gdb: remove TYPE_GNU_IFUNC
[binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61 struct dwarf2_per_cu_data;
62 struct dwarf2_per_objfile;
63
64 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
65 are already DWARF-specific. */
66
67 /* * Offset relative to the start of its containing CU (compilation
68 unit). */
69 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
70
71 /* * Offset relative to the start of its .debug_info or .debug_types
72 section. */
73 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
74
75 static inline char *
76 sect_offset_str (sect_offset offset)
77 {
78 return hex_string (to_underlying (offset));
79 }
80
81 /* Some macros for char-based bitfields. */
82
83 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
84 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
85 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
86 #define B_TYPE unsigned char
87 #define B_BYTES(x) ( 1 + ((x)>>3) )
88 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
89
90 /* * Different kinds of data types are distinguished by the `code'
91 field. */
92
93 enum type_code
94 {
95 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
96 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
97 TYPE_CODE_PTR, /**< Pointer type */
98
99 /* * Array type with lower & upper bounds.
100
101 Regardless of the language, GDB represents multidimensional
102 array types the way C does: as arrays of arrays. So an
103 instance of a GDB array type T can always be seen as a series
104 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
105 memory.
106
107 Row-major languages like C lay out multi-dimensional arrays so
108 that incrementing the rightmost index in a subscripting
109 expression results in the smallest change in the address of the
110 element referred to. Column-major languages like Fortran lay
111 them out so that incrementing the leftmost index results in the
112 smallest change.
113
114 This means that, in column-major languages, working our way
115 from type to target type corresponds to working through indices
116 from right to left, not left to right. */
117 TYPE_CODE_ARRAY,
118
119 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
120 TYPE_CODE_UNION, /**< C union or Pascal variant part */
121 TYPE_CODE_ENUM, /**< Enumeration type */
122 TYPE_CODE_FLAGS, /**< Bit flags type */
123 TYPE_CODE_FUNC, /**< Function type */
124 TYPE_CODE_INT, /**< Integer type */
125
126 /* * Floating type. This is *NOT* a complex type. */
127 TYPE_CODE_FLT,
128
129 /* * Void type. The length field specifies the length (probably
130 always one) which is used in pointer arithmetic involving
131 pointers to this type, but actually dereferencing such a
132 pointer is invalid; a void type has no length and no actual
133 representation in memory or registers. A pointer to a void
134 type is a generic pointer. */
135 TYPE_CODE_VOID,
136
137 TYPE_CODE_SET, /**< Pascal sets */
138 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
139
140 /* * A string type which is like an array of character but prints
141 differently. It does not contain a length field as Pascal
142 strings (for many Pascals, anyway) do; if we want to deal with
143 such strings, we should use a new type code. */
144 TYPE_CODE_STRING,
145
146 /* * Unknown type. The length field is valid if we were able to
147 deduce that much about the type, or 0 if we don't even know
148 that. */
149 TYPE_CODE_ERROR,
150
151 /* C++ */
152 TYPE_CODE_METHOD, /**< Method type */
153
154 /* * Pointer-to-member-function type. This describes how to access a
155 particular member function of a class (possibly a virtual
156 member function). The representation may vary between different
157 C++ ABIs. */
158 TYPE_CODE_METHODPTR,
159
160 /* * Pointer-to-member type. This is the offset within a class to
161 some particular data member. The only currently supported
162 representation uses an unbiased offset, with -1 representing
163 NULL; this is used by the Itanium C++ ABI (used by GCC on all
164 platforms). */
165 TYPE_CODE_MEMBERPTR,
166
167 TYPE_CODE_REF, /**< C++ Reference types */
168
169 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
170
171 TYPE_CODE_CHAR, /**< *real* character type */
172
173 /* * Boolean type. 0 is false, 1 is true, and other values are
174 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
175 TYPE_CODE_BOOL,
176
177 /* Fortran */
178 TYPE_CODE_COMPLEX, /**< Complex float */
179
180 TYPE_CODE_TYPEDEF,
181
182 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
183
184 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
185
186 TYPE_CODE_MODULE, /**< Fortran module. */
187
188 /* * Internal function type. */
189 TYPE_CODE_INTERNAL_FUNCTION,
190
191 /* * Methods implemented in extension languages. */
192 TYPE_CODE_XMETHOD
193 };
194
195 /* * Some bits for the type's instance_flags word. See the macros
196 below for documentation on each bit. */
197
198 enum type_instance_flag_value : unsigned
199 {
200 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
201 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
202 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
203 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
204 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
205 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
206 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
207 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
208 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
209 };
210
211 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
212
213 /* * A compiler may supply dwarf instrumentation
214 that indicates the desired endian interpretation of the variable
215 differs from the native endian representation. */
216
217 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
218
219 /* * The debugging formats (especially STABS) do not contain enough
220 information to represent all Ada types---especially those whose
221 size depends on dynamic quantities. Therefore, the GNAT Ada
222 compiler includes extra information in the form of additional type
223 definitions connected by naming conventions. This flag indicates
224 that the type is an ordinary (unencoded) GDB type that has been
225 created from the necessary run-time information, and does not need
226 further interpretation. Optionally marks ordinary, fixed-size GDB
227 type. */
228
229 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
230
231 /* * Not textual. By default, GDB treats all single byte integers as
232 characters (or elements of strings) unless this flag is set. */
233
234 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
235
236 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
237 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
238 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
239
240 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
241 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
242 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
243
244 /* * True if this type was declared using the "class" keyword. This is
245 only valid for C++ structure and enum types. If false, a structure
246 was declared as a "struct"; if true it was declared "class". For
247 enum types, this is true when "enum class" or "enum struct" was
248 used to declare the type.. */
249
250 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
251
252 /* * True if this type is a "flag" enum. A flag enum is one where all
253 the values are pairwise disjoint when "and"ed together. This
254 affects how enum values are printed. */
255
256 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
257
258 /* * Constant type. If this is set, the corresponding type has a
259 const modifier. */
260
261 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
262
263 /* * Volatile type. If this is set, the corresponding type has a
264 volatile modifier. */
265
266 #define TYPE_VOLATILE(t) \
267 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
268
269 /* * Restrict type. If this is set, the corresponding type has a
270 restrict modifier. */
271
272 #define TYPE_RESTRICT(t) \
273 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
274
275 /* * Atomic type. If this is set, the corresponding type has an
276 _Atomic modifier. */
277
278 #define TYPE_ATOMIC(t) \
279 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
280
281 /* * True if this type represents either an lvalue or lvalue reference type. */
282
283 #define TYPE_IS_REFERENCE(t) \
284 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
285
286 /* * True if this type is allocatable. */
287 #define TYPE_IS_ALLOCATABLE(t) \
288 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
289
290 /* * True if this type has variant parts. */
291 #define TYPE_HAS_VARIANT_PARTS(t) \
292 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
293
294 /* * True if this type has a dynamic length. */
295 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
296 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
297
298 /* * Instruction-space delimited type. This is for Harvard architectures
299 which have separate instruction and data address spaces (and perhaps
300 others).
301
302 GDB usually defines a flat address space that is a superset of the
303 architecture's two (or more) address spaces, but this is an extension
304 of the architecture's model.
305
306 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
307 resides in instruction memory, even if its address (in the extended
308 flat address space) does not reflect this.
309
310 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
311 corresponding type resides in the data memory space, even if
312 this is not indicated by its (flat address space) address.
313
314 If neither flag is set, the default space for functions / methods
315 is instruction space, and for data objects is data memory. */
316
317 #define TYPE_CODE_SPACE(t) \
318 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
319
320 #define TYPE_DATA_SPACE(t) \
321 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
322
323 /* * Address class flags. Some environments provide for pointers
324 whose size is different from that of a normal pointer or address
325 types where the bits are interpreted differently than normal
326 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
327 target specific ways to represent these different types of address
328 classes. */
329
330 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
331 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
332 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
333 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
334 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
335 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
336 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
337 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
338
339 /* * Information about a single discriminant. */
340
341 struct discriminant_range
342 {
343 /* * The range of values for the variant. This is an inclusive
344 range. */
345 ULONGEST low, high;
346
347 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
348 is true if this should be an unsigned comparison; false for
349 signed. */
350 bool contains (ULONGEST value, bool is_unsigned) const
351 {
352 if (is_unsigned)
353 return value >= low && value <= high;
354 LONGEST valuel = (LONGEST) value;
355 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
356 }
357 };
358
359 struct variant_part;
360
361 /* * A single variant. A variant has a list of discriminant values.
362 When the discriminator matches one of these, the variant is
363 enabled. Each variant controls zero or more fields; and may also
364 control other variant parts as well. This struct corresponds to
365 DW_TAG_variant in DWARF. */
366
367 struct variant : allocate_on_obstack
368 {
369 /* * The discriminant ranges for this variant. */
370 gdb::array_view<discriminant_range> discriminants;
371
372 /* * The fields controlled by this variant. This is inclusive on
373 the low end and exclusive on the high end. A variant may not
374 control any fields, in which case the two values will be equal.
375 These are indexes into the type's array of fields. */
376 int first_field;
377 int last_field;
378
379 /* * Variant parts controlled by this variant. */
380 gdb::array_view<variant_part> parts;
381
382 /* * Return true if this is the default variant. The default
383 variant can be recognized because it has no associated
384 discriminants. */
385 bool is_default () const
386 {
387 return discriminants.empty ();
388 }
389
390 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
391 if this should be an unsigned comparison; false for signed. */
392 bool matches (ULONGEST value, bool is_unsigned) const;
393 };
394
395 /* * A variant part. Each variant part has an optional discriminant
396 and holds an array of variants. This struct corresponds to
397 DW_TAG_variant_part in DWARF. */
398
399 struct variant_part : allocate_on_obstack
400 {
401 /* * The index of the discriminant field in the outer type. This is
402 an index into the type's array of fields. If this is -1, there
403 is no discriminant, and only the default variant can be
404 considered to be selected. */
405 int discriminant_index;
406
407 /* * True if this discriminant is unsigned; false if signed. This
408 comes from the type of the discriminant. */
409 bool is_unsigned;
410
411 /* * The variants that are controlled by this variant part. Note
412 that these will always be sorted by field number. */
413 gdb::array_view<variant> variants;
414 };
415
416
417 enum dynamic_prop_kind
418 {
419 PROP_UNDEFINED, /* Not defined. */
420 PROP_CONST, /* Constant. */
421 PROP_ADDR_OFFSET, /* Address offset. */
422 PROP_LOCEXPR, /* Location expression. */
423 PROP_LOCLIST, /* Location list. */
424 PROP_VARIANT_PARTS, /* Variant parts. */
425 PROP_TYPE, /* Type. */
426 };
427
428 union dynamic_prop_data
429 {
430 /* Storage for constant property. */
431
432 LONGEST const_val;
433
434 /* Storage for dynamic property. */
435
436 void *baton;
437
438 /* Storage of variant parts for a type. A type with variant parts
439 has all its fields "linearized" -- stored in a single field
440 array, just as if they had all been declared that way. The
441 variant parts are attached via a dynamic property, and then are
442 used to control which fields end up in the final type during
443 dynamic type resolution. */
444
445 const gdb::array_view<variant_part> *variant_parts;
446
447 /* Once a variant type is resolved, we may want to be able to go
448 from the resolved type to the original type. In this case we
449 rewrite the property's kind and set this field. */
450
451 struct type *original_type;
452 };
453
454 /* * Used to store a dynamic property. */
455
456 struct dynamic_prop
457 {
458 dynamic_prop_kind kind () const
459 {
460 return m_kind;
461 }
462
463 void set_undefined ()
464 {
465 m_kind = PROP_UNDEFINED;
466 }
467
468 LONGEST const_val () const
469 {
470 gdb_assert (m_kind == PROP_CONST);
471
472 return m_data.const_val;
473 }
474
475 void set_const_val (LONGEST const_val)
476 {
477 m_kind = PROP_CONST;
478 m_data.const_val = const_val;
479 }
480
481 void *baton () const
482 {
483 gdb_assert (m_kind == PROP_LOCEXPR
484 || m_kind == PROP_LOCLIST
485 || m_kind == PROP_ADDR_OFFSET);
486
487 return m_data.baton;
488 }
489
490 void set_locexpr (void *baton)
491 {
492 m_kind = PROP_LOCEXPR;
493 m_data.baton = baton;
494 }
495
496 void set_loclist (void *baton)
497 {
498 m_kind = PROP_LOCLIST;
499 m_data.baton = baton;
500 }
501
502 void set_addr_offset (void *baton)
503 {
504 m_kind = PROP_ADDR_OFFSET;
505 m_data.baton = baton;
506 }
507
508 const gdb::array_view<variant_part> *variant_parts () const
509 {
510 gdb_assert (m_kind == PROP_VARIANT_PARTS);
511
512 return m_data.variant_parts;
513 }
514
515 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
516 {
517 m_kind = PROP_VARIANT_PARTS;
518 m_data.variant_parts = variant_parts;
519 }
520
521 struct type *original_type () const
522 {
523 gdb_assert (m_kind == PROP_TYPE);
524
525 return m_data.original_type;
526 }
527
528 void set_original_type (struct type *original_type)
529 {
530 m_kind = PROP_TYPE;
531 m_data.original_type = original_type;
532 }
533
534 /* Determine which field of the union dynamic_prop.data is used. */
535 enum dynamic_prop_kind m_kind;
536
537 /* Storage for dynamic or static value. */
538 union dynamic_prop_data m_data;
539 };
540
541 /* Compare two dynamic_prop objects for equality. dynamic_prop
542 instances are equal iff they have the same type and storage. */
543 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
544
545 /* Compare two dynamic_prop objects for inequality. */
546 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
547 {
548 return !(l == r);
549 }
550
551 /* * Define a type's dynamic property node kind. */
552 enum dynamic_prop_node_kind
553 {
554 /* A property providing a type's data location.
555 Evaluating this field yields to the location of an object's data. */
556 DYN_PROP_DATA_LOCATION,
557
558 /* A property representing DW_AT_allocated. The presence of this attribute
559 indicates that the object of the type can be allocated/deallocated. */
560 DYN_PROP_ALLOCATED,
561
562 /* A property representing DW_AT_associated. The presence of this attribute
563 indicated that the object of the type can be associated. */
564 DYN_PROP_ASSOCIATED,
565
566 /* A property providing an array's byte stride. */
567 DYN_PROP_BYTE_STRIDE,
568
569 /* A property holding variant parts. */
570 DYN_PROP_VARIANT_PARTS,
571
572 /* A property holding the size of the type. */
573 DYN_PROP_BYTE_SIZE,
574 };
575
576 /* * List for dynamic type attributes. */
577 struct dynamic_prop_list
578 {
579 /* The kind of dynamic prop in this node. */
580 enum dynamic_prop_node_kind prop_kind;
581
582 /* The dynamic property itself. */
583 struct dynamic_prop prop;
584
585 /* A pointer to the next dynamic property. */
586 struct dynamic_prop_list *next;
587 };
588
589 /* * Determine which field of the union main_type.fields[x].loc is
590 used. */
591
592 enum field_loc_kind
593 {
594 FIELD_LOC_KIND_BITPOS, /**< bitpos */
595 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
596 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
597 FIELD_LOC_KIND_PHYSNAME, /**< physname */
598 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
599 };
600
601 /* * A discriminant to determine which field in the
602 main_type.type_specific union is being used, if any.
603
604 For types such as TYPE_CODE_FLT, the use of this
605 discriminant is really redundant, as we know from the type code
606 which field is going to be used. As such, it would be possible to
607 reduce the size of this enum in order to save a bit or two for
608 other fields of struct main_type. But, since we still have extra
609 room , and for the sake of clarity and consistency, we treat all fields
610 of the union the same way. */
611
612 enum type_specific_kind
613 {
614 TYPE_SPECIFIC_NONE,
615 TYPE_SPECIFIC_CPLUS_STUFF,
616 TYPE_SPECIFIC_GNAT_STUFF,
617 TYPE_SPECIFIC_FLOATFORMAT,
618 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
619 TYPE_SPECIFIC_FUNC,
620 TYPE_SPECIFIC_SELF_TYPE
621 };
622
623 union type_owner
624 {
625 struct objfile *objfile;
626 struct gdbarch *gdbarch;
627 };
628
629 union field_location
630 {
631 /* * Position of this field, counting in bits from start of
632 containing structure. For big-endian targets, it is the bit
633 offset to the MSB. For little-endian targets, it is the bit
634 offset to the LSB. */
635
636 LONGEST bitpos;
637
638 /* * Enum value. */
639 LONGEST enumval;
640
641 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
642 physaddr is the location (in the target) of the static
643 field. Otherwise, physname is the mangled label of the
644 static field. */
645
646 CORE_ADDR physaddr;
647 const char *physname;
648
649 /* * The field location can be computed by evaluating the
650 following DWARF block. Its DATA is allocated on
651 objfile_obstack - no CU load is needed to access it. */
652
653 struct dwarf2_locexpr_baton *dwarf_block;
654 };
655
656 struct field
657 {
658 struct type *type () const
659 {
660 return this->m_type;
661 }
662
663 void set_type (struct type *type)
664 {
665 this->m_type = type;
666 }
667
668 union field_location loc;
669
670 /* * For a function or member type, this is 1 if the argument is
671 marked artificial. Artificial arguments should not be shown
672 to the user. For TYPE_CODE_RANGE it is set if the specific
673 bound is not defined. */
674
675 unsigned int artificial : 1;
676
677 /* * Discriminant for union field_location. */
678
679 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
680
681 /* * Size of this field, in bits, or zero if not packed.
682 If non-zero in an array type, indicates the element size in
683 bits (used only in Ada at the moment).
684 For an unpacked field, the field's type's length
685 says how many bytes the field occupies. */
686
687 unsigned int bitsize : 28;
688
689 /* * In a struct or union type, type of this field.
690 - In a function or member type, type of this argument.
691 - In an array type, the domain-type of the array. */
692
693 struct type *m_type;
694
695 /* * Name of field, value or argument.
696 NULL for range bounds, array domains, and member function
697 arguments. */
698
699 const char *name;
700 };
701
702 struct range_bounds
703 {
704 ULONGEST bit_stride () const
705 {
706 if (this->flag_is_byte_stride)
707 return this->stride.const_val () * 8;
708 else
709 return this->stride.const_val ();
710 }
711
712 /* * Low bound of range. */
713
714 struct dynamic_prop low;
715
716 /* * High bound of range. */
717
718 struct dynamic_prop high;
719
720 /* The stride value for this range. This can be stored in bits or bytes
721 based on the value of BYTE_STRIDE_P. It is optional to have a stride
722 value, if this range has no stride value defined then this will be set
723 to the constant zero. */
724
725 struct dynamic_prop stride;
726
727 /* * The bias. Sometimes a range value is biased before storage.
728 The bias is added to the stored bits to form the true value. */
729
730 LONGEST bias;
731
732 /* True if HIGH range bound contains the number of elements in the
733 subrange. This affects how the final high bound is computed. */
734
735 unsigned int flag_upper_bound_is_count : 1;
736
737 /* True if LOW or/and HIGH are resolved into a static bound from
738 a dynamic one. */
739
740 unsigned int flag_bound_evaluated : 1;
741
742 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
743
744 unsigned int flag_is_byte_stride : 1;
745 };
746
747 /* Compare two range_bounds objects for equality. Simply does
748 memberwise comparison. */
749 extern bool operator== (const range_bounds &l, const range_bounds &r);
750
751 /* Compare two range_bounds objects for inequality. */
752 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
753 {
754 return !(l == r);
755 }
756
757 union type_specific
758 {
759 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
760 point to cplus_struct_default, a default static instance of a
761 struct cplus_struct_type. */
762
763 struct cplus_struct_type *cplus_stuff;
764
765 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
766 provides additional information. */
767
768 struct gnat_aux_type *gnat_stuff;
769
770 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
771 floatformat object that describes the floating-point value
772 that resides within the type. */
773
774 const struct floatformat *floatformat;
775
776 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
777
778 struct func_type *func_stuff;
779
780 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
781 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
782 is a member of. */
783
784 struct type *self_type;
785 };
786
787 /* * Main structure representing a type in GDB.
788
789 This structure is space-critical. Its layout has been tweaked to
790 reduce the space used. */
791
792 struct main_type
793 {
794 /* * Code for kind of type. */
795
796 ENUM_BITFIELD(type_code) code : 8;
797
798 /* * Flags about this type. These fields appear at this location
799 because they packs nicely here. See the TYPE_* macros for
800 documentation about these fields. */
801
802 unsigned int m_flag_unsigned : 1;
803 unsigned int m_flag_nosign : 1;
804 unsigned int m_flag_stub : 1;
805 unsigned int m_flag_target_stub : 1;
806 unsigned int m_flag_prototyped : 1;
807 unsigned int m_flag_varargs : 1;
808 unsigned int m_flag_vector : 1;
809 unsigned int m_flag_stub_supported : 1;
810 unsigned int m_flag_gnu_ifunc : 1;
811 unsigned int flag_fixed_instance : 1;
812 unsigned int flag_objfile_owned : 1;
813 unsigned int flag_endianity_not_default : 1;
814
815 /* * True if this type was declared with "class" rather than
816 "struct". */
817
818 unsigned int flag_declared_class : 1;
819
820 /* * True if this is an enum type with disjoint values. This
821 affects how the enum is printed. */
822
823 unsigned int flag_flag_enum : 1;
824
825 /* * A discriminant telling us which field of the type_specific
826 union is being used for this type, if any. */
827
828 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
829
830 /* * Number of fields described for this type. This field appears
831 at this location because it packs nicely here. */
832
833 short nfields;
834
835 /* * Name of this type, or NULL if none.
836
837 This is used for printing only. For looking up a name, look for
838 a symbol in the VAR_DOMAIN. This is generally allocated in the
839 objfile's obstack. However coffread.c uses malloc. */
840
841 const char *name;
842
843 /* * Every type is now associated with a particular objfile, and the
844 type is allocated on the objfile_obstack for that objfile. One
845 problem however, is that there are times when gdb allocates new
846 types while it is not in the process of reading symbols from a
847 particular objfile. Fortunately, these happen when the type
848 being created is a derived type of an existing type, such as in
849 lookup_pointer_type(). So we can just allocate the new type
850 using the same objfile as the existing type, but to do this we
851 need a backpointer to the objfile from the existing type. Yes
852 this is somewhat ugly, but without major overhaul of the internal
853 type system, it can't be avoided for now. */
854
855 union type_owner owner;
856
857 /* * For a pointer type, describes the type of object pointed to.
858 - For an array type, describes the type of the elements.
859 - For a function or method type, describes the type of the return value.
860 - For a range type, describes the type of the full range.
861 - For a complex type, describes the type of each coordinate.
862 - For a special record or union type encoding a dynamic-sized type
863 in GNAT, a memoized pointer to a corresponding static version of
864 the type.
865 - Unused otherwise. */
866
867 struct type *target_type;
868
869 /* * For structure and union types, a description of each field.
870 For set and pascal array types, there is one "field",
871 whose type is the domain type of the set or array.
872 For range types, there are two "fields",
873 the minimum and maximum values (both inclusive).
874 For enum types, each possible value is described by one "field".
875 For a function or method type, a "field" for each parameter.
876 For C++ classes, there is one field for each base class (if it is
877 a derived class) plus one field for each class data member. Member
878 functions are recorded elsewhere.
879
880 Using a pointer to a separate array of fields
881 allows all types to have the same size, which is useful
882 because we can allocate the space for a type before
883 we know what to put in it. */
884
885 union
886 {
887 struct field *fields;
888
889 /* * Union member used for range types. */
890
891 struct range_bounds *bounds;
892
893 /* If this is a scalar type, then this is its corresponding
894 complex type. */
895 struct type *complex_type;
896
897 } flds_bnds;
898
899 /* * Slot to point to additional language-specific fields of this
900 type. */
901
902 union type_specific type_specific;
903
904 /* * Contains all dynamic type properties. */
905 struct dynamic_prop_list *dyn_prop_list;
906 };
907
908 /* * Number of bits allocated for alignment. */
909
910 #define TYPE_ALIGN_BITS 8
911
912 /* * A ``struct type'' describes a particular instance of a type, with
913 some particular qualification. */
914
915 struct type
916 {
917 /* Get the type code of this type.
918
919 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
920 type, you need to do `check_typedef (type)->code ()`. */
921 type_code code () const
922 {
923 return this->main_type->code;
924 }
925
926 /* Set the type code of this type. */
927 void set_code (type_code code)
928 {
929 this->main_type->code = code;
930 }
931
932 /* Get the name of this type. */
933 const char *name () const
934 {
935 return this->main_type->name;
936 }
937
938 /* Set the name of this type. */
939 void set_name (const char *name)
940 {
941 this->main_type->name = name;
942 }
943
944 /* Get the number of fields of this type. */
945 int num_fields () const
946 {
947 return this->main_type->nfields;
948 }
949
950 /* Set the number of fields of this type. */
951 void set_num_fields (int num_fields)
952 {
953 this->main_type->nfields = num_fields;
954 }
955
956 /* Get the fields array of this type. */
957 struct field *fields () const
958 {
959 return this->main_type->flds_bnds.fields;
960 }
961
962 /* Get the field at index IDX. */
963 struct field &field (int idx) const
964 {
965 return this->fields ()[idx];
966 }
967
968 /* Set the fields array of this type. */
969 void set_fields (struct field *fields)
970 {
971 this->main_type->flds_bnds.fields = fields;
972 }
973
974 type *index_type () const
975 {
976 return this->field (0).type ();
977 }
978
979 void set_index_type (type *index_type)
980 {
981 this->field (0).set_type (index_type);
982 }
983
984 /* Get the bounds bounds of this type. The type must be a range type. */
985 range_bounds *bounds () const
986 {
987 switch (this->code ())
988 {
989 case TYPE_CODE_RANGE:
990 return this->main_type->flds_bnds.bounds;
991
992 case TYPE_CODE_ARRAY:
993 case TYPE_CODE_STRING:
994 return this->index_type ()->bounds ();
995
996 default:
997 gdb_assert_not_reached
998 ("type::bounds called on type with invalid code");
999 }
1000 }
1001
1002 /* Set the bounds of this type. The type must be a range type. */
1003 void set_bounds (range_bounds *bounds)
1004 {
1005 gdb_assert (this->code () == TYPE_CODE_RANGE);
1006
1007 this->main_type->flds_bnds.bounds = bounds;
1008 }
1009
1010 ULONGEST bit_stride () const
1011 {
1012 return this->bounds ()->bit_stride ();
1013 }
1014
1015 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1016 the type is signed (unless TYPE_NOSIGN is set). */
1017
1018 bool is_unsigned () const
1019 {
1020 return this->main_type->m_flag_unsigned;
1021 }
1022
1023 void set_is_unsigned (bool is_unsigned)
1024 {
1025 this->main_type->m_flag_unsigned = is_unsigned;
1026 }
1027
1028 /* No sign for this type. In C++, "char", "signed char", and
1029 "unsigned char" are distinct types; so we need an extra flag to
1030 indicate the absence of a sign! */
1031
1032 bool has_no_signedness () const
1033 {
1034 return this->main_type->m_flag_nosign;
1035 }
1036
1037 void set_has_no_signedness (bool has_no_signedness)
1038 {
1039 this->main_type->m_flag_nosign = has_no_signedness;
1040 }
1041
1042 /* This appears in a type's flags word if it is a stub type (e.g.,
1043 if someone referenced a type that wasn't defined in a source file
1044 via (struct sir_not_appearing_in_this_film *)). */
1045
1046 bool is_stub () const
1047 {
1048 return this->main_type->m_flag_stub;
1049 }
1050
1051 void set_is_stub (bool is_stub)
1052 {
1053 this->main_type->m_flag_stub = is_stub;
1054 }
1055
1056 /* The target type of this type is a stub type, and this type needs
1057 to be updated if it gets un-stubbed in check_typedef. Used for
1058 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1059 based on the TYPE_LENGTH of the target type. Also, set for
1060 TYPE_CODE_TYPEDEF. */
1061
1062 bool target_is_stub () const
1063 {
1064 return this->main_type->m_flag_target_stub;
1065 }
1066
1067 void set_target_is_stub (bool target_is_stub)
1068 {
1069 this->main_type->m_flag_target_stub = target_is_stub;
1070 }
1071
1072 /* This is a function type which appears to have a prototype. We
1073 need this for function calls in order to tell us if it's necessary
1074 to coerce the args, or to just do the standard conversions. This
1075 is used with a short field. */
1076
1077 bool is_prototyped () const
1078 {
1079 return this->main_type->m_flag_prototyped;
1080 }
1081
1082 void set_is_prototyped (bool is_prototyped)
1083 {
1084 this->main_type->m_flag_prototyped = is_prototyped;
1085 }
1086
1087 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1088 to functions. */
1089
1090 bool has_varargs () const
1091 {
1092 return this->main_type->m_flag_varargs;
1093 }
1094
1095 void set_has_varargs (bool has_varargs)
1096 {
1097 this->main_type->m_flag_varargs = has_varargs;
1098 }
1099
1100 /* Identify a vector type. Gcc is handling this by adding an extra
1101 attribute to the array type. We slurp that in as a new flag of a
1102 type. This is used only in dwarf2read.c. */
1103
1104 bool is_vector () const
1105 {
1106 return this->main_type->m_flag_vector;
1107 }
1108
1109 void set_is_vector (bool is_vector)
1110 {
1111 this->main_type->m_flag_vector = is_vector;
1112 }
1113
1114 /* This debug target supports TYPE_STUB(t). In the unsupported case
1115 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1116 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1117 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1118
1119 bool stub_is_supported () const
1120 {
1121 return this->main_type->m_flag_stub_supported;
1122 }
1123
1124 void set_stub_is_supported (bool stub_is_supported)
1125 {
1126 this->main_type->m_flag_stub_supported = stub_is_supported;
1127 }
1128
1129 /* Used only for TYPE_CODE_FUNC where it specifies the real function
1130 address is returned by this function call. TYPE_TARGET_TYPE
1131 determines the final returned function type to be presented to
1132 user. */
1133
1134 bool is_gnu_ifunc () const
1135 {
1136 return this->main_type->m_flag_gnu_ifunc;
1137 }
1138
1139 void set_is_gnu_ifunc (bool is_gnu_ifunc)
1140 {
1141 this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1142 }
1143
1144 /* * Return the dynamic property of the requested KIND from this type's
1145 list of dynamic properties. */
1146 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1147
1148 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1149 property to this type.
1150
1151 This function assumes that this type is objfile-owned. */
1152 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1153
1154 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1155 void remove_dyn_prop (dynamic_prop_node_kind kind);
1156
1157 /* * Type that is a pointer to this type.
1158 NULL if no such pointer-to type is known yet.
1159 The debugger may add the address of such a type
1160 if it has to construct one later. */
1161
1162 struct type *pointer_type;
1163
1164 /* * C++: also need a reference type. */
1165
1166 struct type *reference_type;
1167
1168 /* * A C++ rvalue reference type added in C++11. */
1169
1170 struct type *rvalue_reference_type;
1171
1172 /* * Variant chain. This points to a type that differs from this
1173 one only in qualifiers and length. Currently, the possible
1174 qualifiers are const, volatile, code-space, data-space, and
1175 address class. The length may differ only when one of the
1176 address class flags are set. The variants are linked in a
1177 circular ring and share MAIN_TYPE. */
1178
1179 struct type *chain;
1180
1181 /* * The alignment for this type. Zero means that the alignment was
1182 not specified in the debug info. Note that this is stored in a
1183 funny way: as the log base 2 (plus 1) of the alignment; so a
1184 value of 1 means the alignment is 1, and a value of 9 means the
1185 alignment is 256. */
1186
1187 unsigned align_log2 : TYPE_ALIGN_BITS;
1188
1189 /* * Flags specific to this instance of the type, indicating where
1190 on the ring we are.
1191
1192 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1193 binary or-ed with the target type, with a special case for
1194 address class and space class. For example if this typedef does
1195 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1196 instance flags are completely inherited from the target type. No
1197 qualifiers can be cleared by the typedef. See also
1198 check_typedef. */
1199 unsigned instance_flags : 9;
1200
1201 /* * Length of storage for a value of this type. The value is the
1202 expression in host bytes of what sizeof(type) would return. This
1203 size includes padding. For example, an i386 extended-precision
1204 floating point value really only occupies ten bytes, but most
1205 ABI's declare its size to be 12 bytes, to preserve alignment.
1206 A `struct type' representing such a floating-point type would
1207 have a `length' value of 12, even though the last two bytes are
1208 unused.
1209
1210 Since this field is expressed in host bytes, its value is appropriate
1211 to pass to memcpy and such (it is assumed that GDB itself always runs
1212 on an 8-bits addressable architecture). However, when using it for
1213 target address arithmetic (e.g. adding it to a target address), the
1214 type_length_units function should be used in order to get the length
1215 expressed in target addressable memory units. */
1216
1217 ULONGEST length;
1218
1219 /* * Core type, shared by a group of qualified types. */
1220
1221 struct main_type *main_type;
1222 };
1223
1224 struct fn_fieldlist
1225 {
1226
1227 /* * The overloaded name.
1228 This is generally allocated in the objfile's obstack.
1229 However stabsread.c sometimes uses malloc. */
1230
1231 const char *name;
1232
1233 /* * The number of methods with this name. */
1234
1235 int length;
1236
1237 /* * The list of methods. */
1238
1239 struct fn_field *fn_fields;
1240 };
1241
1242
1243
1244 struct fn_field
1245 {
1246 /* * If is_stub is clear, this is the mangled name which we can look
1247 up to find the address of the method (FIXME: it would be cleaner
1248 to have a pointer to the struct symbol here instead).
1249
1250 If is_stub is set, this is the portion of the mangled name which
1251 specifies the arguments. For example, "ii", if there are two int
1252 arguments, or "" if there are no arguments. See gdb_mangle_name
1253 for the conversion from this format to the one used if is_stub is
1254 clear. */
1255
1256 const char *physname;
1257
1258 /* * The function type for the method.
1259
1260 (This comment used to say "The return value of the method", but
1261 that's wrong. The function type is expected here, i.e. something
1262 with TYPE_CODE_METHOD, and *not* the return-value type). */
1263
1264 struct type *type;
1265
1266 /* * For virtual functions. First baseclass that defines this
1267 virtual function. */
1268
1269 struct type *fcontext;
1270
1271 /* Attributes. */
1272
1273 unsigned int is_const:1;
1274 unsigned int is_volatile:1;
1275 unsigned int is_private:1;
1276 unsigned int is_protected:1;
1277 unsigned int is_artificial:1;
1278
1279 /* * A stub method only has some fields valid (but they are enough
1280 to reconstruct the rest of the fields). */
1281
1282 unsigned int is_stub:1;
1283
1284 /* * True if this function is a constructor, false otherwise. */
1285
1286 unsigned int is_constructor : 1;
1287
1288 /* * True if this function is deleted, false otherwise. */
1289
1290 unsigned int is_deleted : 1;
1291
1292 /* * DW_AT_defaulted attribute for this function. The value is one
1293 of the DW_DEFAULTED constants. */
1294
1295 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1296
1297 /* * Unused. */
1298
1299 unsigned int dummy:6;
1300
1301 /* * Index into that baseclass's virtual function table, minus 2;
1302 else if static: VOFFSET_STATIC; else: 0. */
1303
1304 unsigned int voffset:16;
1305
1306 #define VOFFSET_STATIC 1
1307
1308 };
1309
1310 struct decl_field
1311 {
1312 /* * Unqualified name to be prefixed by owning class qualified
1313 name. */
1314
1315 const char *name;
1316
1317 /* * Type this typedef named NAME represents. */
1318
1319 struct type *type;
1320
1321 /* * True if this field was declared protected, false otherwise. */
1322 unsigned int is_protected : 1;
1323
1324 /* * True if this field was declared private, false otherwise. */
1325 unsigned int is_private : 1;
1326 };
1327
1328 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1329 TYPE_CODE_UNION nodes. */
1330
1331 struct cplus_struct_type
1332 {
1333 /* * Number of base classes this type derives from. The
1334 baseclasses are stored in the first N_BASECLASSES fields
1335 (i.e. the `fields' field of the struct type). The only fields
1336 of struct field that are used are: type, name, loc.bitpos. */
1337
1338 short n_baseclasses;
1339
1340 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1341 All access to this field must be through TYPE_VPTR_FIELDNO as one
1342 thing it does is check whether the field has been initialized.
1343 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1344 which for portability reasons doesn't initialize this field.
1345 TYPE_VPTR_FIELDNO returns -1 for this case.
1346
1347 If -1, we were unable to find the virtual function table pointer in
1348 initial symbol reading, and get_vptr_fieldno should be called to find
1349 it if possible. get_vptr_fieldno will update this field if possible.
1350 Otherwise the value is left at -1.
1351
1352 Unused if this type does not have virtual functions. */
1353
1354 short vptr_fieldno;
1355
1356 /* * Number of methods with unique names. All overloaded methods
1357 with the same name count only once. */
1358
1359 short nfn_fields;
1360
1361 /* * Number of template arguments. */
1362
1363 unsigned short n_template_arguments;
1364
1365 /* * One if this struct is a dynamic class, as defined by the
1366 Itanium C++ ABI: if it requires a virtual table pointer,
1367 because it or any of its base classes have one or more virtual
1368 member functions or virtual base classes. Minus one if not
1369 dynamic. Zero if not yet computed. */
1370
1371 int is_dynamic : 2;
1372
1373 /* * The calling convention for this type, fetched from the
1374 DW_AT_calling_convention attribute. The value is one of the
1375 DW_CC constants. */
1376
1377 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1378
1379 /* * The base class which defined the virtual function table pointer. */
1380
1381 struct type *vptr_basetype;
1382
1383 /* * For derived classes, the number of base classes is given by
1384 n_baseclasses and virtual_field_bits is a bit vector containing
1385 one bit per base class. If the base class is virtual, the
1386 corresponding bit will be set.
1387 I.E, given:
1388
1389 class A{};
1390 class B{};
1391 class C : public B, public virtual A {};
1392
1393 B is a baseclass of C; A is a virtual baseclass for C.
1394 This is a C++ 2.0 language feature. */
1395
1396 B_TYPE *virtual_field_bits;
1397
1398 /* * For classes with private fields, the number of fields is
1399 given by nfields and private_field_bits is a bit vector
1400 containing one bit per field.
1401
1402 If the field is private, the corresponding bit will be set. */
1403
1404 B_TYPE *private_field_bits;
1405
1406 /* * For classes with protected fields, the number of fields is
1407 given by nfields and protected_field_bits is a bit vector
1408 containing one bit per field.
1409
1410 If the field is private, the corresponding bit will be set. */
1411
1412 B_TYPE *protected_field_bits;
1413
1414 /* * For classes with fields to be ignored, either this is
1415 optimized out or this field has length 0. */
1416
1417 B_TYPE *ignore_field_bits;
1418
1419 /* * For classes, structures, and unions, a description of each
1420 field, which consists of an overloaded name, followed by the
1421 types of arguments that the method expects, and then the name
1422 after it has been renamed to make it distinct.
1423
1424 fn_fieldlists points to an array of nfn_fields of these. */
1425
1426 struct fn_fieldlist *fn_fieldlists;
1427
1428 /* * typedefs defined inside this class. typedef_field points to
1429 an array of typedef_field_count elements. */
1430
1431 struct decl_field *typedef_field;
1432
1433 unsigned typedef_field_count;
1434
1435 /* * The nested types defined by this type. nested_types points to
1436 an array of nested_types_count elements. */
1437
1438 struct decl_field *nested_types;
1439
1440 unsigned nested_types_count;
1441
1442 /* * The template arguments. This is an array with
1443 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1444 classes. */
1445
1446 struct symbol **template_arguments;
1447 };
1448
1449 /* * Struct used to store conversion rankings. */
1450
1451 struct rank
1452 {
1453 short rank;
1454
1455 /* * When two conversions are of the same type and therefore have
1456 the same rank, subrank is used to differentiate the two.
1457
1458 Eg: Two derived-class-pointer to base-class-pointer conversions
1459 would both have base pointer conversion rank, but the
1460 conversion with the shorter distance to the ancestor is
1461 preferable. 'subrank' would be used to reflect that. */
1462
1463 short subrank;
1464 };
1465
1466 /* * Used for ranking a function for overload resolution. */
1467
1468 typedef std::vector<rank> badness_vector;
1469
1470 /* * GNAT Ada-specific information for various Ada types. */
1471
1472 struct gnat_aux_type
1473 {
1474 /* * Parallel type used to encode information about dynamic types
1475 used in Ada (such as variant records, variable-size array,
1476 etc). */
1477 struct type* descriptive_type;
1478 };
1479
1480 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1481
1482 struct func_type
1483 {
1484 /* * The calling convention for targets supporting multiple ABIs.
1485 Right now this is only fetched from the Dwarf-2
1486 DW_AT_calling_convention attribute. The value is one of the
1487 DW_CC constants. */
1488
1489 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1490
1491 /* * Whether this function normally returns to its caller. It is
1492 set from the DW_AT_noreturn attribute if set on the
1493 DW_TAG_subprogram. */
1494
1495 unsigned int is_noreturn : 1;
1496
1497 /* * Only those DW_TAG_call_site's in this function that have
1498 DW_AT_call_tail_call set are linked in this list. Function
1499 without its tail call list complete
1500 (DW_AT_call_all_tail_calls or its superset
1501 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1502 DW_TAG_call_site's exist in such function. */
1503
1504 struct call_site *tail_call_list;
1505
1506 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1507 contains the method. */
1508
1509 struct type *self_type;
1510 };
1511
1512 /* struct call_site_parameter can be referenced in callees by several ways. */
1513
1514 enum call_site_parameter_kind
1515 {
1516 /* * Use field call_site_parameter.u.dwarf_reg. */
1517 CALL_SITE_PARAMETER_DWARF_REG,
1518
1519 /* * Use field call_site_parameter.u.fb_offset. */
1520 CALL_SITE_PARAMETER_FB_OFFSET,
1521
1522 /* * Use field call_site_parameter.u.param_offset. */
1523 CALL_SITE_PARAMETER_PARAM_OFFSET
1524 };
1525
1526 struct call_site_target
1527 {
1528 union field_location loc;
1529
1530 /* * Discriminant for union field_location. */
1531
1532 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1533 };
1534
1535 union call_site_parameter_u
1536 {
1537 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1538 as DWARF register number, for register passed
1539 parameters. */
1540
1541 int dwarf_reg;
1542
1543 /* * Offset from the callee's frame base, for stack passed
1544 parameters. This equals offset from the caller's stack
1545 pointer. */
1546
1547 CORE_ADDR fb_offset;
1548
1549 /* * Offset relative to the start of this PER_CU to
1550 DW_TAG_formal_parameter which is referenced by both
1551 caller and the callee. */
1552
1553 cu_offset param_cu_off;
1554 };
1555
1556 struct call_site_parameter
1557 {
1558 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1559
1560 union call_site_parameter_u u;
1561
1562 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1563
1564 const gdb_byte *value;
1565 size_t value_size;
1566
1567 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1568 It may be NULL if not provided by DWARF. */
1569
1570 const gdb_byte *data_value;
1571 size_t data_value_size;
1572 };
1573
1574 /* * A place where a function gets called from, represented by
1575 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1576
1577 struct call_site
1578 {
1579 /* * Address of the first instruction after this call. It must be
1580 the first field as we overload core_addr_hash and core_addr_eq
1581 for it. */
1582
1583 CORE_ADDR pc;
1584
1585 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1586
1587 struct call_site *tail_call_next;
1588
1589 /* * Describe DW_AT_call_target. Missing attribute uses
1590 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1591
1592 struct call_site_target target;
1593
1594 /* * Size of the PARAMETER array. */
1595
1596 unsigned parameter_count;
1597
1598 /* * CU of the function where the call is located. It gets used
1599 for DWARF blocks execution in the parameter array below. */
1600
1601 dwarf2_per_cu_data *per_cu;
1602
1603 /* objfile of the function where the call is located. */
1604
1605 dwarf2_per_objfile *per_objfile;
1606
1607 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1608
1609 struct call_site_parameter parameter[1];
1610 };
1611
1612 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1613 static structure. */
1614
1615 extern const struct cplus_struct_type cplus_struct_default;
1616
1617 extern void allocate_cplus_struct_type (struct type *);
1618
1619 #define INIT_CPLUS_SPECIFIC(type) \
1620 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1621 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1622 &cplus_struct_default)
1623
1624 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1625
1626 #define HAVE_CPLUS_STRUCT(type) \
1627 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1628 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1629
1630 #define INIT_NONE_SPECIFIC(type) \
1631 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1632 TYPE_MAIN_TYPE (type)->type_specific = {})
1633
1634 extern const struct gnat_aux_type gnat_aux_default;
1635
1636 extern void allocate_gnat_aux_type (struct type *);
1637
1638 #define INIT_GNAT_SPECIFIC(type) \
1639 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1640 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1641 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1642 /* * A macro that returns non-zero if the type-specific data should be
1643 read as "gnat-stuff". */
1644 #define HAVE_GNAT_AUX_INFO(type) \
1645 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1646
1647 /* * True if TYPE is known to be an Ada type of some kind. */
1648 #define ADA_TYPE_P(type) \
1649 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1650 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1651 && TYPE_FIXED_INSTANCE (type)))
1652
1653 #define INIT_FUNC_SPECIFIC(type) \
1654 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1655 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1656 TYPE_ZALLOC (type, \
1657 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1658
1659 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1660 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1661 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1662 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1663 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1664 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1665 #define TYPE_CHAIN(thistype) (thistype)->chain
1666 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1667 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1668 so you only have to call check_typedef once. Since allocate_value
1669 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1670 #define TYPE_LENGTH(thistype) (thistype)->length
1671
1672 /* * Return the alignment of the type in target addressable memory
1673 units, or 0 if no alignment was specified. */
1674 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1675
1676 /* * Return the alignment of the type in target addressable memory
1677 units, or 0 if no alignment was specified. */
1678 extern unsigned type_raw_align (struct type *);
1679
1680 /* * Return the alignment of the type in target addressable memory
1681 units. Return 0 if the alignment cannot be determined; but note
1682 that this makes an effort to compute the alignment even it it was
1683 not specified in the debug info. */
1684 extern unsigned type_align (struct type *);
1685
1686 /* * Set the alignment of the type. The alignment must be a power of
1687 2. Returns false if the given value does not fit in the available
1688 space in struct type. */
1689 extern bool set_type_align (struct type *, ULONGEST);
1690
1691 /* Property accessors for the type data location. */
1692 #define TYPE_DATA_LOCATION(thistype) \
1693 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1694 #define TYPE_DATA_LOCATION_BATON(thistype) \
1695 TYPE_DATA_LOCATION (thistype)->data.baton
1696 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1697 (TYPE_DATA_LOCATION (thistype)->const_val ())
1698 #define TYPE_DATA_LOCATION_KIND(thistype) \
1699 (TYPE_DATA_LOCATION (thistype)->kind ())
1700 #define TYPE_DYNAMIC_LENGTH(thistype) \
1701 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1702
1703 /* Property accessors for the type allocated/associated. */
1704 #define TYPE_ALLOCATED_PROP(thistype) \
1705 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1706 #define TYPE_ASSOCIATED_PROP(thistype) \
1707 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1708
1709 /* C++ */
1710
1711 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1712 /* Do not call this, use TYPE_SELF_TYPE. */
1713 extern struct type *internal_type_self_type (struct type *);
1714 extern void set_type_self_type (struct type *, struct type *);
1715
1716 extern int internal_type_vptr_fieldno (struct type *);
1717 extern void set_type_vptr_fieldno (struct type *, int);
1718 extern struct type *internal_type_vptr_basetype (struct type *);
1719 extern void set_type_vptr_basetype (struct type *, struct type *);
1720 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1721 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1722
1723 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1724 #define TYPE_SPECIFIC_FIELD(thistype) \
1725 TYPE_MAIN_TYPE(thistype)->type_specific_field
1726 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1727 where we're trying to print an Ada array using the C language.
1728 In that case, there is no "cplus_stuff", but the C language assumes
1729 that there is. What we do, in that case, is pretend that there is
1730 an implicit one which is the default cplus stuff. */
1731 #define TYPE_CPLUS_SPECIFIC(thistype) \
1732 (!HAVE_CPLUS_STRUCT(thistype) \
1733 ? (struct cplus_struct_type*)&cplus_struct_default \
1734 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1735 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1736 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1737 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1738 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1739 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1740 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1741 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1742 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1743 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1744 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1745 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1746 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1747 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1748 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1749 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1750 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1751
1752 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1753 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1754 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1755
1756 #define FIELD_NAME(thisfld) ((thisfld).name)
1757 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1758 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1759 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1760 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1761 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1762 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1763 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1764 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1765 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1766 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1767 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1768 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1769 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1770 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1771 #define SET_FIELD_PHYSNAME(thisfld, name) \
1772 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1773 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1774 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1775 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1776 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1777 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1778 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1779 FIELD_DWARF_BLOCK (thisfld) = (addr))
1780 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1781 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1782
1783 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1784 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1785 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1786 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1787 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1788 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1789 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1790 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1791 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1792 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1793
1794 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1795 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1796 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1797 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1798 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1799 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1800 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1801 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1802 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1803 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1804 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1805 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1806 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1807 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1808 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1809 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1810 #define TYPE_FIELD_PRIVATE(thistype, n) \
1811 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1812 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1813 #define TYPE_FIELD_PROTECTED(thistype, n) \
1814 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1815 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1816 #define TYPE_FIELD_IGNORE(thistype, n) \
1817 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1818 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1819 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1820 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1821 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1822
1823 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1824 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1825 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1826 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1827 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1828
1829 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1830 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1831 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1832 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1833 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1834 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1835
1836 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1837 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1838 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1839 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1840 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1841 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1842 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1843 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1844 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1845 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1846 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1847 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1848 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1849 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1850 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1851 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1852 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1853
1854 /* Accessors for typedefs defined by a class. */
1855 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1856 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1857 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1858 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1859 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1860 TYPE_TYPEDEF_FIELD (thistype, n).name
1861 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1862 TYPE_TYPEDEF_FIELD (thistype, n).type
1863 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1864 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1865 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1866 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1867 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1868 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1869
1870 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1871 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1872 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1873 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1874 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1875 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1876 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1877 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1878 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1879 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1880 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1881 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1882 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1883 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1884
1885 #define TYPE_IS_OPAQUE(thistype) \
1886 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1887 || ((thistype)->code () == TYPE_CODE_UNION)) \
1888 && ((thistype)->num_fields () == 0) \
1889 && (!HAVE_CPLUS_STRUCT (thistype) \
1890 || TYPE_NFN_FIELDS (thistype) == 0) \
1891 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
1892
1893 /* * A helper macro that returns the name of a type or "unnamed type"
1894 if the type has no name. */
1895
1896 #define TYPE_SAFE_NAME(type) \
1897 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1898
1899 /* * A helper macro that returns the name of an error type. If the
1900 type has a name, it is used; otherwise, a default is used. */
1901
1902 #define TYPE_ERROR_NAME(type) \
1903 (type->name () ? type->name () : _("<error type>"))
1904
1905 /* Given TYPE, return its floatformat. */
1906 const struct floatformat *floatformat_from_type (const struct type *type);
1907
1908 struct builtin_type
1909 {
1910 /* Integral types. */
1911
1912 /* Implicit size/sign (based on the architecture's ABI). */
1913 struct type *builtin_void;
1914 struct type *builtin_char;
1915 struct type *builtin_short;
1916 struct type *builtin_int;
1917 struct type *builtin_long;
1918 struct type *builtin_signed_char;
1919 struct type *builtin_unsigned_char;
1920 struct type *builtin_unsigned_short;
1921 struct type *builtin_unsigned_int;
1922 struct type *builtin_unsigned_long;
1923 struct type *builtin_bfloat16;
1924 struct type *builtin_half;
1925 struct type *builtin_float;
1926 struct type *builtin_double;
1927 struct type *builtin_long_double;
1928 struct type *builtin_complex;
1929 struct type *builtin_double_complex;
1930 struct type *builtin_string;
1931 struct type *builtin_bool;
1932 struct type *builtin_long_long;
1933 struct type *builtin_unsigned_long_long;
1934 struct type *builtin_decfloat;
1935 struct type *builtin_decdouble;
1936 struct type *builtin_declong;
1937
1938 /* "True" character types.
1939 We use these for the '/c' print format, because c_char is just a
1940 one-byte integral type, which languages less laid back than C
1941 will print as ... well, a one-byte integral type. */
1942 struct type *builtin_true_char;
1943 struct type *builtin_true_unsigned_char;
1944
1945 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1946 is for when an architecture needs to describe a register that has
1947 no size. */
1948 struct type *builtin_int0;
1949 struct type *builtin_int8;
1950 struct type *builtin_uint8;
1951 struct type *builtin_int16;
1952 struct type *builtin_uint16;
1953 struct type *builtin_int24;
1954 struct type *builtin_uint24;
1955 struct type *builtin_int32;
1956 struct type *builtin_uint32;
1957 struct type *builtin_int64;
1958 struct type *builtin_uint64;
1959 struct type *builtin_int128;
1960 struct type *builtin_uint128;
1961
1962 /* Wide character types. */
1963 struct type *builtin_char16;
1964 struct type *builtin_char32;
1965 struct type *builtin_wchar;
1966
1967 /* Pointer types. */
1968
1969 /* * `pointer to data' type. Some target platforms use an implicitly
1970 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1971 struct type *builtin_data_ptr;
1972
1973 /* * `pointer to function (returning void)' type. Harvard
1974 architectures mean that ABI function and code pointers are not
1975 interconvertible. Similarly, since ANSI, C standards have
1976 explicitly said that pointers to functions and pointers to data
1977 are not interconvertible --- that is, you can't cast a function
1978 pointer to void * and back, and expect to get the same value.
1979 However, all function pointer types are interconvertible, so void
1980 (*) () can server as a generic function pointer. */
1981
1982 struct type *builtin_func_ptr;
1983
1984 /* * `function returning pointer to function (returning void)' type.
1985 The final void return type is not significant for it. */
1986
1987 struct type *builtin_func_func;
1988
1989 /* Special-purpose types. */
1990
1991 /* * This type is used to represent a GDB internal function. */
1992
1993 struct type *internal_fn;
1994
1995 /* * This type is used to represent an xmethod. */
1996 struct type *xmethod;
1997 };
1998
1999 /* * Return the type table for the specified architecture. */
2000
2001 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2002
2003 /* * Per-objfile types used by symbol readers. */
2004
2005 struct objfile_type
2006 {
2007 /* Basic types based on the objfile architecture. */
2008 struct type *builtin_void;
2009 struct type *builtin_char;
2010 struct type *builtin_short;
2011 struct type *builtin_int;
2012 struct type *builtin_long;
2013 struct type *builtin_long_long;
2014 struct type *builtin_signed_char;
2015 struct type *builtin_unsigned_char;
2016 struct type *builtin_unsigned_short;
2017 struct type *builtin_unsigned_int;
2018 struct type *builtin_unsigned_long;
2019 struct type *builtin_unsigned_long_long;
2020 struct type *builtin_half;
2021 struct type *builtin_float;
2022 struct type *builtin_double;
2023 struct type *builtin_long_double;
2024
2025 /* * This type is used to represent symbol addresses. */
2026 struct type *builtin_core_addr;
2027
2028 /* * This type represents a type that was unrecognized in symbol
2029 read-in. */
2030 struct type *builtin_error;
2031
2032 /* * Types used for symbols with no debug information. */
2033 struct type *nodebug_text_symbol;
2034 struct type *nodebug_text_gnu_ifunc_symbol;
2035 struct type *nodebug_got_plt_symbol;
2036 struct type *nodebug_data_symbol;
2037 struct type *nodebug_unknown_symbol;
2038 struct type *nodebug_tls_symbol;
2039 };
2040
2041 /* * Return the type table for the specified objfile. */
2042
2043 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2044
2045 /* Explicit floating-point formats. See "floatformat.h". */
2046 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2047 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2048 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2049 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2050 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2051 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2052 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2053 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2054 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2055 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2056 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2057 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2058 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2059
2060 /* Allocate space for storing data associated with a particular
2061 type. We ensure that the space is allocated using the same
2062 mechanism that was used to allocate the space for the type
2063 structure itself. I.e. if the type is on an objfile's
2064 objfile_obstack, then the space for data associated with that type
2065 will also be allocated on the objfile_obstack. If the type is
2066 associated with a gdbarch, then the space for data associated with that
2067 type will also be allocated on the gdbarch_obstack.
2068
2069 If a type is not associated with neither an objfile or a gdbarch then
2070 you should not use this macro to allocate space for data, instead you
2071 should call xmalloc directly, and ensure the memory is correctly freed
2072 when it is no longer needed. */
2073
2074 #define TYPE_ALLOC(t,size) \
2075 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
2076 ? &TYPE_OBJFILE (t)->objfile_obstack \
2077 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
2078 size))
2079
2080
2081 /* See comment on TYPE_ALLOC. */
2082
2083 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2084
2085 /* Use alloc_type to allocate a type owned by an objfile. Use
2086 alloc_type_arch to allocate a type owned by an architecture. Use
2087 alloc_type_copy to allocate a type with the same owner as a
2088 pre-existing template type, no matter whether objfile or
2089 gdbarch. */
2090 extern struct type *alloc_type (struct objfile *);
2091 extern struct type *alloc_type_arch (struct gdbarch *);
2092 extern struct type *alloc_type_copy (const struct type *);
2093
2094 /* * Return the type's architecture. For types owned by an
2095 architecture, that architecture is returned. For types owned by an
2096 objfile, that objfile's architecture is returned. */
2097
2098 extern struct gdbarch *get_type_arch (const struct type *);
2099
2100 /* * This returns the target type (or NULL) of TYPE, also skipping
2101 past typedefs. */
2102
2103 extern struct type *get_target_type (struct type *type);
2104
2105 /* Return the equivalent of TYPE_LENGTH, but in number of target
2106 addressable memory units of the associated gdbarch instead of bytes. */
2107
2108 extern unsigned int type_length_units (struct type *type);
2109
2110 /* * Helper function to construct objfile-owned types. */
2111
2112 extern struct type *init_type (struct objfile *, enum type_code, int,
2113 const char *);
2114 extern struct type *init_integer_type (struct objfile *, int, int,
2115 const char *);
2116 extern struct type *init_character_type (struct objfile *, int, int,
2117 const char *);
2118 extern struct type *init_boolean_type (struct objfile *, int, int,
2119 const char *);
2120 extern struct type *init_float_type (struct objfile *, int, const char *,
2121 const struct floatformat **,
2122 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2123 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2124 extern struct type *init_complex_type (const char *, struct type *);
2125 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2126 struct type *);
2127
2128 /* Helper functions to construct architecture-owned types. */
2129 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2130 const char *);
2131 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2132 const char *);
2133 extern struct type *arch_character_type (struct gdbarch *, int, int,
2134 const char *);
2135 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2136 const char *);
2137 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2138 const struct floatformat **);
2139 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2140 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2141 struct type *);
2142
2143 /* Helper functions to construct a struct or record type. An
2144 initially empty type is created using arch_composite_type().
2145 Fields are then added using append_composite_type_field*(). A union
2146 type has its size set to the largest field. A struct type has each
2147 field packed against the previous. */
2148
2149 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2150 const char *name, enum type_code code);
2151 extern void append_composite_type_field (struct type *t, const char *name,
2152 struct type *field);
2153 extern void append_composite_type_field_aligned (struct type *t,
2154 const char *name,
2155 struct type *field,
2156 int alignment);
2157 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2158 struct type *field);
2159
2160 /* Helper functions to construct a bit flags type. An initially empty
2161 type is created using arch_flag_type(). Flags are then added using
2162 append_flag_type_field() and append_flag_type_flag(). */
2163 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2164 const char *name, int bit);
2165 extern void append_flags_type_field (struct type *type,
2166 int start_bitpos, int nr_bits,
2167 struct type *field_type, const char *name);
2168 extern void append_flags_type_flag (struct type *type, int bitpos,
2169 const char *name);
2170
2171 extern void make_vector_type (struct type *array_type);
2172 extern struct type *init_vector_type (struct type *elt_type, int n);
2173
2174 extern struct type *lookup_reference_type (struct type *, enum type_code);
2175 extern struct type *lookup_lvalue_reference_type (struct type *);
2176 extern struct type *lookup_rvalue_reference_type (struct type *);
2177
2178
2179 extern struct type *make_reference_type (struct type *, struct type **,
2180 enum type_code);
2181
2182 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2183
2184 extern struct type *make_restrict_type (struct type *);
2185
2186 extern struct type *make_unqualified_type (struct type *);
2187
2188 extern struct type *make_atomic_type (struct type *);
2189
2190 extern void replace_type (struct type *, struct type *);
2191
2192 extern int address_space_name_to_int (struct gdbarch *, const char *);
2193
2194 extern const char *address_space_int_to_name (struct gdbarch *, int);
2195
2196 extern struct type *make_type_with_address_space (struct type *type,
2197 int space_identifier);
2198
2199 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2200
2201 extern struct type *lookup_methodptr_type (struct type *);
2202
2203 extern void smash_to_method_type (struct type *type, struct type *self_type,
2204 struct type *to_type, struct field *args,
2205 int nargs, int varargs);
2206
2207 extern void smash_to_memberptr_type (struct type *, struct type *,
2208 struct type *);
2209
2210 extern void smash_to_methodptr_type (struct type *, struct type *);
2211
2212 extern struct type *allocate_stub_method (struct type *);
2213
2214 extern const char *type_name_or_error (struct type *type);
2215
2216 struct struct_elt
2217 {
2218 /* The field of the element, or NULL if no element was found. */
2219 struct field *field;
2220
2221 /* The bit offset of the element in the parent structure. */
2222 LONGEST offset;
2223 };
2224
2225 /* Given a type TYPE, lookup the field and offset of the component named
2226 NAME.
2227
2228 TYPE can be either a struct or union, or a pointer or reference to
2229 a struct or union. If it is a pointer or reference, its target
2230 type is automatically used. Thus '.' and '->' are interchangable,
2231 as specified for the definitions of the expression element types
2232 STRUCTOP_STRUCT and STRUCTOP_PTR.
2233
2234 If NOERR is nonzero, the returned structure will have field set to
2235 NULL if there is no component named NAME.
2236
2237 If the component NAME is a field in an anonymous substructure of
2238 TYPE, the returned offset is a "global" offset relative to TYPE
2239 rather than an offset within the substructure. */
2240
2241 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2242
2243 /* Given a type TYPE, lookup the type of the component named NAME.
2244
2245 TYPE can be either a struct or union, or a pointer or reference to
2246 a struct or union. If it is a pointer or reference, its target
2247 type is automatically used. Thus '.' and '->' are interchangable,
2248 as specified for the definitions of the expression element types
2249 STRUCTOP_STRUCT and STRUCTOP_PTR.
2250
2251 If NOERR is nonzero, return NULL if there is no component named
2252 NAME. */
2253
2254 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2255
2256 extern struct type *make_pointer_type (struct type *, struct type **);
2257
2258 extern struct type *lookup_pointer_type (struct type *);
2259
2260 extern struct type *make_function_type (struct type *, struct type **);
2261
2262 extern struct type *lookup_function_type (struct type *);
2263
2264 extern struct type *lookup_function_type_with_arguments (struct type *,
2265 int,
2266 struct type **);
2267
2268 extern struct type *create_static_range_type (struct type *, struct type *,
2269 LONGEST, LONGEST);
2270
2271
2272 extern struct type *create_array_type_with_stride
2273 (struct type *, struct type *, struct type *,
2274 struct dynamic_prop *, unsigned int);
2275
2276 extern struct type *create_range_type (struct type *, struct type *,
2277 const struct dynamic_prop *,
2278 const struct dynamic_prop *,
2279 LONGEST);
2280
2281 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2282 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2283 stride. */
2284
2285 extern struct type * create_range_type_with_stride
2286 (struct type *result_type, struct type *index_type,
2287 const struct dynamic_prop *low_bound,
2288 const struct dynamic_prop *high_bound, LONGEST bias,
2289 const struct dynamic_prop *stride, bool byte_stride_p);
2290
2291 extern struct type *create_array_type (struct type *, struct type *,
2292 struct type *);
2293
2294 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2295
2296 extern struct type *create_string_type (struct type *, struct type *,
2297 struct type *);
2298 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2299
2300 extern struct type *create_set_type (struct type *, struct type *);
2301
2302 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2303 const char *);
2304
2305 extern struct type *lookup_signed_typename (const struct language_defn *,
2306 const char *);
2307
2308 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2309
2310 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2311
2312 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2313 ADDR specifies the location of the variable the type is bound to.
2314 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2315 static properties is returned. */
2316 extern struct type *resolve_dynamic_type
2317 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2318 CORE_ADDR addr);
2319
2320 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2321 extern int is_dynamic_type (struct type *type);
2322
2323 extern struct type *check_typedef (struct type *);
2324
2325 extern void check_stub_method_group (struct type *, int);
2326
2327 extern char *gdb_mangle_name (struct type *, int, int);
2328
2329 extern struct type *lookup_typename (const struct language_defn *,
2330 const char *, const struct block *, int);
2331
2332 extern struct type *lookup_template_type (const char *, struct type *,
2333 const struct block *);
2334
2335 extern int get_vptr_fieldno (struct type *, struct type **);
2336
2337 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2338
2339 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2340 LONGEST *high_bound);
2341
2342 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2343
2344 extern int class_types_same_p (const struct type *, const struct type *);
2345
2346 extern int is_ancestor (struct type *, struct type *);
2347
2348 extern int is_public_ancestor (struct type *, struct type *);
2349
2350 extern int is_unique_ancestor (struct type *, struct value *);
2351
2352 /* Overload resolution */
2353
2354 /* * Badness if parameter list length doesn't match arg list length. */
2355 extern const struct rank LENGTH_MISMATCH_BADNESS;
2356
2357 /* * Dummy badness value for nonexistent parameter positions. */
2358 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2359 /* * Badness if no conversion among types. */
2360 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2361
2362 /* * Badness of an exact match. */
2363 extern const struct rank EXACT_MATCH_BADNESS;
2364
2365 /* * Badness of integral promotion. */
2366 extern const struct rank INTEGER_PROMOTION_BADNESS;
2367 /* * Badness of floating promotion. */
2368 extern const struct rank FLOAT_PROMOTION_BADNESS;
2369 /* * Badness of converting a derived class pointer
2370 to a base class pointer. */
2371 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2372 /* * Badness of integral conversion. */
2373 extern const struct rank INTEGER_CONVERSION_BADNESS;
2374 /* * Badness of floating conversion. */
2375 extern const struct rank FLOAT_CONVERSION_BADNESS;
2376 /* * Badness of integer<->floating conversions. */
2377 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2378 /* * Badness of conversion of pointer to void pointer. */
2379 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2380 /* * Badness of conversion to boolean. */
2381 extern const struct rank BOOL_CONVERSION_BADNESS;
2382 /* * Badness of converting derived to base class. */
2383 extern const struct rank BASE_CONVERSION_BADNESS;
2384 /* * Badness of converting from non-reference to reference. Subrank
2385 is the type of reference conversion being done. */
2386 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2387 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2388 /* * Conversion to rvalue reference. */
2389 #define REFERENCE_CONVERSION_RVALUE 1
2390 /* * Conversion to const lvalue reference. */
2391 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2392
2393 /* * Badness of converting integer 0 to NULL pointer. */
2394 extern const struct rank NULL_POINTER_CONVERSION;
2395 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2396 being done. */
2397 extern const struct rank CV_CONVERSION_BADNESS;
2398 #define CV_CONVERSION_CONST 1
2399 #define CV_CONVERSION_VOLATILE 2
2400
2401 /* Non-standard conversions allowed by the debugger */
2402
2403 /* * Converting a pointer to an int is usually OK. */
2404 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2405
2406 /* * Badness of converting a (non-zero) integer constant
2407 to a pointer. */
2408 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2409
2410 extern struct rank sum_ranks (struct rank a, struct rank b);
2411 extern int compare_ranks (struct rank a, struct rank b);
2412
2413 extern int compare_badness (const badness_vector &,
2414 const badness_vector &);
2415
2416 extern badness_vector rank_function (gdb::array_view<type *> parms,
2417 gdb::array_view<value *> args);
2418
2419 extern struct rank rank_one_type (struct type *, struct type *,
2420 struct value *);
2421
2422 extern void recursive_dump_type (struct type *, int);
2423
2424 extern int field_is_static (struct field *);
2425
2426 /* printcmd.c */
2427
2428 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2429 const struct value_print_options *,
2430 int, struct ui_file *);
2431
2432 extern int can_dereference (struct type *);
2433
2434 extern int is_integral_type (struct type *);
2435
2436 extern int is_floating_type (struct type *);
2437
2438 extern int is_scalar_type (struct type *type);
2439
2440 extern int is_scalar_type_recursive (struct type *);
2441
2442 extern int class_or_union_p (const struct type *);
2443
2444 extern void maintenance_print_type (const char *, int);
2445
2446 extern htab_t create_copied_types_hash (struct objfile *objfile);
2447
2448 extern struct type *copy_type_recursive (struct objfile *objfile,
2449 struct type *type,
2450 htab_t copied_types);
2451
2452 extern struct type *copy_type (const struct type *type);
2453
2454 extern bool types_equal (struct type *, struct type *);
2455
2456 extern bool types_deeply_equal (struct type *, struct type *);
2457
2458 extern int type_not_allocated (const struct type *type);
2459
2460 extern int type_not_associated (const struct type *type);
2461
2462 /* * When the type includes explicit byte ordering, return that.
2463 Otherwise, the byte ordering from gdbarch_byte_order for
2464 get_type_arch is returned. */
2465
2466 extern enum bfd_endian type_byte_order (const struct type *type);
2467
2468 /* A flag to enable printing of debugging information of C++
2469 overloading. */
2470
2471 extern unsigned int overload_debug;
2472
2473 #endif /* GDBTYPES_H */