABLE_NAME, /* Variable name. */
300 };
301
302 union dynamic_prop_data
303 {
304 /* Storage for constant property. */
305
306 LONGEST const_val;
307
308 /* Storage for dynamic property. */
309
310 void *baton;
311
312 /* Storage of variant parts for a type. A type with variant parts
313 has all its fields "linearized" -- stored in a single field
314 array, just as if they had all been declared that way. The
315 variant parts are attached via a dynamic property, and then are
316 used to control which fields end up in the final type during
317 dynamic type resolution. */
318
319 const gdb::array_view<variant_part> *variant_parts;
320
321 /* Once a variant type is resolved, we may want to be able to go
322 from the resolved type to the original type. In this case we
323 rewrite the property's kind and set this field. */
324
325 struct type *original_type;
326
327 /* Name of a variable to look up; the variable holds the value of
328 this property. */
329
330 const char *variable_name;
331 };
332
333 /* * Used to store a dynamic property. */
334
335 struct dynamic_prop
336 {
337 dynamic_prop_kind kind () const
338 {
339 return m_kind;
340 }
341
342 void set_undefined ()
343 {
344 m_kind = PROP_UNDEFINED;
345 }
346
347 LONGEST const_val () const
348 {
349 gdb_assert (m_kind == PROP_CONST);
350
351 return m_data.const_val;
352 }
353
354 void set_const_val (LONGEST const_val)
355 {
356 m_kind = PROP_CONST;
357 m_data.const_val = const_val;
358 }
359
360 void *baton () const
361 {
362 gdb_assert (m_kind == PROP_LOCEXPR
363 || m_kind == PROP_LOCLIST
364 || m_kind == PROP_ADDR_OFFSET);
365
366 return m_data.baton;
367 }
368
369 void set_locexpr (void *baton)
370 {
371 m_kind = PROP_LOCEXPR;
372 m_data.baton = baton;
373 }
374
375 void set_loclist (void *baton)
376 {
377 m_kind = PROP_LOCLIST;
378 m_data.baton = baton;
379 }
380
381 void set_addr_offset (void *baton)
382 {
383 m_kind = PROP_ADDR_OFFSET;
384 m_data.baton = baton;
385 }
386
387 const gdb::array_view<variant_part> *variant_parts () const
388 {
389 gdb_assert (m_kind == PROP_VARIANT_PARTS);
390
391 return m_data.variant_parts;
392 }
393
394 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
395 {
396 m_kind = PROP_VARIANT_PARTS;
397 m_data.variant_parts = variant_parts;
398 }
399
400 struct type *original_type () const
401 {
402 gdb_assert (m_kind == PROP_TYPE);
403
404 return m_data.original_type;
405 }
406
407 void set_original_type (struct type *original_type)
408 {
409 m_kind = PROP_TYPE;
410 m_data.original_type = original_type;
411 }
412
413 /* Return the name of the variable that holds this property's value.
414 Only valid for PROP_VARIABLE_NAME. */
415 const char *variable_name () const
416 {
417 gdb_assert (m_kind == PROP_VARIABLE_NAME);
418 return m_data.variable_name;
419 }
420
421 /* Set the name of the variable that holds this property's value,
422 and set this property to be of kind PROP_VARIABLE_NAME. */
423 void set_variable_name (const char *name)
424 {
425 m_kind = PROP_VARIABLE_NAME;
426 m_data.variable_name = name;
427 }
428
429 /* Determine which field of the union dynamic_prop.data is used. */
430 enum dynamic_prop_kind m_kind;
431
432 /* Storage for dynamic or static value. */
433 union dynamic_prop_data m_data;
434 };
435
436 /* Compare two dynamic_prop objects for equality. dynamic_prop
437 instances are equal iff they have the same type and storage. */
438 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
439
440 /* Compare two dynamic_prop objects for inequality. */
441 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
442 {
443 return !(l == r);
444 }
445
446 /* * Define a type's dynamic property node kind. */
447 enum dynamic_prop_node_kind
448 {
449 /* A property providing a type's data location.
450 Evaluating this field yields to the location of an object's data. */
451 DYN_PROP_DATA_LOCATION,
452
453 /* A property representing DW_AT_allocated. The presence of this attribute
454 indicates that the object of the type can be allocated/deallocated. */
455 DYN_PROP_ALLOCATED,
456
457 /* A property representing DW_AT_associated. The presence of this attribute
458 indicated that the object of the type can be associated. */
459 DYN_PROP_ASSOCIATED,
460
461 /* A property providing an array's byte stride. */
462 DYN_PROP_BYTE_STRIDE,
463
464 /* A property holding variant parts. */
465 DYN_PROP_VARIANT_PARTS,
466
467 /* A property representing DW_AT_rank. The presence of this attribute
468 indicates that the object is of assumed rank array type. */
469 DYN_PROP_RANK,
470
471 /* A property holding the size of the type. */
472 DYN_PROP_BYTE_SIZE,
473 };
474
475 /* * List for dynamic type attributes. */
476 struct dynamic_prop_list
477 {
478 /* The kind of dynamic prop in this node. */
479 enum dynamic_prop_node_kind prop_kind;
480
481 /* The dynamic property itself. */
482 struct dynamic_prop prop;
483
484 /* A pointer to the next dynamic property. */
485 struct dynamic_prop_list *next;
486 };
487
488 /* * Determine which field of the union main_type.fields[x].loc is
489 used. */
490
491 enum field_loc_kind
492 {
493 FIELD_LOC_KIND_BITPOS, /**< bitpos */
494 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
495 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
496 FIELD_LOC_KIND_PHYSNAME, /**< physname */
497 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
498 };
499
500 /* * A discriminant to determine which field in the
501 main_type.type_specific union is being used, if any.
502
503 For types such as TYPE_CODE_FLT, the use of this
504 discriminant is really redundant, as we know from the type code
505 which field is going to be used. As such, it would be possible to
506 reduce the size of this enum in order to save a bit or two for
507 other fields of struct main_type. But, since we still have extra
508 room , and for the sake of clarity and consistency, we treat all fields
509 of the union the same way. */
510
511 enum type_specific_kind
512 {
513 TYPE_SPECIFIC_NONE,
514 TYPE_SPECIFIC_CPLUS_STUFF,
515 TYPE_SPECIFIC_GNAT_STUFF,
516 TYPE_SPECIFIC_FLOATFORMAT,
517 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
518 TYPE_SPECIFIC_FUNC,
519 TYPE_SPECIFIC_SELF_TYPE,
520 TYPE_SPECIFIC_INT,
521 TYPE_SPECIFIC_FIXED_POINT,
522 };
523
524 union type_owner
525 {
526 struct objfile *objfile;
527 struct gdbarch *gdbarch;
528 };
529
530 union field_location
531 {
532 /* * Position of this field, counting in bits from start of
533 containing structure. For big-endian targets, it is the bit
534 offset to the MSB. For little-endian targets, it is the bit
535 offset to the LSB. */
536
537 LONGEST bitpos;
538
539 /* * Enum value. */
540 LONGEST enumval;
541
542 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
543 physaddr is the location (in the target) of the static
544 field. Otherwise, physname is the mangled label of the
545 static field. */
546
547 CORE_ADDR physaddr;
548 const char *physname;
549
550 /* * The field location can be computed by evaluating the
551 following DWARF block. Its DATA is allocated on
552 objfile_obstack - no CU load is needed to access it. */
553
554 struct dwarf2_locexpr_baton *dwarf_block;
555 };
556
557 struct field
558 {
559 struct type *type () const
560 {
561 return this->m_type;
562 }
563
564 void set_type (struct type *type)
565 {
566 this->m_type = type;
567 }
568
569 const char *name () const
570 {
571 return m_name;
572 }
573
574 void set_name (const char *name)
575 {
576 m_name = name;
577 }
578
579 /* Location getters / setters. */
580
581 field_loc_kind loc_kind () const
582 {
583 return m_loc_kind;
584 }
585
586 LONGEST loc_bitpos () const
587 {
588 gdb_assert (m_loc_kind == FIELD_LOC_KIND_BITPOS);
589 return m_loc.bitpos;
590 }
591
592 void set_loc_bitpos (LONGEST bitpos)
593 {
594 m_loc_kind = FIELD_LOC_KIND_BITPOS;
595 m_loc.bitpos = bitpos;
596 }
597
598 LONGEST loc_enumval () const
599 {
600 gdb_assert (m_loc_kind == FIELD_LOC_KIND_ENUMVAL);
601 return m_loc.enumval;
602 }
603
604 void set_loc_enumval (LONGEST enumval)
605 {
606 m_loc_kind = FIELD_LOC_KIND_ENUMVAL;
607 m_loc.enumval = enumval;
608 }
609
610 CORE_ADDR loc_physaddr () const
611 {
612 gdb_assert (m_loc_kind == FIELD_LOC_KIND_PHYSADDR);
613 return m_loc.physaddr;
614 }
615
616 void set_loc_physaddr (CORE_ADDR physaddr)
617 {
618 m_loc_kind = FIELD_LOC_KIND_PHYSADDR;
619 m_loc.physaddr = physaddr;
620 }
621
622 const char *loc_physname () const
623 {
624 gdb_assert (m_loc_kind == FIELD_LOC_KIND_PHYSNAME);
625 return m_loc.physname;
626 }
627
628 void set_loc_physname (const char *physname)
629 {
630 m_loc_kind = FIELD_LOC_KIND_PHYSNAME;
631 m_loc.physname = physname;
632 }
633
634 dwarf2_locexpr_baton *loc_dwarf_block () const
635 {
636 gdb_assert (m_loc_kind == FIELD_LOC_KIND_DWARF_BLOCK);
637 return m_loc.dwarf_block;
638 }
639
640 void set_loc_dwarf_block (dwarf2_locexpr_baton *dwarf_block)
641 {
642 m_loc_kind = FIELD_LOC_KIND_DWARF_BLOCK;
643 m_loc.dwarf_block = dwarf_block;
644 }
645
646 union field_location m_loc;
647
648 /* * For a function or member type, this is 1 if the argument is
649 marked artificial. Artificial arguments should not be shown
650 to the user. For TYPE_CODE_RANGE it is set if the specific
651 bound is not defined. */
652
653 unsigned int artificial : 1;
654
655 /* * Discriminant for union field_location. */
656
657 ENUM_BITFIELD(field_loc_kind) m_loc_kind : 3;
658
659 /* * Size of this field, in bits, or zero if not packed.
660 If non-zero in an array type, indicates the element size in
661 bits (used only in Ada at the moment).
662 For an unpacked field, the field's type's length
663 says how many bytes the field occupies. */
664
665 unsigned int bitsize : 28;
666
667 /* * In a struct or union type, type of this field.
668 - In a function or member type, type of this argument.
669 - In an array type, the domain-type of the array. */
670
671 struct type *m_type;
672
673 /* * Name of field, value or argument.
674 NULL for range bounds, array domains, and member function
675 arguments. */
676
677 const char *m_name;
678 };
679
680 struct range_bounds
681 {
682 ULONGEST bit_stride () const
683 {
684 if (this->flag_is_byte_stride)
685 return this->stride.const_val () * 8;
686 else
687 return this->stride.const_val ();
688 }
689
690 /* * Low bound of range. */
691
692 struct dynamic_prop low;
693
694 /* * High bound of range. */
695
696 struct dynamic_prop high;
697
698 /* The stride value for this range. This can be stored in bits or bytes
699 based on the value of BYTE_STRIDE_P. It is optional to have a stride
700 value, if this range has no stride value defined then this will be set
701 to the constant zero. */
702
703 struct dynamic_prop stride;
704
705 /* * The bias. Sometimes a range value is biased before storage.
706 The bias is added to the stored bits to form the true value. */
707
708 LONGEST bias;
709
710 /* True if HIGH range bound contains the number of elements in the
711 subrange. This affects how the final high bound is computed. */
712
713 unsigned int flag_upper_bound_is_count : 1;
714
715 /* True if LOW or/and HIGH are resolved into a static bound from
716 a dynamic one. */
717
718 unsigned int flag_bound_evaluated : 1;
719
720 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
721
722 unsigned int flag_is_byte_stride : 1;
723 };
724
725 /* Compare two range_bounds objects for equality. Simply does
726 memberwise comparison. */
727 extern bool operator== (const range_bounds &l, const range_bounds &r);
728
729 /* Compare two range_bounds objects for inequality. */
730 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
731 {
732 return !(l == r);
733 }
734
735 union type_specific
736 {
737 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
738 point to cplus_struct_default, a default static instance of a
739 struct cplus_struct_type. */
740
741 struct cplus_struct_type *cplus_stuff;
742
743 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
744 provides additional information. */
745
746 struct gnat_aux_type *gnat_stuff;
747
748 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
749 floatformat object that describes the floating-point value
750 that resides within the type. */
751
752 const struct floatformat *floatformat;
753
754 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
755
756 struct func_type *func_stuff;
757
758 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
759 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
760 is a member of. */
761
762 struct type *self_type;
763
764 /* * For TYPE_CODE_FIXED_POINT types, the info necessary to decode
765 values of that type. */
766 struct fixed_point_type_info *fixed_point_info;
767
768 /* * An integer-like scalar type may be stored in just part of its
769 enclosing storage bytes. This structure describes this
770 situation. */
771 struct
772 {
773 /* * The bit size of the integer. This can be 0. For integers
774 that fill their storage (the ordinary case), this field holds
775 the byte size times 8. */
776 unsigned short bit_size;
777 /* * The bit offset of the integer. This is ordinarily 0, and can
778 only be non-zero if the bit size is less than the storage
779 size. */
780 unsigned short bit_offset;
781 } int_stuff;
782 };
783
784 /* * Main structure representing a type in GDB.
785
786 This structure is space-critical. Its layout has been tweaked to
787 reduce the space used. */
788
789 struct main_type
790 {
791 /* * Code for kind of type. */
792
793 ENUM_BITFIELD(type_code) code : 8;
794
795 /* * Flags about this type. These fields appear at this location
796 because they packs nicely here. See the TYPE_* macros for
797 documentation about these fields. */
798
799 unsigned int m_flag_unsigned : 1;
800 unsigned int m_flag_nosign : 1;
801 unsigned int m_flag_stub : 1;
802 unsigned int m_flag_target_stub : 1;
803 unsigned int m_flag_prototyped : 1;
804 unsigned int m_flag_varargs : 1;
805 unsigned int m_flag_vector : 1;
806 unsigned int m_flag_stub_supported : 1;
807 unsigned int m_flag_gnu_ifunc : 1;
808 unsigned int m_flag_fixed_instance : 1;
809 unsigned int m_flag_objfile_owned : 1;
810 unsigned int m_flag_endianity_not_default : 1;
811
812 /* * True if this type was declared with "class" rather than
813 "struct". */
814
815 unsigned int m_flag_declared_class : 1;
816
817 /* * True if this is an enum type with disjoint values. This
818 affects how the enum is printed. */
819
820 unsigned int m_flag_flag_enum : 1;
821
822 /* * For TYPE_CODE_ARRAY, this is true if this type is part of a
823 multi-dimensional array. Multi-dimensional arrays are
824 represented internally as arrays of arrays, and this flag lets
825 gdb distinguish between multiple dimensions and an ordinary array
826 of arrays. The flag is set on each inner dimension, but not the
827 outermost dimension. */
828
829 unsigned int m_multi_dimensional : 1;
830
831 /* * A discriminant telling us which field of the type_specific
832 union is being used for this type, if any. */
833
834 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
835
836 /* * Number of fields described for this type. This field appears
837 at this location because it packs nicely here. */
838
839 short nfields;
840
841 /* * Name of this type, or NULL if none.
842
843 This is used for printing only. For looking up a name, look for
844 a symbol in the VAR_DOMAIN. This is generally allocated in the
845 objfile's obstack. However coffread.c uses malloc. */
846
847 const char *name;
848
849 /* * Every type is now associated with a particular objfile, and the
850 type is allocated on the objfile_obstack for that objfile. One
851 problem however, is that there are times when gdb allocates new
852 types while it is not in the process of reading symbols from a
853 particular objfile. Fortunately, these happen when the type
854 being created is a derived type of an existing type, such as in
855 lookup_pointer_type(). So we can just allocate the new type
856 using the same objfile as the existing type, but to do this we
857 need a backpointer to the objfile from the existing type. Yes
858 this is somewhat ugly, but without major overhaul of the internal
859 type system, it can't be avoided for now. */
860
861 union type_owner m_owner;
862
863 /* * For a pointer type, describes the type of object pointed to.
864 - For an array type, describes the type of the elements.
865 - For a function or method type, describes the type of the return value.
866 - For a range type, describes the type of the full range.
867 - For a complex type, describes the type of each coordinate.
868 - For a special record or union type encoding a dynamic-sized type
869 in GNAT, a memoized pointer to a corresponding static version of
870 the type.
871 - Unused otherwise. */
872
873 struct type *m_target_type;
874
875 /* * For structure and union types, a description of each field.
876 For set and pascal array types, there is one "field",
877 whose type is the domain type of the set or array.
878 For range types, there are two "fields",
879 the minimum and maximum values (both inclusive).
880 For enum types, each possible value is described by one "field".
881 For a function or method type, a "field" for each parameter.
882 For C++ classes, there is one field for each base class (if it is
883 a derived class) plus one field for each class data member. Member
884 functions are recorded elsewhere.
885
886 Using a pointer to a separate array of fields
887 allows all types to have the same size, which is useful
888 because we can allocate the space for a type before
889 we know what to put in it. */
890
891 union
892 {
893 struct field *fields;
894
895 /* * Union member used for range types. */
896
897 struct range_bounds *bounds;
898
899 /* If this is a scalar type, then this is its corresponding
900 complex type. */
901 struct type *complex_type;
902
903 } flds_bnds;
904
905 /* * Slot to point to additional language-specific fields of this
906 type. */
907
908 union type_specific type_specific;
909
910 /* * Contains all dynamic type properties. */
911 struct dynamic_prop_list *dyn_prop_list;
912 };
913
914 /* * Number of bits allocated for alignment. */
915
916 #define TYPE_ALIGN_BITS 8
917
918 /* * A ``struct type'' describes a particular instance of a type, with
919 some particular qualification. */
920
921 struct type
922 {
923 /* Get the type code of this type.
924
925 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
926 type, you need to do `check_typedef (type)->code ()`. */
927 type_code code () const
928 {
929 return this->main_type->code;
930 }
931
932 /* Set the type code of this type. */
933 void set_code (type_code code)
934 {
935 this->main_type->code = code;
936 }
937
938 /* Get the name of this type. */
939 const char *name () const
940 {
941 return this->main_type->name;
942 }
943
944 /* Set the name of this type. */
945 void set_name (const char *name)
946 {
947 this->main_type->name = name;
948 }
949
950 /* Note that if thistype is a TYPEDEF type, you have to call check_typedef.
951 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
952 so you only have to call check_typedef once. Since allocate_value
953 calls check_typedef, VALUE_TYPE (X)->length () is safe. */
954 ULONGEST length () const
955 {
956 return this->m_length;
957 }
958
959 void set_length (ULONGEST length)
960 {
961 this->m_length = length;
962 }
963
964 /* Get the number of fields of this type. */
965 int num_fields () const
966 {
967 return this->main_type->nfields;
968 }
969
970 /* Set the number of fields of this type. */
971 void set_num_fields (int num_fields)
972 {
973 this->main_type->nfields = num_fields;
974 }
975
976 /* Get the fields array of this type. */
977 struct field *fields () const
978 {
979 return this->main_type->flds_bnds.fields;
980 }
981
982 /* Get the field at index IDX. */
983 struct field &field (int idx) const
984 {
985 gdb_assert (idx >= 0 && idx < num_fields ());
986 return this->fields ()[idx];
987 }
988
989 /* Set the fields array of this type. */
990 void set_fields (struct field *fields)
991 {
992 this->main_type->flds_bnds.fields = fields;
993 }
994
995 type *index_type () const
996 {
997 return this->field (0).type ();
998 }
999
1000 struct type *target_type () const
1001 {
1002 return this->main_type->m_target_type;
1003 }
1004
1005 void set_target_type (struct type *target_type)
1006 {
1007 this->main_type->m_target_type = target_type;
1008 }
1009
1010 void set_index_type (type *index_type)
1011 {
1012 this->field (0).set_type (index_type);
1013 }
1014
1015 /* Return the instance flags converted to the correct type. */
1016 const type_instance_flags instance_flags () const
1017 {
1018 return (enum type_instance_flag_value) this->m_instance_flags;
1019 }
1020
1021 /* Set the instance flags. */
1022 void set_instance_flags (type_instance_flags flags)
1023 {
1024 this->m_instance_flags = flags;
1025 }
1026
1027 /* Get the bounds bounds of this type. The type must be a range type. */
1028 range_bounds *bounds () const
1029 {
1030 switch (this->code ())
1031 {
1032 case TYPE_CODE_RANGE:
1033 return this->main_type->flds_bnds.bounds;
1034
1035 case TYPE_CODE_ARRAY:
1036 case TYPE_CODE_STRING:
1037 return this->index_type ()->bounds ();
1038
1039 default:
1040 gdb_assert_not_reached
1041 ("type::bounds called on type with invalid code");
1042 }
1043 }
1044
1045 /* Set the bounds of this type. The type must be a range type. */
1046 void set_bounds (range_bounds *bounds)
1047 {
1048 gdb_assert (this->code () == TYPE_CODE_RANGE);
1049
1050 this->main_type->flds_bnds.bounds = bounds;
1051 }
1052
1053 ULONGEST bit_stride () const
1054 {
1055 if (this->code () == TYPE_CODE_ARRAY && this->field (0).bitsize != 0)
1056 return this->field (0).bitsize;
1057 return this->bounds ()->bit_stride ();
1058 }
1059
1060 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1061 the type is signed (unless TYPE_NOSIGN is set). */
1062
1063 bool is_unsigned () const
1064 {
1065 return this->main_type->m_flag_unsigned;
1066 }
1067
1068 void set_is_unsigned (bool is_unsigned)
1069 {
1070 this->main_type->m_flag_unsigned = is_unsigned;
1071 }
1072
1073 /* No sign for this type. In C++, "char", "signed char", and
1074 "unsigned char" are distinct types; so we need an extra flag to
1075 indicate the absence of a sign! */
1076
1077 bool has_no_signedness () const
1078 {
1079 return this->main_type->m_flag_nosign;
1080 }
1081
1082 void set_has_no_signedness (bool has_no_signedness)
1083 {
1084 this->main_type->m_flag_nosign = has_no_signedness;
1085 }
1086
1087 /* This appears in a type's flags word if it is a stub type (e.g.,
1088 if someone referenced a type that wasn't defined in a source file
1089 via (struct sir_not_appearing_in_this_film *)). */
1090
1091 bool is_stub () const
1092 {
1093 return this->main_type->m_flag_stub;
1094 }
1095
1096 void set_is_stub (bool is_stub)
1097 {
1098 this->main_type->m_flag_stub = is_stub;
1099 }
1100
1101 /* The target type of this type is a stub type, and this type needs
1102 to be updated if it gets un-stubbed in check_typedef. Used for
1103 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1104 based on the TYPE_LENGTH of the target type. Also, set for
1105 TYPE_CODE_TYPEDEF. */
1106
1107 bool target_is_stub () const
1108 {
1109 return this->main_type->m_flag_target_stub;
1110 }
1111
1112 void set_target_is_stub (bool target_is_stub)
1113 {
1114 this->main_type->m_flag_target_stub = target_is_stub;
1115 }
1116
1117 /* This is a function type which appears to have a prototype. We
1118 need this for function calls in order to tell us if it's necessary
1119 to coerce the args, or to just do the standard conversions. This
1120 is used with a short field. */
1121
1122 bool is_prototyped () const
1123 {
1124 return this->main_type->m_flag_prototyped;
1125 }
1126
1127 void set_is_prototyped (bool is_prototyped)
1128 {
1129 this->main_type->m_flag_prototyped = is_prototyped;
1130 }
1131
1132 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1133 to functions. */
1134
1135 bool has_varargs () const
1136 {
1137 return this->main_type->m_flag_varargs;
1138 }
1139
1140 void set_has_varargs (bool has_varargs)
1141 {
1142 this->main_type->m_flag_varargs = has_varargs;
1143 }
1144
1145 /* Identify a vector type. Gcc is handling this by adding an extra
1146 attribute to the array type. We slurp that in as a new flag of a
1147 type. This is used only in dwarf2read.c. */
1148
1149 bool is_vector () const
1150 {
1151 return this->main_type->m_flag_vector;
1152 }
1153
1154 void set_is_vector (bool is_vector)
1155 {
1156 this->main_type->m_flag_vector = is_vector;
1157 }
1158
1159 /* This debug target supports TYPE_STUB(t). In the unsupported case
1160 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1161 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1162 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1163
1164 bool stub_is_supported () const
1165 {
1166 return this->main_type->m_flag_stub_supported;
1167 }
1168
1169 void set_stub_is_supported (bool stub_is_supported)
1170 {
1171 this->main_type->m_flag_stub_supported = stub_is_supported;
1172 }
1173
1174 /* Used only for TYPE_CODE_FUNC where it specifies the real function
1175 address is returned by this function call. The target_type method
1176 determines the final returned function type to be presented to
1177 user. */
1178
1179 bool is_gnu_ifunc () const
1180 {
1181 return this->main_type->m_flag_gnu_ifunc;
1182 }
1183
1184 void set_is_gnu_ifunc (bool is_gnu_ifunc)
1185 {
1186 this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1187 }
1188
1189 /* The debugging formats (especially STABS) do not contain enough
1190 information to represent all Ada types---especially those whose
1191 size depends on dynamic quantities. Therefore, the GNAT Ada
1192 compiler includes extra information in the form of additional type
1193 definitions connected by naming conventions. This flag indicates
1194 that the type is an ordinary (unencoded) GDB type that has been
1195 created from the necessary run-time information, and does not need
1196 further interpretation. Optionally marks ordinary, fixed-size GDB
1197 type. */
1198
1199 bool is_fixed_instance () const
1200 {
1201 return this->main_type->m_flag_fixed_instance;
1202 }
1203
1204 void set_is_fixed_instance (bool is_fixed_instance)
1205 {
1206 this->main_type->m_flag_fixed_instance = is_fixed_instance;
1207 }
1208
1209 /* A compiler may supply dwarf instrumentation that indicates the desired
1210 endian interpretation of the variable differs from the native endian
1211 representation. */
1212
1213 bool endianity_is_not_default () const
1214 {
1215 return this->main_type->m_flag_endianity_not_default;
1216 }
1217
1218 void set_endianity_is_not_default (bool endianity_is_not_default)
1219 {
1220 this->main_type->m_flag_endianity_not_default = endianity_is_not_default;
1221 }
1222
1223
1224 /* True if this type was declared using the "class" keyword. This is
1225 only valid for C++ structure and enum types. If false, a structure
1226 was declared as a "struct"; if true it was declared "class". For
1227 enum types, this is true when "enum class" or "enum struct" was
1228 used to declare the type. */
1229
1230 bool is_declared_class () const
1231 {
1232 return this->main_type->m_flag_declared_class;
1233 }
1234
1235 void set_is_declared_class (bool is_declared_class) const
1236 {
1237 this->main_type->m_flag_declared_class = is_declared_class;
1238 }
1239
1240 /* True if this type is a "flag" enum. A flag enum is one where all
1241 the values are pairwise disjoint when "and"ed together. This
1242 affects how enum values are printed. */
1243
1244 bool is_flag_enum () const
1245 {
1246 return this->main_type->m_flag_flag_enum;
1247 }
1248
1249 void set_is_flag_enum (bool is_flag_enum)
1250 {
1251 this->main_type->m_flag_flag_enum = is_flag_enum;
1252 }
1253
1254 /* True if this array type is part of a multi-dimensional array. */
1255
1256 bool is_multi_dimensional () const
1257 {
1258 return this->main_type->m_multi_dimensional;
1259 }
1260
1261 void set_is_multi_dimensional (bool value)
1262 {
1263 this->main_type->m_multi_dimensional = value;
1264 }
1265
1266 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return a reference
1267 to this type's fixed_point_info. */
1268
1269 struct fixed_point_type_info &fixed_point_info () const
1270 {
1271 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1272 gdb_assert (this->main_type->type_specific.fixed_point_info != nullptr);
1273
1274 return *this->main_type->type_specific.fixed_point_info;
1275 }
1276
1277 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, set this type's
1278 fixed_point_info to INFO. */
1279
1280 void set_fixed_point_info (struct fixed_point_type_info *info) const
1281 {
1282 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1283
1284 this->main_type->type_specific.fixed_point_info = info;
1285 }
1286
1287 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its base type.
1288
1289 In other words, this returns the type after having peeled all
1290 intermediate type layers (such as TYPE_CODE_RANGE, for instance).
1291 The TYPE_CODE of the type returned is guaranteed to be
1292 a TYPE_CODE_FIXED_POINT. */
1293
1294 struct type *fixed_point_type_base_type ();
1295
1296 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its scaling
1297 factor. */
1298
1299 const gdb_mpq &fixed_point_scaling_factor ();
1300
1301 /* * Return the dynamic property of the requested KIND from this type's
1302 list of dynamic properties. */
1303 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1304
1305 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1306 property to this type.
1307
1308 This function assumes that this type is objfile-owned. */
1309 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1310
1311 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1312 void remove_dyn_prop (dynamic_prop_node_kind kind);
1313
1314 /* Return true if this type is owned by an objfile. Return false if it is
1315 owned by an architecture. */
1316 bool is_objfile_owned () const
1317 {
1318 return this->main_type->m_flag_objfile_owned;
1319 }
1320
1321 /* Set the owner of the type to be OBJFILE. */
1322 void set_owner (objfile *objfile)
1323 {
1324 gdb_assert (objfile != nullptr);
1325
1326 this->main_type->m_owner.objfile = objfile;
1327 this->main_type->m_flag_objfile_owned = true;
1328 }
1329
1330 /* Set the owner of the type to be ARCH. */
1331 void set_owner (gdbarch *arch)
1332 {
1333 gdb_assert (arch != nullptr);
1334
1335 this->main_type->m_owner.gdbarch = arch;
1336 this->main_type->m_flag_objfile_owned = false;
1337 }
1338
1339 /* Return the objfile owner of this type.
1340
1341 Return nullptr if this type is not objfile-owned. */
1342 struct objfile *objfile_owner () const
1343 {
1344 if (!this->is_objfile_owned ())
1345 return nullptr;
1346
1347 return this->main_type->m_owner.objfile;
1348 }
1349
1350 /* Return the gdbarch owner of this type.
1351
1352 Return nullptr if this type is not gdbarch-owned. */
1353 gdbarch *arch_owner () const
1354 {
1355 if (this->is_objfile_owned ())
1356 return nullptr;
1357
1358 return this->main_type->m_owner.gdbarch;
1359 }
1360
1361 /* Return the type's architecture. For types owned by an
1362 architecture, that architecture is returned. For types owned by an
1363 objfile, that objfile's architecture is returned.
1364
1365 The return value is always non-nullptr. */
1366 gdbarch *arch () const;
1367
1368 /* * Return true if this is an integer type whose logical (bit) size
1369 differs from its storage size; false otherwise. Always return
1370 false for non-integer (i.e., non-TYPE_SPECIFIC_INT) types. */
1371 bool bit_size_differs_p () const
1372 {
1373 return (main_type->type_specific_field == TYPE_SPECIFIC_INT
1374 && main_type->type_specific.int_stuff.bit_size != 8 * length ());
1375 }
1376
1377 /* * Return the logical (bit) size for this integer type. Only
1378 valid for integer (TYPE_SPECIFIC_INT) types. */
1379 unsigned short bit_size () const
1380 {
1381 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1382 return main_type->type_specific.int_stuff.bit_size;
1383 }
1384
1385 /* * Return the bit offset for this integer type. Only valid for
1386 integer (TYPE_SPECIFIC_INT) types. */
1387 unsigned short bit_offset () const
1388 {
1389 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1390 return main_type->type_specific.int_stuff.bit_offset;
1391 }
1392
1393 /* Return true if this is a pointer or reference type. */
1394 bool is_pointer_or_reference () const
1395 {
1396 return this->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (this);
1397 }
1398
1399 /* * Type that is a pointer to this type.
1400 NULL if no such pointer-to type is known yet.
1401 The debugger may add the address of such a type
1402 if it has to construct one later. */
1403
1404 struct type *pointer_type;
1405
1406 /* * C++: also need a reference type. */
1407
1408 struct type *reference_type;
1409
1410 /* * A C++ rvalue reference type added in C++11. */
1411
1412 struct type *rvalue_reference_type;
1413
1414 /* * Variant chain. This points to a type that differs from this
1415 one only in qualifiers and length. Currently, the possible
1416 qualifiers are const, volatile, code-space, data-space, and
1417 address class. The length may differ only when one of the
1418 address class flags are set. The variants are linked in a
1419 circular ring and share MAIN_TYPE. */
1420
1421 struct type *chain;
1422
1423 /* * The alignment for this type. Zero means that the alignment was
1424 not specified in the debug info. Note that this is stored in a
1425 funny way: as the log base 2 (plus 1) of the alignment; so a
1426 value of 1 means the alignment is 1, and a value of 9 means the
1427 alignment is 256. */
1428
1429 unsigned align_log2 : TYPE_ALIGN_BITS;
1430
1431 /* * Flags specific to this instance of the type, indicating where
1432 on the ring we are.
1433
1434 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1435 binary or-ed with the target type, with a special case for
1436 address class and space class. For example if this typedef does
1437 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1438 instance flags are completely inherited from the target type. No
1439 qualifiers can be cleared by the typedef. See also
1440 check_typedef. */
1441 unsigned m_instance_flags : 9;
1442
1443 /* * Length of storage for a value of this type. The value is the
1444 expression in host bytes of what sizeof(type) would return. This
1445 size includes padding. For example, an i386 extended-precision
1446 floating point value really only occupies ten bytes, but most
1447 ABI's declare its size to be 12 bytes, to preserve alignment.
1448 A `struct type' representing such a floating-point type would
1449 have a `length' value of 12, even though the last two bytes are
1450 unused.
1451
1452 Since this field is expressed in host bytes, its value is appropriate
1453 to pass to memcpy and such (it is assumed that GDB itself always runs
1454 on an 8-bits addressable architecture). However, when using it for
1455 target address arithmetic (e.g. adding it to a target address), the
1456 type_length_units function should be used in order to get the length
1457 expressed in target addressable memory units. */
1458
1459 ULONGEST m_length;
1460
1461 /* * Core type, shared by a group of qualified types. */
1462
1463 struct main_type *main_type;
1464 };
1465
1466 struct fn_fieldlist
1467 {
1468
1469 /* * The overloaded name.
1470 This is generally allocated in the objfile's obstack.
1471 However stabsread.c sometimes uses malloc. */
1472
1473 const char *name;
1474
1475 /* * The number of methods with this name. */
1476
1477 int length;
1478
1479 /* * The list of methods. */
1480
1481 struct fn_field *fn_fields;
1482 };
1483
1484
1485
1486 struct fn_field
1487 {
1488 /* * If is_stub is clear, this is the mangled name which we can look
1489 up to find the address of the method (FIXME: it would be cleaner
1490 to have a pointer to the struct symbol here instead).
1491
1492 If is_stub is set, this is the portion of the mangled name which
1493 specifies the arguments. For example, "ii", if there are two int
1494 arguments, or "" if there are no arguments. See gdb_mangle_name
1495 for the conversion from this format to the one used if is_stub is
1496 clear. */
1497
1498 const char *physname;
1499
1500 /* * The function type for the method.
1501
1502 (This comment used to say "The return value of the method", but
1503 that's wrong. The function type is expected here, i.e. something
1504 with TYPE_CODE_METHOD, and *not* the return-value type). */
1505
1506 struct type *type;
1507
1508 /* * For virtual functions. First baseclass that defines this
1509 virtual function. */
1510
1511 struct type *fcontext;
1512
1513 /* Attributes. */
1514
1515 unsigned int is_const:1;
1516 unsigned int is_volatile:1;
1517 unsigned int is_private:1;
1518 unsigned int is_protected:1;
1519 unsigned int is_artificial:1;
1520
1521 /* * A stub method only has some fields valid (but they are enough
1522 to reconstruct the rest of the fields). */
1523
1524 unsigned int is_stub:1;
1525
1526 /* * True if this function is a constructor, false otherwise. */
1527
1528 unsigned int is_constructor : 1;
1529
1530 /* * True if this function is deleted, false otherwise. */
1531
1532 unsigned int is_deleted : 1;
1533
1534 /* * DW_AT_defaulted attribute for this function. The value is one
1535 of the DW_DEFAULTED constants. */
1536
1537 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1538
1539 /* * Unused. */
1540
1541 unsigned int dummy:6;
1542
1543 /* * Index into that baseclass's virtual function table, minus 2;
1544 else if static: VOFFSET_STATIC; else: 0. */
1545
1546 unsigned int voffset:16;
1547
1548 #define VOFFSET_STATIC 1
1549
1550 };
1551
1552 struct decl_field
1553 {
1554 /* * Unqualified name to be prefixed by owning class qualified
1555 name. */
1556
1557 const char *name;
1558
1559 /* * Type this typedef named NAME represents. */
1560
1561 struct type *type;
1562
1563 /* * True if this field was declared protected, false otherwise. */
1564 unsigned int is_protected : 1;
1565
1566 /* * True if this field was declared private, false otherwise. */
1567 unsigned int is_private : 1;
1568 };
1569
1570 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1571 TYPE_CODE_UNION nodes. */
1572
1573 struct cplus_struct_type
1574 {
1575 /* * Number of base classes this type derives from. The
1576 baseclasses are stored in the first N_BASECLASSES fields
1577 (i.e. the `fields' field of the struct type). The only fields
1578 of struct field that are used are: type, name, loc.bitpos. */
1579
1580 short n_baseclasses;
1581
1582 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1583 All access to this field must be through TYPE_VPTR_FIELDNO as one
1584 thing it does is check whether the field has been initialized.
1585 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1586 which for portability reasons doesn't initialize this field.
1587 TYPE_VPTR_FIELDNO returns -1 for this case.
1588
1589 If -1, we were unable to find the virtual function table pointer in
1590 initial symbol reading, and get_vptr_fieldno should be called to find
1591 it if possible. get_vptr_fieldno will update this field if possible.
1592 Otherwise the value is left at -1.
1593
1594 Unused if this type does not have virtual functions. */
1595
1596 short vptr_fieldno;
1597
1598 /* * Number of methods with unique names. All overloaded methods
1599 with the same name count only once. */
1600
1601 short nfn_fields;
1602
1603 /* * Number of template arguments. */
1604
1605 unsigned short n_template_arguments;
1606
1607 /* * One if this struct is a dynamic class, as defined by the
1608 Itanium C++ ABI: if it requires a virtual table pointer,
1609 because it or any of its base classes have one or more virtual
1610 member functions or virtual base classes. Minus one if not
1611 dynamic. Zero if not yet computed. */
1612
1613 int is_dynamic : 2;
1614
1615 /* * The calling convention for this type, fetched from the
1616 DW_AT_calling_convention attribute. The value is one of the
1617 DW_CC constants. */
1618
1619 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1620
1621 /* * The base class which defined the virtual function table pointer. */
1622
1623 struct type *vptr_basetype;
1624
1625 /* * For derived classes, the number of base classes is given by
1626 n_baseclasses and virtual_field_bits is a bit vector containing
1627 one bit per base class. If the base class is virtual, the
1628 corresponding bit will be set.
1629 I.E, given:
1630
1631 class A{};
1632 class B{};
1633 class C : public B, public virtual A {};
1634
1635 B is a baseclass of C; A is a virtual baseclass for C.
1636 This is a C++ 2.0 language feature. */
1637
1638 B_TYPE *virtual_field_bits;
1639
1640 /* * For classes with private fields, the number of fields is
1641 given by nfields and private_field_bits is a bit vector
1642 containing one bit per field.
1643
1644 If the field is private, the corresponding bit will be set. */
1645
1646 B_TYPE *private_field_bits;
1647
1648 /* * For classes with protected fields, the number of fields is
1649 given by nfields and protected_field_bits is a bit vector
1650 containing one bit per field.
1651
1652 If the field is private, the corresponding bit will be set. */
1653
1654 B_TYPE *protected_field_bits;
1655
1656 /* * For classes with fields to be ignored, either this is
1657 optimized out or this field has length 0. */
1658
1659 B_TYPE *ignore_field_bits;
1660
1661 /* * For classes, structures, and unions, a description of each
1662 field, which consists of an overloaded name, followed by the
1663 types of arguments that the method expects, and then the name
1664 after it has been renamed to make it distinct.
1665
1666 fn_fieldlists points to an array of nfn_fields of these. */
1667
1668 struct fn_fieldlist *fn_fieldlists;
1669
1670 /* * typedefs defined inside this class. typedef_field points to
1671 an array of typedef_field_count elements. */
1672
1673 struct decl_field *typedef_field;
1674
1675 unsigned typedef_field_count;
1676
1677 /* * The nested types defined by this type. nested_types points to
1678 an array of nested_types_count elements. */
1679
1680 struct decl_field *nested_types;
1681
1682 unsigned nested_types_count;
1683
1684 /* * The template arguments. This is an array with
1685 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1686 classes. */
1687
1688 struct symbol **template_arguments;
1689 };
1690
1691 /* * Struct used to store conversion rankings. */
1692
1693 struct rank
1694 {
1695 short rank;
1696
1697 /* * When two conversions are of the same type and therefore have
1698 the same rank, subrank is used to differentiate the two.
1699
1700 Eg: Two derived-class-pointer to base-class-pointer conversions
1701 would both have base pointer conversion rank, but the
1702 conversion with the shorter distance to the ancestor is
1703 preferable. 'subrank' would be used to reflect that. */
1704
1705 short subrank;
1706 };
1707
1708 /* * Used for ranking a function for overload resolution. */
1709
1710 typedef std::vector<rank> badness_vector;
1711
1712 /* * GNAT Ada-specific information for various Ada types. */
1713
1714 struct gnat_aux_type
1715 {
1716 /* * Parallel type used to encode information about dynamic types
1717 used in Ada (such as variant records, variable-size array,
1718 etc). */
1719 struct type* descriptive_type;
1720 };
1721
1722 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1723
1724 struct func_type
1725 {
1726 /* * The calling convention for targets supporting multiple ABIs.
1727 Right now this is only fetched from the Dwarf-2
1728 DW_AT_calling_convention attribute. The value is one of the
1729 DW_CC constants. */
1730
1731 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1732
1733 /* * Whether this function normally returns to its caller. It is
1734 set from the DW_AT_noreturn attribute if set on the
1735 DW_TAG_subprogram. */
1736
1737 unsigned int is_noreturn : 1;
1738
1739 /* * Only those DW_TAG_call_site's in this function that have
1740 DW_AT_call_tail_call set are linked in this list. Function
1741 without its tail call list complete
1742 (DW_AT_call_all_tail_calls or its superset
1743 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1744 DW_TAG_call_site's exist in such function. */
1745
1746 struct call_site *tail_call_list;
1747
1748 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1749 contains the method. */
1750
1751 struct type *self_type;
1752 };
1753
1754 /* struct call_site_parameter can be referenced in callees by several ways. */
1755
1756 enum call_site_parameter_kind
1757 {
1758 /* * Use field call_site_parameter.u.dwarf_reg. */
1759 CALL_SITE_PARAMETER_DWARF_REG,
1760
1761 /* * Use field call_site_parameter.u.fb_offset. */
1762 CALL_SITE_PARAMETER_FB_OFFSET,
1763
1764 /* * Use field call_site_parameter.u.param_offset. */
1765 CALL_SITE_PARAMETER_PARAM_OFFSET
1766 };
1767
1768 struct call_site_target
1769 {
1770 /* The kind of location held by this call site target. */
1771 enum kind
1772 {
1773 /* An address. */
1774 PHYSADDR,
1775 /* A name. */
1776 PHYSNAME,
1777 /* A DWARF block. */
1778 DWARF_BLOCK,
1779 /* An array of addresses. */
1780 ADDRESSES,
1781 };
1782
1783 void set_loc_physaddr (CORE_ADDR physaddr)
1784 {
1785 m_loc_kind = PHYSADDR;
1786 m_loc.physaddr = physaddr;
1787 }
1788
1789 void set_loc_physname (const char *physname)
1790 {
1791 m_loc_kind = PHYSNAME;
1792 m_loc.physname = physname;
1793 }
1794
1795 void set_loc_dwarf_block (dwarf2_locexpr_baton *dwarf_block)
1796 {
1797 m_loc_kind = DWARF_BLOCK;
1798 m_loc.dwarf_block = dwarf_block;
1799 }
1800
1801 void set_loc_array (unsigned length, const CORE_ADDR *data)
1802 {
1803 m_loc_kind = ADDRESSES;
1804 m_loc.addresses.length = length;
1805 m_loc.addresses.values = data;
1806 }
1807
1808 /* Callback type for iterate_over_addresses. */
1809
1810 using iterate_ftype = gdb::function_view<void (CORE_ADDR)>;
1811
1812 /* Call CALLBACK for each DW_TAG_call_site's DW_AT_call_target
1813 address. CALLER_FRAME (for registers) can be NULL if it is not
1814 known. This function always may throw NO_ENTRY_VALUE_ERROR. */
1815
1816 void iterate_over_addresses (struct gdbarch *call_site_gdbarch,
1817 const struct call_site *call_site,
1818 frame_info_ptr caller_frame,
1819 iterate_ftype callback) const;
1820
1821 private:
1822
1823 union
1824 {
1825 /* Address. */
1826 CORE_ADDR physaddr;
1827 /* Mangled name. */
1828 const char *physname;
1829 /* DWARF block. */
1830 struct dwarf2_locexpr_baton *dwarf_block;
1831 /* Array of addresses. */
1832 struct
1833 {
1834 unsigned length;
1835 const CORE_ADDR *values;
1836 } addresses;
1837 } m_loc;
1838
1839 /* * Discriminant for union field_location. */
1840 enum kind m_loc_kind;
1841 };
1842
1843 union call_site_parameter_u
1844 {
1845 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1846 as DWARF register number, for register passed
1847 parameters. */
1848
1849 int dwarf_reg;
1850
1851 /* * Offset from the callee's frame base, for stack passed
1852 parameters. This equals offset from the caller's stack
1853 pointer. */
1854
1855 CORE_ADDR fb_offset;
1856
1857 /* * Offset relative to the start of this PER_CU to
1858 DW_TAG_formal_parameter which is referenced by both
1859 caller and the callee. */
1860
1861 cu_offset param_cu_off;
1862 };
1863
1864 struct call_site_parameter
1865 {
1866 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1867
1868 union call_site_parameter_u u;
1869
1870 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1871
1872 const gdb_byte *value;
1873 size_t value_size;
1874
1875 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1876 It may be NULL if not provided by DWARF. */
1877
1878 const gdb_byte *data_value;
1879 size_t data_value_size;
1880 };
1881
1882 /* * A place where a function gets called from, represented by
1883 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1884
1885 struct call_site
1886 {
1887 call_site (CORE_ADDR pc, dwarf2_per_cu_data *per_cu,
1888 dwarf2_per_objfile *per_objfile)
1889 : per_cu (per_cu), per_objfile (per_objfile), m_unrelocated_pc (pc)
1890 {}
1891
1892 static int
1893 eq (const call_site *a, const call_site *b)
1894 {
1895 return a->m_unrelocated_pc == b->m_unrelocated_pc;
1896 }
1897
1898 static hashval_t
1899 hash (const call_site *a)
1900 {
1901 return a->m_unrelocated_pc;
1902 }
1903
1904 static int
1905 eq (const void *a, const void *b)
1906 {
1907 return eq ((const call_site *)a, (const call_site *)b);
1908 }
1909
1910 static hashval_t
1911 hash (const void *a)
1912 {
1913 return hash ((const call_site *)a);
1914 }
1915
1916 /* Return the address of the first instruction after this call. */
1917
1918 CORE_ADDR pc () const;
1919
1920 /* Call CALLBACK for each target address. CALLER_FRAME (for
1921 registers) can be NULL if it is not known. This function may
1922 throw NO_ENTRY_VALUE_ERROR. */
1923
1924 void iterate_over_addresses (struct gdbarch *call_site_gdbarch,
1925 frame_info_ptr caller_frame,
1926 call_site_target::iterate_ftype callback)
1927 const
1928 {
1929 return target.iterate_over_addresses (call_site_gdbarch, this,
1930 caller_frame, callback);
1931 }
1932
1933 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1934
1935 struct call_site *tail_call_next = nullptr;
1936
1937 /* * Describe DW_AT_call_target. Missing attribute uses
1938 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1939
1940 struct call_site_target target {};
1941
1942 /* * Size of the PARAMETER array. */
1943
1944 unsigned parameter_count = 0;
1945
1946 /* * CU of the function where the call is located. It gets used
1947 for DWARF blocks execution in the parameter array below. */
1948
1949 dwarf2_per_cu_data *const per_cu = nullptr;
1950
1951 /* objfile of the function where the call is located. */
1952
1953 dwarf2_per_objfile *const per_objfile = nullptr;
1954
1955 private:
1956 /* Unrelocated address of the first instruction after this call. */
1957 const CORE_ADDR m_unrelocated_pc;
1958
1959 public:
1960 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1961
1962 struct call_site_parameter parameter[];
1963 };
1964
1965 /* The type-specific info for TYPE_CODE_FIXED_POINT types. */
1966
1967 struct fixed_point_type_info
1968 {
1969 /* The fixed point type's scaling factor. */
1970 gdb_mpq scaling_factor;
1971 };
1972
1973 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1974 static structure. */
1975
1976 extern const struct cplus_struct_type cplus_struct_default;
1977
1978 extern void allocate_cplus_struct_type (struct type *);
1979
1980 #define INIT_CPLUS_SPECIFIC(type) \
1981 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1982 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1983 &cplus_struct_default)
1984
1985 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1986
1987 #define HAVE_CPLUS_STRUCT(type) \
1988 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1989 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1990
1991 #define INIT_NONE_SPECIFIC(type) \
1992 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1993 TYPE_MAIN_TYPE (type)->type_specific = {})
1994
1995 extern const struct gnat_aux_type gnat_aux_default;
1996
1997 extern void allocate_gnat_aux_type (struct type *);
1998
1999 #define INIT_GNAT_SPECIFIC(type) \
2000 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
2001 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
2002 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
2003 /* * A macro that returns non-zero if the type-specific data should be
2004 read as "gnat-stuff". */
2005 #define HAVE_GNAT_AUX_INFO(type) \
2006 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
2007
2008 /* * True if TYPE is known to be an Ada type of some kind. */
2009 #define ADA_TYPE_P(type) \
2010 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
2011 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
2012 && (type)->is_fixed_instance ()))
2013
2014 #define INIT_FUNC_SPECIFIC(type) \
2015 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
2016 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
2017 TYPE_ZALLOC (type, \
2018 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
2019
2020 /* "struct fixed_point_type_info" has a field that has a destructor.
2021 See allocate_fixed_point_type_info to understand how this is
2022 handled. */
2023 #define INIT_FIXED_POINT_SPECIFIC(type) \
2024 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FIXED_POINT, \
2025 allocate_fixed_point_type_info (type))
2026
2027 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
2028 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
2029 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
2030 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
2031 #define TYPE_CHAIN(thistype) (thistype)->chain
2032
2033 /* * Return the alignment of the type in target addressable memory
2034 units, or 0 if no alignment was specified. */
2035 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
2036
2037 /* * Return the alignment of the type in target addressable memory
2038 units, or 0 if no alignment was specified. */
2039 extern unsigned type_raw_align (struct type *);
2040
2041 /* * Return the alignment of the type in target addressable memory
2042 units. Return 0 if the alignment cannot be determined; but note
2043 that this makes an effort to compute the alignment even it it was
2044 not specified in the debug info. */
2045 extern unsigned type_align (struct type *);
2046
2047 /* * Set the alignment of the type. The alignment must be a power of
2048 2. Returns false if the given value does not fit in the available
2049 space in struct type. */
2050 extern bool set_type_align (struct type *, ULONGEST);
2051
2052 /* Property accessors for the type data location. */
2053 #define TYPE_DATA_LOCATION(thistype) \
2054 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
2055 #define TYPE_DATA_LOCATION_BATON(thistype) \
2056 TYPE_DATA_LOCATION (thistype)->data.baton
2057 #define TYPE_DATA_LOCATION_ADDR(thistype) \
2058 (TYPE_DATA_LOCATION (thistype)->const_val ())
2059 #define TYPE_DATA_LOCATION_KIND(thistype) \
2060 (TYPE_DATA_LOCATION (thistype)->kind ())
2061 #define TYPE_DYNAMIC_LENGTH(thistype) \
2062 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
2063
2064 /* Property accessors for the type allocated/associated. */
2065 #define TYPE_ALLOCATED_PROP(thistype) \
2066 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
2067 #define TYPE_ASSOCIATED_PROP(thistype) \
2068 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
2069 #define TYPE_RANK_PROP(thistype) \
2070 ((thistype)->dyn_prop (DYN_PROP_RANK))
2071
2072 /* C++ */
2073
2074 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
2075 /* Do not call this, use TYPE_SELF_TYPE. */
2076 extern struct type *internal_type_self_type (struct type *);
2077 extern void set_type_self_type (struct type *, struct type *);
2078
2079 extern int internal_type_vptr_fieldno (struct type *);
2080 extern void set_type_vptr_fieldno (struct type *, int);
2081 extern struct type *internal_type_vptr_basetype (struct type *);
2082 extern void set_type_vptr_basetype (struct type *, struct type *);
2083 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
2084 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
2085
2086 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
2087 #define TYPE_SPECIFIC_FIELD(thistype) \
2088 TYPE_MAIN_TYPE(thistype)->type_specific_field
2089 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
2090 where we're trying to print an Ada array using the C language.
2091 In that case, there is no "cplus_stuff", but the C language assumes
2092 that there is. What we do, in that case, is pretend that there is
2093 an implicit one which is the default cplus stuff. */
2094 #define TYPE_CPLUS_SPECIFIC(thistype) \
2095 (!HAVE_CPLUS_STRUCT(thistype) \
2096 ? (struct cplus_struct_type*)&cplus_struct_default \
2097 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
2098 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
2099 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
2100 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
2101 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
2102 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
2103 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
2104 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
2105 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
2106 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
2107 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
2108 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
2109 #define TYPE_BASECLASS_NAME(thistype,index) (thistype->field (index).name ())
2110 #define TYPE_BASECLASS_BITPOS(thistype,index) (thistype->field (index).loc_bitpos ())
2111 #define BASETYPE_VIA_PUBLIC(thistype, index) \
2112 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
2113 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
2114
2115 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
2116 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
2117 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
2118
2119 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
2120 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
2121
2122 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
2123 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
2124 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
2125
2126 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
2127 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
2128 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
2129 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
2130 #define TYPE_FIELD_IGNORE_BITS(thistype) \
2131 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
2132 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
2133 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
2134 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
2135 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
2136 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
2137 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
2138 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
2139 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
2140 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
2141 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
2142 #define TYPE_FIELD_PRIVATE(thistype, n) \
2143 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
2144 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
2145 #define TYPE_FIELD_PROTECTED(thistype, n) \
2146 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
2147 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
2148 #define TYPE_FIELD_IGNORE(thistype, n) \
2149 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
2150 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
2151 #define TYPE_FIELD_VIRTUAL(thistype, n) \
2152 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
2153 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
2154
2155 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
2156 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
2157 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
2158 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
2159 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
2160
2161 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
2162 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
2163 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
2164 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
2165 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
2166 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
2167
2168 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
2169 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
2170 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
2171 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
2172 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
2173 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
2174 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
2175 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
2176 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
2177 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
2178 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
2179 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
2180 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
2181 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
2182 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
2183 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
2184 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
2185
2186 /* Accessors for typedefs defined by a class. */
2187 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
2188 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
2189 #define TYPE_TYPEDEF_FIELD(thistype, n) \
2190 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
2191 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
2192 TYPE_TYPEDEF_FIELD (thistype, n).name
2193 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
2194 TYPE_TYPEDEF_FIELD (thistype, n).type
2195 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
2196 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
2197 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
2198 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
2199 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
2200 TYPE_TYPEDEF_FIELD (thistype, n).is_private
2201
2202 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
2203 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
2204 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
2205 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
2206 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
2207 TYPE_NESTED_TYPES_FIELD (thistype, n).name
2208 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
2209 TYPE_NESTED_TYPES_FIELD (thistype, n).type
2210 #define TYPE_NESTED_TYPES_COUNT(thistype) \
2211 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
2212 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
2213 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
2214 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
2215 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
2216
2217 #define TYPE_IS_OPAQUE(thistype) \
2218 ((((thistype)->code () == TYPE_CODE_STRUCT) \
2219 || ((thistype)->code () == TYPE_CODE_UNION)) \
2220 && ((thistype)->num_fields () == 0) \
2221 && (!HAVE_CPLUS_STRUCT (thistype) \
2222 || TYPE_NFN_FIELDS (thistype) == 0) \
2223 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
2224
2225 /* * A helper macro that returns the name of a type or "unnamed type"
2226 if the type has no name. */
2227
2228 #define TYPE_SAFE_NAME(type) \
2229 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
2230
2231 /* * A helper macro that returns the name of an error type. If the
2232 type has a name, it is used; otherwise, a default is used. */
2233
2234 #define TYPE_ERROR_NAME(type) \
2235 (type->name () ? type->name () : _("<error type>"))
2236
2237 /* Given TYPE, return its floatformat. */
2238 const struct floatformat *floatformat_from_type (const struct type *type);
2239
2240 struct builtin_type
2241 {
2242 /* Integral types. */
2243
2244 /* Implicit size/sign (based on the architecture's ABI). */
2245 struct type *builtin_void = nullptr;
2246 struct type *builtin_char = nullptr;
2247 struct type *builtin_short = nullptr;
2248 struct type *builtin_int = nullptr;
2249 struct type *builtin_long = nullptr;
2250 struct type *builtin_signed_char = nullptr;
2251 struct type *builtin_unsigned_char = nullptr;
2252 struct type *builtin_unsigned_short = nullptr;
2253 struct type *builtin_unsigned_int = nullptr;
2254 struct type *builtin_unsigned_long = nullptr;
2255 struct type *builtin_bfloat16 = nullptr;
2256 struct type *builtin_half = nullptr;
2257 struct type *builtin_float = nullptr;
2258 struct type *builtin_double = nullptr;
2259 struct type *builtin_long_double = nullptr;
2260 struct type *builtin_complex = nullptr;
2261 struct type *builtin_double_complex = nullptr;
2262 struct type *builtin_string = nullptr;
2263 struct type *builtin_bool = nullptr;
2264 struct type *builtin_long_long = nullptr;
2265 struct type *builtin_unsigned_long_long = nullptr;
2266 struct type *builtin_decfloat = nullptr;
2267 struct type *builtin_decdouble = nullptr;
2268 struct type *builtin_declong = nullptr;
2269
2270 /* "True" character types.
2271 We use these for the '/c' print format, because c_char is just a
2272 one-byte integral type, which languages less laid back than C
2273 will print as ... well, a one-byte integral type. */
2274 struct type *builtin_true_char = nullptr;
2275 struct type *builtin_true_unsigned_char = nullptr;
2276
2277 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
2278 is for when an architecture needs to describe a register that has
2279 no size. */
2280 struct type *builtin_int0 = nullptr;
2281 struct type *builtin_int8 = nullptr;
2282 struct type *builtin_uint8 = nullptr;
2283 struct type *builtin_int16 = nullptr;
2284 struct type *builtin_uint16 = nullptr;
2285 struct type *builtin_int24 = nullptr;
2286 struct type *builtin_uint24 = nullptr;
2287 struct type *builtin_int32 = nullptr;
2288 struct type *builtin_uint32 = nullptr;
2289 struct type *builtin_int64 = nullptr;
2290 struct type *builtin_uint64 = nullptr;
2291 struct type *builtin_int128 = nullptr;
2292 struct type *builtin_uint128 = nullptr;
2293
2294 /* Wide character types. */
2295 struct type *builtin_char16 = nullptr;
2296 struct type *builtin_char32 = nullptr;
2297 struct type *builtin_wchar = nullptr;
2298
2299 /* Pointer types. */
2300
2301 /* * `pointer to data' type. Some target platforms use an implicitly
2302 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
2303 struct type *builtin_data_ptr = nullptr;
2304
2305 /* * `pointer to function (returning void)' type. Harvard
2306 architectures mean that ABI function and code pointers are not
2307 interconvertible. Similarly, since ANSI, C standards have
2308 explicitly said that pointers to functions and pointers to data
2309 are not interconvertible --- that is, you can't cast a function
2310 pointer to void * and back, and expect to get the same value.
2311 However, all function pointer types are interconvertible, so void
2312 (*) () can server as a generic function pointer. */
2313
2314 struct type *builtin_func_ptr = nullptr;
2315
2316 /* * `function returning pointer to function (returning void)' type.
2317 The final void return type is not significant for it. */
2318
2319 struct type *builtin_func_func = nullptr;
2320
2321 /* Special-purpose types. */
2322
2323 /* * This type is used to represent a GDB internal function. */
2324
2325 struct type *internal_fn = nullptr;
2326
2327 /* * This type is used to represent an xmethod. */
2328 struct type *xmethod = nullptr;
2329 };
2330
2331 /* * Return the type table for the specified architecture. */
2332
2333 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2334
2335 /* * Per-objfile types used by symbol readers. */
2336
2337 struct objfile_type
2338 {
2339 /* Basic types based on the objfile architecture. */
2340 struct type *builtin_void;
2341 struct type *builtin_char;
2342 struct type *builtin_short;
2343 struct type *builtin_int;
2344 struct type *builtin_long;
2345 struct type *builtin_long_long;
2346 struct type *builtin_signed_char;
2347 struct type *builtin_unsigned_char;
2348 struct type *builtin_unsigned_short;
2349 struct type *builtin_unsigned_int;
2350 struct type *builtin_unsigned_long;
2351 struct type *builtin_unsigned_long_long;
2352 struct type *builtin_half;
2353 struct type *builtin_float;
2354 struct type *builtin_double;
2355 struct type *builtin_long_double;
2356
2357 /* * This type is used to represent symbol addresses. */
2358 struct type *builtin_core_addr;
2359
2360 /* * This type represents a type that was unrecognized in symbol
2361 read-in. */
2362 struct type *builtin_error;
2363
2364 /* * Types used for symbols with no debug information. */
2365 struct type *nodebug_text_symbol;
2366 struct type *nodebug_text_gnu_ifunc_symbol;
2367 struct type *nodebug_got_plt_symbol;
2368 struct type *nodebug_data_symbol;
2369 struct type *nodebug_unknown_symbol;
2370 struct type *nodebug_tls_symbol;
2371 };
2372
2373 /* * Return the type table for the specified objfile. */
2374
2375 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2376
2377 /* Explicit floating-point formats. See "floatformat.h". */
2378 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2379 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2380 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2381 extern const struct floatformat *floatformats_ieee_quad[BFD_ENDIAN_UNKNOWN];
2382 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2383 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2384 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2385 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2386 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2387 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2388 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2389 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2390 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2391
2392 /* Allocate space for storing data associated with a particular
2393 type. We ensure that the space is allocated using the same
2394 mechanism that was used to allocate the space for the type
2395 structure itself. I.e. if the type is on an objfile's
2396 objfile_obstack, then the space for data associated with that type
2397 will also be allocated on the objfile_obstack. If the type is
2398 associated with a gdbarch, then the space for data associated with that
2399 type will also be allocated on the gdbarch_obstack.
2400
2401 If a type is not associated with neither an objfile or a gdbarch then
2402 you should not use this macro to allocate space for data, instead you
2403 should call xmalloc directly, and ensure the memory is correctly freed
2404 when it is no longer needed. */
2405
2406 #define TYPE_ALLOC(t,size) \
2407 (obstack_alloc (((t)->is_objfile_owned () \
2408 ? &((t)->objfile_owner ()->objfile_obstack) \
2409 : gdbarch_obstack ((t)->arch_owner ())), \
2410 size))
2411
2412
2413 /* See comment on TYPE_ALLOC. */
2414
2415 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2416
2417 /* Use alloc_type to allocate a type owned by an objfile. Use
2418 alloc_type_arch to allocate a type owned by an architecture. Use
2419 alloc_type_copy to allocate a type with the same owner as a
2420 pre-existing template type, no matter whether objfile or
2421 gdbarch. */
2422 extern struct type *alloc_type (struct objfile *);
2423 extern struct type *alloc_type_arch (struct gdbarch *);
2424 extern struct type *alloc_type_copy (const struct type *);
2425
2426 /* * This returns the target type (or NULL) of TYPE, also skipping
2427 past typedefs. */
2428
2429 extern struct type *get_target_type (struct type *type);
2430
2431 /* Return the equivalent of TYPE_LENGTH, but in number of target
2432 addressable memory units of the associated gdbarch instead of bytes. */
2433
2434 extern unsigned int type_length_units (struct type *type);
2435
2436 /* * Helper function to construct objfile-owned types. */
2437
2438 extern struct type *init_type (struct objfile *, enum type_code, int,
2439 const char *);
2440 extern struct type *init_integer_type (struct objfile *, int, int,
2441 const char *);
2442 extern struct type *init_character_type (struct objfile *, int, int,
2443 const char *);
2444 extern struct type *init_boolean_type (struct objfile *, int, int,
2445 const char *);
2446 extern struct type *init_float_type (struct objfile *, int, const char *,
2447 const struct floatformat **,
2448 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2449 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2450 extern bool can_create_complex_type (struct type *);
2451 extern struct type *init_complex_type (const char *, struct type *);
2452 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2453 struct type *);
2454 extern struct type *init_fixed_point_type (struct objfile *, int, int,
2455 const char *);
2456
2457 /* Helper functions to construct architecture-owned types. */
2458 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2459 const char *);
2460 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2461 const char *);
2462 extern struct type *arch_character_type (struct gdbarch *, int, int,
2463 const char *);
2464 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2465 const char *);
2466 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2467 const struct floatformat **);
2468 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2469 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2470 struct type *);
2471
2472 /* Helper functions to construct a struct or record type. An
2473 initially empty type is created using arch_composite_type().
2474 Fields are then added using append_composite_type_field*(). A union
2475 type has its size set to the largest field. A struct type has each
2476 field packed against the previous. */
2477
2478 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2479 const char *name, enum type_code code);
2480 extern void append_composite_type_field (struct type *t, const char *name,
2481 struct type *field);
2482 extern void append_composite_type_field_aligned (struct type *t,
2483 const char *name,
2484 struct type *field,
2485 int alignment);
2486 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2487 struct type *field);
2488
2489 /* Helper functions to construct a bit flags type. An initially empty
2490 type is created using arch_flag_type(). Flags are then added using
2491 append_flag_type_field() and append_flag_type_flag(). */
2492 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2493 const char *name, int bit);
2494 extern void append_flags_type_field (struct type *type,
2495 int start_bitpos, int nr_bits,
2496 struct type *field_type, const char *name);
2497 extern void append_flags_type_flag (struct type *type, int bitpos,
2498 const char *name);
2499
2500 extern void make_vector_type (struct type *array_type);
2501 extern struct type *init_vector_type (struct type *elt_type, int n);
2502
2503 extern struct type *lookup_reference_type (struct type *, enum type_code);
2504 extern struct type *lookup_lvalue_reference_type (struct type *);
2505 extern struct type *lookup_rvalue_reference_type (struct type *);
2506
2507
2508 extern struct type *make_reference_type (struct type *, struct type **,
2509 enum type_code);
2510
2511 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2512
2513 extern struct type *make_restrict_type (struct type *);
2514
2515 extern struct type *make_unqualified_type (struct type *);
2516
2517 extern struct type *make_atomic_type (struct type *);
2518
2519 extern void replace_type (struct type *, struct type *);
2520
2521 extern type_instance_flags address_space_name_to_type_instance_flags
2522 (struct gdbarch *, const char *);
2523
2524 extern const char *address_space_type_instance_flags_to_name
2525 (struct gdbarch *, type_instance_flags);
2526
2527 extern struct type *make_type_with_address_space
2528 (struct type *type, type_instance_flags space_identifier);
2529
2530 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2531
2532 extern struct type *lookup_methodptr_type (struct type *);
2533
2534 extern void smash_to_method_type (struct type *type, struct type *self_type,
2535 struct type *to_type, struct field *args,
2536 int nargs, int varargs);
2537
2538 extern void smash_to_memberptr_type (struct type *, struct type *,
2539 struct type *);
2540
2541 extern void smash_to_methodptr_type (struct type *, struct type *);
2542
2543 extern struct type *allocate_stub_method (struct type *);
2544
2545 extern const char *type_name_or_error (struct type *type);
2546
2547 struct struct_elt
2548 {
2549 /* The field of the element, or NULL if no element was found. */
2550 struct field *field;
2551
2552 /* The bit offset of the element in the parent structure. */
2553 LONGEST offset;
2554 };
2555
2556 /* Given a type TYPE, lookup the field and offset of the component named
2557 NAME.
2558
2559 TYPE can be either a struct or union, or a pointer or reference to
2560 a struct or union. If it is a pointer or reference, its target
2561 type is automatically used. Thus '.' and '->' are interchangable,
2562 as specified for the definitions of the expression element types
2563 STRUCTOP_STRUCT and STRUCTOP_PTR.
2564
2565 If NOERR is nonzero, the returned structure will have field set to
2566 NULL if there is no component named NAME.
2567
2568 If the component NAME is a field in an anonymous substructure of
2569 TYPE, the returned offset is a "global" offset relative to TYPE
2570 rather than an offset within the substructure. */
2571
2572 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2573
2574 /* Given a type TYPE, lookup the type of the component named NAME.
2575
2576 TYPE can be either a struct or union, or a pointer or reference to
2577 a struct or union. If it is a pointer or reference, its target
2578 type is automatically used. Thus '.' and '->' are interchangable,
2579 as specified for the definitions of the expression element types
2580 STRUCTOP_STRUCT and STRUCTOP_PTR.
2581
2582 If NOERR is nonzero, return NULL if there is no component named
2583 NAME. */
2584
2585 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2586
2587 extern struct type *make_pointer_type (struct type *, struct type **);
2588
2589 extern struct type *lookup_pointer_type (struct type *);
2590
2591 extern struct type *make_function_type (struct type *, struct type **);
2592
2593 extern struct type *lookup_function_type (struct type *);
2594
2595 extern struct type *lookup_function_type_with_arguments (struct type *,
2596 int,
2597 struct type **);
2598
2599 extern struct type *create_static_range_type (struct type *, struct type *,
2600 LONGEST, LONGEST);
2601
2602
2603 extern struct type *create_array_type_with_stride
2604 (struct type *, struct type *, struct type *,
2605 struct dynamic_prop *, unsigned int);
2606
2607 extern struct type *create_range_type (struct type *, struct type *,
2608 const struct dynamic_prop *,
2609 const struct dynamic_prop *,
2610 LONGEST);
2611
2612 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2613 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2614 stride. */
2615
2616 extern struct type * create_range_type_with_stride
2617 (struct type *result_type, struct type *index_type,
2618 const struct dynamic_prop *low_bound,
2619 const struct dynamic_prop *high_bound, LONGEST bias,
2620 const struct dynamic_prop *stride, bool byte_stride_p);
2621
2622 extern struct type *create_array_type (struct type *, struct type *,
2623 struct type *);
2624
2625 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2626
2627 extern struct type *create_string_type (struct type *, struct type *,
2628 struct type *);
2629 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2630
2631 extern struct type *create_set_type (struct type *, struct type *);
2632
2633 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2634 const char *);
2635
2636 extern struct type *lookup_signed_typename (const struct language_defn *,
2637 const char *);
2638
2639 extern ULONGEST get_unsigned_type_max (struct type *);
2640
2641 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2642
2643 extern CORE_ADDR get_pointer_type_max (struct type *);
2644
2645 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2646 ADDR specifies the location of the variable the type is bound to.
2647 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2648 static properties is returned.
2649
2650 For an array type, if the element type is dynamic, then that will
2651 not be resolved. This is done because each individual element may
2652 have a different type when resolved (depending on the contents of
2653 memory). In this situation, 'is_dynamic_type' will still return
2654 true for the return value of this function. */
2655 extern struct type *resolve_dynamic_type
2656 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2657 CORE_ADDR addr);
2658
2659 /* * Predicate if the type has dynamic values, which are not resolved yet.
2660 See the caveat in 'resolve_dynamic_type' to understand a scenario
2661 where an apparently-resolved type may still be considered
2662 "dynamic". */
2663 extern int is_dynamic_type (struct type *type);
2664
2665 extern struct type *check_typedef (struct type *);
2666
2667 extern void check_stub_method_group (struct type *, int);
2668
2669 extern char *gdb_mangle_name (struct type *, int, int);
2670
2671 extern struct type *lookup_typename (const struct language_defn *,
2672 const char *, const struct block *, int);
2673
2674 extern struct type *lookup_template_type (const char *, struct type *,
2675 const struct block *);
2676
2677 extern int get_vptr_fieldno (struct type *, struct type **);
2678
2679 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
2680 TYPE.
2681
2682 Return true if the two bounds are available, false otherwise. */
2683
2684 extern bool get_discrete_bounds (struct type *type, LONGEST *lowp,
2685 LONGEST *highp);
2686
2687 /* If TYPE's low bound is a known constant, return it, else return nullopt. */
2688
2689 extern gdb::optional<LONGEST> get_discrete_low_bound (struct type *type);
2690
2691 /* If TYPE's high bound is a known constant, return it, else return nullopt. */
2692
2693 extern gdb::optional<LONGEST> get_discrete_high_bound (struct type *type);
2694
2695 /* Assuming TYPE is a simple, non-empty array type, compute its upper
2696 and lower bound. Save the low bound into LOW_BOUND if not NULL.
2697 Save the high bound into HIGH_BOUND if not NULL.
2698
2699 Return true if the operation was successful. Return false otherwise,
2700 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
2701
2702 extern bool get_array_bounds (struct type *type, LONGEST *low_bound,
2703 LONGEST *high_bound);
2704
2705 extern gdb::optional<LONGEST> discrete_position (struct type *type,
2706 LONGEST val);
2707
2708 extern int class_types_same_p (const struct type *, const struct type *);
2709
2710 extern int is_ancestor (struct type *, struct type *);
2711
2712 extern int is_public_ancestor (struct type *, struct type *);
2713
2714 extern int is_unique_ancestor (struct type *, struct value *);
2715
2716 /* Overload resolution */
2717
2718 /* * Badness if parameter list length doesn't match arg list length. */
2719 extern const struct rank LENGTH_MISMATCH_BADNESS;
2720
2721 /* * Dummy badness value for nonexistent parameter positions. */
2722 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2723 /* * Badness if no conversion among types. */
2724 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2725
2726 /* * Badness of an exact match. */
2727 extern const struct rank EXACT_MATCH_BADNESS;
2728
2729 /* * Badness of integral promotion. */
2730 extern const struct rank INTEGER_PROMOTION_BADNESS;
2731 /* * Badness of floating promotion. */
2732 extern const struct rank FLOAT_PROMOTION_BADNESS;
2733 /* * Badness of converting a derived class pointer
2734 to a base class pointer. */
2735 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2736 /* * Badness of integral conversion. */
2737 extern const struct rank INTEGER_CONVERSION_BADNESS;
2738 /* * Badness of floating conversion. */
2739 extern const struct rank FLOAT_CONVERSION_BADNESS;
2740 /* * Badness of integer<->floating conversions. */
2741 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2742 /* * Badness of conversion of pointer to void pointer. */
2743 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2744 /* * Badness of conversion to boolean. */
2745 extern const struct rank BOOL_CONVERSION_BADNESS;
2746 /* * Badness of converting derived to base class. */
2747 extern const struct rank BASE_CONVERSION_BADNESS;
2748 /* * Badness of converting from non-reference to reference. Subrank
2749 is the type of reference conversion being done. */
2750 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2751 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2752 /* * Conversion to rvalue reference. */
2753 #define REFERENCE_CONVERSION_RVALUE 1
2754 /* * Conversion to const lvalue reference. */
2755 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2756
2757 /* * Badness of converting integer 0 to NULL pointer. */
2758 extern const struct rank NULL_POINTER_CONVERSION;
2759 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2760 being done. */
2761 extern const struct rank CV_CONVERSION_BADNESS;
2762 #define CV_CONVERSION_CONST 1
2763 #define CV_CONVERSION_VOLATILE 2
2764
2765 /* Non-standard conversions allowed by the debugger */
2766
2767 /* * Converting a pointer to an int is usually OK. */
2768 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2769
2770 /* * Badness of converting a (non-zero) integer constant
2771 to a pointer. */
2772 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2773
2774 extern struct rank sum_ranks (struct rank a, struct rank b);
2775 extern int compare_ranks (struct rank a, struct rank b);
2776
2777 extern int compare_badness (const badness_vector &,
2778 const badness_vector &);
2779
2780 extern badness_vector rank_function (gdb::array_view<type *> parms,
2781 gdb::array_view<value *> args);
2782
2783 extern struct rank rank_one_type (struct type *, struct type *,
2784 struct value *);
2785
2786 extern void recursive_dump_type (struct type *, int);
2787
2788 extern int field_is_static (struct field *);
2789
2790 /* printcmd.c */
2791
2792 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2793 const struct value_print_options *,
2794 int, struct ui_file *);
2795
2796 extern int can_dereference (struct type *);
2797
2798 extern int is_integral_type (struct type *);
2799
2800 extern int is_floating_type (struct type *);
2801
2802 extern int is_scalar_type (struct type *type);
2803
2804 extern int is_scalar_type_recursive (struct type *);
2805
2806 extern int class_or_union_p (const struct type *);
2807
2808 extern void maintenance_print_type (const char *, int);
2809
2810 extern htab_up create_copied_types_hash ();
2811
2812 extern struct type *copy_type_recursive (struct type *type,
2813 htab_t copied_types);
2814
2815 extern struct type *copy_type (const struct type *type);
2816
2817 extern bool types_equal (struct type *, struct type *);
2818
2819 extern bool types_deeply_equal (struct type *, struct type *);
2820
2821 extern int type_not_allocated (const struct type *type);
2822
2823 extern int type_not_associated (const struct type *type);
2824
2825 /* Return True if TYPE is a TYPE_CODE_FIXED_POINT or if TYPE is
2826 a range type whose base type is a TYPE_CODE_FIXED_POINT. */
2827 extern bool is_fixed_point_type (struct type *type);
2828
2829 /* Allocate a fixed-point type info for TYPE. This should only be
2830 called by INIT_FIXED_POINT_SPECIFIC. */
2831 extern void allocate_fixed_point_type_info (struct type *type);
2832
2833 /* * When the type includes explicit byte ordering, return that.
2834 Otherwise, the byte ordering from gdbarch_byte_order for
2835 the type's arch is returned. */
2836
2837 extern enum bfd_endian type_byte_order (const struct type *type);
2838
2839 /* A flag to enable printing of debugging information of C++
2840 overloading. */
2841
2842 extern unsigned int overload_debug;
2843
2844 /* Return whether the function type represented by TYPE is marked as unsafe
2845 to call by the debugger.
2846
2847 This usually indicates that the function does not follow the target's
2848 standard calling convention.
2849
2850 The TYPE argument must be of code TYPE_CODE_FUNC or TYPE_CODE_METHOD. */
2851
2852 extern bool is_nocall_function (const struct type *type);
2853
2854 #endif /* GDBTYPES_H */