gdb: add type::has_varargs / type::set_has_varargs
[binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61 struct dwarf2_per_cu_data;
62 struct dwarf2_per_objfile;
63
64 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
65 are already DWARF-specific. */
66
67 /* * Offset relative to the start of its containing CU (compilation
68 unit). */
69 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
70
71 /* * Offset relative to the start of its .debug_info or .debug_types
72 section. */
73 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
74
75 static inline char *
76 sect_offset_str (sect_offset offset)
77 {
78 return hex_string (to_underlying (offset));
79 }
80
81 /* Some macros for char-based bitfields. */
82
83 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
84 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
85 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
86 #define B_TYPE unsigned char
87 #define B_BYTES(x) ( 1 + ((x)>>3) )
88 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
89
90 /* * Different kinds of data types are distinguished by the `code'
91 field. */
92
93 enum type_code
94 {
95 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
96 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
97 TYPE_CODE_PTR, /**< Pointer type */
98
99 /* * Array type with lower & upper bounds.
100
101 Regardless of the language, GDB represents multidimensional
102 array types the way C does: as arrays of arrays. So an
103 instance of a GDB array type T can always be seen as a series
104 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
105 memory.
106
107 Row-major languages like C lay out multi-dimensional arrays so
108 that incrementing the rightmost index in a subscripting
109 expression results in the smallest change in the address of the
110 element referred to. Column-major languages like Fortran lay
111 them out so that incrementing the leftmost index results in the
112 smallest change.
113
114 This means that, in column-major languages, working our way
115 from type to target type corresponds to working through indices
116 from right to left, not left to right. */
117 TYPE_CODE_ARRAY,
118
119 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
120 TYPE_CODE_UNION, /**< C union or Pascal variant part */
121 TYPE_CODE_ENUM, /**< Enumeration type */
122 TYPE_CODE_FLAGS, /**< Bit flags type */
123 TYPE_CODE_FUNC, /**< Function type */
124 TYPE_CODE_INT, /**< Integer type */
125
126 /* * Floating type. This is *NOT* a complex type. */
127 TYPE_CODE_FLT,
128
129 /* * Void type. The length field specifies the length (probably
130 always one) which is used in pointer arithmetic involving
131 pointers to this type, but actually dereferencing such a
132 pointer is invalid; a void type has no length and no actual
133 representation in memory or registers. A pointer to a void
134 type is a generic pointer. */
135 TYPE_CODE_VOID,
136
137 TYPE_CODE_SET, /**< Pascal sets */
138 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
139
140 /* * A string type which is like an array of character but prints
141 differently. It does not contain a length field as Pascal
142 strings (for many Pascals, anyway) do; if we want to deal with
143 such strings, we should use a new type code. */
144 TYPE_CODE_STRING,
145
146 /* * Unknown type. The length field is valid if we were able to
147 deduce that much about the type, or 0 if we don't even know
148 that. */
149 TYPE_CODE_ERROR,
150
151 /* C++ */
152 TYPE_CODE_METHOD, /**< Method type */
153
154 /* * Pointer-to-member-function type. This describes how to access a
155 particular member function of a class (possibly a virtual
156 member function). The representation may vary between different
157 C++ ABIs. */
158 TYPE_CODE_METHODPTR,
159
160 /* * Pointer-to-member type. This is the offset within a class to
161 some particular data member. The only currently supported
162 representation uses an unbiased offset, with -1 representing
163 NULL; this is used by the Itanium C++ ABI (used by GCC on all
164 platforms). */
165 TYPE_CODE_MEMBERPTR,
166
167 TYPE_CODE_REF, /**< C++ Reference types */
168
169 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
170
171 TYPE_CODE_CHAR, /**< *real* character type */
172
173 /* * Boolean type. 0 is false, 1 is true, and other values are
174 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
175 TYPE_CODE_BOOL,
176
177 /* Fortran */
178 TYPE_CODE_COMPLEX, /**< Complex float */
179
180 TYPE_CODE_TYPEDEF,
181
182 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
183
184 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
185
186 TYPE_CODE_MODULE, /**< Fortran module. */
187
188 /* * Internal function type. */
189 TYPE_CODE_INTERNAL_FUNCTION,
190
191 /* * Methods implemented in extension languages. */
192 TYPE_CODE_XMETHOD
193 };
194
195 /* * Some bits for the type's instance_flags word. See the macros
196 below for documentation on each bit. */
197
198 enum type_instance_flag_value : unsigned
199 {
200 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
201 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
202 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
203 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
204 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
205 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
206 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
207 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
208 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
209 };
210
211 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
212
213 /* * A compiler may supply dwarf instrumentation
214 that indicates the desired endian interpretation of the variable
215 differs from the native endian representation. */
216
217 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
218
219 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
220 to functions. */
221
222 #define TYPE_VARARGS(t) ((t)->has_varargs ())
223
224 /* * Identify a vector type. Gcc is handling this by adding an extra
225 attribute to the array type. We slurp that in as a new flag of a
226 type. This is used only in dwarf2read.c. */
227 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
228
229 /* * The debugging formats (especially STABS) do not contain enough
230 information to represent all Ada types---especially those whose
231 size depends on dynamic quantities. Therefore, the GNAT Ada
232 compiler includes extra information in the form of additional type
233 definitions connected by naming conventions. This flag indicates
234 that the type is an ordinary (unencoded) GDB type that has been
235 created from the necessary run-time information, and does not need
236 further interpretation. Optionally marks ordinary, fixed-size GDB
237 type. */
238
239 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
240
241 /* * This debug target supports TYPE_STUB(t). In the unsupported case
242 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
243 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
244 guessed the TYPE_STUB(t) value (see dwarfread.c). */
245
246 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
247
248 /* * Not textual. By default, GDB treats all single byte integers as
249 characters (or elements of strings) unless this flag is set. */
250
251 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
252
253 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
254 address is returned by this function call. TYPE_TARGET_TYPE
255 determines the final returned function type to be presented to
256 user. */
257
258 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
259
260 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
261 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
262 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
263
264 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
265 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
266 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
267
268 /* * True if this type was declared using the "class" keyword. This is
269 only valid for C++ structure and enum types. If false, a structure
270 was declared as a "struct"; if true it was declared "class". For
271 enum types, this is true when "enum class" or "enum struct" was
272 used to declare the type.. */
273
274 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
275
276 /* * True if this type is a "flag" enum. A flag enum is one where all
277 the values are pairwise disjoint when "and"ed together. This
278 affects how enum values are printed. */
279
280 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
281
282 /* * Constant type. If this is set, the corresponding type has a
283 const modifier. */
284
285 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
286
287 /* * Volatile type. If this is set, the corresponding type has a
288 volatile modifier. */
289
290 #define TYPE_VOLATILE(t) \
291 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
292
293 /* * Restrict type. If this is set, the corresponding type has a
294 restrict modifier. */
295
296 #define TYPE_RESTRICT(t) \
297 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
298
299 /* * Atomic type. If this is set, the corresponding type has an
300 _Atomic modifier. */
301
302 #define TYPE_ATOMIC(t) \
303 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
304
305 /* * True if this type represents either an lvalue or lvalue reference type. */
306
307 #define TYPE_IS_REFERENCE(t) \
308 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
309
310 /* * True if this type is allocatable. */
311 #define TYPE_IS_ALLOCATABLE(t) \
312 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
313
314 /* * True if this type has variant parts. */
315 #define TYPE_HAS_VARIANT_PARTS(t) \
316 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
317
318 /* * True if this type has a dynamic length. */
319 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
320 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
321
322 /* * Instruction-space delimited type. This is for Harvard architectures
323 which have separate instruction and data address spaces (and perhaps
324 others).
325
326 GDB usually defines a flat address space that is a superset of the
327 architecture's two (or more) address spaces, but this is an extension
328 of the architecture's model.
329
330 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
331 resides in instruction memory, even if its address (in the extended
332 flat address space) does not reflect this.
333
334 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
335 corresponding type resides in the data memory space, even if
336 this is not indicated by its (flat address space) address.
337
338 If neither flag is set, the default space for functions / methods
339 is instruction space, and for data objects is data memory. */
340
341 #define TYPE_CODE_SPACE(t) \
342 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
343
344 #define TYPE_DATA_SPACE(t) \
345 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
346
347 /* * Address class flags. Some environments provide for pointers
348 whose size is different from that of a normal pointer or address
349 types where the bits are interpreted differently than normal
350 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
351 target specific ways to represent these different types of address
352 classes. */
353
354 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
355 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
356 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
357 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
358 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
359 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
360 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
361 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
362
363 /* * Information about a single discriminant. */
364
365 struct discriminant_range
366 {
367 /* * The range of values for the variant. This is an inclusive
368 range. */
369 ULONGEST low, high;
370
371 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
372 is true if this should be an unsigned comparison; false for
373 signed. */
374 bool contains (ULONGEST value, bool is_unsigned) const
375 {
376 if (is_unsigned)
377 return value >= low && value <= high;
378 LONGEST valuel = (LONGEST) value;
379 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
380 }
381 };
382
383 struct variant_part;
384
385 /* * A single variant. A variant has a list of discriminant values.
386 When the discriminator matches one of these, the variant is
387 enabled. Each variant controls zero or more fields; and may also
388 control other variant parts as well. This struct corresponds to
389 DW_TAG_variant in DWARF. */
390
391 struct variant : allocate_on_obstack
392 {
393 /* * The discriminant ranges for this variant. */
394 gdb::array_view<discriminant_range> discriminants;
395
396 /* * The fields controlled by this variant. This is inclusive on
397 the low end and exclusive on the high end. A variant may not
398 control any fields, in which case the two values will be equal.
399 These are indexes into the type's array of fields. */
400 int first_field;
401 int last_field;
402
403 /* * Variant parts controlled by this variant. */
404 gdb::array_view<variant_part> parts;
405
406 /* * Return true if this is the default variant. The default
407 variant can be recognized because it has no associated
408 discriminants. */
409 bool is_default () const
410 {
411 return discriminants.empty ();
412 }
413
414 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
415 if this should be an unsigned comparison; false for signed. */
416 bool matches (ULONGEST value, bool is_unsigned) const;
417 };
418
419 /* * A variant part. Each variant part has an optional discriminant
420 and holds an array of variants. This struct corresponds to
421 DW_TAG_variant_part in DWARF. */
422
423 struct variant_part : allocate_on_obstack
424 {
425 /* * The index of the discriminant field in the outer type. This is
426 an index into the type's array of fields. If this is -1, there
427 is no discriminant, and only the default variant can be
428 considered to be selected. */
429 int discriminant_index;
430
431 /* * True if this discriminant is unsigned; false if signed. This
432 comes from the type of the discriminant. */
433 bool is_unsigned;
434
435 /* * The variants that are controlled by this variant part. Note
436 that these will always be sorted by field number. */
437 gdb::array_view<variant> variants;
438 };
439
440
441 enum dynamic_prop_kind
442 {
443 PROP_UNDEFINED, /* Not defined. */
444 PROP_CONST, /* Constant. */
445 PROP_ADDR_OFFSET, /* Address offset. */
446 PROP_LOCEXPR, /* Location expression. */
447 PROP_LOCLIST, /* Location list. */
448 PROP_VARIANT_PARTS, /* Variant parts. */
449 PROP_TYPE, /* Type. */
450 };
451
452 union dynamic_prop_data
453 {
454 /* Storage for constant property. */
455
456 LONGEST const_val;
457
458 /* Storage for dynamic property. */
459
460 void *baton;
461
462 /* Storage of variant parts for a type. A type with variant parts
463 has all its fields "linearized" -- stored in a single field
464 array, just as if they had all been declared that way. The
465 variant parts are attached via a dynamic property, and then are
466 used to control which fields end up in the final type during
467 dynamic type resolution. */
468
469 const gdb::array_view<variant_part> *variant_parts;
470
471 /* Once a variant type is resolved, we may want to be able to go
472 from the resolved type to the original type. In this case we
473 rewrite the property's kind and set this field. */
474
475 struct type *original_type;
476 };
477
478 /* * Used to store a dynamic property. */
479
480 struct dynamic_prop
481 {
482 dynamic_prop_kind kind () const
483 {
484 return m_kind;
485 }
486
487 void set_undefined ()
488 {
489 m_kind = PROP_UNDEFINED;
490 }
491
492 LONGEST const_val () const
493 {
494 gdb_assert (m_kind == PROP_CONST);
495
496 return m_data.const_val;
497 }
498
499 void set_const_val (LONGEST const_val)
500 {
501 m_kind = PROP_CONST;
502 m_data.const_val = const_val;
503 }
504
505 void *baton () const
506 {
507 gdb_assert (m_kind == PROP_LOCEXPR
508 || m_kind == PROP_LOCLIST
509 || m_kind == PROP_ADDR_OFFSET);
510
511 return m_data.baton;
512 }
513
514 void set_locexpr (void *baton)
515 {
516 m_kind = PROP_LOCEXPR;
517 m_data.baton = baton;
518 }
519
520 void set_loclist (void *baton)
521 {
522 m_kind = PROP_LOCLIST;
523 m_data.baton = baton;
524 }
525
526 void set_addr_offset (void *baton)
527 {
528 m_kind = PROP_ADDR_OFFSET;
529 m_data.baton = baton;
530 }
531
532 const gdb::array_view<variant_part> *variant_parts () const
533 {
534 gdb_assert (m_kind == PROP_VARIANT_PARTS);
535
536 return m_data.variant_parts;
537 }
538
539 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
540 {
541 m_kind = PROP_VARIANT_PARTS;
542 m_data.variant_parts = variant_parts;
543 }
544
545 struct type *original_type () const
546 {
547 gdb_assert (m_kind == PROP_TYPE);
548
549 return m_data.original_type;
550 }
551
552 void set_original_type (struct type *original_type)
553 {
554 m_kind = PROP_TYPE;
555 m_data.original_type = original_type;
556 }
557
558 /* Determine which field of the union dynamic_prop.data is used. */
559 enum dynamic_prop_kind m_kind;
560
561 /* Storage for dynamic or static value. */
562 union dynamic_prop_data m_data;
563 };
564
565 /* Compare two dynamic_prop objects for equality. dynamic_prop
566 instances are equal iff they have the same type and storage. */
567 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
568
569 /* Compare two dynamic_prop objects for inequality. */
570 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
571 {
572 return !(l == r);
573 }
574
575 /* * Define a type's dynamic property node kind. */
576 enum dynamic_prop_node_kind
577 {
578 /* A property providing a type's data location.
579 Evaluating this field yields to the location of an object's data. */
580 DYN_PROP_DATA_LOCATION,
581
582 /* A property representing DW_AT_allocated. The presence of this attribute
583 indicates that the object of the type can be allocated/deallocated. */
584 DYN_PROP_ALLOCATED,
585
586 /* A property representing DW_AT_associated. The presence of this attribute
587 indicated that the object of the type can be associated. */
588 DYN_PROP_ASSOCIATED,
589
590 /* A property providing an array's byte stride. */
591 DYN_PROP_BYTE_STRIDE,
592
593 /* A property holding variant parts. */
594 DYN_PROP_VARIANT_PARTS,
595
596 /* A property holding the size of the type. */
597 DYN_PROP_BYTE_SIZE,
598 };
599
600 /* * List for dynamic type attributes. */
601 struct dynamic_prop_list
602 {
603 /* The kind of dynamic prop in this node. */
604 enum dynamic_prop_node_kind prop_kind;
605
606 /* The dynamic property itself. */
607 struct dynamic_prop prop;
608
609 /* A pointer to the next dynamic property. */
610 struct dynamic_prop_list *next;
611 };
612
613 /* * Determine which field of the union main_type.fields[x].loc is
614 used. */
615
616 enum field_loc_kind
617 {
618 FIELD_LOC_KIND_BITPOS, /**< bitpos */
619 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
620 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
621 FIELD_LOC_KIND_PHYSNAME, /**< physname */
622 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
623 };
624
625 /* * A discriminant to determine which field in the
626 main_type.type_specific union is being used, if any.
627
628 For types such as TYPE_CODE_FLT, the use of this
629 discriminant is really redundant, as we know from the type code
630 which field is going to be used. As such, it would be possible to
631 reduce the size of this enum in order to save a bit or two for
632 other fields of struct main_type. But, since we still have extra
633 room , and for the sake of clarity and consistency, we treat all fields
634 of the union the same way. */
635
636 enum type_specific_kind
637 {
638 TYPE_SPECIFIC_NONE,
639 TYPE_SPECIFIC_CPLUS_STUFF,
640 TYPE_SPECIFIC_GNAT_STUFF,
641 TYPE_SPECIFIC_FLOATFORMAT,
642 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
643 TYPE_SPECIFIC_FUNC,
644 TYPE_SPECIFIC_SELF_TYPE
645 };
646
647 union type_owner
648 {
649 struct objfile *objfile;
650 struct gdbarch *gdbarch;
651 };
652
653 union field_location
654 {
655 /* * Position of this field, counting in bits from start of
656 containing structure. For big-endian targets, it is the bit
657 offset to the MSB. For little-endian targets, it is the bit
658 offset to the LSB. */
659
660 LONGEST bitpos;
661
662 /* * Enum value. */
663 LONGEST enumval;
664
665 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
666 physaddr is the location (in the target) of the static
667 field. Otherwise, physname is the mangled label of the
668 static field. */
669
670 CORE_ADDR physaddr;
671 const char *physname;
672
673 /* * The field location can be computed by evaluating the
674 following DWARF block. Its DATA is allocated on
675 objfile_obstack - no CU load is needed to access it. */
676
677 struct dwarf2_locexpr_baton *dwarf_block;
678 };
679
680 struct field
681 {
682 struct type *type () const
683 {
684 return this->m_type;
685 }
686
687 void set_type (struct type *type)
688 {
689 this->m_type = type;
690 }
691
692 union field_location loc;
693
694 /* * For a function or member type, this is 1 if the argument is
695 marked artificial. Artificial arguments should not be shown
696 to the user. For TYPE_CODE_RANGE it is set if the specific
697 bound is not defined. */
698
699 unsigned int artificial : 1;
700
701 /* * Discriminant for union field_location. */
702
703 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
704
705 /* * Size of this field, in bits, or zero if not packed.
706 If non-zero in an array type, indicates the element size in
707 bits (used only in Ada at the moment).
708 For an unpacked field, the field's type's length
709 says how many bytes the field occupies. */
710
711 unsigned int bitsize : 28;
712
713 /* * In a struct or union type, type of this field.
714 - In a function or member type, type of this argument.
715 - In an array type, the domain-type of the array. */
716
717 struct type *m_type;
718
719 /* * Name of field, value or argument.
720 NULL for range bounds, array domains, and member function
721 arguments. */
722
723 const char *name;
724 };
725
726 struct range_bounds
727 {
728 ULONGEST bit_stride () const
729 {
730 if (this->flag_is_byte_stride)
731 return this->stride.const_val () * 8;
732 else
733 return this->stride.const_val ();
734 }
735
736 /* * Low bound of range. */
737
738 struct dynamic_prop low;
739
740 /* * High bound of range. */
741
742 struct dynamic_prop high;
743
744 /* The stride value for this range. This can be stored in bits or bytes
745 based on the value of BYTE_STRIDE_P. It is optional to have a stride
746 value, if this range has no stride value defined then this will be set
747 to the constant zero. */
748
749 struct dynamic_prop stride;
750
751 /* * The bias. Sometimes a range value is biased before storage.
752 The bias is added to the stored bits to form the true value. */
753
754 LONGEST bias;
755
756 /* True if HIGH range bound contains the number of elements in the
757 subrange. This affects how the final high bound is computed. */
758
759 unsigned int flag_upper_bound_is_count : 1;
760
761 /* True if LOW or/and HIGH are resolved into a static bound from
762 a dynamic one. */
763
764 unsigned int flag_bound_evaluated : 1;
765
766 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
767
768 unsigned int flag_is_byte_stride : 1;
769 };
770
771 /* Compare two range_bounds objects for equality. Simply does
772 memberwise comparison. */
773 extern bool operator== (const range_bounds &l, const range_bounds &r);
774
775 /* Compare two range_bounds objects for inequality. */
776 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
777 {
778 return !(l == r);
779 }
780
781 union type_specific
782 {
783 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
784 point to cplus_struct_default, a default static instance of a
785 struct cplus_struct_type. */
786
787 struct cplus_struct_type *cplus_stuff;
788
789 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
790 provides additional information. */
791
792 struct gnat_aux_type *gnat_stuff;
793
794 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
795 floatformat object that describes the floating-point value
796 that resides within the type. */
797
798 const struct floatformat *floatformat;
799
800 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
801
802 struct func_type *func_stuff;
803
804 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
805 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
806 is a member of. */
807
808 struct type *self_type;
809 };
810
811 /* * Main structure representing a type in GDB.
812
813 This structure is space-critical. Its layout has been tweaked to
814 reduce the space used. */
815
816 struct main_type
817 {
818 /* * Code for kind of type. */
819
820 ENUM_BITFIELD(type_code) code : 8;
821
822 /* * Flags about this type. These fields appear at this location
823 because they packs nicely here. See the TYPE_* macros for
824 documentation about these fields. */
825
826 unsigned int m_flag_unsigned : 1;
827 unsigned int m_flag_nosign : 1;
828 unsigned int m_flag_stub : 1;
829 unsigned int m_flag_target_stub : 1;
830 unsigned int m_flag_prototyped : 1;
831 unsigned int m_flag_varargs : 1;
832 unsigned int flag_vector : 1;
833 unsigned int flag_stub_supported : 1;
834 unsigned int flag_gnu_ifunc : 1;
835 unsigned int flag_fixed_instance : 1;
836 unsigned int flag_objfile_owned : 1;
837 unsigned int flag_endianity_not_default : 1;
838
839 /* * True if this type was declared with "class" rather than
840 "struct". */
841
842 unsigned int flag_declared_class : 1;
843
844 /* * True if this is an enum type with disjoint values. This
845 affects how the enum is printed. */
846
847 unsigned int flag_flag_enum : 1;
848
849 /* * A discriminant telling us which field of the type_specific
850 union is being used for this type, if any. */
851
852 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
853
854 /* * Number of fields described for this type. This field appears
855 at this location because it packs nicely here. */
856
857 short nfields;
858
859 /* * Name of this type, or NULL if none.
860
861 This is used for printing only. For looking up a name, look for
862 a symbol in the VAR_DOMAIN. This is generally allocated in the
863 objfile's obstack. However coffread.c uses malloc. */
864
865 const char *name;
866
867 /* * Every type is now associated with a particular objfile, and the
868 type is allocated on the objfile_obstack for that objfile. One
869 problem however, is that there are times when gdb allocates new
870 types while it is not in the process of reading symbols from a
871 particular objfile. Fortunately, these happen when the type
872 being created is a derived type of an existing type, such as in
873 lookup_pointer_type(). So we can just allocate the new type
874 using the same objfile as the existing type, but to do this we
875 need a backpointer to the objfile from the existing type. Yes
876 this is somewhat ugly, but without major overhaul of the internal
877 type system, it can't be avoided for now. */
878
879 union type_owner owner;
880
881 /* * For a pointer type, describes the type of object pointed to.
882 - For an array type, describes the type of the elements.
883 - For a function or method type, describes the type of the return value.
884 - For a range type, describes the type of the full range.
885 - For a complex type, describes the type of each coordinate.
886 - For a special record or union type encoding a dynamic-sized type
887 in GNAT, a memoized pointer to a corresponding static version of
888 the type.
889 - Unused otherwise. */
890
891 struct type *target_type;
892
893 /* * For structure and union types, a description of each field.
894 For set and pascal array types, there is one "field",
895 whose type is the domain type of the set or array.
896 For range types, there are two "fields",
897 the minimum and maximum values (both inclusive).
898 For enum types, each possible value is described by one "field".
899 For a function or method type, a "field" for each parameter.
900 For C++ classes, there is one field for each base class (if it is
901 a derived class) plus one field for each class data member. Member
902 functions are recorded elsewhere.
903
904 Using a pointer to a separate array of fields
905 allows all types to have the same size, which is useful
906 because we can allocate the space for a type before
907 we know what to put in it. */
908
909 union
910 {
911 struct field *fields;
912
913 /* * Union member used for range types. */
914
915 struct range_bounds *bounds;
916
917 /* If this is a scalar type, then this is its corresponding
918 complex type. */
919 struct type *complex_type;
920
921 } flds_bnds;
922
923 /* * Slot to point to additional language-specific fields of this
924 type. */
925
926 union type_specific type_specific;
927
928 /* * Contains all dynamic type properties. */
929 struct dynamic_prop_list *dyn_prop_list;
930 };
931
932 /* * Number of bits allocated for alignment. */
933
934 #define TYPE_ALIGN_BITS 8
935
936 /* * A ``struct type'' describes a particular instance of a type, with
937 some particular qualification. */
938
939 struct type
940 {
941 /* Get the type code of this type.
942
943 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
944 type, you need to do `check_typedef (type)->code ()`. */
945 type_code code () const
946 {
947 return this->main_type->code;
948 }
949
950 /* Set the type code of this type. */
951 void set_code (type_code code)
952 {
953 this->main_type->code = code;
954 }
955
956 /* Get the name of this type. */
957 const char *name () const
958 {
959 return this->main_type->name;
960 }
961
962 /* Set the name of this type. */
963 void set_name (const char *name)
964 {
965 this->main_type->name = name;
966 }
967
968 /* Get the number of fields of this type. */
969 int num_fields () const
970 {
971 return this->main_type->nfields;
972 }
973
974 /* Set the number of fields of this type. */
975 void set_num_fields (int num_fields)
976 {
977 this->main_type->nfields = num_fields;
978 }
979
980 /* Get the fields array of this type. */
981 struct field *fields () const
982 {
983 return this->main_type->flds_bnds.fields;
984 }
985
986 /* Get the field at index IDX. */
987 struct field &field (int idx) const
988 {
989 return this->fields ()[idx];
990 }
991
992 /* Set the fields array of this type. */
993 void set_fields (struct field *fields)
994 {
995 this->main_type->flds_bnds.fields = fields;
996 }
997
998 type *index_type () const
999 {
1000 return this->field (0).type ();
1001 }
1002
1003 void set_index_type (type *index_type)
1004 {
1005 this->field (0).set_type (index_type);
1006 }
1007
1008 /* Get the bounds bounds of this type. The type must be a range type. */
1009 range_bounds *bounds () const
1010 {
1011 switch (this->code ())
1012 {
1013 case TYPE_CODE_RANGE:
1014 return this->main_type->flds_bnds.bounds;
1015
1016 case TYPE_CODE_ARRAY:
1017 case TYPE_CODE_STRING:
1018 return this->index_type ()->bounds ();
1019
1020 default:
1021 gdb_assert_not_reached
1022 ("type::bounds called on type with invalid code");
1023 }
1024 }
1025
1026 /* Set the bounds of this type. The type must be a range type. */
1027 void set_bounds (range_bounds *bounds)
1028 {
1029 gdb_assert (this->code () == TYPE_CODE_RANGE);
1030
1031 this->main_type->flds_bnds.bounds = bounds;
1032 }
1033
1034 ULONGEST bit_stride () const
1035 {
1036 return this->bounds ()->bit_stride ();
1037 }
1038
1039 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1040 the type is signed (unless TYPE_NOSIGN is set). */
1041
1042 bool is_unsigned () const
1043 {
1044 return this->main_type->m_flag_unsigned;
1045 }
1046
1047 void set_is_unsigned (bool is_unsigned)
1048 {
1049 this->main_type->m_flag_unsigned = is_unsigned;
1050 }
1051
1052 /* No sign for this type. In C++, "char", "signed char", and
1053 "unsigned char" are distinct types; so we need an extra flag to
1054 indicate the absence of a sign! */
1055
1056 bool has_no_signedness () const
1057 {
1058 return this->main_type->m_flag_nosign;
1059 }
1060
1061 void set_has_no_signedness (bool has_no_signedness)
1062 {
1063 this->main_type->m_flag_nosign = has_no_signedness;
1064 }
1065
1066 /* This appears in a type's flags word if it is a stub type (e.g.,
1067 if someone referenced a type that wasn't defined in a source file
1068 via (struct sir_not_appearing_in_this_film *)). */
1069
1070 bool is_stub () const
1071 {
1072 return this->main_type->m_flag_stub;
1073 }
1074
1075 void set_is_stub (bool is_stub)
1076 {
1077 this->main_type->m_flag_stub = is_stub;
1078 }
1079
1080 /* The target type of this type is a stub type, and this type needs
1081 to be updated if it gets un-stubbed in check_typedef. Used for
1082 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1083 based on the TYPE_LENGTH of the target type. Also, set for
1084 TYPE_CODE_TYPEDEF. */
1085
1086 bool target_is_stub () const
1087 {
1088 return this->main_type->m_flag_target_stub;
1089 }
1090
1091 void set_target_is_stub (bool target_is_stub)
1092 {
1093 this->main_type->m_flag_target_stub = target_is_stub;
1094 }
1095
1096 /* This is a function type which appears to have a prototype. We
1097 need this for function calls in order to tell us if it's necessary
1098 to coerce the args, or to just do the standard conversions. This
1099 is used with a short field. */
1100
1101 bool is_prototyped () const
1102 {
1103 return this->main_type->m_flag_prototyped;
1104 }
1105
1106 void set_is_prototyped (bool is_prototyped)
1107 {
1108 this->main_type->m_flag_prototyped = is_prototyped;
1109 }
1110
1111 bool has_varargs () const
1112 {
1113 return this->main_type->m_flag_varargs;
1114 }
1115
1116 void set_has_varargs (bool has_varargs)
1117 {
1118 this->main_type->m_flag_varargs = has_varargs;
1119 }
1120
1121 /* * Return the dynamic property of the requested KIND from this type's
1122 list of dynamic properties. */
1123 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1124
1125 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1126 property to this type.
1127
1128 This function assumes that this type is objfile-owned. */
1129 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1130
1131 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1132 void remove_dyn_prop (dynamic_prop_node_kind kind);
1133
1134 /* * Type that is a pointer to this type.
1135 NULL if no such pointer-to type is known yet.
1136 The debugger may add the address of such a type
1137 if it has to construct one later. */
1138
1139 struct type *pointer_type;
1140
1141 /* * C++: also need a reference type. */
1142
1143 struct type *reference_type;
1144
1145 /* * A C++ rvalue reference type added in C++11. */
1146
1147 struct type *rvalue_reference_type;
1148
1149 /* * Variant chain. This points to a type that differs from this
1150 one only in qualifiers and length. Currently, the possible
1151 qualifiers are const, volatile, code-space, data-space, and
1152 address class. The length may differ only when one of the
1153 address class flags are set. The variants are linked in a
1154 circular ring and share MAIN_TYPE. */
1155
1156 struct type *chain;
1157
1158 /* * The alignment for this type. Zero means that the alignment was
1159 not specified in the debug info. Note that this is stored in a
1160 funny way: as the log base 2 (plus 1) of the alignment; so a
1161 value of 1 means the alignment is 1, and a value of 9 means the
1162 alignment is 256. */
1163
1164 unsigned align_log2 : TYPE_ALIGN_BITS;
1165
1166 /* * Flags specific to this instance of the type, indicating where
1167 on the ring we are.
1168
1169 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1170 binary or-ed with the target type, with a special case for
1171 address class and space class. For example if this typedef does
1172 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1173 instance flags are completely inherited from the target type. No
1174 qualifiers can be cleared by the typedef. See also
1175 check_typedef. */
1176 unsigned instance_flags : 9;
1177
1178 /* * Length of storage for a value of this type. The value is the
1179 expression in host bytes of what sizeof(type) would return. This
1180 size includes padding. For example, an i386 extended-precision
1181 floating point value really only occupies ten bytes, but most
1182 ABI's declare its size to be 12 bytes, to preserve alignment.
1183 A `struct type' representing such a floating-point type would
1184 have a `length' value of 12, even though the last two bytes are
1185 unused.
1186
1187 Since this field is expressed in host bytes, its value is appropriate
1188 to pass to memcpy and such (it is assumed that GDB itself always runs
1189 on an 8-bits addressable architecture). However, when using it for
1190 target address arithmetic (e.g. adding it to a target address), the
1191 type_length_units function should be used in order to get the length
1192 expressed in target addressable memory units. */
1193
1194 ULONGEST length;
1195
1196 /* * Core type, shared by a group of qualified types. */
1197
1198 struct main_type *main_type;
1199 };
1200
1201 struct fn_fieldlist
1202 {
1203
1204 /* * The overloaded name.
1205 This is generally allocated in the objfile's obstack.
1206 However stabsread.c sometimes uses malloc. */
1207
1208 const char *name;
1209
1210 /* * The number of methods with this name. */
1211
1212 int length;
1213
1214 /* * The list of methods. */
1215
1216 struct fn_field *fn_fields;
1217 };
1218
1219
1220
1221 struct fn_field
1222 {
1223 /* * If is_stub is clear, this is the mangled name which we can look
1224 up to find the address of the method (FIXME: it would be cleaner
1225 to have a pointer to the struct symbol here instead).
1226
1227 If is_stub is set, this is the portion of the mangled name which
1228 specifies the arguments. For example, "ii", if there are two int
1229 arguments, or "" if there are no arguments. See gdb_mangle_name
1230 for the conversion from this format to the one used if is_stub is
1231 clear. */
1232
1233 const char *physname;
1234
1235 /* * The function type for the method.
1236
1237 (This comment used to say "The return value of the method", but
1238 that's wrong. The function type is expected here, i.e. something
1239 with TYPE_CODE_METHOD, and *not* the return-value type). */
1240
1241 struct type *type;
1242
1243 /* * For virtual functions. First baseclass that defines this
1244 virtual function. */
1245
1246 struct type *fcontext;
1247
1248 /* Attributes. */
1249
1250 unsigned int is_const:1;
1251 unsigned int is_volatile:1;
1252 unsigned int is_private:1;
1253 unsigned int is_protected:1;
1254 unsigned int is_artificial:1;
1255
1256 /* * A stub method only has some fields valid (but they are enough
1257 to reconstruct the rest of the fields). */
1258
1259 unsigned int is_stub:1;
1260
1261 /* * True if this function is a constructor, false otherwise. */
1262
1263 unsigned int is_constructor : 1;
1264
1265 /* * True if this function is deleted, false otherwise. */
1266
1267 unsigned int is_deleted : 1;
1268
1269 /* * DW_AT_defaulted attribute for this function. The value is one
1270 of the DW_DEFAULTED constants. */
1271
1272 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1273
1274 /* * Unused. */
1275
1276 unsigned int dummy:6;
1277
1278 /* * Index into that baseclass's virtual function table, minus 2;
1279 else if static: VOFFSET_STATIC; else: 0. */
1280
1281 unsigned int voffset:16;
1282
1283 #define VOFFSET_STATIC 1
1284
1285 };
1286
1287 struct decl_field
1288 {
1289 /* * Unqualified name to be prefixed by owning class qualified
1290 name. */
1291
1292 const char *name;
1293
1294 /* * Type this typedef named NAME represents. */
1295
1296 struct type *type;
1297
1298 /* * True if this field was declared protected, false otherwise. */
1299 unsigned int is_protected : 1;
1300
1301 /* * True if this field was declared private, false otherwise. */
1302 unsigned int is_private : 1;
1303 };
1304
1305 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1306 TYPE_CODE_UNION nodes. */
1307
1308 struct cplus_struct_type
1309 {
1310 /* * Number of base classes this type derives from. The
1311 baseclasses are stored in the first N_BASECLASSES fields
1312 (i.e. the `fields' field of the struct type). The only fields
1313 of struct field that are used are: type, name, loc.bitpos. */
1314
1315 short n_baseclasses;
1316
1317 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1318 All access to this field must be through TYPE_VPTR_FIELDNO as one
1319 thing it does is check whether the field has been initialized.
1320 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1321 which for portability reasons doesn't initialize this field.
1322 TYPE_VPTR_FIELDNO returns -1 for this case.
1323
1324 If -1, we were unable to find the virtual function table pointer in
1325 initial symbol reading, and get_vptr_fieldno should be called to find
1326 it if possible. get_vptr_fieldno will update this field if possible.
1327 Otherwise the value is left at -1.
1328
1329 Unused if this type does not have virtual functions. */
1330
1331 short vptr_fieldno;
1332
1333 /* * Number of methods with unique names. All overloaded methods
1334 with the same name count only once. */
1335
1336 short nfn_fields;
1337
1338 /* * Number of template arguments. */
1339
1340 unsigned short n_template_arguments;
1341
1342 /* * One if this struct is a dynamic class, as defined by the
1343 Itanium C++ ABI: if it requires a virtual table pointer,
1344 because it or any of its base classes have one or more virtual
1345 member functions or virtual base classes. Minus one if not
1346 dynamic. Zero if not yet computed. */
1347
1348 int is_dynamic : 2;
1349
1350 /* * The calling convention for this type, fetched from the
1351 DW_AT_calling_convention attribute. The value is one of the
1352 DW_CC constants. */
1353
1354 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1355
1356 /* * The base class which defined the virtual function table pointer. */
1357
1358 struct type *vptr_basetype;
1359
1360 /* * For derived classes, the number of base classes is given by
1361 n_baseclasses and virtual_field_bits is a bit vector containing
1362 one bit per base class. If the base class is virtual, the
1363 corresponding bit will be set.
1364 I.E, given:
1365
1366 class A{};
1367 class B{};
1368 class C : public B, public virtual A {};
1369
1370 B is a baseclass of C; A is a virtual baseclass for C.
1371 This is a C++ 2.0 language feature. */
1372
1373 B_TYPE *virtual_field_bits;
1374
1375 /* * For classes with private fields, the number of fields is
1376 given by nfields and private_field_bits is a bit vector
1377 containing one bit per field.
1378
1379 If the field is private, the corresponding bit will be set. */
1380
1381 B_TYPE *private_field_bits;
1382
1383 /* * For classes with protected fields, the number of fields is
1384 given by nfields and protected_field_bits is a bit vector
1385 containing one bit per field.
1386
1387 If the field is private, the corresponding bit will be set. */
1388
1389 B_TYPE *protected_field_bits;
1390
1391 /* * For classes with fields to be ignored, either this is
1392 optimized out or this field has length 0. */
1393
1394 B_TYPE *ignore_field_bits;
1395
1396 /* * For classes, structures, and unions, a description of each
1397 field, which consists of an overloaded name, followed by the
1398 types of arguments that the method expects, and then the name
1399 after it has been renamed to make it distinct.
1400
1401 fn_fieldlists points to an array of nfn_fields of these. */
1402
1403 struct fn_fieldlist *fn_fieldlists;
1404
1405 /* * typedefs defined inside this class. typedef_field points to
1406 an array of typedef_field_count elements. */
1407
1408 struct decl_field *typedef_field;
1409
1410 unsigned typedef_field_count;
1411
1412 /* * The nested types defined by this type. nested_types points to
1413 an array of nested_types_count elements. */
1414
1415 struct decl_field *nested_types;
1416
1417 unsigned nested_types_count;
1418
1419 /* * The template arguments. This is an array with
1420 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1421 classes. */
1422
1423 struct symbol **template_arguments;
1424 };
1425
1426 /* * Struct used to store conversion rankings. */
1427
1428 struct rank
1429 {
1430 short rank;
1431
1432 /* * When two conversions are of the same type and therefore have
1433 the same rank, subrank is used to differentiate the two.
1434
1435 Eg: Two derived-class-pointer to base-class-pointer conversions
1436 would both have base pointer conversion rank, but the
1437 conversion with the shorter distance to the ancestor is
1438 preferable. 'subrank' would be used to reflect that. */
1439
1440 short subrank;
1441 };
1442
1443 /* * Used for ranking a function for overload resolution. */
1444
1445 typedef std::vector<rank> badness_vector;
1446
1447 /* * GNAT Ada-specific information for various Ada types. */
1448
1449 struct gnat_aux_type
1450 {
1451 /* * Parallel type used to encode information about dynamic types
1452 used in Ada (such as variant records, variable-size array,
1453 etc). */
1454 struct type* descriptive_type;
1455 };
1456
1457 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1458
1459 struct func_type
1460 {
1461 /* * The calling convention for targets supporting multiple ABIs.
1462 Right now this is only fetched from the Dwarf-2
1463 DW_AT_calling_convention attribute. The value is one of the
1464 DW_CC constants. */
1465
1466 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1467
1468 /* * Whether this function normally returns to its caller. It is
1469 set from the DW_AT_noreturn attribute if set on the
1470 DW_TAG_subprogram. */
1471
1472 unsigned int is_noreturn : 1;
1473
1474 /* * Only those DW_TAG_call_site's in this function that have
1475 DW_AT_call_tail_call set are linked in this list. Function
1476 without its tail call list complete
1477 (DW_AT_call_all_tail_calls or its superset
1478 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1479 DW_TAG_call_site's exist in such function. */
1480
1481 struct call_site *tail_call_list;
1482
1483 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1484 contains the method. */
1485
1486 struct type *self_type;
1487 };
1488
1489 /* struct call_site_parameter can be referenced in callees by several ways. */
1490
1491 enum call_site_parameter_kind
1492 {
1493 /* * Use field call_site_parameter.u.dwarf_reg. */
1494 CALL_SITE_PARAMETER_DWARF_REG,
1495
1496 /* * Use field call_site_parameter.u.fb_offset. */
1497 CALL_SITE_PARAMETER_FB_OFFSET,
1498
1499 /* * Use field call_site_parameter.u.param_offset. */
1500 CALL_SITE_PARAMETER_PARAM_OFFSET
1501 };
1502
1503 struct call_site_target
1504 {
1505 union field_location loc;
1506
1507 /* * Discriminant for union field_location. */
1508
1509 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1510 };
1511
1512 union call_site_parameter_u
1513 {
1514 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1515 as DWARF register number, for register passed
1516 parameters. */
1517
1518 int dwarf_reg;
1519
1520 /* * Offset from the callee's frame base, for stack passed
1521 parameters. This equals offset from the caller's stack
1522 pointer. */
1523
1524 CORE_ADDR fb_offset;
1525
1526 /* * Offset relative to the start of this PER_CU to
1527 DW_TAG_formal_parameter which is referenced by both
1528 caller and the callee. */
1529
1530 cu_offset param_cu_off;
1531 };
1532
1533 struct call_site_parameter
1534 {
1535 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1536
1537 union call_site_parameter_u u;
1538
1539 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1540
1541 const gdb_byte *value;
1542 size_t value_size;
1543
1544 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1545 It may be NULL if not provided by DWARF. */
1546
1547 const gdb_byte *data_value;
1548 size_t data_value_size;
1549 };
1550
1551 /* * A place where a function gets called from, represented by
1552 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1553
1554 struct call_site
1555 {
1556 /* * Address of the first instruction after this call. It must be
1557 the first field as we overload core_addr_hash and core_addr_eq
1558 for it. */
1559
1560 CORE_ADDR pc;
1561
1562 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1563
1564 struct call_site *tail_call_next;
1565
1566 /* * Describe DW_AT_call_target. Missing attribute uses
1567 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1568
1569 struct call_site_target target;
1570
1571 /* * Size of the PARAMETER array. */
1572
1573 unsigned parameter_count;
1574
1575 /* * CU of the function where the call is located. It gets used
1576 for DWARF blocks execution in the parameter array below. */
1577
1578 dwarf2_per_cu_data *per_cu;
1579
1580 /* objfile of the function where the call is located. */
1581
1582 dwarf2_per_objfile *per_objfile;
1583
1584 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1585
1586 struct call_site_parameter parameter[1];
1587 };
1588
1589 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1590 static structure. */
1591
1592 extern const struct cplus_struct_type cplus_struct_default;
1593
1594 extern void allocate_cplus_struct_type (struct type *);
1595
1596 #define INIT_CPLUS_SPECIFIC(type) \
1597 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1598 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1599 &cplus_struct_default)
1600
1601 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1602
1603 #define HAVE_CPLUS_STRUCT(type) \
1604 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1605 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1606
1607 #define INIT_NONE_SPECIFIC(type) \
1608 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1609 TYPE_MAIN_TYPE (type)->type_specific = {})
1610
1611 extern const struct gnat_aux_type gnat_aux_default;
1612
1613 extern void allocate_gnat_aux_type (struct type *);
1614
1615 #define INIT_GNAT_SPECIFIC(type) \
1616 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1617 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1618 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1619 /* * A macro that returns non-zero if the type-specific data should be
1620 read as "gnat-stuff". */
1621 #define HAVE_GNAT_AUX_INFO(type) \
1622 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1623
1624 /* * True if TYPE is known to be an Ada type of some kind. */
1625 #define ADA_TYPE_P(type) \
1626 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1627 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1628 && TYPE_FIXED_INSTANCE (type)))
1629
1630 #define INIT_FUNC_SPECIFIC(type) \
1631 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1632 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1633 TYPE_ZALLOC (type, \
1634 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1635
1636 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1637 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1638 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1639 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1640 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1641 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1642 #define TYPE_CHAIN(thistype) (thistype)->chain
1643 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1644 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1645 so you only have to call check_typedef once. Since allocate_value
1646 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1647 #define TYPE_LENGTH(thistype) (thistype)->length
1648
1649 /* * Return the alignment of the type in target addressable memory
1650 units, or 0 if no alignment was specified. */
1651 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1652
1653 /* * Return the alignment of the type in target addressable memory
1654 units, or 0 if no alignment was specified. */
1655 extern unsigned type_raw_align (struct type *);
1656
1657 /* * Return the alignment of the type in target addressable memory
1658 units. Return 0 if the alignment cannot be determined; but note
1659 that this makes an effort to compute the alignment even it it was
1660 not specified in the debug info. */
1661 extern unsigned type_align (struct type *);
1662
1663 /* * Set the alignment of the type. The alignment must be a power of
1664 2. Returns false if the given value does not fit in the available
1665 space in struct type. */
1666 extern bool set_type_align (struct type *, ULONGEST);
1667
1668 /* Property accessors for the type data location. */
1669 #define TYPE_DATA_LOCATION(thistype) \
1670 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1671 #define TYPE_DATA_LOCATION_BATON(thistype) \
1672 TYPE_DATA_LOCATION (thistype)->data.baton
1673 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1674 (TYPE_DATA_LOCATION (thistype)->const_val ())
1675 #define TYPE_DATA_LOCATION_KIND(thistype) \
1676 (TYPE_DATA_LOCATION (thistype)->kind ())
1677 #define TYPE_DYNAMIC_LENGTH(thistype) \
1678 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1679
1680 /* Property accessors for the type allocated/associated. */
1681 #define TYPE_ALLOCATED_PROP(thistype) \
1682 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1683 #define TYPE_ASSOCIATED_PROP(thistype) \
1684 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1685
1686 /* C++ */
1687
1688 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1689 /* Do not call this, use TYPE_SELF_TYPE. */
1690 extern struct type *internal_type_self_type (struct type *);
1691 extern void set_type_self_type (struct type *, struct type *);
1692
1693 extern int internal_type_vptr_fieldno (struct type *);
1694 extern void set_type_vptr_fieldno (struct type *, int);
1695 extern struct type *internal_type_vptr_basetype (struct type *);
1696 extern void set_type_vptr_basetype (struct type *, struct type *);
1697 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1698 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1699
1700 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1701 #define TYPE_SPECIFIC_FIELD(thistype) \
1702 TYPE_MAIN_TYPE(thistype)->type_specific_field
1703 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1704 where we're trying to print an Ada array using the C language.
1705 In that case, there is no "cplus_stuff", but the C language assumes
1706 that there is. What we do, in that case, is pretend that there is
1707 an implicit one which is the default cplus stuff. */
1708 #define TYPE_CPLUS_SPECIFIC(thistype) \
1709 (!HAVE_CPLUS_STRUCT(thistype) \
1710 ? (struct cplus_struct_type*)&cplus_struct_default \
1711 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1712 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1713 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1714 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1715 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1716 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1717 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1718 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1719 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1720 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1721 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1722 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1723 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1724 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1725 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1726 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1727 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1728
1729 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1730 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1731 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1732
1733 #define FIELD_NAME(thisfld) ((thisfld).name)
1734 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1735 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1736 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1737 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1738 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1739 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1740 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1741 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1742 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1743 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1744 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1745 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1746 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1747 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1748 #define SET_FIELD_PHYSNAME(thisfld, name) \
1749 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1750 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1751 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1752 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1753 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1754 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1755 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1756 FIELD_DWARF_BLOCK (thisfld) = (addr))
1757 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1758 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1759
1760 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1761 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1762 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1763 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1764 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1765 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1766 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1767 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1768 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1769 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1770
1771 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1772 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1773 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1774 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1775 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1776 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1777 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1778 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1779 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1780 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1781 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1782 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1783 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1784 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1785 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1786 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1787 #define TYPE_FIELD_PRIVATE(thistype, n) \
1788 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1789 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1790 #define TYPE_FIELD_PROTECTED(thistype, n) \
1791 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1792 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1793 #define TYPE_FIELD_IGNORE(thistype, n) \
1794 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1795 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1796 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1797 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1798 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1799
1800 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1801 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1802 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1803 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1804 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1805
1806 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1807 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1808 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1809 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1810 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1811 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1812
1813 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1814 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1815 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1816 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1817 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1818 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1819 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1820 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1821 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1822 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1823 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1824 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1825 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1826 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1827 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1828 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1829 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1830
1831 /* Accessors for typedefs defined by a class. */
1832 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1833 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1834 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1835 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1836 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1837 TYPE_TYPEDEF_FIELD (thistype, n).name
1838 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1839 TYPE_TYPEDEF_FIELD (thistype, n).type
1840 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1841 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1842 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1843 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1844 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1845 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1846
1847 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1848 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1849 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1850 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1851 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1852 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1853 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1854 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1855 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1856 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1857 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1858 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1859 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1860 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1861
1862 #define TYPE_IS_OPAQUE(thistype) \
1863 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1864 || ((thistype)->code () == TYPE_CODE_UNION)) \
1865 && ((thistype)->num_fields () == 0) \
1866 && (!HAVE_CPLUS_STRUCT (thistype) \
1867 || TYPE_NFN_FIELDS (thistype) == 0) \
1868 && ((thistype)->is_stub () || !TYPE_STUB_SUPPORTED (thistype)))
1869
1870 /* * A helper macro that returns the name of a type or "unnamed type"
1871 if the type has no name. */
1872
1873 #define TYPE_SAFE_NAME(type) \
1874 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1875
1876 /* * A helper macro that returns the name of an error type. If the
1877 type has a name, it is used; otherwise, a default is used. */
1878
1879 #define TYPE_ERROR_NAME(type) \
1880 (type->name () ? type->name () : _("<error type>"))
1881
1882 /* Given TYPE, return its floatformat. */
1883 const struct floatformat *floatformat_from_type (const struct type *type);
1884
1885 struct builtin_type
1886 {
1887 /* Integral types. */
1888
1889 /* Implicit size/sign (based on the architecture's ABI). */
1890 struct type *builtin_void;
1891 struct type *builtin_char;
1892 struct type *builtin_short;
1893 struct type *builtin_int;
1894 struct type *builtin_long;
1895 struct type *builtin_signed_char;
1896 struct type *builtin_unsigned_char;
1897 struct type *builtin_unsigned_short;
1898 struct type *builtin_unsigned_int;
1899 struct type *builtin_unsigned_long;
1900 struct type *builtin_bfloat16;
1901 struct type *builtin_half;
1902 struct type *builtin_float;
1903 struct type *builtin_double;
1904 struct type *builtin_long_double;
1905 struct type *builtin_complex;
1906 struct type *builtin_double_complex;
1907 struct type *builtin_string;
1908 struct type *builtin_bool;
1909 struct type *builtin_long_long;
1910 struct type *builtin_unsigned_long_long;
1911 struct type *builtin_decfloat;
1912 struct type *builtin_decdouble;
1913 struct type *builtin_declong;
1914
1915 /* "True" character types.
1916 We use these for the '/c' print format, because c_char is just a
1917 one-byte integral type, which languages less laid back than C
1918 will print as ... well, a one-byte integral type. */
1919 struct type *builtin_true_char;
1920 struct type *builtin_true_unsigned_char;
1921
1922 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1923 is for when an architecture needs to describe a register that has
1924 no size. */
1925 struct type *builtin_int0;
1926 struct type *builtin_int8;
1927 struct type *builtin_uint8;
1928 struct type *builtin_int16;
1929 struct type *builtin_uint16;
1930 struct type *builtin_int24;
1931 struct type *builtin_uint24;
1932 struct type *builtin_int32;
1933 struct type *builtin_uint32;
1934 struct type *builtin_int64;
1935 struct type *builtin_uint64;
1936 struct type *builtin_int128;
1937 struct type *builtin_uint128;
1938
1939 /* Wide character types. */
1940 struct type *builtin_char16;
1941 struct type *builtin_char32;
1942 struct type *builtin_wchar;
1943
1944 /* Pointer types. */
1945
1946 /* * `pointer to data' type. Some target platforms use an implicitly
1947 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1948 struct type *builtin_data_ptr;
1949
1950 /* * `pointer to function (returning void)' type. Harvard
1951 architectures mean that ABI function and code pointers are not
1952 interconvertible. Similarly, since ANSI, C standards have
1953 explicitly said that pointers to functions and pointers to data
1954 are not interconvertible --- that is, you can't cast a function
1955 pointer to void * and back, and expect to get the same value.
1956 However, all function pointer types are interconvertible, so void
1957 (*) () can server as a generic function pointer. */
1958
1959 struct type *builtin_func_ptr;
1960
1961 /* * `function returning pointer to function (returning void)' type.
1962 The final void return type is not significant for it. */
1963
1964 struct type *builtin_func_func;
1965
1966 /* Special-purpose types. */
1967
1968 /* * This type is used to represent a GDB internal function. */
1969
1970 struct type *internal_fn;
1971
1972 /* * This type is used to represent an xmethod. */
1973 struct type *xmethod;
1974 };
1975
1976 /* * Return the type table for the specified architecture. */
1977
1978 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1979
1980 /* * Per-objfile types used by symbol readers. */
1981
1982 struct objfile_type
1983 {
1984 /* Basic types based on the objfile architecture. */
1985 struct type *builtin_void;
1986 struct type *builtin_char;
1987 struct type *builtin_short;
1988 struct type *builtin_int;
1989 struct type *builtin_long;
1990 struct type *builtin_long_long;
1991 struct type *builtin_signed_char;
1992 struct type *builtin_unsigned_char;
1993 struct type *builtin_unsigned_short;
1994 struct type *builtin_unsigned_int;
1995 struct type *builtin_unsigned_long;
1996 struct type *builtin_unsigned_long_long;
1997 struct type *builtin_half;
1998 struct type *builtin_float;
1999 struct type *builtin_double;
2000 struct type *builtin_long_double;
2001
2002 /* * This type is used to represent symbol addresses. */
2003 struct type *builtin_core_addr;
2004
2005 /* * This type represents a type that was unrecognized in symbol
2006 read-in. */
2007 struct type *builtin_error;
2008
2009 /* * Types used for symbols with no debug information. */
2010 struct type *nodebug_text_symbol;
2011 struct type *nodebug_text_gnu_ifunc_symbol;
2012 struct type *nodebug_got_plt_symbol;
2013 struct type *nodebug_data_symbol;
2014 struct type *nodebug_unknown_symbol;
2015 struct type *nodebug_tls_symbol;
2016 };
2017
2018 /* * Return the type table for the specified objfile. */
2019
2020 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2021
2022 /* Explicit floating-point formats. See "floatformat.h". */
2023 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2024 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2025 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2026 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2027 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2028 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2029 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2030 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2031 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2032 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2033 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2034 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2035 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2036
2037 /* Allocate space for storing data associated with a particular
2038 type. We ensure that the space is allocated using the same
2039 mechanism that was used to allocate the space for the type
2040 structure itself. I.e. if the type is on an objfile's
2041 objfile_obstack, then the space for data associated with that type
2042 will also be allocated on the objfile_obstack. If the type is
2043 associated with a gdbarch, then the space for data associated with that
2044 type will also be allocated on the gdbarch_obstack.
2045
2046 If a type is not associated with neither an objfile or a gdbarch then
2047 you should not use this macro to allocate space for data, instead you
2048 should call xmalloc directly, and ensure the memory is correctly freed
2049 when it is no longer needed. */
2050
2051 #define TYPE_ALLOC(t,size) \
2052 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
2053 ? &TYPE_OBJFILE (t)->objfile_obstack \
2054 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
2055 size))
2056
2057
2058 /* See comment on TYPE_ALLOC. */
2059
2060 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2061
2062 /* Use alloc_type to allocate a type owned by an objfile. Use
2063 alloc_type_arch to allocate a type owned by an architecture. Use
2064 alloc_type_copy to allocate a type with the same owner as a
2065 pre-existing template type, no matter whether objfile or
2066 gdbarch. */
2067 extern struct type *alloc_type (struct objfile *);
2068 extern struct type *alloc_type_arch (struct gdbarch *);
2069 extern struct type *alloc_type_copy (const struct type *);
2070
2071 /* * Return the type's architecture. For types owned by an
2072 architecture, that architecture is returned. For types owned by an
2073 objfile, that objfile's architecture is returned. */
2074
2075 extern struct gdbarch *get_type_arch (const struct type *);
2076
2077 /* * This returns the target type (or NULL) of TYPE, also skipping
2078 past typedefs. */
2079
2080 extern struct type *get_target_type (struct type *type);
2081
2082 /* Return the equivalent of TYPE_LENGTH, but in number of target
2083 addressable memory units of the associated gdbarch instead of bytes. */
2084
2085 extern unsigned int type_length_units (struct type *type);
2086
2087 /* * Helper function to construct objfile-owned types. */
2088
2089 extern struct type *init_type (struct objfile *, enum type_code, int,
2090 const char *);
2091 extern struct type *init_integer_type (struct objfile *, int, int,
2092 const char *);
2093 extern struct type *init_character_type (struct objfile *, int, int,
2094 const char *);
2095 extern struct type *init_boolean_type (struct objfile *, int, int,
2096 const char *);
2097 extern struct type *init_float_type (struct objfile *, int, const char *,
2098 const struct floatformat **,
2099 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2100 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2101 extern struct type *init_complex_type (const char *, struct type *);
2102 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2103 struct type *);
2104
2105 /* Helper functions to construct architecture-owned types. */
2106 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2107 const char *);
2108 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2109 const char *);
2110 extern struct type *arch_character_type (struct gdbarch *, int, int,
2111 const char *);
2112 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2113 const char *);
2114 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2115 const struct floatformat **);
2116 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2117 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2118 struct type *);
2119
2120 /* Helper functions to construct a struct or record type. An
2121 initially empty type is created using arch_composite_type().
2122 Fields are then added using append_composite_type_field*(). A union
2123 type has its size set to the largest field. A struct type has each
2124 field packed against the previous. */
2125
2126 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2127 const char *name, enum type_code code);
2128 extern void append_composite_type_field (struct type *t, const char *name,
2129 struct type *field);
2130 extern void append_composite_type_field_aligned (struct type *t,
2131 const char *name,
2132 struct type *field,
2133 int alignment);
2134 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2135 struct type *field);
2136
2137 /* Helper functions to construct a bit flags type. An initially empty
2138 type is created using arch_flag_type(). Flags are then added using
2139 append_flag_type_field() and append_flag_type_flag(). */
2140 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2141 const char *name, int bit);
2142 extern void append_flags_type_field (struct type *type,
2143 int start_bitpos, int nr_bits,
2144 struct type *field_type, const char *name);
2145 extern void append_flags_type_flag (struct type *type, int bitpos,
2146 const char *name);
2147
2148 extern void make_vector_type (struct type *array_type);
2149 extern struct type *init_vector_type (struct type *elt_type, int n);
2150
2151 extern struct type *lookup_reference_type (struct type *, enum type_code);
2152 extern struct type *lookup_lvalue_reference_type (struct type *);
2153 extern struct type *lookup_rvalue_reference_type (struct type *);
2154
2155
2156 extern struct type *make_reference_type (struct type *, struct type **,
2157 enum type_code);
2158
2159 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2160
2161 extern struct type *make_restrict_type (struct type *);
2162
2163 extern struct type *make_unqualified_type (struct type *);
2164
2165 extern struct type *make_atomic_type (struct type *);
2166
2167 extern void replace_type (struct type *, struct type *);
2168
2169 extern int address_space_name_to_int (struct gdbarch *, const char *);
2170
2171 extern const char *address_space_int_to_name (struct gdbarch *, int);
2172
2173 extern struct type *make_type_with_address_space (struct type *type,
2174 int space_identifier);
2175
2176 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2177
2178 extern struct type *lookup_methodptr_type (struct type *);
2179
2180 extern void smash_to_method_type (struct type *type, struct type *self_type,
2181 struct type *to_type, struct field *args,
2182 int nargs, int varargs);
2183
2184 extern void smash_to_memberptr_type (struct type *, struct type *,
2185 struct type *);
2186
2187 extern void smash_to_methodptr_type (struct type *, struct type *);
2188
2189 extern struct type *allocate_stub_method (struct type *);
2190
2191 extern const char *type_name_or_error (struct type *type);
2192
2193 struct struct_elt
2194 {
2195 /* The field of the element, or NULL if no element was found. */
2196 struct field *field;
2197
2198 /* The bit offset of the element in the parent structure. */
2199 LONGEST offset;
2200 };
2201
2202 /* Given a type TYPE, lookup the field and offset of the component named
2203 NAME.
2204
2205 TYPE can be either a struct or union, or a pointer or reference to
2206 a struct or union. If it is a pointer or reference, its target
2207 type is automatically used. Thus '.' and '->' are interchangable,
2208 as specified for the definitions of the expression element types
2209 STRUCTOP_STRUCT and STRUCTOP_PTR.
2210
2211 If NOERR is nonzero, the returned structure will have field set to
2212 NULL if there is no component named NAME.
2213
2214 If the component NAME is a field in an anonymous substructure of
2215 TYPE, the returned offset is a "global" offset relative to TYPE
2216 rather than an offset within the substructure. */
2217
2218 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2219
2220 /* Given a type TYPE, lookup the type of the component named NAME.
2221
2222 TYPE can be either a struct or union, or a pointer or reference to
2223 a struct or union. If it is a pointer or reference, its target
2224 type is automatically used. Thus '.' and '->' are interchangable,
2225 as specified for the definitions of the expression element types
2226 STRUCTOP_STRUCT and STRUCTOP_PTR.
2227
2228 If NOERR is nonzero, return NULL if there is no component named
2229 NAME. */
2230
2231 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2232
2233 extern struct type *make_pointer_type (struct type *, struct type **);
2234
2235 extern struct type *lookup_pointer_type (struct type *);
2236
2237 extern struct type *make_function_type (struct type *, struct type **);
2238
2239 extern struct type *lookup_function_type (struct type *);
2240
2241 extern struct type *lookup_function_type_with_arguments (struct type *,
2242 int,
2243 struct type **);
2244
2245 extern struct type *create_static_range_type (struct type *, struct type *,
2246 LONGEST, LONGEST);
2247
2248
2249 extern struct type *create_array_type_with_stride
2250 (struct type *, struct type *, struct type *,
2251 struct dynamic_prop *, unsigned int);
2252
2253 extern struct type *create_range_type (struct type *, struct type *,
2254 const struct dynamic_prop *,
2255 const struct dynamic_prop *,
2256 LONGEST);
2257
2258 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2259 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2260 stride. */
2261
2262 extern struct type * create_range_type_with_stride
2263 (struct type *result_type, struct type *index_type,
2264 const struct dynamic_prop *low_bound,
2265 const struct dynamic_prop *high_bound, LONGEST bias,
2266 const struct dynamic_prop *stride, bool byte_stride_p);
2267
2268 extern struct type *create_array_type (struct type *, struct type *,
2269 struct type *);
2270
2271 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2272
2273 extern struct type *create_string_type (struct type *, struct type *,
2274 struct type *);
2275 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2276
2277 extern struct type *create_set_type (struct type *, struct type *);
2278
2279 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2280 const char *);
2281
2282 extern struct type *lookup_signed_typename (const struct language_defn *,
2283 const char *);
2284
2285 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2286
2287 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2288
2289 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2290 ADDR specifies the location of the variable the type is bound to.
2291 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2292 static properties is returned. */
2293 extern struct type *resolve_dynamic_type
2294 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2295 CORE_ADDR addr);
2296
2297 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2298 extern int is_dynamic_type (struct type *type);
2299
2300 extern struct type *check_typedef (struct type *);
2301
2302 extern void check_stub_method_group (struct type *, int);
2303
2304 extern char *gdb_mangle_name (struct type *, int, int);
2305
2306 extern struct type *lookup_typename (const struct language_defn *,
2307 const char *, const struct block *, int);
2308
2309 extern struct type *lookup_template_type (const char *, struct type *,
2310 const struct block *);
2311
2312 extern int get_vptr_fieldno (struct type *, struct type **);
2313
2314 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2315
2316 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2317 LONGEST *high_bound);
2318
2319 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2320
2321 extern int class_types_same_p (const struct type *, const struct type *);
2322
2323 extern int is_ancestor (struct type *, struct type *);
2324
2325 extern int is_public_ancestor (struct type *, struct type *);
2326
2327 extern int is_unique_ancestor (struct type *, struct value *);
2328
2329 /* Overload resolution */
2330
2331 /* * Badness if parameter list length doesn't match arg list length. */
2332 extern const struct rank LENGTH_MISMATCH_BADNESS;
2333
2334 /* * Dummy badness value for nonexistent parameter positions. */
2335 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2336 /* * Badness if no conversion among types. */
2337 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2338
2339 /* * Badness of an exact match. */
2340 extern const struct rank EXACT_MATCH_BADNESS;
2341
2342 /* * Badness of integral promotion. */
2343 extern const struct rank INTEGER_PROMOTION_BADNESS;
2344 /* * Badness of floating promotion. */
2345 extern const struct rank FLOAT_PROMOTION_BADNESS;
2346 /* * Badness of converting a derived class pointer
2347 to a base class pointer. */
2348 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2349 /* * Badness of integral conversion. */
2350 extern const struct rank INTEGER_CONVERSION_BADNESS;
2351 /* * Badness of floating conversion. */
2352 extern const struct rank FLOAT_CONVERSION_BADNESS;
2353 /* * Badness of integer<->floating conversions. */
2354 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2355 /* * Badness of conversion of pointer to void pointer. */
2356 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2357 /* * Badness of conversion to boolean. */
2358 extern const struct rank BOOL_CONVERSION_BADNESS;
2359 /* * Badness of converting derived to base class. */
2360 extern const struct rank BASE_CONVERSION_BADNESS;
2361 /* * Badness of converting from non-reference to reference. Subrank
2362 is the type of reference conversion being done. */
2363 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2364 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2365 /* * Conversion to rvalue reference. */
2366 #define REFERENCE_CONVERSION_RVALUE 1
2367 /* * Conversion to const lvalue reference. */
2368 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2369
2370 /* * Badness of converting integer 0 to NULL pointer. */
2371 extern const struct rank NULL_POINTER_CONVERSION;
2372 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2373 being done. */
2374 extern const struct rank CV_CONVERSION_BADNESS;
2375 #define CV_CONVERSION_CONST 1
2376 #define CV_CONVERSION_VOLATILE 2
2377
2378 /* Non-standard conversions allowed by the debugger */
2379
2380 /* * Converting a pointer to an int is usually OK. */
2381 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2382
2383 /* * Badness of converting a (non-zero) integer constant
2384 to a pointer. */
2385 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2386
2387 extern struct rank sum_ranks (struct rank a, struct rank b);
2388 extern int compare_ranks (struct rank a, struct rank b);
2389
2390 extern int compare_badness (const badness_vector &,
2391 const badness_vector &);
2392
2393 extern badness_vector rank_function (gdb::array_view<type *> parms,
2394 gdb::array_view<value *> args);
2395
2396 extern struct rank rank_one_type (struct type *, struct type *,
2397 struct value *);
2398
2399 extern void recursive_dump_type (struct type *, int);
2400
2401 extern int field_is_static (struct field *);
2402
2403 /* printcmd.c */
2404
2405 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2406 const struct value_print_options *,
2407 int, struct ui_file *);
2408
2409 extern int can_dereference (struct type *);
2410
2411 extern int is_integral_type (struct type *);
2412
2413 extern int is_floating_type (struct type *);
2414
2415 extern int is_scalar_type (struct type *type);
2416
2417 extern int is_scalar_type_recursive (struct type *);
2418
2419 extern int class_or_union_p (const struct type *);
2420
2421 extern void maintenance_print_type (const char *, int);
2422
2423 extern htab_t create_copied_types_hash (struct objfile *objfile);
2424
2425 extern struct type *copy_type_recursive (struct objfile *objfile,
2426 struct type *type,
2427 htab_t copied_types);
2428
2429 extern struct type *copy_type (const struct type *type);
2430
2431 extern bool types_equal (struct type *, struct type *);
2432
2433 extern bool types_deeply_equal (struct type *, struct type *);
2434
2435 extern int type_not_allocated (const struct type *type);
2436
2437 extern int type_not_associated (const struct type *type);
2438
2439 /* * When the type includes explicit byte ordering, return that.
2440 Otherwise, the byte ordering from gdbarch_byte_order for
2441 get_type_arch is returned. */
2442
2443 extern enum bfd_endian type_byte_order (const struct type *type);
2444
2445 /* A flag to enable printing of debugging information of C++
2446 overloading. */
2447
2448 extern unsigned int overload_debug;
2449
2450 #endif /* GDBTYPES_H */